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SIMILARITY SOLUTIONS OF A CLASS OF LAMINAR 
THREE-DIMENSIONAL BOUNDARY LAYER 
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Abstract--An analysis of the possibility of finding similarity solutions to the three-dimensional, steady, 
incompressible, boundary layer equations in rectangular coordinates for a power law fluid is investigated. It 
is found that, in general, the two components of the mainstream flow must differ by at most a multiplicative 
constant and that these components are powers or exponentials of the x'-coordinate. 

By assuming small cross-flows, the cross flow component may be generalized and found to be representable 
by a polynomial in the through flow variable, x'. 
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NOTATION 

arbitrary constants 
arbitrary constants 
dependent variables in the transformed ordinary differential equations 
arbitrary constants 
a characteristic length 
parameters in the mathematical model of a power-law fluid 
Reynolds number, equation (4) 
an arbitrary constant 
velocity component in the boundary layer along the x-axis 
velocity component in the mainflow along the x-axis 
a characteristic velocity 
velocity component in the boundary layer along the y-axis 
velocity component in the boundary layer along the z-axis 
velocity component in the mainflow along the z-axis 
Cartesian coordinates 
arbitrary constants 
~4/G¢ 1 
arbitrary constants 
arbitrary constant 
density of the fluid 
a mathematical function 
independent variables in the transformed ordinary differential equations 
deflection angle of boundary layer streamlines 
the stress tensor 
the rate of deformation tensor 
the two non-vanishing components of the stress tensor 
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INTRODUCTION 

THE boundary layer flows for non-Newtonian fluids of the Ostwald-de Waele model 
have been discussed recently in a number of papers [1--4]. Except for the work of 
Schowalter [4], all papers refer to two-dimensional flows. Schowalter considered the 
laminar, three-dimensional incompressible boundary layer equations with a Cartesian 
coordinate system. The conclusion was that similarity solutions exist only for the case of 
both mainstream velocity components U and W being constants. The restrictions 
are severe. 

In the present paper, a similar problem is considered except that all flow quantities 
are independent of the z'-coordinate, as shown in Fig. 1. Such flows are characterized by 
the fact that their streamlines form a system of "translates". That is, the entire streamline 
pattern can be obtained by translating any particular streamline parallel to the leading 
edge of the surface [5]. It is hoped that by omitting dependence of flow quantities in one 
direction, more qualitative information may be obtained on the characteristics of the 
three-dimensional boundary layer flows of power-law non-Newtonian fluids. 

THE BASIC EQUATIONS 

The power-law Ostwald-de Waele model has been found to be remarkably versatile 
and useful in representing flow behavior of many non-Newtonian fluids over quite a 
wide range of shearing rate. Mathematically, it can be represented in the form 

_- -{mix/(½ j : j ) l . - 1 )  j 
where ) and J are the stress tensor and the rate of deformation tensor, respectively; and 
m and n are physical constants different for different fluids which can be determined 
experimentally. Under the boundary layer assumptions, the only two non-vanishing 
components are 

n--1 

= ~r(ou'i~ (a . , ' y l2ou '  ~ %< -mlL\Oy'/ +\ay',# _] c~y'J 

¥s 

FIG. 1. Coordinate system for flow over plate. 
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and 

n - 1  

z,., = - - m  ~y'  + ~,Ty' ] J Ty'J 

where the absolute sign has been dropped since both terms within the sign are positive. 
Using this "equation of state", the steady, incompressible, 
equations over a surface oriented in Fig. 1 are : 
Continuity 

Ou' Ov' 
Ox--; + ~y' = 0 

Momentum 

n - 1  

u' Off v' Ou' __ m O ~VOU'~ 2 (aw'yl-  v '  
Ox ---7+ Oy' p Oy'tl_\Oy'] + \ O y ' j j  03"3 + - -  

laminar boundary layer 

(1) 

dU' 
(2) 

dx' 

n - 1  

,Ow' v'dw' m O [~F(Ou"~ 2 ( O w ' y l ~ w ' }  ~ , d W '  
u ~ + Oy ---7 = 70y---; (L\Oy'/ + \Oy']  l Oy'J + dx ---7- 

(3) 

The boundary conditions for the system of equations are 

y' = O: tt' = V ' =  W' = 0 

y ' =  oo" u ' =  U'(x'), w ' =  W'(x') 

The flow problem is quasi-two-dimensional in nature since the velocity components 
are independent of the z-coordinates. This point is discussed in detail by Hansen and 
Herzig [5]. 

