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Abstract: To test the possible usefulness of the pseudo SU(3) coupling scheme a few nuclear 
properties are examined which can be expected to be governed largely by the (lg$d~2d+3s+) 
part of the proton configuration for odd-2 nuclei and the (lh2fs2f*3p+3p+) part of the 
neutron configuration for odd-N nuclei. The equivalence between these configurations and 
pseudo oscillator shells (?$&&) and (~$$$+) is exploited to show that the low-lying 
natural-parity rotational bands in deformed nuclei can be described approximately by many- 
particle states which are coupled to leading pseudo SU(3) representation (maximum possible 

value of 2i+;) of these configurations. The simple model in which the natural-parity part of 
the proton and neutron configurations are coupled to leading pseudo SU(3) representation 
predicts ground state magnetic moments in remarkably good agreement with experiment. The 
strong hindrance factors observed in certain interband Ml transition probabilities are, however, 
not predicted by this model. The diagonalization of a simple effective interaction within the 
leading pseudo SU(3) representation leads to spectra with the experimentally observed 
ordering of the K-bands. (The case of the Eu and Tm isotopes has been examined in some 
detail since these are expected to have leading pseudo SU(3) representations with the same 

quantum numbers (&) but with quite different ordering of the K-bands.) 

1. Introduction 

For light nuclei (A PZ 25) the rotational features of nuclear spectra can be under- 
stood in a many-particle spherical shell-model framework in terms of the W(3) cou- 
pling scheme of Elliott ‘, ‘) For heavier, deformed nuclei, however, the effect of the . 

spin-orbit interaction becomes so important that it alters the closing of major oscil- 
lator shells, and hence there is no hope of extending the real SU(3) model to higher 
regions of the periodic table. In the 3s-2d-lg (N = 4) shell, for example, the lg* mem- 
ber of the Ig8-lgg doublet is depressed in energy completely out of the g+d,d,s, 
region (leading to the shell closure at 50 rather than 40). The recent assignment of 
pseudo orbital and pseudo spin angular momenta 3- “) to the single-particle states of 
the shell model has, on the other hand, led to the possibility of new intermediate 
coupling schemes which may have applications even in heavy &formed nuclei. In 
these coupling schemes the positive-parity proton orbits 1&2d32d+3s+, being filled 
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in nuclei with Z > 50 for example, can be assigned pseudo orbital and spin quantum 
numbers 2 = 3, 1 = 1, and 5 = + and together form a shell ?&&p-5 with pseudo 
major oscillator shell number fi = 3. The pseudo spin-orbit coupling scheme has 
proved very useful in the study of 82-neutron nuclei 6-8) where the active protons 
are filling mainly the lg*2d, single-particle levels, that is, the members of a single 
pseudo spin-orbit doublet. The validity of the pseudo coupling schemes has also been 
examined for the Ni region “) where the equivalence between the real f,p+p, single- 
particle levels and a pseudo d+d,i, description has been exploited. In particular, the 
approximate validity of a pseudo SU(3) coupling scheme for this pseudo di shell has 
been established by the recent work of Strottman ‘) on the spectra of nuclei with 
A = 59 and 60. 

In the heavier deformed nuclei of the rare-earth region the natural-parity active 
proton orbits g%d,d,s, can be considered nearly degenerate, while the ge orbit is lost 
to this major shell and replaced by the unnatural-parity orbit h,. The experimental 
evidence shows that there is relatively little excitation out of the filled g+ level. Spec- 
troscopic factors for single-proton transfer reactions are much less to thej = 4 mem- 
bers of positive-parity rotational bands compared with those for j 5 3. For the de- 
formations found in the rare-earth region, the positive-parity Nilsson states rarely 
have a gg content greater than about 10 %. Although a full shell-model description of 
the proton configurations of such nuclei would have to cope with the negative-parity 
lh, orbit, it may be useful to consider the natural-parity part of the proton configura- 
tion as made up solely of the pseudo oscillator shell with fl = 3, (g+d,d+s,)” = 
(&p*p+)” and to examine the possibility that the lowest states of such configurations 
are coupled to the important representations of a pseudo SU(3) group, where the 
connection between the pseudo SU(3) representations and the pseudo oscillator 
quantum numbers parallels that between the real SU(3) model of Elliott and the real 
oscillator quantum numbers. Similar considerations hold for the natural-parity part 
of the neutron configurations in the rare-earth region, with (hffif+p3p3)1 = 
(g,g,d,d&)“, and also the natural-parity parts of the proton and neutron configura- 
tions in the actinides. 

In a strongly deformed nucleus, the real SU(3) coupling scheme can be expected 
to be applicable in the limit in which (i) the asymptotic oscillator quantum numbers 
[Nn,n] for the single-particle states of the deformed field are approximately good 
quantum numbers, and (ii) the two members of an [Nn,n] Nilsson doublet with 
52 = A*+ are nearly degenerate. If these two conditions are met, the filling of the 
single-particle states (subject to the Pauli principle) in the order n, = N, n, = N- 1, 
. . . will lead to a many-particle state which, following the technique of Elliott rB 2), 
becomes an intrinsic state of highest weight for the so-called leading representation 
of SU(3); that is, the representation (a~) with the largest possible value of 2il+p and, 
for fixed value of this sum, the largest possible value of p. For nuclei in the first half 
of the 2s-ld shell these two conditions are met to a sufficient degree of approximation. 
Detailed shell-model calculations have shown that the ground state rotational bands 
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Nilsson diagram, 50 5 2 I; 82, labelled with pseudo oscillator quantum numbers 

@&?I. (The diagram is adapted from ref. I’).) 
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Fig. 2. The Nilsson diagram, 82 5 N $ 126, labelled with pseudo oscillator quantum numbers 

@%A]. (The diagram is adapted from ref. “).) 
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in these nuclei have eigenvectors which are composed predominantly of the leading 
SU(3) representations. 

However, in the rare-earth nuclei, although the deformations are large, the spin- 
orbit splittings are also very large, so that Nilsson levels [Nn,n] with Q = .4++ are 
split by large amounts. The Nilsson diagrams for the N = 4 (proton) and N = 5 
(neutron) shells of the rare-earth region are shown in figs. 1 and 2. The proton levels 
[404] with Q2” = 3’ and Qf, for example, are split by an amount which is of the order 
of the major shell separation hw, throughout the range of deformations characteristic 
of the rare-earth region. In the deformed force field the levels which grow out of the 
spherical shell-model states of the g,d,d,s, or pseudo T&p+& shell can also be 
assigned pseudo harmonic oscillator quantum numbers [N&i] with fl = 3. These 
pseudo oscillator quantum numbers are shown for the proton states in fig. 1, and for 
the neutron states (fl = 4) in fig. 2. For example, the Nilsson states [411]3’, [413]f+ 
become the members of a pseudo spin-orbit doublet [n&i] = [3]2] with Q = 2 +$. __I 
Note in particular that pseudo spin-orbit doublets of the type [312]%+, ++, [%j]$‘, 
5+ T ,... are almost degenerate. Moreover the asymptotic limit [m&?,;i] may be ex- 
pected to be approached more rapidly than the corresponding asymptotic limit 
[Nn,n] since the coefficients of terms of the type i * i and iz, needed to reproduce the 
single-particle spectrum in the spherical limit, are smaller than the coefficients of the 
corresponding I - s and s2 terms of the Nilsson Hamiltonian. For deformations char- 
acteristic of the rare-earth region we might expect the quantum numbers [Nl?,A] to be 
better than the quantum numbers [%,A], provided the g, content of the states is 
indeed negligible. This is borne out by some of the simple properties of the Nilsson 
states. For example, the decoupling parameters, a, for K = 3 rotational bands have 
the value a = (- 1)N6,,, in the asymptotic limit in which the real Nilsson quantum 
numbers [Nn,n] are rigorously good quantum numbers. On the other hand, in the 
asymptotic limit in which the pseudo oscillator numbers [firl;;i] are good quantum 
numbers, the decoupling parameters would have the values a = (- 1)G6;0 (see the 
appendix). Tables 1 and 2, taken from the recent compilation of Bunker and Reich ’ “) 
show a list of all the experimentally determined decoupling parameters for K = 3 
bands of the rare-earth region. (Values enclosed in parentheses may be based on ten- 
tative assignments or subject to strong interband Coriolis mixing. Also, K = 3 bands 
which are known to have significant y-vibrational admixtures have been omitted from 
the list.) In the odd-2 nuclei, e.g., the K = 3 rotational bands based on the Nilsson 
state [411 I+‘, which corresponds to pseudo oscillator quantum numbers [!66], have 
decoupling parameters closer to the value a = - 1, the asymptotic limit for the 
[R&A] scheme. In the odd-N nuclei (table 2), similarly, the experimentally observed 
decoupling parameters are invariably closer to the asymptotic limiting values for the 
[fil?,;i] scheme. Other simple properties can be calculated for both asymptotic limits 
to compare their approximate validity. Tables 3 and 4, for example, show the magnetic 
moments of the natural-parity Nilsson states for the odd-Z and odd-N nuclei of the 
rare-earth region in the Bohr-Mottelson-Nilsson rotational model (for rotational 



COUPLlNG SCHEME SEARCH 437 

TABLE 1 

Decoupling parameters u for odd-Z nuclei 

Nuclei& 

‘z;Ho -0.75 

‘z;Ho -0.44 

‘z;Trn -0.72 

‘ZzTrn -0.77 

la:Trn -0.86 

‘;;Lu -0.71(-1.2) 

‘;:Lu (-0.75) 

‘;;Lu -0.91 

‘:zTa (z -0.8) 

‘;:Ta (-0.9) 

t:zRe (-1.13) 

Asymptotic limits for all entries in this table are: 
a = 0 for good [Nn,/l] 

a = -1 for good [%?,A] 

“) Taken from ref. lo). 

