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Abstract—An analysis of the possibility of finding similarity solutions to the three-dimensional, steady,
incompressible, boundary layer equations in rectangular coordinates for a power law fluid is investigated. It
is found that, in general, the two components of the mainstream flow must differ by at most a multiplicative
constant and that these components are powers or exponentials of the x’-coordinate.

By assuming small cross-flows, the cross flow component may be generalized and found to be representable
by a polynomial in the through flow variable, x’.

NOTATION

A, a; arbitrary constants

C,...Cg arbitrary constants

F, G dependent variables in the transformed ordinary differential equations

ij arbitrary constants

L a characteristic length

mn parameters in the mathematical model of a power-law fluid

Ren Reynolds number, equation (4)

s an arbitrary constant

u velocity component in the boundary layer along the x-axis

U velocity component in the mainflow along the x-axis

Vo a characteristic velocity

v velocity component in the boundary layer along the y-axis

w velocity component in the boundary layer along the z-axis

w velocity component in the mainflow along the z-axis

X,y Cartesian coordinates

oy ...dg arbitrary constants

o og/fary

B1...B¢ arbitrary constants

B arbitrary constant

p density of the fluid

] a mathematical function

n & independent variables in the transformed ordinary differential equations
deflection angle of boundary layer streamlines

T the stress tensor

A4 the rate of deformation tensor

Ty Tz the two non-vanishing components of the stress tensor
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INTRODUCTION

THE boundary layer flows for non-Newtonian fluids of the Ostwald—de Waele model
have been discussed recently in a number of papers [1-4]. Except for the work of
Schowalter [4], all papers refer to two-dimensional flows. Schowalter considered the
laminar, three-dimensional incompressible boundary layer equations with a Cartesian
coordinate system. The conclusion was that similarity solutions exist only for the case of
both mainstream velocity components U and W being constants. The restrictions
are severe. ‘

In the present paper, a similar problem is considered except that all flow quantities
are independent of the z'-coordinate, as shown in Fig. 1. Such flows are characterized by
the fact that their streamlines form a system of “‘translates”. That is, the entire streamline
pattern can be obtained by translating any particular streamline parallel to the leading
edge of the surface [5]. It is hoped that by omitting dependence of flow quantities in one
direction, more qualitative information may be obtained on the characteristics of the
three-dimensional boundary layer flows of power-law non-Newtonian fluids.

THE BASIC EQUATIONS

The power-law Ostwald—de Waele model has been found to be remarkably versatile
and useful in representing flow behavior of many non-Newtonian fluids over quite a
wide range of shearing rate. Mathematically, it can be represented in the form

T=—{m|JG4:4| 1} 4

where T and 4 are the stress tensor and the rate of deformation tensor, respectively; and
m-and n are physical constants different for different fluids which can be determined
experimentally. Under the boundary layer assumptions, the only two non-vanishing

Components are
n—1
e o 2+ ow\] 2 ou
tyx - ay/ ay¢ ay/

FIG. 1. Coordinate system for flow over plate.
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n—1
e~ m aul2+ awlzTﬂ
yz = ay/ ayr ay/
where the absolute sign has been dropped since both terms within the sign are positive.

Using this “‘equation of state”, the steady, incompressible, laminar boundary layer
equations over a surface oriented in Fig. 1 are:

and

Continuity
o o :
2+ =0 1
ox' + ay’ M
Momentum
n—1 ’
’.al,_i_ 'g_ﬂ_a_ (_31,2.‘. _allz_i_iu_’ +U’ﬂ (2)
“oax TV oy  p oy |I\ay ay oy’ dx’
n—~1
Ly o ma ([aY (N aw) W 5
ox' oy~ poy ay’ ay’ ay' dx’

The boundary conditions for the system of equations are

’

y =0 W=v=w=0

y = o0: u = U'x), w = W'(x)

The flow problem is quasi-two-dimensional in nature since the velocity components
are independent of the z-coordinates. This point is discussed in detail by Hansen and
Herzig [5].