Equations (1), (2) and (3) may be put in dimensionless form as follows: 

1 

U' V' ~ W' - -  U' 
u - v = Ren , w - , U = - -  

Uo' ~ Uo Uo 

where 

___L 

Then, we obtain: 

Continuity equation : 

W t x p ~ t  n + 1 

W = - - ,  x = L '  y Ren 
Uo 

Ren - PU°2-"g' (4) 
m 

au av 
+ x -  = o (5) 

0x oy 
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Momentum equation" 
n--1 

u ~  + O~y = a5 .~ ,_~  + \ ~ / _ 1  OyJ + v d-~ 
n--1 

ow ow 2sr(o.   a w  
U~x + v-~y = Oytk\Oy ] + \ff-y] j ~y j  + u d--x 

with the boundary conditions 

The equation of continuity 
0, which gives 

y = 0  : u = v = w = O  

y = oc:  u = U(x ) ,  w = W ( x )  

can be satisfied identically by introducing 

00 00 
and v - 

Ox 0y 

Equations (5), (6) and (7) then become 

00 o20 
Oy OxOy 

00 Ow 
Oy Ox 

with the boundary conditions 

n--1 
ooo5o o f,[[o2o 2 pwy1To20 l dV 
-~x -~y2 - Oy [ L\ Oy2 ] + \-~y ] j -~y2 j + U dx 

n - - 1  

00 Ow o ff(o2O'~ 2 /OwV-1 T o w )  dW 

oO 0 0  
y = 0  : . . . .  w = 0  Ox Oy 

o0 
y =  oo : - -  U ( x ) ,  w =  W ( x )  

Oy 

(6) 

(7) 

a function,* 

(8) 

(9) 

A group-theoretic analysis is employed in the next section to find the form of U(x) 
and W(x) for which similarity solutions will exist. 

G R O U P - T H E O R E T I C  ANALYSIS 

Similarity analysis by the group-theoretic method is based on concepts derived from the 
theory of transformation groups. This method was first introduced by Birkhoff [-6] and 
Morgan [7] and is discussed in detail in [-8]. Two groups of one-parameter transformation 
are usually found to give adequate treatment of boundary layer equations.]" Each group 
gives rise to cases which will be separately discussed. 

* The function ¢, is not strictly the stream function generally used in two-dimensional analyses since constant 
0-lines will not give actual flow streamlines. On the other hand, ¢, = const, does give projections of flow streamlines 

in the x-y plane. 

t The problem of systematically searching for all possible groups of transformation for a given system of 
partial differential equations has been the subject of a recent report by the authors [9] using Lie's theories of 
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Case I. A one-parameter  linear g roup  of  t ransformat ion is selected as 

x = A " 2 ,  y = A ' 2 y ,  ¢ = A'3i~ 

w = A " ~ ,  U = A " U ,  W = A ~ ' W  

where ctt, 32, 33, 34, ~s, 36, and A are constants.  We now seek relations a m o n g  the a ' s  
such that  the basic equat ions  will be invariant  under  this g roup  of  t ransformation.  This 
can be achieved by substi tuting the t ransformat ion  into equat ions (8) and (9). Thus, we 
obtain  

(39 3~3y 3~ 3y ~ J 
el--1 

0 32  2 ~ 2 2 __~FAn~t3-(2n+X)a2( ~ 1)at3+at4-(n+2)at2( 3 ~ ] 