TABLE 2 

Decoupling parameters a for odd-N nuclei 

Nucleide “) 
[N&l 

aelp 
VQ*fi 

Nucleide aerp “) 

[521 I “=DYw 
rza1 r6’Erg9 

rh9Ybg9 
169Eriol 
‘71Yb101 
‘73HfI,,I 
‘7lErl,, 
‘=YbIe3 
““HficJ 
‘75Yb10s 
179W10S 
‘=‘Hfr,,, 
‘slW1O, 
‘s3wto9 

‘85WIII 

Asymptotic limits: 
a = 0 for good [NnJ] 

a = +1 for good [I%,21 

0.58 r5301 ls5Gdg, 
0.70 [WI 
0.79 [5101 ‘=YbIos 
0.83 Gil ‘75Yb,0s 
0.85 “‘Ybl,,, 
0.82 ‘79Hflr,, 
0.62 ‘a1HfIo9 
0.73 ‘83wlo9 

0.75 ‘*50slcs 
0.75 ‘8’OSll, 
0.82 ‘87W113 
0.67 ‘*90S113 
0.48 Asymptotic limits: 
0.7 (I = -1 for good [NnJ] 

0.86 a = 0 for good [%?,i] 

0.12 

0.20 
0.19 
0.24 
0.16 
0.20 
0.19 
0.02 
0.05 
0.0 

-0.17 

“) Taken from ref. lo). 
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ground states Z = K = a) in the two limiting cases in which either the asymptotic 
quantum numbers [&,LI] or [m&/i] are assumed to be good quantum numbers for 
the last (odd) nucleon. (The derivation for the pseudo oscillator limit is given in the 
appendix; the p-values have been calculated with free nucleon gs and gl values and 
approximate average values of gR, gR = 0.4 for the N = 4,(&I = 3) odd-proton case, 
and gR = 0.3 for the N = 5(fi = 4) odd-neutron case.) Tables 3 and 4 also list the 
experimentally observed magnetic moments for the natural-parity ground states of 
the rare-earth nuclei. (To save space the experimental values are not identified with 
the names of the nucleides, but these can be read off from tables 9 and 10.) Although 
the agreement between the predicted asymptotic numbers and the experimental values 
is not striking for either limiting case, the results for the asymptotic limit [fi&A], 
using pseudo oscillator quantum numbers, are in genera1 in much better overall agree- 
ment with the experimental values. (Calculations for the actual deformation param- 
eters of the rare-earth nuclei, using the exact Nilsson functions, show that the devia- 
tions may result from the shortcomings of the rotational model as much as from de- 
viations from the asymptotic limit.) 

The near degeneracy of the pseudo spin-orbit doublets @&i’] with B = /i+&, 
and the approximate validity of the asymptotic quantum numbers [N&i] thus sug- 
gests that a pseudo SU(3) coupling scheme may be a good approximation for the 
many-particle states of these configurations. The filling of the deformed-field single- 

TABLE 3 

Asymptotic limits for magnetic moments (odd-Z nuclei) 

Good Good 

f&Al [I%&& 
EXQ. 

[4001 

[4021 

[402 1 

[4041 

14111 

I4111 

14131 

r44201 

r4221 

I4311 

__I 

131214+ 

@Zl*+ 
-%w 

1321 It’ 
m-P. 

[321 li-* 
I”_ 

I330lk+ 

2.79 

-0.24 

3.71 

1.25 

-0.46 

2.52 1.60 

0.43 1.53 

2.79 0.81 

-0.24 1.37 

-0.46 1.85 

2.34 

-0.01 

3.35 

1.65 

0.22 

0.145 
0.158 

i 
3.172 
3.204 

( 

2.23 
2.24 
2.36 

( 

-0.232 
10.229 
ztO.08 

2 
h2.0 
fl.99 

1.53 
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TABLE 4 

Asymptotic limits for magnetic moments (odd-Nnuclei) 

W41 

(5011 

[503 1 

I5011 

15051 

I5031 

15121 

I5101 

15141 

[20ri,XJ@ 

_-_ 
14001*- 
_e,- 
wO21f- 
__- 

[40219- 
em- 

[4041%- 
.,_- 
w41f- 

[Gil+- 
--I 

[411 I&- 
___ 

[41316- 

Good Good 

Wn,Al [z%i,LQ 

0.74 0.64 

1.58 1.40 

-0.97 -0.82 

1.81 1.53 

-1.25 -0.98 

1.33 0.89 

0.84 0.70 

1.72 0.91 

Exp. 

0.6566 

0.117 

0.61 
__I 

15121 [41314- 
-0.6776 

-1.15 -0.41 f0.7 
--_ 

[52l I [42ow 
0.513 

0.74 0.64 0.4919 

0.64 
_I_ 

1523 1 r422w 1.58 0.27 I AO.65 
1.1 
0.55 

WI -0.97 0.14 
e.._ 

15321 14311+- 1.33 -0.17 
-em 

15301 1431 Ii- 0.84 0.69 
5-v 

1541 I wo1i- 0.74 0.64 

-0.254 
-0.339 

particle states [flii,i] in the order ii, = m, I?, = R - 1, . . . will lead to a many-particle 
state which, again following the discussion of Elliott, becomes an intrinsic state of 
highest weight for the leading pseudo SU(3) representation with maximum possible 
value of 2x+@ and, for fixed value of this sum, maximum possible value of jI. Since 
the active protons and neutrons are filling different major shells (m) in the heavy 
deformed nuclei, the many-particle states would also have good spatial (and hence 
spin) symmetry in the separate pseudo spaces of the natural-parity proton and neutron 
configurations. The classification of the many-particle states according to pseudo 
SU(3) symmetry and total pseudo spin s may therefore be expected to be physically 
meaningful, and the low-lying rotational bands of heavy deformed nuclei may be 
expected to have eigenvectors with major components of the natural-parity parts of 
the configuration given by the leading pseudo SU(3) representation, (maximum value 
of 2x+ P) and lowest possible pseudo spin, 3 = 0 for even and 3 = 3 for odd proton 
(or neutron) numbers. 

Unfortunately, the classification of the many-particle states is complicated by the 
presence of the unnatural-parity single-particle level in the midst of the natural-parity 
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levels, for example the lh, level in the g%d+d+s, proton shell. However, insofar as 
the properties of the low-lying rotational bands in an odd-Z nucleus, for example, 
are governed predominantly by a single configuration (g+d*d*s~)“(hV)~~~“-“, with 
fixed odd n, the properties of these bands may perhaps be related to the properties of 
the leading pseudo SU(3) representations. These considerations limit the kinds of 
nuclear properties which can be studied in terms of the pseudo SU(3) scheme. Accu- 
rate predictions of energy spacings, for example, would surely be influenced by a small 
amount of mixing between the above proton configuration and configurations of the 
type (gtdid~st)l*Z(hy)Z~50~n~2, not to mention the interactions between the odd- 
proton configurations with the neutron configurations. However, we might expect 
that the magnetic moments of positive-parity ground states of odd-Z nuclei in the rare- 
earth region, for example, might be understood in terms of the leading pseudo SU(3) 
representations of the configurations (g%d+d+s,)“, with odd n. To determine n for a 
particular nucleus we shall use the known systematics of the region based on the 
Nilsson scheme and the experimental observations for the rare-earth nuclei. For 
example, for the 63E~ isotopes, with 13 protons outside the closed shell with Z > 50, 
the Nilsson diagram (fig. 1) would lead us to expect that it = 7. (With a positive de- _-_ 
formation, E x --* 0.3, we would expect to fill the three positive-parity levels [330]++, 
[321]$+, [%]I+’ with six protons and the three lowest negative-parity levels growing 
out of the lh, state also with six protons, leaving the 13th or 7th positive-parity pro- 
ton for the positive-parity level [3i2] with C2’ = 3’ or +‘.) This analysis also fixes 
the 1 and fi values for the leading pseudo SU(3) representation for 12 = 7. The maxi- 
mum value of 2x+c7 is given by the largest possible value of 3~~,-~m, (= 24 in 
this case), where CA= and cfl are the sums of the single-particle quantum numbers 
of the filled pseudo oscillator states. Similarly, fi for the leading representation is given 
by the maximum value of ~~?~-~ii,, subject to the above restriction on xii=. For 
n = 7, therefore, the leading pseudo SU(3) representation is (nj?) = (11,2). 

The leading pseudo SU(3) representations for all odd-proton numbers for nuclei 
with Z > 50 are shown in table 5. (The companion table for odd-neutron numbers 
and N > 82 can be found in ref. “).) In cases where more than one pseudo SU(3) 
representation (&Y) with maximum value for 22 + p is possible all such representations 
are listed since they may all be expected to be important pieces in the wave functions 

TABLE 5 
Leading pseudo SU(3) representations for odd proton number 50 5 Z 5 82 

Number ofodd+parity 1 3 5 7 9 11 13 15 17 19 
protons 

Leading (47) 
pseudo (30) (71) (10,1) (11,2) (10,4) (11,2) (9,3) (55) (17) (03) 
W(3) rep. (11,2) (63) 
(G) (71) 

Possible I?-values 0 1 1 LO 4,2,0 2,0 3,1 many 1 0 
Expected groundstateI? 0 1 1 2 2 0 3 3 1 0 
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of the low-lying rotational bands, The possible R values (that is & values) given by 
the rule K = fi, F- 2, . . . are also shown, and the table also shows the R values ex- 
pected to be the most likely candidates for the ground state. These are again deter- 
mined from the systematics of the region with the aid of the Nilsson diagram. In the 
65Eu isotopes, for example, the 7th (last) positive-parity proton is expected to occupy 
the [J%] doublet, leading to the R value, R = d = 2, corresponding to the observed 
rotational bands in ‘ZiEu and ‘i:Eu with KJ of 3 and +. It is interesting to note that 
the reading representations contain the expected R values in every case, although it is 
not clear, for example, why R = 2 should lie lowest for n = 7 with leading represen- 
tation (l&2), while for n = 11, which also has (11,2) as its leading representation, 
it is f7 = 0 which is expected to lie lowest, This point is examined in sect. 4. 

