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Abstract—This study expands on the linear theory of thermo-viscoelasticity to include a larger group of
materials and environmental effects. The development rests on the observation that for many materials the
creep curve which results from a test at one steady value of an environmental parameter can be mapped onto
the creep curve at another value of the environmental parameter by: (1) displacing the curve along the
logarithmic time axis, (2) scaling the initial elastic response, and (3) scaling the long term or residual response.
A thickwall, environmental-dependent, incompressible, viscoelastic cylinder is analyzed for a material that
can be modeled by the proposed mapping. It is found that this mapping can have a profound effect on the
resulting stress distributions. Further, using the above mapping a constitutive relationship is developed for
transient environmental fields.

1. INTRODUCTION

THE LINEAR theory of viscoelasticity has been formulated and applied to situations
in which environmental factors such as temperature are assumed to be constant. How-
ever, the mechanical response of a viscoelastic material is sensitive to variations in
such environmental factors as temperature, humidity and presence of a diffusant. The
purpose of this study is to extend the linear theory of viscoelasticity to include the
effects of a larger set of environmental factors on a larger class of materials. The study
is based on the observation that for many materials creep curves which result from
tests at various steady values of, say, humidity, have the same general shape. Thus,
the development rests on the hypothesis that the response curve at one constant
humidity value can be mapped onto the response curve at another constant humidity
value by: (1) displacing the curve along the logarithmic time axis, (2) scaling the initial
elastic response, and (3) scaling the long term or residual response. This mapping could
be characterized as an extension of the ‘‘Thermorheologically Simple” theory for
material response[1].

In 1960 Morland and Lee[2] extended the Thermorheologically Simple model for
viscoelastic response to include time dependent temperature fields. In this study the
work of Morland and Lee is carefully reviewed and a technique is developed to extend
the above mapping to transient environmental fields.

In order to provide the proper framework for this study, the general constitutive
law for linear, environmental dependent viscoelastic materials is developed in section 2.

Section 3 introduces a mapping hypothesis which relates creep or relaxation func-
tions to different steady, homogeneous environments. Restrictions on the mapping and
its relation to experimental data are discussed.

In section 4 a thick wall, environmental-dependent viscoelastic cylinder is analyzed
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for constant internal pressure history. The generalized mapping is used to characterize
the material response and an exact solution is obtained. A parameterization study
demonstrates that the generalized mapping has a profound effect on the resultant stress
distribution.

In section 5 the basic ideas are developed to extend the steady state results to
transient environmental fields. It is shown that the results are consistent with those
given by Morland and Lee[2] for “Thermorheologically Simple”” materials; but the
final form of the constitutive law is more complicated due to the basic nature of the
problem. In conclusion, section 6, the model is stated to include both time and spatially
dependent environmental fields.

One final comment should be made regarding this study. A phenomenological
approach is used throughout. While it is recognized that environmental phenomena
may effect the mechanical properties of the material, no attempt is made to correlate
these phenomena to the molecular structure of the material.

2. THE BASIC CONSTITUTIVE RELATIONSHIP

Let oy(x, #) and €;(x, ) be the components with respect to some Cartesian co-
ordinate system of the stress and infinitesimal strain tensors of a particle occupying
position x at time ¢ in body B, and denote them by o and €, respectively. Next, con-
sider the environmental parameters that can influence the mechanical response
of a material; for example, temperature, humidity, concentration, radiation intensity,
etc. Let ¢(x,t) represent the set of all environmental properties of the particle at
position x in body B at time ¢. Assume these functions to be defined and continuous for
xin B and ¢ in the interval [0, ).

It is possible to obtain an integral representation for the constitutive law if the
stress o(f) is linear in the strain history, translation invariant, non-retroactive, and
continuous.t The linearity property allows any strain history € to be associated with
each fixed environmental history. This implies that the constitutive law can be written as
a Riemann-Stieltjes integral in a form similar to that obtained by Gurtin and Sternberg
{3]. Thus assume

oul0) = [} eu(t=")dGyu[r 8(9)]. 2.1)

Here G, are components of a fourth order tensor valued functional which (1) have the
symmetry properties G, = Gy = Gy, (2) are of bounded variation on every sub
interval of [—a, =) for some a > 0, and (3) which vanish on [— g, 0) and are continuous
on the right in {0, ). Because the limits of the integral are from 0~ to ¢, terms can
arise from a possible jump discontinuity in G, at T = 0, i.e., the initial elastic response
is automatically included in (2.1).