-3~LL k-b-y/ + A,.- \ ~ )  j 

and  

a~2J 

+ A2,,_~, _ d U  V-d- ~ (lO) 

A, ~ +,,,_,~ _,,~ ~ Off O~ O/~ 0~ t 

n--1 
3 2 2 

(11) 

F r o m  equat ions  (10) and (11), it is seen that  if the basic equat ions are to be invariant under  
this g roup  of  t ransformation,  the powers of  A in each term should be equal. Therefore, 
equat ions  (10) and (11) give 

2~3 -- ~1 -- 2~2 -- (n -- l)a 3 + a4 -- 2n~2 ----- n~ 3 -- (2n + 1)a 2 = 2a 5 -- ~1 (12) 

63 "~ Of 4 - -  ~1 - -  0~2 ~--" ?/0~4 - -  (/'/ 31- 1)0 (2  = ( n  - -  1 ) ~  3 "Jr (X 4 - -  2n~ 2 ---- ~5 -F O~ 6 - -  (Z 1 (13) 

F r o m  equat ions (12) and (13), we get 

~2 

~t 3 

1 + (n - 2)cx 

n + l  

1 + (2n - 1)a 

(14) 

n + 1 (15) 

~4 ~5 ~6 . . . . . .  ~ (16) 

infinitesimal contact transformation groups. For two-dimensional, laminar boundary layer equations, the 
linear and the spiral groups are found to be the only two possible groups. For the present problem, we would 
expect that the same conclusion will be obtained. 
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The next step in this method is to find the so-called "absolute invariants" under this 
group of transformation. Absolute invariants are functions having the same form before 
and after the transformation. It is noted that 

y 
1 + (n-  2~  

X ~  ~ n + l  

1+ (2n -  11~ 1 +12n- 1)~ 
X n + l  ~ n + l  

and 

W 

u U 
X e ~ 

w W 
x • ~ 

Therefore, these functions are absolute invariants under this group of transformation. 
We therefore obtain the transformed independent and dependent variables as 

Y 
7 =  1 + (n -  2)a (17) 

n + l  
X 

Fl(q) - 1+(2n -  1), (18) 
n + l  

X 

and 

~7 

G l ( n )  ----- - -  (19)  
X ~t 

U 
[71 = x--- i (20) 

W 
Wx = - -  (21) 

X ~ 

Substituting for independent and dependent variables in equations (8) and (9) expressions 
found from equations (17)-(21) we expect to obtain a set of equations which are ordinary 
differential equations or very close to ordinary differential equations (see [4]). 
Specifically we obtain: 

ot(dF,~2 _ 1  + (2n - d2F, 
\dr l  ] + 1- 1)cttt n dr/2 

. -  1 (22) 
_ d ~[('d2F.,'~ 2 ( d G l ~ 2 ]  --'f- d2Fxl  

- &l [k \  dn2 ] +\--~--~1_] --~2j+~U~ 
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• G1 dF1 1 + (2n - 1)~ Fx dGx 
dr/ n + 1 dr/ 

" -  (23)  d ~ri(d2Fl'~2 ( < ' ~ ' V I '  dG1], 
= ) + } I dr / J  + ~tU1wl 

which are ordinary differential equations if Ua, and WI, are constants. 
The conditions for the existence of similarity solutions can be obtained by considering 

the boundary conditions which must be constant. Thus, the only possible forms of U(x) 
and W(x)  are 

U(x) = C i x  ~ (24) 

and 
iV(x) = C2 x~ (25) 

where Ca and C2 are arbitrary constants. For these forms of U(x) and W(x), equations (22) 
and (23) and their boundary conditions become 

ot{dFl'~2.. 1 + (2n -- 1)~ F1 d2F1 
~, dr/,] n + 1 dr/2 n - 1  (26) 

= ~_d ~F(d2V'~2 fdGl'~2-1 --£- d2e l )  
dr/~.k~, dr/2 } + t w )  J .  d - - ~  + ctC12 

ctGi dF1 
dr/ 

1 + (2n - 1)~ F dGi 

with the boundary conditions 

r / = 0 :  