It is the purpose of this investigation to test in some detail the possible usefulness 
of the pseudo SU(3) coupling scheme for nuclei in the rare-earth region. For this 
purpose, however, we shall have to focus attention on those nuclear properties which 
are governed mainly by that part of the nucleon configuration corresponding to an 
odd number of protons in the positive-parity levels or an odd number of neutrons in 
the negative-parity levels. We might expect the magnetic moments of the natural-parity 
states to be such a property. They have been calculated in terms of the configurations 
(g,d+d+s,r coupled to leading (@> for odd-2 nuclei, and co~g~ations (hgfgf+ 
p,p$, again coupled to Ieading (@> for the odd-N nuclei. The results are presented 
in sect. 3. Since the magnetic moment resuhs should be closely related to the Ml 
transition probabilities, Ml transition probabilities between states of the leading 
pseudo SU(3) representations have also been calculated. These are discussed in con- 
nection with the spectra in sect. 4. Although precise energy calculations are impossible 
(the configuration mixing problem for the full proton and neutron configuration 
would clearly be prohibitive), we might hope that the diagonalization of a good effec- 
tive interaction within the states of the leading pseudo SU(3) representation of the 
natural-parity part of the proton (or neutron) configuration (a highly truncated part 
of the full shell-model space), would at least predict the correct order of the g bands. 
For this reason energy calculations have been carried out for the case II = 7 (seven 
active positive-parity protons), which can be expected to apply to the spectra of the 
lieu isotopes, and the case n = 11, which can be expected to apply to the spectra of the 
liTm isotopes. Both of these cases have leading pseudo SU(3) representation (11,2), 
but it remains to show that the R, = 2 band, split into KJ = 3 and 3 bands, is the 
predicted ground state band for the 63E~ isotopes, while the R, = 0 band, with 
K. = -& is the predicted ground state band for the 69Tm isotopes, (n = 11). The 
energy calculations for these cases are presented in sect. 4. Some aspects of the method 
of calculation are discussed in sect. 2; full details can be found in ref. I’). 

Thanks to the avai~ab~~~ty of programs for calculating SU(3) Wigner and Racah 
coefficients 13, 14), the most e&cient method of calculation will make use of standard 
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Racah fractional parentage techniques and the SU(3) irreducible tensor formalism. 
The physically interesting one- and two-body operators are expressed in terms of 

single-particle creation and annihilation operators for either protons or neutrons: 

a&)lntm, 3 a(qO)lmm.. Here we use the single-particle SU(3) label (1~) = (~0) in place 
of the principal quantum number. In most of our applications the quantum numbers 
will refer to the pseudo coupling schemes, (that is, (@)&fis). For example, the opera- 
tor which creates a proton in the magnetic substate mj of the lg.& shell is given by 

But, unless specifically needed, the superscripts (‘) will be omitted in the general dis- 
cussion, since the results apply to both the real and the pseudo coupling schemes. The 
single-particle creation operators have SU(3) irreducible tensor character (10) while 
the single-particle annihilation operators transform according to the conjugate rep- 
resentation (0~). Specifically, the irreducible tensor properties are given by 

(- 1)71+1-m+~-m~a~90~lnmm = t(““)‘_,, tm,. 

One-body operators of definite spherical tensor rank are constructed in the usual way 

T(I’, I)=$ = M c, <LoMI.,SOMS,IJOMO) x 
‘3 % 

mm~m,sCl’ln’l - mlL0 ML,,) 

x (!A+- msl& M&&O~l~m~m~. a~qO~lmm.(- lY+l-mf*-ms. (2) 

In terms of these spherical tensor operators, one-body operators can be expressed in 
terms of SU(3) irreducible tensor operators, T(AoPo)KoLoSd$_,, by 

(3) 

where the double-barred coefficient is a reduced SU(3) 2 R(3) Wigner coefficient 
[refs. ’ 4* ’ “)I for the orthonormal basis I(Ap)dML), where the Elliott label K has 
been replaced by the label rc introduced by Vergados ’ “) to construct an orthonormal 
basis which is tied as closely as possible to the Elliott states. [For I 2 p, K = p, 
p-2,. . . . For fixed p the states ](,+)rcLML) go over into the states I(Ip)KLML) 
in the limit A + co. Phase conventions will follow refs. 13* 14) rather than ref. ’ “). 

Note the factor (- 1)” in eq. (l).] 
The decomposition into irreducible tensor components in the pseudo space will 

be illustrated by the magnetic moment operator 

I( = 91J+(&-g,)S. (4 

Here, J = z+s as well as J = L+S, but since S has no simple form in the pseudo 
space it is necessary to transform the spin operator S to the pseudo coupling scheme 
for the appropriate proton or neutron subspace of the full shell-model space. By 
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means of recoupling transformations from l-s + j-j + t-5 coupling it can be shown 
that 

where the last term is a spherical tensor of rank 2 in pseudo orbital space and rank 1 
in pseudo spin space, and the coefficients pi,i are given by 

(2j’+ 1)(2j + 1) 

[ 

+ 
Pi4 = c 

i’j 2 
] (-l)r-j+1(: f, J[(2j’+1)(2j+l)x3x51t 

l 
1 

: 
j 

x(-l)i 1’ .’ . (6) 

z,=2 $4 : 1 

Finally, the complicated tensor term can be transformed to SU(3) irreducible tensor 
form, (by the inverse of eq. (3)), to yield 

P = slJ-3(s,-sl)S+(9r-91) c ~~iO;O)kOT(io;O);Oio=2,~o=l,JO=1, (7) 
(foLo;o)rco 

with (&i,) = (II), (22) . . ., (Qfj). The coefficients pit and ~(i~;~)l;~ are given in 

TABLE 6 

Coefficients for the tensor term of p 

m = 3 shell 

1’ 1 Pi? (Xobo ) IZO kio;o,l;o 

1 1 -CAP (11) 1 1.71402 

(22) 0 -0.04926 

1 3 (A)+ 5 (22) 2 0.10096 

3 1 (33) 1 0.11164 

3 3 -$(&)f 

R = 4 shell 

1’ 1 Pi;l (xojio) RO P 
__ _ 

tAwo)~o 

2 2 +(q)+ (11) 1 -2.18562 

(22) 0 0.07147 

2 4 - (;)+ (22) 2 -0.14648 

4 2 (33) 1 -0.21196 

(44) 0 0.00382 

4 4 (80)+ 11 (44) 2 0.13470 

0 2 

2 0 -5 



444 R. D. RATNA RAJU et al. 

table 6 for the shells R (= rj) = 3 and m (= rj) = 4, needed for the odd-2 and odd-N 
nuclei of the rare-earth region. 

The one-body 1. s and 1’ operators (or i . i and i’) can also be transformed to 
SU(3) irreducible tensor form. 

jIlzi * si = - l(xo)( - ~YWO + w + l)l*<(rto)~; (o~>~ll(n, ,uo)lco Lo = 1) 
)( ~~lo~o~rcoLo=l,So=l,Jo=O, oja) 

n 

p = ,Jo,( - W(1+ ww + W<(tlO>k @N IQ0 Pobo = Lo = w 
X ~~~o~o~rco=Lo=So=Jo=o~ (sa) 

For the q = 3 shell, in particular, these have the form 

‘- (ll)r~=l,Lo=l,S~=l,J~=O Si = -3J5T , 
W-J) 

