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Summary—With few exceptions, metal deformation analyses employ & constant yield
stress (rigid, perfectly plastic metal) which ignores strain hardening, or a “mean” yield
stress which attempts to accommodate strain hardening in a simplified manner. Since
strain hardening is of interest here, little reference will be made to a rigid, plastic type of
behavior.

The first part of this paper demonstrates that the use of a mean yield stress under-
estimates the working loads (or stresses) needed to draw metal through conical dies as
compared to those loads predicted by more “exact’ analyses. In this context ‘exact”
refers to those solutions obtained by incorporating the strain hardening relationship in the
governing ‘‘force balance’ differential equations prior to the integration of the said
equations. It is shown, however, that the error introduced by the use of a mean yield
stress is no more than some 8 per cent for conditions that typify actual practice. Since
analyses of other metal-working processes, such as rolling and extrusion, employ the same
sort of differential equation, it is felt that these results are applicable there also.

The second part of this paper shows that redundant work in rod drawing may be
approached either from considerations of the mechanical properties that result after the
metal is drawn or from considerations of the stress necessary to draw down the rod.
Contrary to what is implied in the literature, it is shown that these two approaches lead to
different interpretations of the ‘‘redundant work factor’’. Relationships are given between
the two for metals that are assumed to strain harden in certain simple ways.

NOTATION
a semi-angle of die cone
D diameter of rod before drawing
d diameter of rod after drawing

2

r decimal reduction of area = 1— (g
u  gross, average coefficient of friction between rod and die
o, drawing stress with no back tension
Y., mean uniaxial yield stress (dependent upon strain hardening and redundant

work)
B pcota
. D 1
£, homogeneous true strain = 2 ln(a—) = ln(l__r)

& true strain induced prior to drawing
a,b constants associated with linear strain hardening (i.e. Y = a + be)
gp,» ™ constants associated with power-law strain hardening (i.e. ¥ = g,&™)
o true stress
.9,k constants associated with exponential strain hardening [i.c.
Y = f—gexp (- he)]
15
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¢ redundant work factor based upon superposition of stress-strain curves?
&* equivalent strain = ¢¢,
C,,C, empirical coefficients associated with ¢

A geometric configuration factor = (g+3) sin o

® redundant work factor based upon drawing stresses*
K,, K, empirical coefficients associated with ©

PART I. DRAWING ANALYSES

1. Introduction
MucH of the previous work devoted to drawing metal through conical dies has
been summarized by MacLellan! and, later, Wistreich?; together these papers
contain an extensive list of references relating to this area of study. Previous
publications which have some bearing on this present paper will be referred to,
otherwise the reader can check!2 for a more complete source of information.

Although Shield3 has provided a solution to axisymmetric drawing through
conical dies of semi-infinite length, Wistreich? points out that the results have
limited practical value because of restrictions regarding end effects. In fact, no
rigorous and truly acceptable solution to the plasticity problem posed by
axisymmetric drawing has yet been found. The literature does contain a
number of analyses, however, that provide a definite insight to this problem;
gsome employ the use of two-dimensional plane-strain drawing as a guideline
but these results do not, of course, provide a one-to-one correspondence with the
axisymmetric case. The work of Hill and Tupper!, Whitton® and Green®
demonstrate (though not exclusively) some of the important previous studies.
For the development of the objectives of this present paper, the theory
originally presented by Sachs? will be of principal concern. Modifications of
this theory (e.g. Kérber and Eichinger®) will be ignored except for reference to
the work of Davis and Dokos®. Additionally, use will be made of the theory
developed by Hill and Tupper* (see Baron and Thompson!®) which was based
upon a slip-line field analysis. It should be noted that this same result had carlier
been proposed by Sachs and Van Horn'!, who used a force balance analysis.

2. General considerations

Throughout this paper it is assumed that there is no back tension applied to the metal
as it is drawn through a conical die. In terms of the parameters of semi-angle of the die («),
reduction of area (r) and an avecrage value of coefficient of friction at the die—workpiece
interfaco {u), expressions for the drawing stress (o,) have been developed as follows:

0u = Tu(1+B)n({1) = T+ B)e, ()
1+B 1+ 8B
04 = Yu(“57) 1= (=] = (55 L1 =exp (= Bey)] (2°

where r is the decimal cquivalent to the percent reduction of arca, g, is the homogeneous,
logarithmic strain based upon the reduction of area, Y,, is somo constant yicld stress, and

t One referee has suggested the adoption of the following terminology :
¢—redundant deformation factor (based upon superposition of stress-strain curves);
® —redundant work factor (based upon drawing stresses).