The physical meaning of the function Gy, in (2.1) can be explained by letting
€x(1) have one non-vanishing component which is a unit step strain history applied
at time ¢, > 0. The corresponding stress history predicted by (2.1) has the form

o) = Gli-1:6()]. (2.2)

3$=0

+The properties are defined in section 2 of reference [3].
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showing that G is a stress relaxation function measured in the presence of an environ-
mental history ¢ for the entire time interval [0, ¢]. Let us assume that the environ-
mental history on the interval when € = 0 does not affect later mechanical response.
Then (2.2) can be rewritten as

t t
o(t)=G[t—t;6(s) | =G[r:6(5)], (2.3)
s=to s=t—1
where 7 represents the time elapsed since the step strain history was applied. Com-
bining (2.1) and (2.3), the constitutive equation reduces to

oy(0) = [ eu(t—7)dGyu[7, Z;(:f)]- (2.4)

Equation (2.4) can also be formally derived using (2.3) in the usual physical arguments
associated with the construction of the Boltzmann superposition integral.

If G ;. has a continuous first derivative for 7 in [0, ®) equation (2.4) can be rewritten
as a Riemann integral. Equation (2.4) can be further specialized by assuming that the
material is isotropic. The tensorial relaxation functional can be replaced by two scalar
functionals and the constitutive equation becomes

7ult) = (0G0, + [ elt—1) £ Go[r 6(s)]dr (a)
0 s=t—T1
or integrating by parts gives
(a=1,2) (2.5)
) = Go[1.6(9) ]+ [ Go[1=7.6(5)] L eatrrtr b

where, if « =1, G, is the shear relaxation functional, o, €, are corresponding com-
ponents of the deviatoric tensors if « = 2, G, is the relaxation functional in dilatation,
O = Opp, € = €.

In the preceding discussion it was assumed that the stress is determined by the
strain and environmental histories. This assumption can be reversed and one could
assume the strain is determined by the stress and environmental histories. This amounts
to interchanging the roles of o and € in the preceding development. Thus, it follows
immediately that

lt) = 00 1a00.60] + [ oult=1) L Ja[1.9(5) ] ar (@)
(=1,2) (2.6)

or
() = 0aO I [1.6(5) ]+ [ S [1=7.0()] Lour)dr (b)

Here J, and J, are the creep functionals in shear and dilatation respectively, o, €, are
as defined above.



196 D. C. STOUFFER and A. S. WINEMAN

3. A REPRESENTATION OF THE RELAXATION FUNCTIONAL FOR STEADY
ENVIRONMENTS

The remainder of this study will be concerned with developing a representation for
the manner in which the material response functionals depend on the environmental
history. To understand the influence of an environment on a real material, it is necessary
to look at available experimental data. Almost all of this data appears to be taken for
environmental histories which are time and spatially constant. Thus, the representation
in this study is based on a mapping of response functions corresponding to different
constant environmental histories onto the response function corresponding to some
reference environment. It is not expected that the mapping will be valid for all materials
and environments, however, the range of applicability appears to be reasonably large.

Consider a typical experimental program for the determination of a material response
functional. For convenience, let G represent a one-dimensional relaxation function.
Also let all environmental parameters be constant at some value @, that is, ® = ¢{1)
for all in (— o, ©}. Then, if a unit step strain history is applied at r = 0, (2.5) gives

o(t) =G, D). (3.1)

That is, the measured stress as a function of time is equal to the relaxation function.
Also G must be associated with the particular constant environmental history ¢ during
the test. A typical relaxation curve (see Fig. 1) is assumed to monotonically decrease
from a defined initial modulus G(0, @) to a defined residual modulus G(x, ®). Now let
some environmental property, say temperature, be fixed at ¢, for 7 in (—«, ), If the new
temperature state ¢, is not too different from &, it is reasonable to assume the mechan-
ical response will still be linear. Thus, the constitutive equations will still have the
same form as (2.5) and a material response function can be determined experimentally
at thz new environmental parameter ¢,. In this manner a family of relaxation curves,
as shown in Fig. I, can be obtained. The notation G (1, ¢,) signifies the dependence of
the relaxation function on an environmental history ¢(¢) = ¢,, which is constant
throughout the body for the entire strain history.

Now assume the relaxation function G (1, ) can be mapped onto the relaxation

CAR-S
&
Elastic
response
so,®)
Glo.¢] Residual
Glo,] re{spg;se
6lo,
Glw, ]
Gleo, &1

—

Fig. 1. Hypothetical dependence of a relaxation function on the variation of a
particular environmental parameter.
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functions G (t, ®,) for each value of ¢,. Further, this mapping has the form

G (t, dp) = ald,) 1(1) + B(e,)G (D)1, DI, (3.2)

where the set of functions «, 8 and y depend only on ¢,. The quantity 1(¢) is the Heavi-
side unit step function which preserves the property that G[t, ¢,] vanishes on the
negative time interval. The quantity ® is the reference environmental constant for the
mapping hypothesis.