i$lI; = 1~~~T(~~,"O=~O=~O=~O=O+2~~T(22)KO=~O=~O=~O=~ (3 

Two-body operators can be expressed in terms of SU(3) irreducible tensor operators 

~~~~1’2”‘2~~821Z~l~loQO~~OXO~ $3 
=o So’ 

which are obtained by coupling the irreducible tensor pair-creation operators 

to the pair annihilation operators, (using the tensor form of eq. (1)) 

x (~m,~m~~S2Ms~)f~o"~~;f;,f~o"~~~;5~, , (11) 

T[(~‘2P’Z)(rZ~Z)l(~OrO)PO~O~ 2 

x CL; M$ L2 ML&O ML,)<& n/f;, S2 Ms,ISo MS,) 

x &p’2P’dK’ZL’2 S’z 
M’Qf’s, 

gp&)1(2L.$ “,z 
% S2. (12) 

The multiplicity label p. is needed in those cases where the direct product (I;&) X 
(p2 A,) contains the irreducible representation (Ao~o) more than once, see refs. r3-r5). 
In the q = 3 shell the two-particle representations are (A2p2) = (60), (41) (22), (03). 
Here, (60) and (22) correspond to a symmetric coupling of the two single-particle 
representations (30) and hence two-particle spin S, = 0, (or s2 = 0), while (41) and 
(03), correspond to an antisymmetric coupling of the two single-particle representa- 
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TABLE I 
Irreducible SU(3) tensor character of the surface delta interaction in the m = 3 shell 

@a 
(22) 
(6’3) 
(60) 
(22) 
(22) 
(22) 
(22) 
(60) 
WV 
(22) 
(22) 
(60) 
650) 
(22) 
(60) 
(22) 
(22) 
(22) 

(06) 
(22) 
(06) 
(22) 
(06) 
(22) 
(2-9 
(22) 
(06) 
(22) 
(06) 
(22) 
(06) 
(22) 
(06) 
(22) 
(‘36) 
(22) 
(22) 

w 8.46417 
(00) 1.00298 
(22) -4.36981 
(22) 3.64717 
(22) 3.64717 
cm1 -0.76016 
(22)2 0.37014 
(22)3 - 1.26958 
w 0.59215 
(44) -1.00955 
(4) -1.00955 
w) 0.23733 
(66) -0.16154 
(82) -0.08405 
(28) 0.08405 
(60) 0.54752 
(06) -0.54752 
(60) -0.42778 
(06) 0.42778 

tions (30) and hence two-particle spin SZ = 1, (or s, = 1). Since the surface delta 
interaction (SDI) 16* 1 ‘) has proved to be a remarkably good effective interaction in 
many regions of the periodic table, particularly for highly truncated subspaces of the 
full shell-model space, it is natural to make a first trial energy calculation with this 
very simple two-body interaction. In configurations of identical particles the SD1 
acts only on two-particle states coupled to S = 0, in the case of both the real or the 
pseudo coupling schemes “). In the rl = 3 shell therefore only two-body tensor 
terms with (AZpLz) = (60) and (22) survive for the SDI. The most general two-body 
interaction is expanded in the form 

H 2-body = c W(4 MP2 n2wo Pobo Ko Lo) 
(~ZC’2)(PZW 
(J.oPo)xoPo~o 

x T~(~‘2~‘2)(P2~2)l(~OPO)PO~O~O=~O. Jo=0 
* (13) 

For a central interaction Lo = S,, = 0, and hence also u. = 0. The coefficients W 

for the SD1 in the q = 3 shell are given in table 7. (The coefficients are for unit strength 
factor, G = 1; see, e.g. eq. (8) of ref. ’ ‘).) 

Many-particle states for the n-particle configurations and the n - 1 and n - 2 particle 
parent states in the fractional parentage expansions will be expressed in the U(s) I> 
SU(3) 3 R(3) scheme where s = $(m+ 1)@+2) is the degeneracy number of the 
major pseudo oscillator shell. Irreducible representations of U(s) are specified by the 
partition numbers If] = V;f2 . . .f,] with fi 5 2 (identical particles), where, for 

each n, [f] can also be characterized by the total pseudo spin s, If] = [2*‘“-‘12’]. 
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For n r; 6, the branching rules U(10) -+ SU(3) can be read from the tables of 
plethysms 18) published by Ibrahim 19), lsee also ref. ““)I. We are interested mainly 
in pseudo SU(3) representations near the leading representation. To determine the 
number of occurrences of a given (@I) near the leading (x/i) a simple counting process 
is usually sufficient. To calculate matrix elements for the leading representation 
(&I) = (11,2) for n = 7, 5 = + (If] = [2313), for example, only the irreducible 
representations (&Z) with 22 + @ 2 18 for n = 6 and 22 + fi 2 12 for n = 5 are needed. 
To within these limits the needed branching rules U(10) -+ SU(3) for n = 6 and 
n = 5 are given by 

[23](5 = 0) + (12,)(93)(66)(74)(82)3 . . ., 

[2212](5 = 1) + (93)(10,)(74)2(82)2(90). . ., 

P21 I(3 = _)) + ~~)~~)(~)(~)(55)(~)3(~)2(36}(~)3(~)4(60) . . ., 

[213](S = 3) + (~~(~)2(~)(36)(~)z(~)2(60~2 _ . . . 

Only the states underlined have a fractional parentage connection to the (11,2) state 
of [231]. 

State vectors are specified by ]lf]cr(&)rcLXH4) where c1 is a label used to distin- 
guish the different states (2~) contained in a given If] in those cases involving mul- 
tiple occurrences. (Superscripts (-> will again be omitted for brevity.) Fractional 
parentage coefficients are defined in terms of reduced matrix elements of the single- 
particle creation operators 

where the notation of a triple-barred matrix element has been introduced, first to 
indicate that both the dependence on M quantum numbers and SU(3) subgroup 
labels fc and L have been removed, the latter by means of the reduced SU(3) 1 R(3) 
Wigner coefficient; and second to distinguish it from double-barred reduced matrix 
elements used by some authors which include in their definition additional square 
roots of dimension factors. Except for a factor of Jn, these triple-barred reduced 
matrix elements are n -+ n - 1 coefficients of fractional parentage (c.f.p.), more specifi- 
cally the U(10) 3 SU(3) factors of the full c.f.p. 

These c.f.p. have been calculated for the leading SU(3) representations for several 
values of n by a slight generalization of the technique suggested in ref. 2”). Full details 
and tabulations are given in ref. ’ “). The triple-barred reduced matrix elements satisfy 
the sum rule 

where dimIf] and dimv] are the dimensions of the irreducible representations If] 
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and If’] of the permutation groups for n- 1 and n particles, respectively. If the suma 
mation in eq. (15) includes besides (&A) and a a sum over all possible [f] (hence S) 
the value of the sum is simply given by n, the number of particles. 

In terms of these c.f.p. the matrix element of a one-body irreducible tensor operator 
of the type introduced in eq. (3) is given by the c.f.p. expansion 

where a generalized Wigner-Eckart theorem was been used. Besides the summation 
over M quantum numbers, which leads to the usual angular momentum recoupling 
coefficients, the summation over SU(3) subgroup labels K and L has been performed 
as well, so that the final result is weighted with analogous SU(3) Racah coefficients. 

Here ~@P)(OV)(~‘P”)(N% (J.‘P’)&P&) is an SU(3) Racah coefficient in unitary 
form, as defined in ref. ” ); and d(lZp) stands for the dimension of the irreducible 
representation (APL>. The final product of SU(3) Wigner and Racah coefficients in- 
volves a sum over the multiplicity label p for the coupling (AP) x (&,) --t (A”,“). 

Matrix elements of two-body operators, eqs. (12) and (13), are given by similar 
c.f.p. expansions. For the case of a central interaction, for example, with Lo = S,, = 0, 
the matrix element of the two-body irreducible tensor component is given by 

([f”]a”(X’p”)d’LSJMl T C~~‘2P’2~~r2~2~l~~oro~Po~o~~~ IC_fl~(~~)~LSJ~> 

= -n(n-1) c 
d(h) 

z[ I’ cfn-ZIG-AA”-sn-2) m~‘z d&e,p,-,) 

e-1) 
I’lfIr’2-l-lr-lo-po+l,-2+Pn-2+Po-Pomax 

x <C.f,-21~n-2(L2 k-2YL2; CfJ(4 14)s; ~~l}[f”la”(~‘~“)S”) 
x(Cfn-21a,-,(l.-z~“-2)Sn-2; C~,I(~~C(~)S~P~I}C~I~(~~)S) 
x ; <&w; (A 0 PO > Ko = Lo = w(1”P”)~“L)p W~‘P”)(A G)@P)(& P& 

&-2P”-dP;Pz; (Po~o)PoP)* (17) 

The n + n-2 c.f.p. can be related to triple-barred reduced matrix elements of the 
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pair-creation operators of eq. (10) 

(Cfn-21~“-2(~“-2~~-2)Sn-2; Cfil(n2CLZ)S2P*l}Cfl~(~~)S) 

= & ~~Cfl~~~~~~lll~~~~~~~~~~~lll~f.-~l~~-~~~~-~~~-~~~n--Z>r (18) 
[ 1 

where the multiplicity label pz refers to the coupling (L,_,p,_,) x (J.,P~) + (r_cl). 

These n ‘-t n - 2 c.f.p. can be calculated directly from the triple-barred reduced matrix 

elements by a generalization of the technique outlined in ref. “) or can be compound- 

ed 12) from the n + n- 1 particle reduced matrix elements by the relation 

<Cfn-21CLn-2(~n-2~Ln-2)Sn-2; Cf21(~2~2)S2~21~[fla(~~)s> 

1 

3. Magnetic moments 

Magnetic moments of the positive-parity states of odd-Z nuclei and negative-parity 

states of odd-N nuclei in the rare-earth region may be understood in terms of the 

leading pseudo SU(3) representations of the configurations (g4d,d+s,)” = (?fi)” 

and (hif4f+pbpt)” = (&)n, respectively. Similar descriptions may be valid for the 

magnetic moments of the natural-parity states in the actinides. 

The magnetic moment operator has been transformed to the pseudo coupling 

scheme in sect. 2 and is given in appropriate form by eq. (7) 

p = 915-3(g,-g,)s+(g,-gl) 1 &~O_,,so T(tBo)~oio=2,~00=1,Jo=l. (7) 
(&Jr;oFo 

The first two terms depend only on the total angular momentum operator J and 

the total pseudo spin operator s, and since .I = L”+ s their matrix elements are simple 

functions of z, s”, and J only. The last term is expressed in terms of SU(3) irreducible 

tensor operators. It has spherical tensor rank 2 in pseudo orbital space and rank 1 

in pseudo spin space. Its SU(3) irreducible tensor character is dominated by the com- 

ponent with (&ii,) = (11); but it also contains components with (&PO) = (22) . . ., 

(RR); (see table 6). The expectation values of this complicated tensor term have been 

calculated for the leading pseudo SU(3) representations for the odd-Z configurations 

(fl = 3) for several values of n, using the general form of the matrix element of the 

SU(3) irreducible tensor operators given by eq. (16). Results are shown in table 8. 

Although the matrix elements of this complicated tensor term might be expected to be 



COUPLING SCHEME SEARCH 449 

small since they are weighted by both angular momentum recoupling and SU(3) 
Racah coefficients, they turn out to be almost completely negligible. This came as 
somewhat of a surprise. Some of it can be understood in terms of the large values of 
the quantum number 1 in the leading representations, since the SU(3) 3 R(3) co- 