Equations (1), (2) and (3) may be put in dimensionless form as follows:

1

’ ’ m ! (4
u v w — U
=_— = —Ren , =— U=—
““us, ‘T, Y=1, U,
' 4
W/ xl yl n
W = — = =2
Uy b I y T Ren
where
2—nE|
Ren = 2U0E )
Then, we obtain:
Continuity equation:
0 o
u v 0 5)

ox oy
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Momentum equation:

n—1
ou ou 0 o  [ow\*] % ou du

Srnmuile) G A ©

n—1
uiaﬁ+v@-v——E QEZ+ w\']* ow +UdW 7
0x dy oy|l\dy Jy dy dx @)

with the boundary conditions |
y=0_: u=v=w=0

y=o0: u = U(x), w = W(x)

The equation of continuity can be satisfied identically by introducing a function,*
Y, which gives

_ 0y _ oy
U= 2 and v= — I
Equations (5), (6) and (7) then become
n-1
oy oxy oy o ([[foW\ [ow\] % @* dU
Wy oy _ o HOVWY | (0w ol | U ®)
0y 0xdy  Ox dy dy dy Oy oy dx
n—-1
o o o o . 2,7,\2 27 T
Wow_obow_ 0 JI(OUY (o i G L )
dydx Oxdy 0y ay dy dy dx
with the boundary conditions
. oy _ oy _ _ v
é_l/_{ .

y = 00: = U(x), w= W(x)

oy
A group-theoretic analysis is employed in the next section to find the form of U(x)
and W(x) for which similarity solutions will exist.

GROUP-THEORETIC ANALYSIS

Similarity analysis by the group-theoretic method is based on concepts derived from the
theory of transformation groups. This method was first introduced by Birkhoff [6] and
Morgan [7] and is discussed in detail in [8]. Two groups of one-parameter transformation
are usually found to give adequate treatment of boundary layer equations.t Each group
gives rise to cases which will be separately discussed.

* The function ¥ is not strictly the stream function generally used in two-dimensional analyses since constant
W-lines will not give actual flow streamlines. On the other hand, ¥ = const. does give projections of flow streamlines
in the x—y plane.

T The problem of systematically searching for all possible groups of transformation for a given system of
partial differential equations has been the subject of a recent report by the authors [9] using Lie’s theories of



Similarity solutions of a class of laminar boundary layer equations 377

Case 1. A one-parameter linear group of transformation is selected as

x = A%X, y = A%y, Y= A%

w = A%Ww, U = A*T, W = AW
where o, o5, o3, 0y, s, 0, and A are constants. We now seek relations among the o’s
such that the basic equations will be invariant under this group of transformation. This

can be achieved by substituting the transformation into equations (8) and (9). Thus, we
obtain

A2e3—a1— 20 %ﬂ - %6_2_';_
0y 0X0y 0% 0y>

n_1

1
_— i noy—(2n+ 1)az 62W 2 m—Daz+ag—(n+2)az ?E z 2 azw
= A — ] + A4 e
oy P 7y oy*

—.dU
2as—ay -
+4 Ug (0
and
Aa3+a4—a1—uz @@ ___a_lz_a_?
0y ox 0x 0y
n—1
d %P \? ow\*] %2 ow . dw
—_ (n—1Das+ag—2nazf ~_ ¥ Ana4—(n+1)az hid hiid as+as—a1 et
ik (5) F)] S

X
(i

From equations (10) and (11), it is seen that if the basic equations are to be invariant under
this group of transformation, the powers of A4 in each term should be equal. Therefore,
equations (10) and (11) give

2005 — 0ty — 20, = (n — Doz + a, — 2na, = nay — (2n + Vo, = 2005 — a, (12)

O + 0y —ay —ay=noy — 4+ Do, =(n— Loy + o0y —2noy, =05 +0g —ay; (13)