The functions «, 8 and vy are subject to a set of restrictions. The first is that the
material response function G (¢, ¢,) must reduce to the reference state response when
¢, = ®. This requires that

a(d) =0,

B(®) =1, (3.3)
and

y(®) =1

Next it is necessary to guarantee that the stress and strain always have the same
sense. This requires that G (¢, ¢,) = Oforall #in (— , ). Thus the inequality

a(d,) +B(¢,)G[1, @] = 0,1in (0, ), (3.4)

places a limitation on the range of values that a(¢,) and 8(¢,) can assume.
Finally, in order that the sense of time be preserved, y(¢,) must satisfy

y(¢,) > 0. (3.5)

The assumption given by equation (3.2) states that the instantaneous (or elastic)
response of the material for the environment at some value ¢, is [a(¢,) + B(¢,)G(0, D)1,
and the long term (or residual) response is given by [a(¢,) + B(d,)G(, ®)]. The func-
tion B(¢,) scales the total amount of relaxation, and y(¢,) scales the relaxation time.
Thus, analytically, (3.2) implies that changes in shape of the relaxation curves can be
accounted for by scaling.

Similarly, it is convenient to introduce a creep function with the same structure
as (3.2); i.e., assume the creep compliance function for some steady value of the
environmental parameter ¢, is given by

J(t, dp) = ald,) 1(t) + B(d) T [F ()1, @]. (3.6)

In equation (3.6), J(t, ¢) is the creep function in some reference state ®; &, 8 and ¥ are
mapping functions dependent only on ¢,. Equation (3.6) is also subject to the restric-
tions of (3.3), (3.4) and (3.5). The relationships which exist between a, 8, y and &, 3, %
are given in the Appendix.

The mapping of (3.2) and (3.6) was motivated by reviewing much experimental data.
The time shift factor is the same as that introduced by Schwarzl and Staverman([1] in
connection with “Thermorheologically Simple”” materials. The 8 and 3 terms are of the
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type given in the W.L.F. equation (see [5]). The only new thing here is including the
a and & term. However, this does appear to significally increase the range of applicability
of the mapping idea. A rather good correlation with experimental data was obtained for
the influence of temperature on the mechanical response of nylon. Figure 2 demon-
strates the effect of temperature on the time-dependent response of a nylon filament for
total elongations up to seven per cent. An increase in temperature displaces the
response curve upward. Selecting 21-5 degrees centigrade as the reference temperature,
the temperature-dependent creep function (3.7) can be written as

J(t, T) = 0-0356(t — 21-5) 1(z) +j(t, 21-5).

The data points calculated with this model are within 0-5 per cent of the experimental
data. This accuracy verifies that a linear vertical shifting factor is reasonable for this
application. Other places where the generalized mapping appears to work well are given
in [5-9].
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Fig. 2. Experimental and theoretical data for the creep or a nylon filament at
several temperatures. (Experimental data from Leaderman H. Elastic and
creep properties of filamentous materials and other high polymers 6.)

4. INCOMPRESSIBLE THICKWALL CYLINDER IN PLANE STRAIN

To investigate the implications of the assumed form of environmental dependence,
a thickwall cylinder is examined in the state of plane strain. The problem is formulated
for a linear incompressible viscoelastic material which has temperature-dependent
shear response in creep and relaxation.

Let (r, 6, z) denote a generic point in a cylindrical polar coordinate system which
is centered in body B. Body B is a cylinder of inner radius r = qa, outer radius r = b, and
height z =+ Z. The cylinder is analyzed for an internal pressure P(¢) = P1(t) where P
is a constant. The external pressure is taken as zero for all time.
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Due to the symmetry in the boundary conditions and body, the (r, 8, z) coordinate
system coincides with the principal directions of the stress and strain tensors. Denote
the components of the principal stress and strain tensors by (o, 09, 0,) and (e,, €, €,)
respectively. Also, for this particular coordinate system and for the case of plane strain,
all field quantities are independent of the 8 and z coordinates. Assume the displacement
field is given by

u=u.(r,1); up=u,=0. 4.1)
Then the strain-displacement equations reduce to
&(r,t) =u,(r,t); elr,t)= M; €. =0 (4.2)
In the absence of body forces the only non-trivial equilibrium equation is

Or—0g _

o S = 0 (4.3)

which must hold for each ¢ = 0. Since the object of this study is to investigate the effect
of temperature sensitive material response on the stress distribution, assume that the
dilatational strain due to temperature is negligible. The stress—strain behavior in shear
can be written as

or—ap= fof [e,(r, t—7) —&5(r, 1—7)1dG (1, ) (4.4)

where for convenience G (¢, r) denotes G (¢, T(r)), the environmental dependent shear
relaxation function.