The authors feel that this suggestion has definite merit as it might lead to far greater
clarity in future discussions of “‘redundant work factors”.
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B = pcot o If one notes that °
(Be)?
21

it becomes apparent that as Be becomes small, equation (2) eventually reduces to
equation (1).

An even more pertinent point to note is that equation (2) was derived from a stress
theory based upon the following differential equation, which can allow for variation of the
flow stress with strain:

1—exp (—Be) = Be—~ (3)

1
‘{—"+Bod = Y(e)(1+B) (4)
£
If Y (¢) is taken as some mean (or constant) flow stress, the solution of (4) leads to (2). If,
however, the functional dependence of Y on ¢ is known, that is, if strain hardening can be
handled rationally, the use of a mean yield stress would be unnecessary. Equation (4)

could be solved [using the integrating factor exp (Be)] to give
caexp (Bey) = (1+B) f ¥ (c) exp (Be) de (5)
[

For simplicity, it is assumed throughout this paper (unless specifically stated otherwise)
that the material before drawing contains no prior work hardening, hence, the lower limit
of zero in equation (5). Inserting the function Y(¢) inside the integral sign would then
enable one to obtain & solution that accounts for strain hardening. The obvious problem,
of course, is to choose a proper function for Y(¢). Davis and Dokos® have provided one
such solution.

Pertinent assumptions made in the stress formulation that lead to equation (2) are well
documented elsewhere!® and need not be repeated here.

Hill and Tupper* used a slip-line analysis for plane—strain drawing as & model for the
axisymmetric case. They proposed a method for handling strain hardening that, in
essence, provides a correction to equation (1). A very thorough coverage of plane-strain
drawing, and suggested extensions of past theories, has been published by Green®.

3. The effect of strain hardeningt
In the approach of Hill and Tupper*, where no differential equation exists after the
formulation of the problem, the effect of strain hardening can be handled only by employing
a type of mean yield stress for the range of equivalent strain induced by the drawing
operation. With the Sachs treatment, this restriction is not confronted ; in fact, Davis and
Dokos provided a solution by assuming the metal was a rigid, linear, work-hardening solid
(i.e. Y = a+be, where a and b are constants). Using this relationship in equation (5) they
found the following:
1+ 8 b
0a = (—B—) f(1-exp (— Be) (a—E> +bey) (6)
The present authors feel that the oft-quoted but less often used power law form of strain
hardening very well typifies the strain hardening behavior of many common metals.
Here, Y = 0,&™, where o, and m are considered as constant properties of the metal.}

t The influence of strain-rate and temperature are not considered in this paper.

1 Inthe form ¥ = g, &™it is implicit that this equation predicts the behavior of a
metal containing no initial cold work. If the metal had been subjected to prior
work hardening equal to a strain &,, then its subsequent behavior is depicted by
Y = oyleo+€)™. In this manner, o, and m are considered to be material constants
which do not change with the condition of initial strain hardening.

If, however, for an initially strained metal, a typical tensile test is conducted
and log o is plotted against loge (i.e. ¢ is ignored), the points always lie on a
shallow concave-up curve with no straight portion; this is due to the nonlinear
log scales. To quote average values of o, and m for various states of strain
hardening, from plots which are definitely not straight lines, seems very
questionable practice.

2
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Voce!? 13 proposed tho stress-strain relationship, ¥ = f—gexp (- he), where f, g and k are
arbitrary constants. Although this provides a flexible arrangement that permits close
fitting to many curves, the simpler power law form describes the strain hardening behavior
of metals sufficiently well. To illustrate the principal point under consideration in this part
of the paper, it is unnecessary to employ a variety of possible forms depicting strain-
hardening characteristics. Therefore, further discussion will be restricted solely to the
two forms that follow

Y = a+be (linear work hardening) (7)
Y = 0,6™ (power-law work hardening) (8)

If equation (8) were substituted in (5), one would get
04 = (14 B) [exp (— Bey)] f”oo emexp (Be) de (9)
°

Since m is always fractional (0 <m < 0-6 for materials whose experimental values of m are
quoted in the literature), equation (9) cannot be solved in closed form and so is best

expressed as
Brgmtn+l

04 = 0o(1+ B) [exp (— Bey)) io (10)

Son!l(m+n+1)
Fortunately, practical values of (Be) are usually less than unity and rapid convergence
of the series occurs after expanding about four terms.

When an analytical form for the stress—strain curve is not known, an analog computer
can be usefully employed to integrate equation (4), as recently shown by Roweld,
Chapter 12 of his book gives examples of the technique.