From equations (12) and (13), we get
a? 1+ (n—2u

@y n+1 (14)
« 1+ @2n—1a

ocl_ n+1 (13
S R (16)

infinitesimal contact transformation groups. For two-dimensional, laminar boundary layer equations, the
linear and the spiral groups are found to be the only two possible groups. For the present problem, we would
expect that the same conclusion will be obtained.
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The next step in this method is to find the so-called “absolute invariants” under this
group of transformation. Absolute invariants are functions having the same form before
and after the transformation. It is noted that

y ¥
i+(n—2)a - 1+(n—2
e S
1+@2n—1)a =~ 1+(2n—Da
X n+1 X nt+1
w w
x* x
u U
Xt X*
and
w W
¥ %

Therefore, these functions are absolute invariants under this group of transformation.
We therefore obtain the transformed independent and dependent variables as

y

"= TEo=zw 17
x n

'

Fin) = 13am (18)
xl j"2+ 1)

Gil) = 5 (19)

U
Ul = —x—"‘ (20)

and

w

W, = g (21

Substituting for independent and dependent variables in equations (8) and (9) expressions
found from equations (17)-(21) we expect to obtain a set of equations which are ordinary
differential equations or very close to ordinary differential equations (see [4]).
Specifically we obtain:

dF,\* 14+ (@2n -« d%F,
* dn n+1 Ldy?

n—1
=32 2 2172 42
_ TSR (46:\]7 €E o
dn dn dn dn
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g dF1 _1+@n—1x  dG,
14y n+ 1 dy

23)
Cd [[(aF (46,7 dG, (
_d_ﬂ{[(dnz) +(dn)] d'l}+w "

which are ordinary differential equations if U, and W, are constants.

The conditions for the existence of similarity solutions can be obtained by considering
the boundary conditions which must be constant. Thus, the only possible forms of U(x)
and W(x) are

U(x) = Cyx* (24)
and
W(x) = C,x* - (25)

where C, and C, are arbitrary constants. For these forms of U(x) and W(x), equations (22)
and (23) and their boundary conditions become

_ 2
a(di) B 1.+(2n l)ch d*F,

dn n+1 Ldn?

dF, 1+ @n-1a_ dG,
G g, vl TUay

with the boundary conditions

: dF — —
r]=OO: d—nl=Ul=C1, G1=M=C2
Case 1I1. A one-parameter spiral group of transformation is chosen in the form
x = pb+ X, y = ef? Y =efby
w = b iy, U=efT, W=¢efdW

Following the same procedures as in Case I, the following absolute invariants are obtained

- y
¢= p— (28)

(29)
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G2 =4 (30)
— U
Uz = ew (31)
and
- W
Wy =5 (32)

where f§ is an arbitrary constant. Since the mainstream velocities, U and W, are assumed to
be functions of x only, we conclude that similarity solutions exist only for the special case

U(x) = C, e~ (33)
and
W(x) = C, e (34)

where C; and C, are arbitrary constants. The basic equations may then be transformed
through the use of equations (28)~(32) to obtain:

dF, 2 — d?F,
ﬂ(—JE) ( )ﬂ o
n—-1
d ([(d2F,\> [dG,\*] 2 d*F
T
and

dF, (2n 4G,
ﬁsz—é—( )Bzdé

e 36
_—d_ d2F22+(§EZTIdG BC.C G9)
—de |\ de? d¢ dé BCsCa
with the boundary conditions
dF
(E=0: F,= d—; =G, =
dF — —
€=w: —E§=U2=C3’ GZ=W2=C4‘

From the above analysis, it is seen that similarity solutions may exist for flows for which
the mainstream velocities U and W are either powers or exponentials of x, as shown in
equations (24), (25), (33) and (34). We also have

U(x) = (Const.) W(x)

This means the mainflow streamlines are straight lines. Although this is a severe restriction,
the form of velocity components is somewhat more general than the cases found by
Schowalter [4].*

* Schowalter apparently placed the restriction that all derivatives of velocities are non-vanishing,.
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SIMILARITY SOLUTIONS FOR SMALL CROSS FLOW
If the cross-wise velocity is assumed to be small, then the restriction that

U(x) = (const.) W(x)

can be relaxed, and the mainflow streamlines need not be straight. Moreover, the momentum
equation in the z-direction will be linear in W, and the principle of superposition of solutions
may be applied.