,,- 1 (27) 
d ~ r ( d 2 F i y  . ['dGl'~2"] -T -  dGl~ 

= d--~ ~.k\ dr/2 ] + t ~ - q  ) J -~ -q;  + a c i c :  

dFl 
FI -- - -  = G1 = 0 dr# 

r /=  ~ :  --dFl= UI = C I ,  Gt = WI=  C2 
dr/ 

Case II. A one-parameter spiral group of transformation is chosen in the form 

x = fllb + :x, y = e p2b Y', ~, = ePab~ 

w = e p'~ ~,  U = e p'b U, W = e a'b W 

Following the same procedures as in Case I, the following absolute invariants are obtained 

= Y (28) 
n - 2  

F2(~) = [ 2 n -  1\  (29) 
e x P t ~ ) f l x  
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and 

G2(~) = ea x (30) 

U 
U2 - (31) e #x 

w 
W2 = et--- ;- (32) 

where fl is an arbitrary constant. Since the mainstream velocities, U and W, are assumed to 
be functions of x only, we conclude that similarity solutions exist only for the special case 

U(x) = C s e ax (33) 

and 

W(x) = C4 e ~x (34) 

where C3 and C4 are arbitrary constants. The basic equations may then be transformed 
through the use of equations (28)-(32) to obtain: 

fl[dF2 \2 1'2n- 1 \  d2F2 

n-1 
d y[-[d2Fz'~ 2 /dG2~2]  2 d2F2~ 

- d-~ (Elk d~ 2 ) + \ ~ ]  .J d~ 2 J + [3c~ 
and 

flG2~_~ ( 2 n -  l'~fl F d G  2 

with the boundary conditions 

~ = 0 :  

n - 1  
d  F[dZF2'  2 = 2 

dF2 
f 2 = - -  = G 2 = 0 d~ 

d E  2 _ 
= ~ "  d~ --  U2  = Ca,  G2 = W 2 =  C4 

(35) 

(36) 

+ flC3C4 

From the above analysis, it is seen that similarity solutions may exist for flows for which 
the mainstream velocities U and W are either powers or exponentials of x, as shown in 
equations (24), (25), (33) and (34). We also have 

U(x) = (Const.) W(x) 

This means the mainflow streamlines are straight lines. Although this is a severe restriction, 
the form of velocity components is somewhat more general than the cases found by 
Schowalter [4].* 

* Schowalter apparently placed the restriction that all derivatives of velocities are non-vanishing. 



Similarity solutions of a class of laminar boundary layer equations 381 

S I M I L A R I T Y  S O L U T I O N S  F O R  S M A L L  C R O S S  F L O W  

If the cross-wise velocity is assumed to be small, then the restriction that 

U(x) = (const.) W(x) 

can be relaxed, and the mainflow streamlines need not be straight. Moreover, the momentum 
equation in the z-direction will be linear in W, and the principle of superposition of solutions 
may be applied. 

The simplifications permitted from the assumption of small cross flow may be made 
evident by considering the limiting deflection angle, 0, of the streamlines within the boundary 
layer. This angle is the arctangent of the ratio of velocities in the z- and x-directions, 
evaluated at y = 0, i.e. 

(0w  
= l i m \  Oy/ tan 0 = l i m  w . - r r - x -  

y~O /,l y 0 

L'hospital's-rule has been used because at y = 0, both w and u are zero. Therefore, for 
small cross flow, i.e. small 0, we would expect 

d., du 
,~ (37) 

ay dy 

within the boundary layer. The basic equations, equations (8) and (9), may then be simplified 
to 

ay Oxay ~x-~y 2 -- aykay 2fl + U--dx 

Off aw 
t~y ~x 

with the boundary conditions 

y = 0 :  

(38) 

(39) 

- -  = w = 0  
~x ~y 

a~ U(x), ., = W(x) y =  or: d--~ = 

By following the same procedures as in the preceding section, the following results 
are obtained. 