To proceed, it is now necessary to pick a particular material or class of materials.
Since the objective is to investigate the effect of the vertical scaling and shift factors of
the mapping hypothesis introduced in section 3 on the mechanical field histories, let the
relaxation response be given by

G(y)=Cwyp+ (1+C)G (1, P), (4.5)

where § = ¢, — P the deviation of some environmental parameter from the reference
state @. Further, assume mechanical response in the reference state is that of a three
parameter solid,t then

G (1, ®) = go+ s exp (—é). (4.6)

Combining the above gives the material response functional for a three parameter,
viscoelastic solid subject to a constant environmental history as

GLt.4) = Cuit (1+Cab)| qu-+ ar exp (— ) | @.7)
provided ¢t = 0.

tSee reference [10], p. 16.
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For convenience assume that the mechanical response of the three parameter solid
is sensitive to temperature. Also for equation (4.5) to be valid the temperature must be
constant for all time. Let ¢ = T(r) denote a temperature field which depends only on
position and the thermal boundary conditions

T{(a) = T,forall tin (—, ),
T(b) = T,forall tin (— o, ), (4.8)

The solution of the stress boundary value problem together with the solution of
Laplace’s equation (reference [11]) for the temperature distribution gives

o (A L Tp o AN FBO ] [ AB)  r]_
"f(”’)‘Pa{A(b)+A(b)[B(’) B(”)A(b)+B(b)]exp[ A(b)+B(b)p] 1}

and (4.9)

_p[A) L o A'(r)+B'(r) ___Am)  t]_
""(””_P“{A(b>+A(b)[B (=B )+ B(b) °""[ A(b)+B(b)p] 1}'

The quantities A, B, A’ and B’ are given by
A(r) = D2 =a) | (CiFCogo) (Tu—T,) {rz_azlog (bfr) __(r*~a?) }

atr? atr? log (bla) log (b*/a?)

_a(r'=a?)  Cu(To=T) [ ,_a*log (blr) __(r*—d?)
B(r) = L e e e ) Tow (Bl )

A'(r) =A(r)+ Fi(r),
and
B'(r) = B(r) + F,(r).
F;(r) and F,(r) are given by

Ry =3 [qo +(Co+ Cago) (T, —T,) 0B LBID) ]

log (b/a)

and

Fa(r) =%%[‘+CI(T"_T”)1%§"((£/%]'

It is now possible to evaluate the effect of the mapping on the resulting stress
distributions. For the special case when T, = T, it follows that

2 g2 (r2—a?)
A(,)=q_o<_»;_2rzi); B(n =2 28)
vy — Qo(ri+a?) o, (r*+a*)

A(r)=22 preat (r) =+ e

Then it is easy to show that the coefficients of the exponential terms in equations
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(4.9) vanish, and that the remaining terms reduce to the temporally constant stress-
state given by the Lamé solution (reference [12]). Thus the temperature sensitive
material properties introduce a time-dependent response.

Next consider the special case when C, = 0 in (4.5). This corresponds to scaling
the initial response and residual response by the same factor. Then

A(r) _ B(r)
o q:
and
A'(r) _B'(r)
o q:

This causes the exponential terms in (4.9) to vanish and the resulting stress field is
again independent of time. The stress components for C, = 0 are

2 _ . olog(bir) r*—a
o) =P ‘l_bz[(rz—a )+ Co(T, Tb)(r azlog (b/a) Eg(bz/az))]
r - a 2 g2
r2[(bz—a2)+Cg(Ta~Tb)(bz-m)]
(4.10)
2 g2
- b [(r2+a2)+Cz(Ta—Tb)(r2+a2 11:)): ((Z//;))”Io; (b27a2))]
Og{r} =—Pui 1— —
2 [(az—az) +cg(n-n)(bz—m)}

(4.11)
To study the effect of temperature on the stress components, it is convenient to let
a=1,b=2,aﬂd§2=C2(T¢,"T¢,). (4.12)

Figures 3 and 4 show the influence of £, on the radial and tangential stress components.
The variable £, may be viewed in either of two ways. The first is to consider C; fixed,
then &, represents the effect of temperature on the response of some particular material.
The second approach is to hold (T,— T,) fixed, then £, shows the response of a general
class of materials which exhibit vertical scaling.

As shown in Figs. 3 and 4, &, has very little influence on the radial stress; but, the
influence on the tangential stress is quite pronounced. For a given material (C, held
fixed) the curves indicate that as T, T, increases, the magnitude of the stress com-
ponent increases on the inner boundary and decreases on the outer boundary. If
T.— Ty is held fixed, then as &, increases the magnitude of the stress components
increase at r = a. Note that the effect of the vertical scaling causes a significant devia-
tion from the elastic solution which correspondsto £, = 0,

Consider next the material response when C; # 0 and C, = 0. This corresponds to
changing the initial and residual response moduli by the same additive constant. Under
these circumstances the equations for the stress-state retain the same basic form as
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a,/F,

Radius
Fig. 3. Influence of &; on the radial stress component when C, = 0.

given in equation (4.9). Thus it is the presence of C, that introduces the exponential
time term. For both stress components, the time independent behavior, as well as the
rate and amount of viscoelastic response, all depend on C,(T, — T}).