efficients in eq. (16) tend to zero for certain values of the multiplicity label p as 2 + 00. 
However, these coefficients remain finite for at least one value of p for each (&&). 
The extreme smallness of these expectation values of the complicated tensor terms 
is due largely to a cancellation of the many terms in the c.f.p. expansion of the matrix 
elements for the many-particle states. (In particular, terms come with opposite signs 
for parent states with &- 1 = 0 and $_ r = 1 in eq. (16).) The extreme smallness of 
these expectation values is thus largely a many-particle effect. The single-particle state 
is the only state for which this expectation value is large. For n = 1, (IF) = (30), 
I= 1, J = 3, the expectation value of the complicated tensor term is given by 
$(g3-g[), which together with the first two terms leads to the Schmidt value for the 
magnetic moment. Of course, for n = 1 we would not expect to get good results in 
terms of this model. The systematics of the rare-earth region would lead us to expect 
that the pseudo SU(3) model should be good only for n 2 7. Nevertheless, the results 
for 12 = 3 and 5 have been included in table 8 since they give an indication of the 
magnitude of the complicated tensor term, (and in a complete configuration-mixed 
description terms with n = 5 and 3 may in fact make up very small pieces of the full 
state vector for 12 = 7). 

The results of table 8 suggest that the expectation value of the complicated tensor 
term can be neglected to good approximation, (its largest contribution has been found 

TABLE 8 

Contributions of tensor term to p 

Number of 
natural-parity 

protons (n) 

3 
5 
7 

11 
13 

Leading 
cxp, 

(71) 
(10, 1) 
(11,2) 
(1192) 
(93) 

R, 2 

1 1 
1 1 
2 2 
0 1 
3 3 

Expectation 
value of 

tensor term 

-O.O05(g,-_g,) 
+o.O39k-_g,) 
+o.OOU-_g,) 
-O.O38h-_g,) 
+O.O16k-_g,) 

to be 0.18 n.m.). To within such an approximation (that is + 0.2 n.m.) the magnetic 
moments of the natural-parity states of odd deformed nuclei might therefore be ex- 
pected to be given by the simple expression 

P = ~~J--3h-g,) 
J(J+l)++-yz+I) 

2(J+l) ’ 

where, for the ground states, L is determined in terms of i?, = ii, j -2, . . . by the 
prescription: z = g, for R, # 0, while for i?, = 0: E = 0 or 1 for 1 even or odd. When 
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more than one k, value is possible, it is assumed that the R, value of the ground state 
rotational band is given by the pseudo oscillator quantum number i of the last 
occupied Nilsson orbit. In addition s = 4, and the total angular momentum is given 
by J = i? &3. Tables 9 and 10 compare the predictions of eq. (20) with the experi- 
mentally observed values of the magnetic moments of the natural-parity states of 
deformed nuclei. Despite the extreme simplicity of the model, the predictions are in 
remarkably good agreement with the experimental values, and in many cases are 
in better agreement with the experimental values than the predictions of the rotati- 
onal model of Bohr and Mottelson, also shown in tables 9 and 10. [Numerical 
values for the rotational model are taken from ref. “), where these have been cal- 
culated with Nilsson wave functions for deformations of appropriate magnitude, and 
with gR = Z/A. It should be emphasized that these numbers for the rotational model 
are also for the bare zeroth-order predictions of a simple model. Improvements pos- 

TABLE 9 

Magnetic moments of odd-proton nuclei 

Nucleus Ground state P 
spin 

experimental ‘) predicted rotational b, 

ts3Eu 
63 

‘~:Eu (103 keV) 

‘;:Tb 

‘i;Tb 

163Tm 
69 

‘ZzTrn 

‘i;Trn 

‘;:Lu 

‘;:Lu 

‘!:Ta 

’ ;:Ta (482 keV) 

‘y:Re 

‘i:Re 

2z:Pa 

2z:Pa (27 d) 

2:zNp (60 keV) 

2z:Am 

‘f:Arn 

3+ 

3’ 
3+ 
P 

3+ 
I 

4’ 

t+ 

B+ 
-$’ 

%’ 

%’ 

4’ 

%+ 

4’ 

t- 

Q- 

%- 

%- 

%- 

1.53 1.73 

2.0 1.95 

zt2.0 1.95 

&I.99 1.95 

kO.08 0.75 

-0.232 0.75 

ztO.229 0.75 

2.23 2.73 

2.24 2.73 

2.36 2.73 

3.23 3.04 

3.172 3.04 

3.204 3.04 

51.98 1.95 

3.4 1.95 

1.8 1.73 

1.59 1.73 

1.40 1.73 

0.9 

2.2 

2.2 

2.2 

-0.2 

-0.2 

-0.2 

1.4 

1.4 

1.5 

3.7 

3.7 

3.7 

2.0 

2.0 

1.0 

1.0 

1.0 

“) Taken from ref. 24). 
b, Taken from ref. 22). 
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TABLB 10 

Magnetic moments of odd-neutron nuclei 

Nucleus Ground state 
spin 

experimental “) 

P 

predicted rotational b, 

tssGdsl 
15’Gdg3 
161Dyg, (26 keV) 
163D~,, 
163Ergs (75 min) 
r6’Er9, (10 h) 
‘69Eriol (9.4 d) 
‘71Yb101 
“lErlo3 (7.5 h) 
173Yb,03 
“‘Hflos 
‘s3WKFl 
‘*9oslls 
228Th139 
233u141 

‘sgPUl+5 
*4’PU14, 

-0.254 -0.38 -0.50 
-0.339 -0.38 -0.50 

0.55 0.63 1.1 
0.64 0.63 1.1 
1.10 0.63 1.1 

f0.65 0.63 1.1 
0.513 0.63 0.7 
0.4919 0.63 0.7 

f0.70 -0.45 -0.8 
-0.6776 -0.45 -0.8 

0.61 0.63 1.4 
0.117 -0.21 0.8 
0.6566 0.63 0.9 
0.38 0.63 0.7 
0.54 0.63 0.7 
0.20 0.63 -0.1 

-0.73 -0.45 -0.5 

‘) Taken from ref. 24). 
“) Taken from ref. **). 

sible with the use of renorrnalized effective g5 values, for example, (see ref. 23)), have 
not been included.] The predictions of eq. (20) have their largest deviation from the 
experimental values for the ,,Tm isotopes. In this case the entry in table 9, (0.75 n.m.), 
is for j? = 1, J = +, since the systematics of the region would lead us to expect a 
R, = 0 ground state band belonging to a -pseudo SU(3) representation with odd 1, 
(x/7) = (l&2), the leading representation for eleven active protons in the m = 3 shell. 
In this case the complicated tensor piece of the magnetic moment operator makes one 
of its largest contributions, -0.18 n.m., but this is too small to bring the value of 0.75 
n.m. predicted by eq. (20) into agreement with the experimental value of -0.232 n.m. 
for ‘ZzTrn. On the other hand a representation (@) = (82) one of the possible pseudo 
SU(3) representations for n = 11, s = 3, would have z = 0 for a ground state with 
J = 3; and for this L value, eq. (20) would predict p = -0.26 n.m. In this case there- 
fore a significant admixture of this lower pseudo SU(3) representation would be very 
important. With the exception of such R, = 0, (K, = $), bands, however, the final 
result may be quite insensitive to admixtures of lower pseudo SU(3) representations 
since matrix elements of the complicated tensor term may again make only small 
contributions. The approximate validity of eq. (20) may therefore be dependent more 
on the goodness of the quantum numbers E and 3, rather than the pseudo SU(3) 
quantum numbers (&I). 

The more detailed calculations of sect. 4 show that admixtures of z = JT$ into 
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ground states with L = J&t within the leading pseudo SU(3) representations must 
be expected to make contributions to p of the order of 0.2 n.m. Core contributions 
must also be expected to be of order 0.2 n.m. Nevertheless, the numbers of tables 9 
and 10 seem to indicate that the simple approximate magnetic moment formula, eq. 
(20), gives a remarkably good zeroth approximation for the magnetic moments of 
heavy deformed nuclei. 

4. Spectra. The Eu and Tm Isotopes 

4.1. ENERGY CALCULATIONS 

Since precise energy calculations for the full proton and neutron configurations 
of heavy deformed nuclei would involve a prohibitively complicated configuration 
mixing problem, it may be interesting to examine the results of a highly simplified 
shell-model calculation for odd-Z nuclei, based solely on the leading pseudo SU(3) 
representation for the natural-parity part of the proton configuration, to see whether 
the diagonalization of an effective interaction in this highly truncated subspace of 
the full shell-model space can at least predict the correct order of the K-bands. An 
interesting test for the pseudo SU(3) model can be found in the cases n = 7 and 
it = 11, (seven or eleven active positive-parity protons), in the pseudo f-6 shell, which 
can be expected to apply to the spectra of the 63E~ and 6,Tm isotopes. In both of 
these cases the leading pseudo SU(3) representation (table 5) has (@) = (11,2), 
with R, = 0 and 2; yet the experimental observations would lead us to expect that the 
R, = 2 band, split into KJ = sand 3 rotational bands, should be the predicted ground 
state band for the Eu isotopes (n = 7), while the gr. = 0 band, with KJ = 4, should 
be the predicted ground state band for the Tm isotopes (n = 11). For this reason we 
have diagonalized a simple effective interaction in the subspace of the leading pseudo 
SU(3) representation (11,2) for the two cases, n = 7 and n = 11. Since the surface 
delta interaction (SDI) has proved to be a remarkably good effective interaction for 
highly truncated subspaces of the shell-model space, it has been chosen for the two- 
body part of the effective interaction. Since it is a scalar interaction in the pseudo 
orbital and pseudo spin spaces, it is at best a simplified form of more realistic effective 
interactions. However, the states of the leading pseudo SU(3) representations for 
odd n nuclei also have 5? = f, so that tensor terms (rank 2 in the pseudo orbital and 
spin spaces) would have zero matrix elements in any case; and the effect of vector 
(rank 1) terms can perhaps be partly absorbed by the one-body pseudo spin-orbit coup- 
ling term which, together with a one-body 1’ term, is needed to reproduce the single- 
particle spectrum. The SU(3) irreducible tensor character of the SD1 (table 7) shows 
that its major components have (&,fi,) = (00) and (22) with (&,@,) = (44) next in 
importance, a property which it shares with more realistic interactions in both the 
real “) and p seu d o orbital spaces. The effective Hamiltonian has therefore been 
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chosen to have the simple form 

H = A~i,.i,+B~iT+H,,,(G), 
i=l i=l 

(21) 

where the coefficients A and j3 of the one-body pseudo 1. i and 1’ parts of the Hamil- 
tonian have been chosen to reproduce as nearly as possible the single-particle spec- 
trum of the lg,2d,2d,3s, proton shell. The strengths have been chosen as follows 

A = -0.250 MeV, B = -0.225 MeV. 