Case I. For the linear group of transformation, the absolute invariants are found to be 

Y r / =  1 + ( , , -  2)~, (40) 
n + !  X 

F3(r/) = 1 +t2n- t~ (41) 
n + l  X 
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and 

G 3 i ( r / )  = - ~  
X ~ 

m 

U 
m U3 X~, 

W 
W3-- xi 

where ~ and i are constants. 
By considering the boundary condition, 

exist if 
we conclude that similarity 

and 

(42) 

(43) 

(44) 

solutions will 

being ordinary differential equations. 
Equation (45) has the same form as equation (24)~ which means that the same form of 

mainstream velocity, U, for both cases. However, restrictions on the mainstream velocity 
in the z-direction, W, are considerably relaxed for the case of small cross flow, and W 
need no longer equal U. Furthermore, equation (39) is linear, thus the principle of super- 
position can be applied, and the preceding result can be generalized at once. Assume that 
W is given by 

W(X) = ~i aixi (49) 

It may be verified by substitution that if W~ denotes a solution of equation (39), then 

w = ~ w ,  = ~a,x'G3,(r/)  (50) 

will be solution to equation (39) with W given by equation (49). For the case of U = 
U3 = const., i.e. y = 0, and n = 1, the above case is reduced to that analyzed by Hansen 
and Herzig [5] (although the limitation of small cross flow was not required). 

dF3 
F 3 = - - =  G a i = 0  

dr/ 

dFa -- 
r / = ~ :  - - = U 3 = C 5 ,  G 3 i = W a = C 6  

dr/ 

with the boundary conditions 

r / = 0 :  

W(x)  = C6x i (46) 

For these forms of U and W, the basic equations (8) and (9), are transformed to 

y(dF3~ 2 _ 1  + (2n - 1)y d2F3 d (d2F3~" 
~-~-q ] n + 1 F3 ~ = ~ \ ~ - q 2  ] + yC~ (47) 

dG3, d ~(d2F_3y - '  dG3,~ + iCsC 6 (48) dE 3 1 + ( 2 n -  1)~ F3 _ 
iG3, dq n + 1 d.  d .  [~, d" 2 ] dr/ J 

U(x) = Csx  ~ (45) 
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Case II. For  the spiral group of transformation, the following absolute invariants are 
obtained. 

= 
n - 2 (51) 

exp ~ - ~  sx 

F4( 0 = 
¢, 

2n - 1 (52) 
exp - -  sx 

n + l  

Ggl(O = ej--~ (53) 

U 
U, = - -  (54) 

e s x  

and 
R 

W 
W, = --7- (55) 

e J x  

Again, the conditions for the existence of similarity solutions are obtained from the 
boundary conditions. It is found that similarity solutions will exist if 

U(x) = C7 e = (56) 

and 

W(x) = C8 e jx (57) 

The basic equations, equations (8) and (9), then become 

[dF,~V ['2n- 1'~ ~ d2F4 d__(d=F,~ 
s~--~j  - ~-~---~-)s~4 - ~  = d~k d~ 2 ,] + sC~ (58) 

• dF, [ 2 n -  1'~ F dG4j d [[d2F4~n-ldG4j]+jC7C8 (59) 
J G 4 j - ~ - ~ - ~ - ~ J s  4 d~ = d-~[~, d~ 2 ,] d~ .] 

with the boundary conditions 

~ = 0 :  
dF4 

F 4 =  d-~-= G 4 ; = 0  

dF4 U,~ = C7,  G4~ = W4 = Cs ~ = o o "  d-~= 

being independent of x and y. 
It is seen from the preceding analysis that for cases with small cross flow, the boundary 

layer equations can be solve~l exactly by similarity transformation if the mainstream, 
velocity is in the form of equation (50). Since the coefficients in equation (50) are arbitrary, 
various streamline shapes can be constructed by proper choice of these coefficients. A 
particular shape (e.g. the contour of a channel wall) may be approximated by a polynominal 
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according to usual numerical procedures. Thus, the class of flows becomes a useful tool 
in investigating the influence of various streamline configurations on boundary layer 
behavior. 