4. The mean yteld stress method

Much of the previous work related to rod or wire drawing entails the use of a mean
yield stress of the drawn metal in order to solve for the drawing stress. Such a procedurs,
in essence, attempts to consider the effects of strain hardening by correcting for it after the
fact. One might certainly ask just how accurate is this approach compared to one that
considers strain hardening in the basic governing equation. (Note that in order to present
this clearly, one must revert to an equation such as (4) which is based on a stress analysis.)

For the linear work-hardening material, the mean yield stress from equation (7)
would be

Y, = L [™asbe)de = a+lii" (11)
ExnJo K4
and ingerting (11) in (5) would give
1+B be
o, = (T) (a+7“) [1—exp (- Bey)] (12)

For the power-law form of strain hardening, the mean yield stress is found from

Y, =+ [0y emde = 13
m—aoaoe E—M (13)

that is, the mean yield stress is simply the flow stress at a strain ¢,, divided by the factor
(m+1). When the results of (13) are combined with (5) one gets

(l +B
= [——

=7) (225 (1 - exp (— Bew (14)

Comparison of (12) with (8) and (14) with (10) shows that the use of a mean yield stress
does not produce a solution equivalent to the more exact analysis.
Rather than computing differences at this point, let us rearrange (8) as follows:

04 = (#) [1 —exp (— Be,)] (“+b5h{1—_m—3%5,}) (9
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Making use of the approximation (see Green®)
1 1 2 Be
1—exp (— Be) ~§(l +B_£+T)

which is accurate to 1 per cent for Be = 2 and g per cent for Be = 1, equation (15) maybe
reduced to

os = (8) 1—exp (— Bean [a+be(3+ 52| (16)

As Be becomes smaller, equation (18) derived from the exact analysis reduces to the
“mean’’ yield stress expression as given by equation (12).
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F1g. 1. Comparison of predicted drawing stress using a ‘“‘mean’’ yield
stress and a more “exact” analysis for various combinations of (Bg)
and strain-hardening rates.

This same general finding can be shown by comparing (14) with (10) although the
mathematical manipulation becomes lengthy and cumbersome. It is more convenient to
work with the ratio of the ‘“exact’ to “approximate’’ drawing stress [i.e. ratio of equation
(10) to (14)].

® Bn {(m+n+1)
(1+B) [exp—(Be)] 00 3 [ e ]

o4 from (10) _ nmot! (m+n+1) (17)
o4 from (14) (l +B) oyl _
) 228 11— exp (- Bea))
Simplifying gives
< (Bgy)nt!
o4 from (10) (m+1) 2 [n! m+n+1) (18)
o4 from (14) exp (Bey) — 1

If one takes the reciprocal form of (18), in order to judge how closely the ratio of
approximate stress to exact stress approaches unity, the results as a function of (Bg) are
shown in Fig. 1. Several different work-hardening exponents have been chosen and it may
be observed that the greatest deviation occurs at large values of (Be) with large values of
m. It was found sufficient to use a maximum of five terms of the series in (18) since rapid
convergence occurs; under the least favourable combination of conditions (Be = 1 and
m = 0-5), the use of a mean yield stress provides predicted drawing stresses within
10 per cent as compared to the more exact solution.

From the above one can infer that regardless of the shape of the stress—strain curve,
the use of a mean yield stress will always underestimate the magnitude of the required
drawing stress. In this light, the results presented in Fig. 12.5 of the text by Rowe!* are
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of interest and lend confirmation to these conclusions. There, comparison is made between
a computer solution of equation (5) and a manual solution of equation (14); with reasonable
practical values of Be (up to x0-5) excellent agreement was found. Fig. 1 of this paper
would predict a drawing stress from equation (14) to be about 98 per cent of that predicted
from equation (10), since Rowe’s stress—strain data for mild steel (Fig. 12.2a of his text)
fit the equation o = 107,000¢°23,

Emphasis must be placed on the observation that Fig. 1 was derived for a material
containing no initial strain hardening: if this condition is not met, it is obvious that the
lower limit on the various integrals is finite and not zero. Although no calculations are
given here, it may, however. be shown that the differences between predictions based upon
“mean’’ yield stress versus ‘‘exact’’ analysis diminishes with increasing initial cold work.
This comes about because the stress—strain curves, depicting strain hardening character-
istics, tend to flatten because of the influence of g;, and the behavior approaches that of a
rigid, plastic material (that is, loosely speaking, m approaches zero).