This leads to a lg%-2d, splitting of 0.875 MeV [the experimental evidence ‘“) indi- 
cates that this splitting is between 0.75 and 1 MeV], and a 2d+-3s+ splitting of 0.375 
MeV (again in qualitative agreement with the experimental expectations). The co- 
efficient B has been chosen to give a splitting of 2.25 MeV between the centers of 
gravity of the d,s+ and g,d, doublets. Extrapolation from the region of 82-neutron 
nuclei ‘I ‘“) indicates that the strength parameter G for the SD1 should be expected 
to fall in the range G = 0.1 MeV to 0.25 MeV; (the coefficients of table 7 are for unit 
strength factor, G = 1). 

The decomposition of the Hamiltonian, (21), into SU(3) irreducible tensor compo- 
nents has been given in sect. 2. Its matrix elements within the leading pseudo SU(3) 

’ 1/2+ 

9/2+ 

I .5 MeV 

1 

7/2+ 

512f 

3/2+ 
1/2+ 

1.0 

I 
“2 . 
92 

. 72 3/2+ 
-I/2+ 

. 5/2+ 

.k 
+ 312~ 

‘$2 
+ _%2+ 

’ ‘/2 

s/2+ 
+ -vz+ 

,_9/2 _5/2+ 

7/e+ v: - 312+ 

0 5/2+ -5/2+ 

Fig. 3. The spectrum for n = 7; seven active positive-parity protons coupled to leading pseudo W(3) 
representation (ii) = (11,2). (a) Eigenvalues of the Hamiltonian (21) with A = -0.25, B = -0.225 

and G = 0.2 MeV. (b) The experimentally observed positive-parity levels of 1 :3E~. 
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2.0 

1.5 

I .o 

.5 

0 

-9/z+ 

v2+ 

. 
f/2+ 

- 7,2+- 
3/2+ 

171 

J/2+ SST” 

7/2+ 

l/2+ 
3/2+ 

7/2+ 
5/2+ 

3/2+ 
t/2+ 

(a) (b) 

Fig. 4. The spectrum for n = 11; eleven active positive-parity protons coupled to leading pseudo 

W(3) representation (&) = (11,2). (a) Eigenvalues of the Hamiltonian (21) with A = -0.25, 
B = -0.225, G = 0.1 MeV. (b) The experimentally observed positive-parity levels of ‘i;Trn; 
ref. 31). (In ‘ZgTrn the a+, 9’ members of the K = 4 ground state band are observed at 0.332 and 

0.368 MeV, respectively.) 

representation have been calculated with the use of eqs. (16) and (17) and with the 

coefficients of fractional parentage tabulated in ref. I’). The qualitative nature of the 

results is insensitive to changes of the order of +O.l MeV in the parameters A, B 

and G. The results for the two cases, n = 7 and IZ = 11, are shown in figs. 3 and 4. 

We note that the two spectra are in qualitative agreement with the experimental spec- 

tra for the ELI and Tm isotopes. For it = 7 (the Eu isotopes) it is the R, = 2 band, 

split into KJ = 4 and 3 bands, which lies lowest; while for n = 11 (the Tm isotopes) 
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TABLE 11 

Eigenvectors for n = 7 

f: 
(0 keV) 0.934 Ik = 2 2 = 2>-0.3571t = 2 E = 3)-0.032/z = 0 E = 3) 

(107) 0.907 112 = 2 L = 3>-0.41111i_ = 2 E = 4>+0.086/1i: = 0 t = 3j 

$1 (253) 0.891 112 = 2 L = 4>-0.4501R = 2 L = 5>-0.058lc = 0 L = 5) 

(361) 0.903 112 = 2 t = 5>-0.4041~ = 2 E = 6)+0.145112 = 0 f. = 5) 

Pore & = % band (for comparison) 
&’ 0.929 II? = 2 t = 2)-0.3711f? = 2 z = 3)-0.0121~ = 0 L = 3) 

;: 
0.896 \c = 2 L = 3)-0.444/R = 2 t = 4)+0.028lR = 0 L. = 3) 
0.880 II? = 2 E = 4>-0.473lr2 = 2 L = 5)-0.0411R = 0 E = 5) 

9’ 0.871 112 = 2 L. = 5)-0.486112 = 2 E = 6)+0.07612 = 0 E = 5) 

3’ (440 keV) 0.999711i. = 2 t = 2>+0.0251~ = 0 E = 1) 
it+ (585) 0.358 IrZ = 2 e = 2)+0.930/i? = 2 f; = 3>+0.07glc = 0 L. = 3; 

f’ (691) 0.400 /l? = 2 L = 3)+0.908112 = 2 E = 4)+0.123/< = 0 2. = 3) 

%+ (842) 0.453 112 = 2 t = 4>+0.889/1i: = 2 z = 5)+0.06711i: = 0 f. = 5) 

‘h’ (975) 0.373 /iz = 2 z = 5>+0.906jZ = 2 t = 6)+0.1991< = 0 t = 5) 
Pure KJ = Q band (for comparison) 

4’ Iri: = 2 L = 2) 

:: 0.448 0.558 (li 1: = = 2 2 E L = = 2>+0.8941r? 3)+0.83011i: = = 2 2 t If; = = 3)+0.028/R 4)+0.017112 = = 0 0 E t = = 3) 3) 

$1 
0.622 Ie = 2 L. = 4)+0.7801K = 2 E = 5)+0.0681E = 0 E = 5) 
0.665 Ii? = 2 2. = 5)+0.744\1? = 2 Z = 6)+0.058lR = 0 t = 5) 

4’ (1354 keV) 16 = 0 L = 1) 
3+ (1359) O.g997(R = 0 E = 1)-0.02512 = 2 E z 2) 
p+ (1492) 0.996 Ii? = 0 E = 3)-O.OESjli: = 2 f. = 3)+0.0021~ = 2 z = 2) 

++ (1517) 0.989 12 = 0 f. = 3)-o.ngl~ = 2 L = 3)-0.07711i: = 2 E = 4> 

Q’ (1673) 0.996 II? = 0 f. = 5)-0.08711? = 2 E = 5)+0.0221R = 2 L = 4) 
‘h+ (1734) 0.969 Ii? = 0 f. = 5)-0.212/1? = 2 E = 5)-0.1261R = 2 E = 6) 

IrzE) is an abbreviation for I(&) = (11,2)1?ES = iJ>. 

it is the R,_ = 0 band, with KJ = 4, which lies lowest. Moreover, the KJ = 4 bands 
have the appearance of rotational bands with decoupling parameter values around 
a = - 1, characteristic of this region; more specifically, for n = 11 the predicted 
ground state KJ = 3 band has the appearance of a band with decoupling parameter 
a= - 1.2, while for n = 7 the predicted KJ = 3 band, at higher excitation, has the 
appearance of a rotational band with a x -0.9. The experimentally observed K = f 

bands in both the Eu and Tm isotopes on the other hand correspond to decoupling 
parameters, u x -0.9; (+’ states just below 3’ states, . . .). The spacings of the pre- 
dicted K = 3 and 3 bands are nearly rotational; (a pure Z(Z+ 1) spacing is indicated 
by the dots in figs. 3 and 4). The eigenvectors for the Hamiltonian (21) are shown in 
table 11 for the case n = 7. We note that the ground state and first excited band are 
nearly pure K = 2 (Z?, = 2) bands. Moreover, even the KJ values of these bands are 
nearly pure, where K, = k?,+&. The expansion of pure K, band state vectors in 
terms of state vectors 1 (&I) = (11,2)K ES JM) are shown in table 11 for KJ = 3 

and 3 for comparison with the eigenvectors of the model Hamiltonian (21). Note 
that KJ is the projection quantum number K for the real total angular momentum J, 
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(hence no -). Here we have used the relation between 
the states I(Ip)K,LSJM) given by Harvey, (see eqs. 
with L, S, KL, KS replaced by I?, 9, R,, I?,: 

the states I(,lp)K,SJM) and 
(3.45) and (H.12) of ref. 2)), 

and we have made the transformation from Elliott state vectors I(@)g, i?sJM), 

with label R,, to the orthonormal basis 1(x@? ~~JM), with the Vergados 15) label I?, 
which has been used in the present calculations. Note that for (@) = (11,2) states 
with Iz = 0, and R = 2 z = even, are identical with the Elliott state vectors with 
r?, = 0, and I?, = 2 E = even. States with R = 2 and z = odd can be related to the 
Elliott state vectors with I?, = 2 and 0 through the transformation coefficients of 
table 2B of ref. r “). For example 

I(Q) = (11,2)C = 2 L = 3) = 1.00048~(xy) = (11,2)& = 2 Z = 3) 

-O.O3114@jI) = (11, 2)RL = 0 z = 3), 

@$) = (11,2)!? = 2 2 = 5) = 1.00379@$ = (11,2)& = 2 L = 5) 

-O.O8713@I) = (11, 2)& = 0 E = 5). (23) 

The diagonalization of the simple effective Hamiltonian (21) within the basis 
spanned by the state vectors of the leading pseudo SU(3) representation for n = 7 
thus leads to a spectrum of rotational bands of nearly good KJ, where the bands with 
KJ = +, 3, and 4 appear in the right order and the level spacings within the bands are 
also in qualitative agreement with the experimental observations. Fig. 3 shows the 
experimental spectrum of ‘i:Eu alongside the spectrum predicted for n = 7 with 
the parameters A = -0.25, B = -0.225 and G = 0.2 MeV. We would certainly 
not expect good quantitative agreement between the model predictions and experiment. 
And indeed, the theoretical rotational constants are somewhat too large. For example, 
a$+++ spacing of 107 keV is predicted for the members of the KJ = 3 band compared 
with an observed spacing of 83 keV in ls3Eu and 75 keV in r5’Eu. The spacing of 
levels within a band is governed largely by the SD1 strength parameter G. (With 
G = 0.1 MeV, e.g., the predicted $‘-3’ spacing of the K, = 3 band is reduced to 
52 keV.) The predicted separation of the KJ = 3 and 3 bands is also somewhat large, 
440 keV between the +’ and 4’ band heads, compared with an experimental separa- 
tion of 103 keV in rs3Eu and 246 keV in 155 Eu, where this particular spacing is quite 
insensitive to changes in the parameter G but is a sensitive function of the spin-orbit 
strength parameter A. (Since our highly simplified model calculation has ignored 
n-p interactions altogether, it can of course not account for differences of the order of 
150 keV between the spectra of ’ 53E~ and 1 5 ‘Eu and should not be expected to make 
quantitative predictions for the KJ = 3 and 3 band separations.) Finally, the separa- 
tion between the KJ = 3 band and the KJ = _3, + bands is governed largely by the 
strength parameter B of the one-body i2 term in the model Hamiltonian. The predict- 
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ed separation of 1354 keV is again too large compared with an ex~rime~tal separa- 
tion 2’) of 700 keV in “‘Eu and 910 keV in 155Eu. [Experimentally, there are indi- 
cations “‘) th a an observed intrinsic excitation with K, = 3_, corresponding to our t 
predicted KJ = + band, lies very close to a second K = 3 band, also with u w -0.9, 
which may arise from y-vibration coupled to the ground state rotational band.] 

It is inter~ting to note that it is mainly the sign of the parameter B which deter- 
mines the relative positions of the R, = 0 bands, with KS = 3, and the KL = 2 bands, 
(K, = -5_, $), in the Tm isotopes (n = 11) as contrasted with the Eu isotopes (n = 7). 
With a large positive value of B, the KJ = $ band would lie above the KJ = +,+ bands 
in Tm while it would lie below the KJ = 3,% bands in Eu. However, the negative 
value of 3 is required by the experimental fact that the 1 = 3 doublet, (lgs2dt.), lies 
considerably below the 1 = 1 doublet, (2d+3s,), in the proton spectrum of the rare- 
earth nuclei. Further, it is interesting to note that this order of the 1 = 3 and I = 1 
levels is one which tends to destroy the goodness of the SU(3) quantum numbers for 
nuclei with N z 2 in the beginning of the real f-p shell 2*). It is not clear whether a 
corresponding argument can be carried over to the pseudo f-b shell of strongly de- 
formed nuclei. For the present we are content to test the consequences of the pseudo 
SU(3) model and base its possible validity on the qualitative arguments presented in 