CONCLUSIONS 

The analysis of the laminar, incompressible three-dimensional boundary layer equations 
of power-law fluids with streamlines forming a system of "Translates" led to solutions 
for mainstream flows described by equations (24), (25), (33) and (34). By placing the con- 
dition of small cross flow, restrictions on the mainstream velocity W are considerably 
relaxed, as is shown in equations (45), (46), (56) and (57). Furthermore, the linearity of the 
momentum equation in the crosswise direction makes it possible to generalize the form 
to any mainstream shape which can be approximated by a polynomial (e.g. the contour 
of a channel wall). 

Numerical solutions of the ordinary differential equations for different values of the 
parameters will be given in a later paper. 
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R~um~--On analyse la possibifit6 de trouver des solutions de similitude aux 6quations, dans un syst6me de 
coordonn6es trirectangulaires, de la couche limite d'un fluide incompressible en mouvement permanent 
ob6issant ~t une fonction puissance. On trouve qu'en g6n6ral les deux composantes du flux principal doivent 
diff6rer par au plus une constante multiplicative et que ces composantes sont des puissances ou des exponentielles 
de la coordonn6e de la direction du flux direct. 

En supposant que les flux transversaux sont petits, la cornposante transversale peut &re g6n6ralis6e et on trouve 
qu'elle est repr6sent6e par un polyn6me dans la variable du flux direct. 

Zmammeafasmng--Es wird die MSglichkeit untersucht, .~anlichketslSsungen zu den dreidimensionalen, 
statinn~en, inkompressiblen Grenzschichtsgleichungen in rechtwinkligen Koordinaten f'tir eine Flfissigkeit 
zu finden, die einem Potenzgesetz unterliegt. Es ergibt sich, dass sich die zwei Komponenten der HauptstrSmung 
im allgemeinen durch h6chstens eine multiplikative Konstante unterscheiden mfissen, und dass diese Kom- 
ponenten Potenz-oder Exponentialfunktionen der Koordinate darstellen, die in die Durchstromungsrichtung 
weist. 

Dutch die Atmahme kleiner Kreuzstr6mung kann die Kreuzstr6mungskomponente verallgemeinert werden. 
Sic l~tsst sieh dann durch ein Polynom in der Durchfliissvariablen darstellen. 
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A6cTpam~--~e~aeTcA aHaaHa BOaMOI~dHOCTH paaucRaH~n pemeHHA no~o5na  n~a  ypaBHenHA 
TpexMepHoro, CTaI~noHapHorO, Heeh~HMaeMoro HOPpaHI4qHOPO CJIOA B NpAMoyrO~Ibn/aIX I~OOp~nHaTax 
KJIA ~H~OCTI4 Ho~qHHRIOI~e~cA CTeHeHHoMy 3aKoHy. YCTaHOBJIeHo, qTO BOO6Me, ~Be KOMHOHeHThl 
rJIaBHoro noTo}ca Teqenn~[ MOryT OTJII~qaTcbA n p y r  ow n p y r a  He 5 o ~ e e  qeM MyJIbTHIIJIHRaTHBHOA 
KOHCTaHTO~I 14 qTO OTH HOHCTaHTbI ABJIAIOTCFI cTerleHH~MH HSIH nOr¢a3aTe3IhHbIMH ~yHI~I~H~MH 
Koop~HHaT B HanpaBJIeHHn (<CKBO3HOVO TeqeHn~ ~>. 

B IIpe/InOJIO}t¢eHnn MaJII~X nonepeqn~tx  TeqeHHl~, MOH~HO O~O~II~I4Tb HOMIIOHeHTy nonepeqHoro  
TeqeHnA IIpe~CTaBJIAA ee a B~Ke ~yHI~IInn OT nepeMeltHO~ CHBOaHOrO TeqeHiIA. 