In closing this section of the paper, it seems proper to note one important observation.
Due to the perhaps fortuitous fact that practical magnitudes of m and (Beg) fall within the
range of those shown in Fig. 1, the use of a mean yield stress will generally provide sensible
predictions of drawing stress. (This, of course, implies that values of u, as used in these
calculations, are realistic.) Thus, the extra mathematical manipulation that enters with
more exact analyses is, in general, unjustified. Up to this point, reference to ‘‘redundant
work’’ has been avoided ; this will now be discussed.

PART II. REDUNDANT WORK IN ROD DRAWING

1. General considerations

When a rod of diameter D is reduced to a diameter d by drawing through a die, it
suffers a strain which is actually greater than would be expected merely from considerations
of homogeneous plastic deformation. The origin of this effect may be found in the
“redundant work’’ performed in the die, where the external constraint causes appreciable
internal distortion of the workpiece beyond that strictly necessary for shape change alone.
Although, as Hundy and Singer!® have shown, the induced strain can be quite inhomogene-
ous under certain conditions, being greater on the outside of the workpiece than at the
center, it is nevertheless convenient to write the strain actually imposed as e* = de,,
where ¢ is called the “redundant work factor’.

The existence of redundant work will, of course, necessarily increase drawing stresses,
above the sort of values that are predicted by the equations given in the preceding sections.
This provides one approach towards defining the redundant work factor and will be
discussed subsequently. This second part of the paper really concerns itself with the
compatibility of two different ways of defining the redundant work factor.

2. Redundant work from mechanical properties

Because of the “enhanced strain’ in the drawn rod, it has, for example, a greater yield
strength than homogeneous deformation would predict, and this suggests one way of
determining ¢ exporimentally for different combinations of materials, reductions and die
angles. If the stress-strain curve of the drawn metal be superposed on the stress—strain
curve of the undrawn metal, ¢ may be evaluated directly from the ratio of “‘equivalent
strain” (¢*) to the homogeneous strain (g,), where £* is the abscissa value by which the
curve of the drawn material must be shifted to line up with the curve of the undrawn
material. Although such curve-fitting can be quite capricious, the technique has been
used quite often.

A rather nice point presents itself in the measurement of the mechanical properties of
the drawn rod because the question arises whether one should make standard tensile test
pieces with cut-away gauge sections, which removes the more highly worked outer layers,
or whether one should test the rod “whole”. Certainly, standard tensile pieces give lower
values for the yield strength of the drawn metal when redundant work has been large.
Consequently, it seems better to tensile test the whole drawn rod, hoping that necking
does not occur in the grips. If it does, one has to test anew, although a simple way to
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minimize fracture in the grips is to make steps on the rod before drawing; this gives a test
piece with more highly worked ends. (See Caddell and Atkins?®s.)

From yield stress measurements, two main parameters seem to influence the magnitude
of ¢, namely, the angle of the die, and the percent reduction taken. It has been shown that
the relationship between these quantities may be expressed as follows: )

é=C+CA (19)

D+d) sina. This may be interpreted physically as the ratio of the mean

where A = ( D—d
cross-section diameter of the conical die to the frustum slant length of contact between the
die and workpiece. Both C, and C, vary with the work-hardening characteristics of the
metal being drawn; although C; does not vary appreciably from a value of about 0-9,
C, can vary considerably. In a recent study of redundant work using commercially pure
aluminum, Armeco iron, an austenitic stainless steel, and an age-hardening aluminum
alloy,’® none of which contained initial cold work, empirical relationships for these
coefficients were found as follows:

C, = 3:70m028 g-010 (20)
C, = 0-48m0-78 g~0-054 (21)

where 0, and m have been defined previously.

Other relations have been reported for ¢ (e.g. Linicus and Sachs??$), but such expressions
may be shown to be equivalent to equation (19) as indicated in another work.!* Moreover,
the A form as in (19) appears to be preferable because of the analogy with the more exact
form for two-dimensional strip drawing. (See, for example, Green®.)

As to the friction at the die—work interface, if it does influence ¢, it may well be a
gecond-order effect. Wistreich!® showed that the yield strengths of wires, drawn down by
the same amounts, were similar whether drawing was done dry or well lubricated (of
course, the drawing stresses and die pressures were quite different). However, later in that
paper, and in his review paper,} Wistreich indicates that redundant work should be
influenced by friction. Different opinions on this point may be found in the literature, but
let it suffice to observe that there is to date no complete agreement. In the study?!® that led
to equations (20) and (21), the possible effects of friction were not investigated since only
one condition of lubrication was employed.