The simplifications permitted from the assumption of small cross flow may be made
evident by considering the limiting deflection angle, 8, of the streamlines within the boundary
layer. This angle is the arctangent of the ratio of velocities in the z- and x-directions,

evaluated at y = 0, i.e.
(3)
tan 0 = lim " = lim 32

y—0 u y—=0 ?ﬁ
dy

L’hospital’s Tule has been used because at y = 0, both w and u are zero. Therefore, for
small cross flow, i.e. small 8, we would expect
ow < ou
dy 0y
within the boundary layer. The basic equations, equations (8) and (9), may then be simplified
to

(37

oy o oy oty _ 0 o\* _dU
dy dxdy dx dy®  dy\ dy* + U&? (38)

opow opow 0 oW\t ow _dw
6y55 ox dy 6y[( B_y + UGy (39)

oy? dx

with the boundary conditions

A 61/1_61//_ _
y=10: —6x—-ay—u—0
— o W _ = _
y=00: ay—U(x),m = W(x)

By following the same procedures as in the preceding section, the following results
are obtained.

Case 1. For the linear group of transformation, the absolute invariants are found to be

Y

p—— (40)
X n+1
Fo) = s @1)
n+1

X
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w
Gaim) = — “2)
— U
U= 43)
and
— W

where y and i are constants.
By considering the boundary condition, we conclude that similarity solutions will
exist if

U(x) = Csx" (45)
and
W(x) = C¢x* 46)
For these forms of U and W, the basic equations (8) and (9), are transformed to
dF;\2 14+ (@2n—1)y _ d?*F, d (d?F,\
23 - F =2 2
y( dn ) n+1 YA T dn\ dp? +9Cs “47)
., dFy 1+ @n— 1)y _ dG; d d?F,\""1dG;; .
lei-(W - n+ 1 F3 d?] = Ef]- —d—ﬂT '-d—r,— + lC5C6 (48)
with the boundary conditions
dF
r’=0: F3=d_r,3=G3i=0
dF — L
N =00 —#=U3=C5, Gy =W, =Cq

being ordinary differential equations.

Equation (45) has the same form as equation (24), which means that the same form of
mainstream velocity, U, for both cases. However, restrictions on the mainstream velocity
in the z-direction, W, are considerably relaxed for the case of small cross flow, and W
need no longer equal U. Furthermore, equation (39) is linear, thus the principle of super-
position can be applied, and the preceding result can be generalized at once. Assume that
W is given by '

W(x) = Z‘ a; X’ 49)

It may be verified by substitution that if W; denotes a solution of equation (39), then
W= Z w; = Zl: ax'Gsn) (50)
will be solution to equation (39) with W given by equation (49). For the case of U =

U, = const., ie. y = 0, and n = 1, the above case is reduced to that analyzed by Hansen
and Herzig [5] (although the limitation of small cross flow was not required).



Similarity solutions of a class of laminar boundary layer equations 383

Case II. For the spiral group of transformation, the following absolute invariants are
obtained.

-y
¢= n—2 (51)
exp 1 sX
_ ¥
Fuo) = 2n — 1 (52)
P n+1 sx
6D = 5 (53)
U= (54)
and
. W
W, = ? (55)

Again, the conditions for the existence of similarity solutions are obtained from the
boundary conditions. It is found that similarity solutions will exist if

Ux) = C,e™ (56)
and
W(x) = Cq e (57)
The basic equations, equations (8) and (9), then become
dF,\? 2n—1 d?F, _d d?F,\ 2
S(E’) -’(n+1>SF4 dfz —d—f dfz +SC7 (58)
. dF, (2n—1 dG,; d [[d*F,\*"'dG,] .
f—— — F J o= J
JGaigg (n 1 )S AT [( @) @ |TIGCs (%9)
with the boundary conditions -
dF
&=0: F4=d—g=G4j=0
dF — —
5:@: —dzé=U4=C7, G4]=u,4=c8

being independent of x and y.

