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Abstract-The photoelectron energy loss rate to the ambient electrons is discussed. It is shown 
that the conventional EIutler and Buckingham expression has been incorrectly applied in 
photoelectron calculations. The appropriate energy loss rates are indicated. It is also shown 
that the geomagnetic field has little influence on the photoelectron energy loss rate. 

1. KNTRODUCMON 

The calculation of the photoelectron energy degradation in a planetary atmosphere 
requires a knowledge of the rate of energy loss to the ambient electrons. Most of the theoret- 
ical calculations of the photoelectron energy distribution to date have used an expression 
derived by Butler and Buckingham (1962). A few widely quoted examples are Dalgamo, 
McElroy and Moffett (1963), Hanson (1963), Geisler and Bowhill (1965), Hoegy, Fournier 
and Fontheim (1965), Nisbet (1968) and Fontheim, Beutler and Nagy (1968). This expres- 
sion, derived by considering two-body Coulomb encounters, neglects the generation of 
plasma waves. Furthermore, in these studies the close collision theory has itself been 
incorrectly applied. This note summarizes recent results which can be used to evaluate the 
energy loss rate of a photoel~tron which has a velocity much greater than the thermal 
speed. It is shown that the correct application of the test particle energy loss rate theory 
can increase the loss by as much as 70 per cent over that currently used. It is also shown 
that in the Earth’s atmosphere the ambient magnetic field has very little influence on the rate 
of energy loss of a photoelectron. 

2. THE DEGRADATION OF PHOTOELECTRON ENERGY 

Perkins (1965) and Itikawa and Aono (1966) have discussed the rate of energy loss of a 
test particle in a thermal plasma. For photoelec~ons, where the test particle velocity is 
greater than ion and electron thermal velocities, the loss of energy to ambient ions is negli- 
gible and the loss rate can be expressed as 

dE -- 
df 

where 

J*(u) = -?.- 
ii 

aed dx - 2ue-*’ 
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and 

A = 3WY* 47rneB l’s 

f?3(4%-+s ’ wp = m (-1 
(3) 

(cf. Itikawa and Aono, 1966). Here the first term in the brackets is the expression commonly 
used to describe the photoelectron energy loss rate (Butler and Buckingham, 1962; Dal- 
garno, McElroy and Moffett, 1963; Hanson, 1963). In these expressions ct), is the electron 

*I.S.T. Postdoctoral FeIlow. 

8 113 



114 ROBERT W. SCHUNK and PAUL B. HAYS 

plasma frequency, M the electron mass, n the electron density, T the electron temperature, k 
Boltzmann’s constant, v the test electron speed, E the energy, v, = (2kT/n~)l’~ the electron 
thermal speed, -e the electron charge and In y is Euler’s constant. The term of primary 
interest here, G,(v/v,,), represents the dependence of the Coulomb logarithm on the photo- 
electron velocity and contains the energy loss rate due to the Cerenkov emission of plasma 
waves. For a singly-charged ion values of G(u) are given by Itikawa and Aono (1966) for all 
values of U. However, for an electron G,(U) is known only for certain values of U. In 
order to facilitate the explanation of the results to follow, we will describe expression (1) 
in its entirety rather than G,(U) alone. Consider the following limiting regions: 

(a) High speed photoelectron (classical treatment) kT < E < m&/2h3 

In the velocity range v/v, > 1, Equation (1) reduces to an expression given by Kihara 
and Aono (1963) 

dE w se2 mv3 -- =Lln-. 
dt v Yeam, 

The separate effects of Coulomb collisions and plasma wave generation can be seen by 
writing (4) in the form, 

-$=T(ln($$) +ln(&) +lnQ) 

where Id = (kT/4vne2)11a is the electron Debye length. 
The first term in (5) is the energy loss due to two-body Coulomb collisions and corre- 

sponds to the asymptotic Butler and Buckingham (1962) expression. The argument in the 
logarithm is the ratio of the Debye length to the distance of closest approach of the photo- 
electron and a stationary field electron. We note here the principal error in the previous 
photoelectron applications. If one replaces the distance of closest approach between the 
photoelectron and a thermal electron by that for two thermal electrons, one obtains the 
common ln A dependence given by Dalgarno, McElroy and Moffett (1963). For a high 
speed photoelectron the correct distance of closest approach can be considerably smaller 
than that for two thermal electrons. We note also that this collisional logarithm is not 
correct when the de Broglie wavelength of the photoelectron becomes comparable with the 
distance of closest approach. 