3. Redundant work from drawing stresses

Much of the published work on wire-drawing has concerned itself more with predicting
the stress necessary to draw rod through dies, rather than considering the subsequent
mechanical properties of the drawn wire. The empirical theories of Kérber and Eichinger®
and Siebel?®, which are discussed by Wistreich?, are the only analyses which formally take
redundant deformation into account. The expressions for drawing stress are somewhat like
equation (2) with an additional term for redundant work added on. However, both
Wistreich® and Whitton® point out the potential shortcomings of both of these empirical
theories.

In Part T of this paper, some typical analyses relating drawing stress with die angle,
percent reduction taken and die-workpiece frictional effects were discussed. Those
analyses would necessarily give underestimates for drawing stresses because the effort in

t Linicus and Sachs, by measuring mechanical properties of drawn wire, give

A ba
for initially annealed brass. Again, Wistreich?, by measuring drawing stresses,

gives

A «
® =0 =z
0-87 + i3
for initially worked copper. It may be noted that this latter expression is developed
from a drawing-stress equation [equation (27) of Wistreich!®] using the
approximation A x4a/e.
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performing redundant work had not been taken into account. (This discrepancy, of course,
has nothing to do with the fact that the theories may give different predictions for
particular combinations of u and ¢, and also slightly different answers depending on the
way work hardening is treated.)

Despite these last problems, to make up for the fact that ¢; would be underestimated
by one’s inability to cope with redundant work in a force-balance analysis, the drawing-
stress equations are often multiplied by a factor we shall call ®. For reasons that will be
clear later, this parameter is distinguished from ¢, although the literature does not do this.

Consequently, for a rigid-plastic, non-work-hardening solid, the ‘‘real” drawing stress
is said to be either equation (1) or (2) multiplied by some empirical ®. When this is
extended to a work-hardening material, Hill's treatment employs 8 mean yiceld stress.
again applied to equation (1), but with the Sachs approach one has a choice as to whether
equations (6) or (12) or equations (10) or {14) might be used (of courso, other variations are
possible depending upon the forin of the strain-hardening behavior deemed most
appropriate).

If one measures p (e.g. MacLellan’s?® split-die technique as employed by Wistreich!®
and Yang?®!), then ® may be deduced by comparison of measured and predicted values of
drawing stress. In this way, @ can be related to o and », inuch like the expression for ¢
in equation (19), i.e.

O =K +K,A (22)

It is at once apparent, however, that the magnitude of ® may depend markedly on the
particular analysis used to predict the drawing stress. Perhaps of even greater concern is
that without measured values of friction, one really has two unknowns, ® and p. For this
reason, there has been the tendency to employ the various drawing-stress equations to
solve for u under those conditions where ® is approximately unity (i.e. combinations of
large reductions and small die angles).

4. Compatibility of ¢ and O

The literature would seem to imply that ¢ and ® are the same parameter, but in a
recent study,!® where various ways of estimating redundant work were investigated, it
became apparent that these were not identical. This came about as follows. Consider
that ¢ is our basic definition in terms of the actual strain induced by drawing being greater
than the homogeneous strain. Further, assume that ¢ is known for various combinations
of die angle and reduction. Then, instead of using a factor like ® to modify the drawing-
stress equations to compensate for redundant work, let us attempt to incorporate the
effects of redundant work in the derivation of the drawing-stress equation.

The yicld stress of a metal which has been subjected to the homogeneous strain, g, will
actually be the flow stress at ¢e, because of redundant work. Employing the definition of
mean yield stress used previously, this means

1 [ . 1 (e
Y, = i— Y(e)de rather than Y, = Y(e)de (23)
$en o £ to

Returning to the form of Sachs’s equation (3) and considering the effect of redundant work
on the yield stress, there results

oy oxp (Bgen) = (1+ B) me(s) exp (Be) de (24)

&
.0

Now in Part I of this paper it was shown that even under unfavorable conditions (large
reductions with metals that strain harden severely), the error introduced by using a mean
yield stress was usually well under 10 per cent as compared to a more exact approach. It
is felt that these same comments are appropriate here, so instead of using expressions for
Y(¢), such as equations (7) or (8), in equation (24) the more simplified approach using a
mean yield stress will be followed. Certainly, the comparison of ¢ with @ does not appear
to be invalidated by using this simpler concept, since it is felt that differences in drawing-
stress predictions do not affect the ® — ¢ relationship.
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For the strain-hardening behavior given by (11) and (13), and considering equivalent
strain rather than homogeneous strain, we may write