sect. 1; (these may depend very much on the mediating influence of the filled neutron 
shells and the nucleons in the core). 

TABLE 12 

Eigenvectors for n = 11 

g+ (0 keV) 

a+ (30) 

z+ (311) 
P’ (356) 

“h’ (849) 
%’ (858) 

t+ (818) 
%+ (969) 
$* (1126) 

8’ (1441) 
#+ (1678) 

5’ (1357) 
f’ (1584) 
#+ (1933) 

%+ (2235) 

0.99961r?: = 0 L = l)-0.029/e = 2 E z 2) 

II?- = 0 E = 1) 

0.998 jr? = 0 L = 3>+0.05Ojr? = 2 L. = 3)-0.029112_ = 2 t = 4) 
0.981 jr? = 0 1 = 3>+0.184]< = 2 E = 3>+0.064]~? = 2 E I= 2) 

0.984 [R = 0 t = 5)-i-0.179@ = 2 E = J>-0.010/E = 2 r, = 6) 
0.915 /r? = 0 i: = 5)+0.355/e = 2 L = 5>+0.191~~ = 2 L r= 4) 

0.99961: = 2 E = 2)+0.029112 = 0 t = 1> 

0.613 I?? = 2 11 = 2)+0.768112 = 2 L. = 3>-0.1841~ = 0 L, = 3) 

0.741 Iit = 2 L = 3)+0.672lr? = 2 L = 4>-0.018)2 = 0 L, =i 3) 
0.865 1: = 2 E = 4}+0.380112 = 2 L = 5)-0.32812 = 0 II; = 5; 

0.835 /r? = 2 E = S>iO.53O/Z = 2 E = 6>-0.147jg = 0 IT; = 5> 

-0.788 j?? = 2 t = 2>JrO.613ji? = 2 t = 3)-0.06312 = 0 f; = 3) 
-0.670 I;ri = 2 z = 3)-f-0.741(12 = 2 1 = 4)+0.0561c = 0 I: ;I 3) 

-0.464 112 = 2 L = 4)+0.854lZ = 2 z = 5)-0.23415 = 0 1T, = 5) 

-0.520 I!? = 2 1 = 5)+0.8481i? = 2 E = 6>+0.1031~7 = 0 t = 5) 

]kE> is an abbreviation for /(,@) = (i1,2)r?~S = &r>. 
To illustrate the sensitivity of the expansion coefllcients to changes in the parameters A, B, G, we 

note that the coefficients of the second &+ state, which are 
0.613,0.768, -0.184 for A = -0.25, B = -0.225, G = 0.1 MeV above, change to 
0.655, 0.733, -0.182 for A = -0.25, B = -0.225, G = 0.2 MeV, and to 
0.586, 0.770, -0.251 for A = -0.35, B = -0.225, G i 0.2 MeV, and to 
0.732, 0.669, -0.127 for A = -0.25, B = -0.35, G = 0.2 MeV 
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Fig. 4 shows the experimentally observed positive-parity levels of ‘g;Trn alongside 
the spectrum predicted for n = 11 with parameters A = -0.25, B = - 0.225 and 
G = 0.1 MeV. The eigenvectors for this case are shown in table 12. The ground state 
band is almost a pure KJ = + (I? = 0) band. Its predicted rotational spacings are again 
too large; the 3’ member of the band which is observed at M 117 keV in I6 ‘Tm, 
’ 6 9Tm and ’ 'ITrn is predicted at 356 keV (with G = 0.2 MeV it would lie even higher 
at 431 keV). The first positive-parity intrinsic excitation in i ‘rTm gives rise to a K = 4 

rotational band, described in the unified model by an excitation into the Nilsson orbit 
[404]f+. In the pseudo SU(3) model this would correspond to an excitation out of 
the leading pseudo W(3) representation into one of the representations with 2x+ ,C = 
21, which for n = 11 includes the possibilities (Id) = (93), (85) and (77) or mixtures 
of these. (The ground state magnetic moment indicates that admixtures of lower 
representations may be important in the Tm isotopes). The next observed positive- 
parity band in “ITm has K = 8. It is interesting to note that the R = 2 band of the 
leading representation (11, 2) is split into KJ = 3 and KJ = 3 bands, where in con- 
trast to the Eu isotopes, it is the 4 band which lies lower. The eigenvectors of table 12 
also show that the KJ values of these bands are not as pure as in the case of the Eu 
isotopes. 

Finally, we note that the predicted level schemes of the Eu and Tm isotopes have 
the appearance of spectra which are connected by a particle-hole relationship. To 
understand these similarities and differences in the spectra for the two cases, n = 7 
and n = 11, it should be noted that these do indeed correspond to the case of “one 
particle” and “one hole”, respectively, in the subspace of pseudo SU(3) representa- 
tions with a maximum value of 2x+,L = 24 for the 19 = 3 shell. For 6 5 n 5 12 
all leading pseudo SU(3) representations have 2x+1? = 24; in particular for n = 6 
and n = 12, the leading pseudo SU(3) re p resentations have (&?) = (12, 0). 

4.2. SPECTROSCOPIC FACTORS 

Other predictions of the simple pseudo SU(3) model can be compared with experi- 
mental observations. Spectroscopic factors for single-proton transfer reactions have 
a simple form under the assumption that the proton configurations in both target and 
final nuclei are coupled to leading pseudo SU(3) representation. For the reactions 
6$Sm(3He, d)::’ Eu to positive-parity states in the Eu isotopes, spectroscopic factors 
would then be given by the reduced matrix element of a proton creation operator 
between the configuration with n = 6 coupled to (I@ = (12,0) and n = 7 coupled 
to (Xii) = (11,2). Specifically, 

Y = I &((12, o>t = 0; (3O)i = E]](ll, 2)32) 
P 

x <(11,2)s” = 3llla &]]](12, 0)s = 0>i2, (24) 

with 1 = z = 3 only for transfers of g; and d, protons to final states with J = ) 
and 3, and with 7 = L = 1 only for transfers of d, and s+ protons to final states with 
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TABLE 13 
Pseudo SU(3) model predictions for the spectroscopic factors for the reactions ,,“Sm(3He, d)63”+1E~ 

KJ I Y 

4 = t 

K, = 4 8’ 

:: 

KJ = 4 
;: 

0.05 
0.30 
03001 

0.32 
0.05 
0.23 
0.23 
0.12 
0.14 

J = 3 and -). (Note that the model predicts 9’ = 0 for final states with J 2 3.) In 
this case the triple-barred reduced matrix element has the value (j-$)*; the double- 
barred coefficient is the appropriate SU(3) 3 R(3) Wigner coefficient; and the co- 
efficients c;; are the expansion coefficients for the state vectors for n = 7 which can 
be read from table 11. Numerical values for these spectroscopic factors are given in 
table 13. Levels in 1 53E~ and “‘Eu have recently been studied by the (3He, d) 
reaction by Ungrin et al. “). Sp ec t roscopic factors have not been evaluated; but the 
magnitudes of the observed cross sections are, possibly with one exception, in quali- 
tative agreement with the predictions of table 13. By far the strongest observed cross 
sections involve the transitions to the 3’ member of the K = 3 band and the unresolved 
4’ and 3’ members of the K = 3 band. However, the predicted spectroscopic factor 
to the 3’ member of the K = 3 band is of the same strength as that for the 3’ mem- 
ber of the K = 3 band. [DWBA calculations 33), with the optical parameters of 
ref. 27) would give relative peak cross sections of approximately 1 : 4 for these two 
states using the spectroscopic factors of table 13, whereas the observed peak cross 
sections differ by an order of magnitude. The observed angular distribution for the 
unresolved $‘3’ doublet of the K = + band is not in disagreement with an equal 
mixture of I = 0 and 1 = 2 transfer ““).I 

4.3. THE Ml TRANSITION PROBABILITIES 

In view of the seeming success of the pseudo SU(3) model in predicting the mag- 
netic moments of deformed nuclei, it is also interesting to examine the Ml transition 
probabilities between the states of the leading pseudo SU(3) representations. Since .& 
is not a good quantum number for the eigenvectors of the simple model Hamiltonian 
(21), even the predictions for the ground state magnetic moments within the leading 
pseudo SU(3) representations are modified somewhat over the simple predictions of 
eq. (20). For the (11,2) representation of n = 7, for example, the predicted 3’ ground 
state (table 11) has a 12.8 y0 admixture of z = 3. This admixture of E = 3 into a 
state with a predominant component of Z = 2 changes the prediction for the ground 
state magnetic moment from 11 = 1.73 (for pure Z = 2) to a value of 1.90 n.m. for 
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the predicted ground state of table Il. These numbers are to be compared with the 
experimental value ,u = 1.53 for ls3Eu. In ’ “Eu some excited state magnetic mo- 
ments have also been measured. The lowest 3’ excited state is an almost pure t = 2 
state with a predicted magnetic moment (using eq. (20)) of 1.95 n.m. in good agree- 
ment with the experimental value 24) of 2.0 n.m. for the 3’ state at 103 keV in 153E~. 
On the other hand, the predicted value for the magnetic moment of the lowest $’ 
excited state is 2.95 n.m. for the state vector of table 11 (compared with a predicted 
value of 2.73 n.m. for a pure z = 3 state.) Neither of these is in agreement with the 
experimental value “‘) of 1.8 n.m. for the z’ state at 83 keV in ’ 53E~. 

To calculate the Ml transition probabilities we need the matrix elements of the 
magnetic moment operator (see eq. (7)) between state vectors such as those of table 
11. The complicated tensor part of the magnetic moment operator (the last term of 
eq. (7)) again makes very small contributions to such matrix elements. (Its contribu- 
tions to matrix elements off-diagonal in Iz, z, or J differ from its contribution to the 
diagonal matrix elements only by trivial angular momentum recoupling coefficients 
and the r?, J? dependent SU(3) 3 R(3) Wigner coefficients, see eq. (16)). For example, 
it makes a contribution of only -0.0038 n.m. to the matrix element connecting a 
component with rZ = 2, 2 = 2, s = 4, J = M = 3 to a component with rZ = 2, 
z =3,g=+,J=M=+ in the (11,2) representation for n = 7. It is therefore 
again a very good approximation to neglect this complicated tensor term altogether 
and calculate matrix elements of the magnetic moment operator between state vectors 
within the leading pseudo SU(3) representations with the simple expression 

where the coefficients c$ are the expansion coefficients for the eigenvectors of the 

model Hamiltonian (21) in terms of the state vectors I(&? Es = +JM). For n = 7 
these can be read from table 11. Also, for n = 7 the general label j?, identifying the 
state, could be replaced by the label KJ. The B(Ml) values have been calculated with 
eq. (25) and the expansion coefficients of table 11 for the transitions among the 
various members of the KJ = 3 and KJ = 3 bands for the Eu isotopes. The predicted 
B(M1) values are shown in units of (3/4~)(&/2Mc)~ in fig. 5 and compared with the 
experimentally observed 30) B(M1) values for ’ 53E~. The relative magnitudes of the 
predicted intraband transitions KJ = 4 + 3 or KJ = 3 + _5 are in qualitative agree- 
ment with the Alaga rule; that is, they are approximately proportional to ( JKJ 101 