For the purpose of studying the influence of the temperature term C,(7T,—T;) on
the stress histories, again set

a= l’b=2’q0=‘h=%’
and
& =C(T,—Ty). (4.13)

Figures 5 and 6 show the result of introducing (4.13) into (4.9) and evaluating o(r, #)
at r = a and r = b. As ¢, increases the general long time trend is to increase the magni-
tude of the stress components on the inner boundary and decrease the stress on the
outer boundary. The relaxation time does not appear to be altered significantly by
changes in £,.

5. REPRESENTATION FOR TRANSIENT ENVIRONMENTAL FIELDS

Recall that G ¢, ¢,] is the one-dimensional relaxation response for a material in a
temporally constant environment ¢,. The relaxation functional which depends on a

t
transient environmental history is given by G [t —to, d)(s)] , for a unit step strain applied
8=t
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Fig. 4. Influence of &, on the tangential stress component when C, = 0.

a time t,. For the development in this section, it is convenient to let 7, = 0. The results
for the more general case will be stated later.

The expansion to transient environments rest on the assumption that the amount of
change in the relaxation function AG in the infinitesimal interval of time [z, z+ Af]
depends only on a representative value of the environment in that interval of time. The
environmental history on [0,7] has no influence on the stress in the time interval
[t, t+ At] other than to determine the stress at time ¢. Furthermore, environmental
changes cannot reverse the relaxation process; they can only vary the rate of relaxa-
tion. Although the validity of this assumption must be verified experimentally, it seems
reasonable that it be at least approximately true for slowly varying environments.

As a consequence of this assumption AG, which depends only on G (¢, ¢,), can be
ultimately expressed in terms of G(¢, ®). The problem then reduces to expressing

t
G[t, ¢(s)] in terms of &, B8, y and 7 (¢, ). In order to examine the underlying aspects
8§=0
of this problem let the environmental history ¢ (#) be partitioned into N sub-intervals.
Let At; be the typical time interval {z;_,, t;] and let ¢; be a representative value of the
environmental history in the interval. Denote the value of ¢(r) at r = 0 by ¢,. Now at
t = 0 we have

G[0.6(5)] = a(90) +B($0)G (0,®) = G. (5.1)
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Fig. 5. Influence of £, on the tangential stress history at the inner boundary r=a
when C, = 0.

Since ¢, is the initial value of the environmental history, then (5.1) follows from
equation (3.2).

During the first interval of time (0, At,], the relaxation functional will change an
amount AG, from the initial response. Hence, we can write

G[At,,%z%)] =8 +AG,. (5.2)

The incremental change AG, is comprised of two parts. The first part, corresponding
to the first term in (3.2), is a vertical shift in the relaxation curve due to a change of
¢ from ¢, to ¢,. This is motivated by treating the term a{¢)1(#} as an environmental
dependent elastic modulus. The second part, corresponding to the second term (3.2),
is the montonic decay of stress that occurs in the time interval (0, Ar,] at the environ-
mental value ¢,. That is,

AG, = [a(d) —alde) ] +B(d){G [y (¢)AL, 2] -G [0, D]}, (5.3)

This means when o =0 and 8 =1 the amount of relaxation AG, that occurs in the
time interval (0, At,] for the environmental state ¢, will require a time interval y (¢,) Aty
for the reference state ® (see Fig. 7). Note in this case AG, could be positive or
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Fig. 6. Influence of ¢ on the tangential stress history at the outer
boundary r = bwhen C, = 0.

t
negative depending on the value of Aq,, and hence, G [t, ¢(s)] is not required to be a

8=0
monotonically decreasing function. Denoting

Aa; = a(¢i) _a(¢i—1) s

the total response after At, is

Aty o]
G[Atl,qll(;(v))] =G +AG,

= a(¢'o) +Aa, +B(¢1)G [')'(¢1)Ath d)] _G(O,Q){B(d’l) _B(d’o)}-

(5.4)
In the next time interval (At,, At,+At,], ¢ takes on the representative value ¢,.
Then

At1 + Al O
G[A11+A12, $(s) ] =G+AG,+AG,, (5.5)

205
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Fig. 7. Mapping of the time coordinate for a “Thermorheologically Simple” material.

where AG, depends on G (¢, ¢,). To find AG,, note the following consequence of (3.2).
The monotonic relaxation at ¢, during time interval At, is B(¢,) times the change in
G at ® during the time interval y(¢,)At, and is independent of when the interval begins.
Combining this relaxation increment with the vertical shift due to a change in « gives

AG;: = Aoy +B(d:){G [y(d1) At +y (o) Aty, 1 =G [v(dy) Aty, ]} (5.6)
Substitution of (5.3) and (5.6) into (5.5) gives

At + Atz

G[At1+At2’ ¢s(=~(9)) ] = a(do) +Aaz+ B(h2) G [y (b)) Aty +y(de) ALy, @]

=G (0,2){B(d1) —B(do)} — G [y (d1)Al;, PJ{B(d2) —B(¢1)}.