Y, = a+ 28 (25)
_ TopTer 26

These may be substituted directly in equation (2) to give

1+ B b
o4 = (%) ( (}S.Eh) [l exp(—Bzf;e;.)] (27)
and
l+ m fm P
R g%fiils—[l—cxp(—lﬁﬁen)] (28)

If, however, one used the factor ® to correct for redundant work, the corresponding
expressions [i.e. equations (12) and (14)] would be

o4 = d)(%) (a be") [1—exp (—Be,)] (29)
and
oq = (I)(l -;B) ;;L--f-hl [1 —exp(— Be))] (30)

Now if ¢ and ® are identical then equlvalence must exist between (27) and (29) and between
(28) and (30). To demonstrate that this is not the case, it will be sufficient to consider
only (28) and (30).

Combining these expressions, one gets

1 —exp (—¢Bep)]
¢ = [ 1 —exp ( Be,,)]qS 31)

As (Be) becomes small, as in equation (3), equation (31) approaches
= gml (32)

Clearly, ® = ¢ only when m = 0 (rigid, plastic material); in fact, when (Be) is not small,
® #¢ even if m = 0. The same conclusion (i.e. ® #¢) will result if a comparison is made
between equations (27) and (29); the details are left to the reader.

To provide a quantitative comparison, the relationship in equation (31) could be used,
but it seems more appropriate to introduce the parameter A since expressions like (19)
and (22) are generally found in the literature. In order to pursue this, (Be) in (31) must be
replaced by an equivalent expression containing A. This can be approximated as follows:

4 sin a) _Apcosa 4p (33)

(Be)zycota( A A ~A
It will be shown subsequently that the above approximation introduces no serious error
even up to values of « that are much larger than those used in practice. Introducing (33)
into (31) gives

P=f— = T gn (34)

In using equation (34), values of A from 2 to 20 were first substituted into equations
patterned after (19). The empirical expressions used for 303 stainless steel and
commercially pure aluminum were reported in another study;!® the pertinent values for
m (0-52 for the stainless and 0-23 for the aluminum) were also included in that same study.
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These expressions for ¢ were as follows:
é = 0-87+0-15A  (stainless) (35)
é = 0-89+0-092A (aluminum) (36)

To check the influence of u on the ® —¢ comparison, values of 0, 0-05, 0-10, 0-20 and 0-50
were employed. This range would seem to encompass practically all values of u for
drawing that are reported in the literature. The complete sot of values determined for the
range of A and p mentioned above are listed in Table 1. To justify the approximation

TABLE 1. REDUNDANT WORK FACTORS FOR VARIOUS VALUES OF A AND 12

@
A ¢ u—> 0 005 0-10 0-10t 0-20 0-50 0-50¢
303 Stainless steel
2 1-17 1-27 1-27 1-26 1-24 1-24 1-19 1-19
3 1-32 1-52 1-50 1-51 1-50 1-47 1-36 1-40
5 1-62 2-09 2:08 2:06 2:03 2:01 1-90 1-88
7 1-92 2:69 2:71 271 2:64 2-60 2-39 2-43
10 2:37 3:70 3-68 3:70 3-62 354 3-24 3-28
16 3.27 6-0 6:17 38 5-62 573 5-30 5-48
20 3-87 7-80 767 7:60 752 7:65 6-91 6-90
Comnercially pure aluminum
2 1-07 1-09 1-03 1-10 1-08 1-08 1-06 1-05
3 1-17 1-21 1-20 1-21 1-20 1-19 1-14 1-16
5 135 1-45 1-48 144 1-41 1-41 1-36 1-37
7 1-53 1-69 1:66 1-67 1-66 1-65 158 1-58
10 1-81 2-08 2:07 2-11 2:07 2-04 1-91 193
16 2:36 2.87 2:90 2:78 2:65 2-80 2-61 2:70
20 2:73 345 3:38 3-40 3-43 3-42 3-20 3-20

t @ calculated from equation (31) where Be = 4u cos a/A. All other calculations for ¢
based upon equation (34).

indicated in (33), additional calculations were made. By choosing a large value of o (22-5°),
using 4u cos /A rather than 4u/A, and employing two of the values of u used previously
(0-10 and 0-50), the pertinent values of ® were found for the same range of A values.
These findings are also included in Table 1. and since all calculations were performed to
slide-rule accuracy, the approximate form given by (34) certainly appears to introduce no
significant error. It should be noted that for u = 0, ® = $™*+! regardless of the magnitude
of a.