The second term in (5) accounts for the energy loss due to the Cerenkov emission of 
plasma waves, a term mentioned but neglected by Butler and Buckingham (1962). This 
term was first derived by Pines and Bohm (1952) and is indeed important for fast particles. 
We note that in the complete formulation including both two-body and collective encounters 
the Debye cut-off length does not appear in the combined result. This is to be expected, 
since the concept of a Debye length cut-off is entirely artificial for fast encounters. 

The third term in expression (5) indicates that the energy loss due to two-body encounters 
can be separated from that due to the radiation of plasma waves only with logarithmic 
accuracy. 

(b) High speed photoelectron (quantum mechanical treatment) E > me4/2hs 

It was noted in the last section that the classical treatment would allow the distance of 
closest approach between particles to become smaller than the de Broglie wavelength of the 
photoelectron. This, however, cannot occur in an actual collision. Thus, in the region where 
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the de Broglie wavelength is greater than the classical distance of closest approach, 

A= h> s 
I% I&? 

or in terms of the energy where 

me” 
-w M 14 eV for electrons 

(6) 

one must use a quantum mechanical treatment for close encounters. Here, 27~4 is Plan&s 
constant, g is the relative velocity and p is the reduced mass equal to m/2 for electrons. We 
note here that the characteristic length for wave generation is the Debye length. Since this 
length is much greater than the de Broglie wavelength, the plasma wave term will not be 
modified in the quantum limit. One then finds that the previous formula can be approxi- 
mately corrected by replacing the distance of closest approach by the de Broglie wavelength. 
However, this is only good to logarithmic accuracy, and neglects the influence of exchange 
for identical particles. Larkin (1960) has treated this problem by an exact formulation and 
obtains an asymptotic expression for E > me4/2P by using the Green’s function method and 
diagram technique. He finds that 

dE o aeB -- =-FL 
dt v 

In mg - 0.04 
s 1 

where the last term in the brackets represents the influence of exchange and is negligible. 

(c) The infuence of magnetic$elds 

During the investigation of the influence of the Cerenkov emission of plasma waves one 
further question was considered. That is, what is the influence of the additional modes of 
wave propagation which occur when a magnetic field exists in a plasma? This effect has 
been investigated by Honda, Aono and Kihara (1963) in the classical limit and by Akhiezer 
(1961) in the quantum limit. These authors show that in the classical limit 

dE 0,8e8 ln mb --= 
dt v C 

-- 
ye% fl 

and in the quantum limit 

_$_!$+~:,l 

where the function f contains the effect of the magnetic field and is a function of the electron 
cyclotron frequency, e+,, and the pitch angle of the photoelectron. The function f is the 
same in both cases and for ionospheric applications where oJc0, - 1 one finds thatf -c 0.5. 
Thus, compared to the logarithmic terms, which are of order 20, the influence of the magnetic 
field is negligible. 

3. SUMMARY 

The energy loss rate of an energetic photoelectron (E > kT) is independent of the electron 
temperature and can be described approximately by the formula 

dE 028 --= 
dt v 

me4 
for kTgE<% 

for E > &t 
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where there is a slight uncertainty in the energy range where the distance of closest approach 
calculated by the classical theory is equal to the de Broglie wavelength of the photoelectron 
in the center of mass system. These expressions are compared, in Fig. 1, with the energy 
loss rate used in most of the present photoelectron calculations. We note the existence of an 
error in the previous calculations of electron-electron energy loss rates of as much as 70 per 
cent. An error of this magnitude, however, will probably not markedly alter the predicted 
heating of the ionosphere because of the relative energy and altitude variations of electron- 
electron and electron-neutral cross sections. 

1111111111111111 

pKf.1. ~~~SONOPPH~EtE~~NENERGYU3SSRATES. 
For this comparison n = 1V cm-*. 

It is also noted that the influence of the ionospheric magnetic field is negligible in the 
calculation of photoelectron energy loss rates. 
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