(5.7)
Hence, after some time ¢t = 521 At;, the relaxation functional can be written as
G1.9(9)] = a(é0) + £ ta+B16(11G] £ y(6)81, 0]
=3 G[ 3 v(6)8, @] {860 ~B(d)}. (5.8)
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Letting N — o for a fixed time interval [0, t], equation (5.8) can be written as

G[o(9)] = als (1 +B16OIG] [ v[6()1dr, @]

~ [ [ [ vi6®)1d0,0]dBls()] (5.9)
Integrating equation (5.9) by parts yields

G[1,6(5)] =als (] +8[60)G0,0]

+ [ Bl6(M14G] [ v[9(6)1d8,®]. (5.10)

Equation (5.10) can be arrived at by interchanging the summation order in equation
(5.8).

This representation is consistent with the results of Morland and Lee[1] for
“Thermorheologically Simple” materials. In this situation « =0 and 8 =1, so (5.9)
reduces to

G[t,d>(is)] =G [¢ Q] (5.11)
where
¢=[ y(o(6)1ab. (5.12)

In equation (5.12) ¢ is the pseudo timet introduced by Morland and Lee and implies
that the rate of relaxation can be accounted for by a one-to-one mapping of the time
coordinate.

The two forms of the relaxation function (5.9) and (5.10) are equivalent; however,
depending upon the nature of the scaling functions « and 8, equation (5.9) may be more
useful in the solution of boundary value problems. In either case it will probably be
necessary to use a numerical technique to determine the relaxation functional for a
“real” material.

If equation (5.10) does not depend on B, then on setting Bld(1)] = 1(#), equation
(5.10) reduces to

G[16(5)] = alo 1 +G] [ ylo(n]dr, o]
= al8 (011D + G (&, @), (5.13)

with ¢ defined by equation (5.12). For the special case of an elastic material G [¢£, ®] is
replaced by Er1(1), where Ejy is the elastic modulus corresponding to the reference state

1For additional reference regarding the reduced time concept and its application, see references [13],
{14} and [15].

$It was pointed out by Sternberg[13] that equations (3.3) and (3.5) are sufficient to guarantee that (5.12)
has a unique inverse.

1J.E.S. Vol.9No.2—-B
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®. Then equation (5.13) becomes

t
Gl 6()]=El6) 1. (5.14)

Here E[¢ ()] is an environmental-dependent elastic modulus which depends only on
the current value of the environment.

The material response functionals given by equations (5.9) and (5.10) can be
modified to be compatible with the form of the relaxation functional used in equation
(2.5), since this relaxation functional depends only on the environmental history in the
time interval [1,, 1]. The representation of this functional can be obtained by carrying
out the above derivation for the time interval [#,, 7]. Therefore, the relaxation functional
of equation (2.5) is given by

Gli—t0 8(5)) = al6 (01 +B1o(01G] [ y[4(6)1d8, 0]

s=to

~[ G[[ yle®))do.®]dps()]. (5.15)

when ¢ > ¢,; or

G[1=10.4(5)] = al6(0]+ B ()]G [0, ]
+] plo)14G] [ yIs®)1ds,0]. (5.16)

As a final comment, note that the initial value of the relaxation functional, i.e., the
initial elastic response, depends on the initial value of the environment ¢,. The residual
modulus, however, is not determined by the long time value of the environment but by
the entire history ¢ (¢). This can be seen from (5.6) in which the environmental history
determines both the vertical shift Aa, and the scaling 8(¢) of the increment in G (¢, ®).
This behavior is not given by the current Thermorheologically Simple model.

6. TIME AND SPATIALLY-DEPENDENT ENVIRONMENTAL FIELDS
For spatially variant environmental fields ¢(¢, x), the scaling factors «, 8 and y
become functions of position and time. Then the response functional of the particle
can be expressed by

G[t=to,7(5)] = al6(6,0)] +B 6 (s, x)1G (0, ®)

s=to

+/ Blo(s:014G] [ vi6. 0108, @] (6.1

The scaling factors a(¢), B(¢d), and v(¢), and the material response function in
the reference state G (7, ®) are known from an experimental program. The environ-
mental history ¢(f, x) can be found from the appropriate physical law and boundary
conditions. Then equation (6.1) can be evaluated to give the material response function.
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The results of this study can be easily generalized to include three-dimensional
stress and strain histories. For convenience with the notation, write the scaling factors
as

alx, 1) = al¢(x, N1 1{1),
B(x,1) = Bld(x,1)], (6.2)

and

y(x, 1) =v[x(x, 1]

Then the relaxation functionals in shear and dilatation can be written as

Gi [t_t(h qb(xt’ S)] = (X, t) +ﬁi(x! tﬂ)Gi (07 (I))

s=tg

+[ Bx9)dG[ [ y(x.0)d0,0] (63)

fori=1,2.
If a creep response is considered, a similar development gives the isotropic creep
functions in shear and dilatation as

H[t=10,(x,5)] = & (% 1) +B:(x, 1) 4 (0, ®)

8=ty
+f;f*s(x,s)d15[ f;v(x,a)de,@] (6.4)

fori=1,2.