The plots shown in Figs. 2 and 3 include the extreme lines which bound @ versus A for
all of the values listed in Table 1. To plot every point would, possibly, lead to a loss of
clarity. The ¢ versus A plots on these figures are simply the graphical form of equations
(85) and (36).

Now strictly speaking, the ® — A plots, calculated as a function of ¢, are not straight
lines and the departure from linearity is more severe with the stainless steel (this has a
larger strain-hardening exponent, m). However, if we take the liberty of assuming that
these plots are reasonably linear up to A values of 10 or so, we can write the following
expressions:

®20-87+0-27A (stainless) (37)
® x0-80+0-12A  (aluminum) (38)

From Figs. 2 and 3, or a comparison of (37) and (38) with (35) and (38), it is obvious that
® and ¢ are not the same parameter. As pointed out by Green®, Wistreich’s work!®
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indicated that @ is overestimated when annealed metals are subjected to low reductions
(i.e. large A values). The rather drastic increase of ® with increasing A, as shown in Figs. 2
and 3, may be interpreted as support of that observation.
8 -
7 -

6-

§=0.89+ 0i24 )’4
—

0O A= 14
(T )\/¢

=0.5
2} Dy 3 FOR u=0

# =089+ 0092 A

REDUNDANT WORK FACTOR — § OR ¢
o

0O 2 4 6 8 10 12 14 18 18 20
_[o+d
a I:D_d] SIN «

Fia. 2. Comparison of the redundant work factors, ® and ¢, for
commercially pure aluminum.

5.. /% =
§=087+0.27 2 § FOR w=0.5
4} (APPROXIMATION UP //
T0 a4 =10)

#=0.87+ 0.154

REDUNDANT WORK FACTOR— § OR ¢
(4]

0 v v v T v v Y v 1
0 2 4 6 8 10 12 14 16 18 20

D +d
4 = I:D—_d-:l SIN o
F1c. 3. Comparison of the redundant work factors, ® and ¢, for

type 303 stainless steel.

At present, there seems to be no obvious way to produce an explicit relationship
between C; and some representative value for K,, although for these two metals the
constants C; and K, are practically identical. Further experimental work appears
necessary before this concept can be extended.
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One observation is included for consideration. The apparent insensitivity of @ with
regard to pu as seen in Table 1 (certainly up to values of u = 0-20) tempts one to suggest
that friction has only a small influence on redundant work, although it must be noted that
these results depend upon one analysis used for determining the drawing stress.

DISCUSSION

The full presentation under Section 4 earlier was based upon materials containing no
strain hardening prior to drawing. In the study!® that produced equations (20), (21), (35)
and (36), no work was done with metals that were strained before being drawn, so the
influence of ¢, [from o = oy(gy+ €)™} on C, and (', in equation (19) is not known. From a
qualitative viewpoint, however, the effect of prior cold work is to reduce m and increase
ao.1 If this follows, then from equations (20} and (21) the tendency would be for C, to
diminish more rapidly than would C,. In essence, this implies that the effects of redundant
work are less pronounced on prior worked metals than on non-worked metals; it would
follow, therefore, that the plots of @ and ¢ versus A would become flatter and the difference
between @ and ¢ would lessen, the more the prior cold work.

To pursue this point, let us refer to the comprehensive set of data reported by Rowe!*
and Johnson??. Their work entailed the use of copper, brass, mild steel and aluminum, all
of which had been initially strain hardened 25 per cent prior to drawing. Apparently, they
did not employ originally annealed matcrials in that study. For all of these metals, they
found a best-fit relationship as followst

O = 0-88+(0-19-0-22) A (39)

Since there is at present no experimental data that would permit one to correct equations
(35) and (36) to account for any possible effect of initial strain hardening, it is not fully
possible to make a complete comparison between ®— A relationships predicted from
equations (31), (35) and (36) and Rowe and Johnson'’s experimental ¢ —A form per
equation (39). However, a rough comparison will now be made, but this attempt must not
be construed to be anything more than qualitative in nature.

TaBLE 2. COMPARISON OF ¢ AND (» FOR FOUR ANNEALED METALS

Material oot m ek c,t b8 il
Copper 72,000 0-30 1-00 0-16 1-95 2:62
70-30 Brass 105,000 0-52 0-98 0:16 1-94 2-62
Mild steel 100,000 0-23 0-78 0-09 1-30 1-34
Aluminum 26,000 0-23 0)-88 0-09 1-31 1-34

* Values sclected from Datsko?,

+ Calculated from equations (20) and (21).

§ From equation (19), using A of 6 and ¢, and ¢, as tabulated above.

|| From equation (34), using A of 6, p of 0-10 and ¢ as tabulated above.