It is seen from the preceding analysis that for cases with small cross flow, the boundary
layer equations can be solved exactly by similarity transformation if the mainstream,
velocity is in the form of equation (50). Since the coefficients in equation (50) are arbitrary,
various streamline shapes can be constructed by proper choice of these coefficients. A
particular shape (e.g. the contour of a channel wall) may be approximated by a polynominal
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according to usual numerical procedures. Thus, the class of flows becomes a useful tool
in investigating the influence of various streamline configurations on boundary layer
behavior.

CONCLUSIONS

The analysis of the laminar, incompressible three-dimensional boundary layer equations
of power-law fluids with streamlines forming a system of ‘“Translates” led to solutions
for mainstream flows described by equations (24), (25), (33) and (34). By placing the con-
dition of small cross flow, restrictions on the mainstream velocity W are considerably
relaxed, as is shown in equations (45), (46), (56) and (57). Furthermore, the linearity of the
momentum equation in the crosswise direction makes it possible to generalize the form
to any mainstream shape which can be approximated by a polynomial (¢.g. the contour
of a channel wall).

Numerical solutions of the ordinary differential equations for different values of the
parameters will be given in a later paper.
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Résumé—On analyse la possibilité de trouver des solutions de similitude aux équations, dans un systéme de
coordonnées trirectangulaires, de la couche limite d’un fluide incompressible en mouvement permanent
obéissant 4 une fonction puissance. On trouve qu’en général les deux composantes du flux principal doivent
différer par au plus une constante multiplicative et que ces composantes sont des puissances ou des exponentielles
de la coordonnée de la direction du flux direct.

En supposant que les flux transversaux sont petits, la composante transversale peut étre généralisée et on trouve
qu’elle est représentée par un polyndéme dans la variable du flux direct.

Zusammenfassung—Es wird die Moglichkeit untersucht, Ahnlichketslosungen zu den dreidimensionalen,
stationidren, inkompressiblen Grenzschichtsgleichungen in rechtwinkligen Koordinaten fiir eine Fliissigkeit
zu finden, die einem Potenzgesetz unterliegt. Es ergibt sich, dass sich die zwei Komponenten der Hauptstromung
im allgemeinen durch hdchstens eine multiplikative Konstante unterscheiden missen, und dass diese Kom-
ponenten Potenz-oder Exponentialfunktionen der Koordinate darstellen, die in die Durchstromungsrichtung
weist.

Durch die Annahme kleiner Kreuzstrémung kann die Kreuzstrémungskomponente verallgemeinert werden.
Sie ldsst sich dann durch ein Polynom in der Durchfliissvariablen darstellen.
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Abcrpaxr—]lenaeTcA aHAJIM3 BO3MOMKHOCTU pa3HCKAHWA pelleHuii nomoluA A ypaBHeHUH
TPEXMEPHOI0, CTAIMOHAPHOI0, HECAKIMAEMOT0 IOIPAHHYHOTO CJIOH B MPAMOYTOJABHBIX KOOPAUHATAX
IJIA UTHOCTH HOJUMHAIIENCHA CTEeeHHOMY 33aKOHY. ¥ CTaHOBJIEHO, YTO BOOOIIE, 1Bé KOMIOHEHTH
TJIaBHOr0 MOTOKA TEYEeHHUA MOryT OTIMYATCHA APYr OT Apyra He 60Jiee yeMm MyJIbTPIIIJ’lMHaTlfIBHOﬁ
KOHCTAHTOM M YTO BTH KOHCTAHTHl ABJAIOTCA CTENEHHBIMM HJIM IOKA3ATEJIbHHMH (QyHHIMAME
KOODJAMHAT B HAIIPABJIEHUN «CKBOBHOIO TEYEHMSH ».

B npennonoseHdy MaJIbIX NMONEPEYHHIX TeYeHHH, MOMKHO 0GOCHIMTE KOMIIOHEHTY IOIEepPEeYHOro
Te4eHMA IPEACTABIAA ee B Brje QYHKIMHE OT IePEeMeHHON CKBOBHOIO TeYeHUH.