This study was devoted to finding a specific representation for a class of environ-
mental-dependent material response functions. It is desirable to correlate the results
of this section with the constitutive models established in section 3. In view of the
complicated form of equations (6.3) and (6.4), it appears to be most convenient to use
(6.3) when the relaxation law has form (2.5), and (6.4) in a creep law of form (2.6).

The mechanical response functions as given in (6.3) or (6.4) can readily be deter-
mined for a real material. The response function in the reference state and the scaling
factors can be determined from an experimental program for the material being con-
sidered. The environmental history ¢(x, ) can be calculated from the appropriate
physical law. Then performing the required integration yields either the creep or
relaxation function of (6.3) or (6.4). Modern numerical techniques will allow the cal-
culation of (6.3) or (6.4) with no difficulty for use in boundary value problems.
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APPENDIX

The mapping hypothesis, as proposed, contains six adjustable material coefficients, three for creep data
and three for relaxation data. For environmental histories which are temporally constant, ¢(z) = ¢,, the
constitutive equation (2.4) has the Riemann-Stieltjes convolution form discussed in [3] whose one-dimen-
sional form is

o(t) = [} e(t=7)dG (7, b»). (A1)

Let J (1, ¢,) denote the creep function associated with the above environmental history. Since J (¢, ¢,) is
the strain history corresponding to the stress history o(f) = 1(f), (A.1) yields the following relationship
between associated material response functions

[ 1=, 4,)dG (r.8,) = 1) (A2)

Assume that G (¢, ¢,) has been determined from an experimental program and is given by (3.2). Then
(A.2) is a Volterra integral equation of second kind for the associated material response function J (¢, ¢,),
which is not necessarily of the form of (3.6). The general solution of equation (A.2), easily obtained by the
method of Successive Approximationst for a specific G (¢, ¢,,), exists and is unique. For certain special
forms of G (¢, ¢,), (A.2) gives rise to two useful, simple results.

First, for every fixed ¢, let G(¢, ¢,) and J(z, ¢,) satisfy (A.2) and let G (¢, ¢,) be given by (3.2). Then
the associated material response function J (¢, ¢,,) can be written in the form

J(t, ¢,) =T [y(ds)1, b5) (A3)

where J is a new creep function. To verify this result first note that 1() = 1[y(d,)f]. Then define a relaxa-
tion function G for a new time variable ¢ = y (¢,) by rewriting (3.2) as

N _ ¢ _
G680 = G (5757 ) = 6 10+ B@)GE. @) (A4)
Employing (A.4) and the change of variable theoremt for Riemann-Stieltjes integrals gives
3 £ A -
[1(E-£6)e6E 00 =10 (A5)
° Y v
where £ = yr. Next define
J(g,dnp) =J (& ¢»). (A.6)
v

Combining (A.5) and (A.6) and comparing the result with (A.2) we see that J is the unique inverse of G and
the desired result is confirmed.

When the relaxation function is given by (3.2), the associated creep function defined by (A.2) does not
have a simple analytic form. In particular, it is different from that in (3.6). For the special case a =0in (3.2),
the solution of (A.2) can easily be obtained.

tSee Theorem 9.7, reference [17].
tFor example, see reference [16], section 9.
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Let £ = y (¢,)7. Equations (3.2), (A.4) and (A.6) permit (A.5) to be written as
[ -2 6,)d86,)GE®) =10 (A7)
or since B(¢,) is constant
[ BT (E~F 6,0} dGE ) = 1®. (A8)

Hence (A.8) is of form (A.2) which defines the creep function J (¢, &) associated with G (&, ®). Since J (¢, @)
is uniquely determined by this equation, (A.3) and (A.8) immediately yield

J(tv ¢p) =j[§~ ¢p]

1
_ 1. A9
5(o0) J{y(dp)t; @] (A9)

Thus, for the case when a = 0, J (¢, ¢,) is given by (3.6) provided

a(¢y) =0,
B(ds) = 1/8(¢y),

and

‘9(¢p) =7y(d,).

Résumé — Cette étude s’étend sur la théorie linéaire de la thermo-visco-élasticité pour inclure un groupe
plus étendu de matériaux et d’effets d’environnement. Le développement s’appuie sur I'observation que pour
de nombreux matériaux la courbe de fluage qui résulte d’un essai pour une valeur constante d’un paramétre
d’environnement peut étre tracée d’aprés la courbe de fluage pour une autre valeur du paramétre d’environ-
nement: (1) en déplagant la courbe le long de I'axe logarythmique des temps, (2) en déterminant I'échelle de
la réponse élastique initiale, et (3) en déterminant 1'échelle de la réponse a long terme ou résiduelle. Un cylin-
dre visco-élastique, incompressible, dépendant de I'environnement et & paroi épaisse est analysé pour un
matériau dont on peut créer le modéle a partir du tragage des courbes proposé. Il est trouvé que ce tragage
peut avoir un effet prononcé sur la distribution des contraintes résultantes. De plus, en utilisant le tragage
ci-dessus, une relation constitutive est développée pour des champs d’environnement transitoires.