In Tuble 2, typical values for g, and m are shown for the four metals used by Johnson?*;
these values pertain to the annealed metals subjected to standard tensile tests. Assuming
the reliability of equations (20) and (21) is reasonable, the corresponding values of € and
C, may be readily calculated; these are listed in this same table. Since the maximum
value of A used by these other authors® 2* would correspond to a value of 6 in our
definition, this value was used to determine the magnitude of ¢ as per equation (19) with
C, and C, defined in Table 2. Because the results in Table 1 illustrated the apparent

t See footnote on page 17 and comments on the top of page 21.

1 Roweld employs a parameter, A, that is one-quarter the A value used in this
paper. The present authors have converted accordingly as Rowe?! gave a coefficient
of 0-76-0-88 in equation (39).
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insensitivity of ® with regard to u, a value of u = 0-1 was chosen and ® was then deter-
mined for each of the four annealed materials using equation (34) (at a value of A = 6 also).
By assuming that the @ — A relationship is reasonably linear up to A = 6 (see Figs. 2 and 3),
then the slope of the line can be determined between A = 0 and A = 6. It turns out that
two distinct lines are found ; one fits the copper and brass while the other fits the steel and
aluminum. These were as follows

Copper and brass: O =x1-0+0-27A (40)
Steel and aluminum: ® 2 0-84+0-09A (41)

The reason why one would expect such differences can be seen in the significant influence
of . and the rather modest cffect of o, on the coefficients C, and C,. Although beyond
this point it is not presently possible to convert the annealed relations of (40) and (41) to
similar forms for the prior-worked metals, one would qualitatively expect the slopes to
become ghallower [i.e. lower coefficients of the A term in (40) and (41)] as the plotted lines
tend to pivot about a rather stationary intercept at A = 0 (i.e. a value of about 0-9 or s0).
Thus, it is easy to visualizo that the slope in equation (40) (i.e. 0-27) would become smaller
under the influenceo of prior cold work, thercby approaching a value of 0-19-0-22 as per
equation (39); the slope of equation (41) (i.e. 0-09) is already less than that given by (39).
Because of the largo influence of m in this analysis, it is difficult to explain this apparent
contradiction.

Several observations are, however, offered in regard to the general findings expressed
by (39). In that study,?® the condition of the starting metal (25 per cent cold work) would
introduce a dependency of ® on m that is much less than that found with metals initially
annealed.!® Since the influence of o, on redundant work has been shown to be relatively
small, therefore, one should not expect as great a variation in expressions for redundant
work with prior-worked metals as compared to annealed metals. Additionally, the range
of A values up to 6 is somewhat restricted; in fact. the present authors noted greater
scatter in their ¢—A plots!® at small values of A compared to larger values (A x 20) which
arise by making small reductions with large die angles. According to Fig. 6-8 of his text,
Rowe! indicates that the smallest reduction used by Johnson® was 19 per cent. In
summary, therofore, one might conclude that experimenting with prior-worked metals
over a small range of A could provide a number of test results that might best be described
by a single lino regardless of the metal employed. This may be an explanation to assist in
interproting the possible reasons that lead to an equation such as (39); it does not, of
course, explain why the discrepancy between the 0:09 value of equation (41) and the
0-19-0-22 value of (39) exists.

CONCLUSIONS

(1) Work hardening effects in drawing theories can be handled either by the
use of a proper mean yield stress or by incorporating strain hardening para-
meters in the basic force balance differential equation. For practical values of
drawing parameters, these two approaches provide predictions of drawing
stress that are very close; the use of a mean yield stress always establishes
lesser magnitudes.

(2) The first conclusion would seem to be appropriate for other metal-
working processes whose stress analyses are based upon a governing differential
equation that is similar to that used in rod drawing (e.g. rolling and extrusion).

(3) Considering the validity of the ‘“force balance” analysis in plasticity
work, the small differences that arise, using the two approaches mentioned in
the first conclusion, do not sensibly justify the extra mathematical complica-
tions associated with the more “‘exact” approach. Thus, the use of a proper
mean yield stress seems quite adequate.
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(4) The redundant work factor determined by relating measured and
predicted drawing stresses is not equivalent to the redundant work factor
determined by the method of superposition of stress—strain curves.

(5) Differences between these two factors become more pronounced with
metals possessing large strain hardening rates if the geometrical considerations
(per cent reduction and die angle) are fixed.

(6) For a particular metal, differences between these two factors become
more pronounced if small reductions are taken through large angle dies (i.e.
large geometrical factor, A).
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