Zusammenfassung — Diese Arbeit erweitert die lineare Theorie der Thermo-Viskoelastizitit um eine grossere
Gruppe von Stoffen und Umgebungswirkungen einzuschliessen. Die Entwicklung beruht auf der Beobach-
tung, dass fiir viele Stoffe die Kriechkurve, die aus einer Priifung bei einem stetigen Wert eines Umgebungs-
parameters resultiert, auf die Kriechkurve bei einem anderen Wert des Umgebungsparameters aufgetragen
werden kann, durch: (1) Verschiebung der Kurve entlang der logarithmischen Zeitachse, (2) Skalierung des
anfangselastischen Ansprechens und (3) Skalierung des langzeitigen oder restlichen Ansprechens. Ein
dickwandiger, umgebungsabhingiger, inkompressibler viskoelastischer Zylinder wird fiir ein Material
analysiert, das durch das vorgeschlagene Auftragen modelliert werden kann. Es wird gefunden, dass dieses
Auftragen eine profunde Wirkung auf die resultierenden Spannungsverteilungen haben kann. Weiterhin
wird unter Beniitzung des gennanten Auftragens eine Materialbeziehung fiir transiente Umgebungsfelder
entwickelt.

Sommario — In questo studio si elaborala teoria lineare della termoviscoelasticita e la si fa includere un gruppo
maggiore di materiali ed effetti ambientali. Lo sviluppo poggia sull’osservazione che per molti materiali la
curva di scorrimento che risulta da una prova ad un valore uniforme di un parametro ambientale pud venire
tracciata sulla curva di scorrimento ad un altro valore del parametro ambientale mediante: (1) lo spostamento
della curva lungo I'asse di tempo logaritmico, (2) la messa a scala della risposta elastica iniziale, (3) la messa a
scala al la risposta residua o a lunga scadenza. Un cilindro viscoelastico incomprimibile a parete spessa dipen-
dente dall’ambiente viene analizzato nel caso di un materiale che pud essere modellato mediante la traccia-
tura proposta. Si scopre che la tracciatura puo avere un effetto profondo sulle distribuzioni delle sollecita-
zioni risultanti. Inoltre, usando la tracciatura di cui sopre si sviluppa un rapporto costitutivo per i campi
ambientali transitori.

AbGcTpakT—PacmupeHa JHHeNHas TEOPHA TEPMO-BSA3KO3/1aCTHYHOCTH, YTOOLI BKIIOYMTD GO/IbLUYIO rpynny
MaTepHanoB M 3Q¢eKTsI OT cpeabl. Pa3sBHTHE OCHOBAHO HA TO, YTO AJI%, MHOTHX MaTEPHAJIOB KPUBY KDPHIIbI,
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MOJIy4EHHYIO B OHOM OMBITE Y OJHOTO YCTAHOBHBIUETOCH SHAYEHHUA NTAPAMETPA CPE/ibl, MOXHO KOH(OpMHO
OTOOpaXUTh Ha KPHBE KPHIbI Y APYrOTO 3HA4YEHUA mapameTpa cpelbl, ecnd (1) caBUraths KpHBY IO Jiora-
prpmMHYecKoi OCH BpeMeHBI, (2) IPHMEHMTD LKAy AN HAa4YaJbHOH 3/1aCTHYHOH peakuuH, (3) NpUMEHHTH
WKajay OAis JOJITOBPEMEHHON MM OCTAaTOYHOH peakumu. [faercs aHanuW3 TONCTOCTEHHOTO, 3aBHUCAILETO
OT CpeAbl, HECKUMAEMOTO, BA3KO3NMACTUMHOrO UMJIMHIApA AJis OATOTO MaTepHala, KOTOpblf MOXHO
OTOOPaXHUTh MPH NMOMOIUK JAHHOTO METOa. YCTAaHOB/EHO, YTO OTOOpPaXeHHE MOXHO MMETH GonblIOE
BIMAHHE Ha pE3ybTHPYIOLIME pacrpeneneHus HanpsokeHus. Kpome Toro, ucnonp3oBaHMe HAaHHOTO
oTOOpaXeHHs MO3BOJIAT Pa3BUBATh KOHCTHTYTBHOE COOTHOIUEHWE AN MEPEXOOHbIX, ‘IHBUPOHMEHTAJIb-
HBIX’ (OKpYXalolMX) MmoJsei.