I J’K,)2. The predicted Ml transition probability for the intraband transition 

3’ --f 3+(% = 3 + 3) is too small by a factor of about 4 compared with its experi- 
mental value; that is the corresponding matrix element is too small by a factor of x 2. 
In view of the extreme zeroth-order nature of our calculation and the simplicity of 
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1.71 1.70 

Fig. 5. The B(M1) values in units of (3/4n) (efi/2Mc)’ for the K, = 8 and # bands for n = 7. The 
numbers in parentheses are for the experimentally observed B(M1) values for rz:Eu [ref. “‘)I. 
All other numbers are for the predicted spectrum of fig. 3 and table 11. The predicted relative 
B(MI) values for the intraband transitions are also compared with relative B(M1) values given by 

the Alaga rule. 

our model this may be considered qualitative agreement between the predicted and 
experimental values. However, the situation is very different for the interband Ml 
transition probabilities, (K, = 3 + KJ = 3). The experimentally observed interband 
M 1 transition probabilities are strongly hindered 30), whereas the predicted interband 
B(M1) values are large compared with the intraband values. Both the 3’ member of 
the K, = 3 band and the 3’ member of the KJ = 3 band have predominant compo- 
nents with Iz = 2, E = 2 (table 1 1), leading to a large Ml matrix element for the 
transition 3’ + 3’ (K, = 3 + KJ = +). Essentially the only hindrance factor in the 
pseudo SU(3) description for this transition comes from the square of the factor 
-3 which multiplies the (gs-gr )value in the 3 term for the magnetic moment opera- 
tor, eq. (7). (The contribution of the complicated tensor term of /J to the matrix ele- 
ment connecting Iz = 2, .& = 2, J = 3 to 1 = 2, l = 2, J = 3 is much too small to 
make a significant contribution to the hindrance factor, and in fact has the wrong 
sign.) In Weisskopf units, (see eq. (16) of the appendix), the hindrance factor for the 
transition 4’ + 3’ (KJ = 3 -, KJ = 3) h as a predicted value of 6 compared with 
experimentally observed 30) hindrance factors of 430 in rs3Eu and 3400 in ’ 55Eu, 
an order of magnitude failure for our model. This is a serious stumbling block for the 
pseudo SU(3) model, since this prediction is not merely characteristic of the case 
n = 7 of the Eu isotopes. Predicted Ml transition probabilities for interband tran- 
sitions K, = R-4 + K; = K++ within the leading pseudo SU(3) representations 
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can be expected to be quite strong for all values of IZ. In the Bohr-Mottelson rotational 
model on the other hand the corresponding interband transitions can always be ex- 
pected to be strongly hindered. In the limit of large deformations and asymptotic 
quantum numbers [Nn,n] they correspond to transitions with AA = 2; for example 
to the transition [41 I]$’ + [413]3+ for the KJ = 3 -+ 3 interband transition in the 
Eu isotopes. In terms of the pseudo oscillator quantum numbers fl, ii,, i these inter- 
band transitions are characteristic of transitions from one member of a pseudo spin- 
orbit doublet to the other, [i%~~]s2 = 3 -3 + [m&A]52’ = 2 ++; e.g. [ji&’ -+ _I_ 
[312]f+ in the case of the Eu isotopes. The Ml hindrance factors for such transitions 
have been calculated in the Bohr-Mottelson rotational model under the assumption 
that the asymptotic pseudo oscillator quantum numbers R, ii,, 2 are rigorously good 
quantum numbers. Results are given in table 14 of the appendix. In many cases these 
Ml hindrance factors are again much smaller than the experimentally observed ones; 
and we might conclude that a small amount of excitation out of the lgg proton orbit, 
for odd-Z nuclei, is therefore vital to a complete description of the large interband Ml 
hindrance factors. Such excitations have of course been excluded in both the asymp- 
totic limit [flii,A] and in the pseudo SU(3) model. In this connection it is also inter- 
esting to note that the 3’ first excited state in ’ 53E~ is the one state for which the ob- 
served magnetic moment is in disagreement with the prediction of the pseudo SU(3) 
model. We might expect a 4’ state to be particularly sensitive to a small amount of 
excitation out of the lgp proton orbit through interaction with the lg, part of the 
J7 = 3 proton configuration. 

5. Concluding remarks 

The very simple model, based on the leading pseudo SU(3) representations of the 
natural-parity parts of the proton and neutron configurations of heavy deformed 
nuclei, has had considerable success in predicting the right order of the K-bands in 
the Eu and Tm isotopes, with rotational spectra in qualitative agreement with the 
experimentally observed spectra. In view of the apparent general success of the model 
in predicting magnetic moments of heavy deformed nuclei, it is somewhat difficult to 
understand the complete failure of the model to predict the very large Ml hindrance 
factors which are observed for certain interband transitions. Although admixture of 
lower pseudo SU(3) representations and a small amount of configuration mixing 
with the unnatural-parity parts of the overall configurations could well contribute to 
cancellations in off-diagonal Ml matrix elements without making major contributions 
to the magnetic moments, it is much more likely that a small amount of excitation 
out of the lgp proton orbit for odd-Z nuclei, for example, is vital for quantitative 
agreement with the experimentally observed Ml transition probabilities, and this 
point is under investigation. Such excitations, however, would take us out of the 
framework of the simple pseudo SU(3) model. Nevertheless, in view of the consider- 
able successes of the extreme zeroth-order version of our model, we may conclude 
that the pseudo SU(3) model deserves further investigation. 



COUPLING SCHEME SEARCH 463 

Appendix 

THE ASYMPTOTIC LIMIT [i%&i] 

To test the approximate validity of the pseudo quantum numbers in the asymptotic 
limit [NZ,A], a number of nuclear properties have been calculated for the unified 
(rotational) model under the assumption that the Nilsson states can be replaced by 
single-particle states for which the pseudo oscillator numbers [m&i] are good quan- 
tum numbers, (implying very specific values for the Nilsson coefficients). To follow 
the development it is best to start with a unified-model wave function for an odd-,4 
nucleus in which the deformed field function for the last (odd) nucleon is expanded 
in the jQ scheme: 

where xi are single-particle spherical shell-model wave functions for the odd nucleon 
and ~$2 are the Nilsson coefficients for the state [/I]. The notation assumes that Q > 0. 
The transformation to the pseudo coupling scheme for the single-particle function I,$ 

gives the deformed field coefficients c,-ii in the pseudo scheme 

644 

(A-3) 

The Nilsson coefficient cjn for maximum j, (e.g., j = 9 for the lg, orbit of the N= 4 
shell), is assumed to be zero. The remaining coefficients cjn give the coefficients for 
the pseudo scheme, (e.g., the cjn with j = 1 and 3 for lg3 and 2d+ orbits determine 
the coefficients ciii with 1 = 3). The notation again assumes that A 2 0. The full 
wave function can then be put in the form 

(A-4) 

where we have used a symmetry property of the Clebsch-Gordan coefficient and the 
fact that m - 1 = even for all 1 of a pseudo oscillator shell fl. If _? (and hence 2) are 
assumed to be good quantum numbers, the sum in eq. (A.4) is over 1 only. If fl&i 
are all assumed to be good quantum numbers (the asymptotic limit), the coefficients 

CiZ are simply the transformation coefficients between a Cartesian and the spherical 
oscillator basis; see, e.g., eq. (2.3) of ref. 32). Note that the c~~mPt. are independent of 

2. Starting with eq. (A.4), all calculations proceed exactly as calculations with Nilsson 
functions for the real oscillator basis expanded in I-s coupling, where quantum num- 
bers N, I, A, Z are replaced by m, 1, 2, 2. In the asymptotic limit [N&A], therefore, 
the matrix element of S&, (the projection of i along the body-tied z-axis), for example, 



464 R. D. RATNA RAJU et al. 

is simply ,$. In the pseudo coupling scheme the magnetic moment operator 

P = gRI+(gl-gR)j+(gs-gI)St 

is, (in the notation of eqs. (2a) and (5) of the text), given by 

F = gRZ+(gr-ggR)j-3(9,-91)~+(gs-9r)C~i;it(2: 9z1’19 
i;i 

with 
t(l’, 1)“‘*: = G; m7Msll~N’~ o:,;, . 

s 

(A.5) 

(A.6) 

(A.7) 

The matrix elements of p between states of the type (A.4) can be determined by making 
use of the general expression 

([iW-$ ;jl]S2IIIKIM’lOfl[rnjiZ;i]S2IKM) = 2 *<1Mkq,1’M’) 
[ 1 

x S" C~~C~,~l{(z,,YII'K')<7';i'Z';O'lO:~Z;i~;a) mr p;i+ _(-qZ+t+fi (zKkv~~z'-K')(2'--2-_P; -G?'~o~~~lE; !a)}, 64.8) 
where Ok, is a spherical tensor operator dependent on the degrees of freedom of the 
last odd nucleon only. In the asymptotic limit in which 2 (and hence i) are good 
quantum numbers, we shall need the matrix element 

(Ez; S2lt(Z’, 1)*‘+lE; sz) = (2010110)(1’;i~-;i(20)(&-~~10)(-1)~+~-~+~-~ 

For s1 = 4, we shall also need the matrix element 

(2si-E; -f,t(P, t)*‘*‘,,2E; ++). (A.lOa) 

For 2 = 0 (2 = +) this has the value 

(2’020110)(-l)i 

[2(22+ 1)]3 ’ 

and for 2 = 1 (i = - j), it has the value 

- 
[ 1 & ;2’12-2,1-1>(-1)! 

It is therefore convenient to define parameters a and /I 

(A.lOb) 

(A.lOc) 

(A.ll) 

(A.12) 
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where the coefficients pz can be read from table 6, and in the asymptotic limit of 
good flii,;i the expansion coefficients cj; follow from eq. (2.3) of ref. 32). The mag- 
netic moment for the ground state of rotational bands, (Z = K = a), in the asymp- 
totic limit [fl&A], then has the value 

(A.13) 

In the asymptotic limit [Nn,n] for the real oscillator (Nilsson) scheme we get an 
analogous formula, if 25, A, 2 are replaced by i’?, A, E; a and /? are set equal to zero, 
and the factor -$ in the (gs-gJ term of eq. (A.13) is replaced by + I. Results are 
given in tables 3 and 4 of the text. 

Finally, it is interesting to calculate the B(M1) value in the asymptotic limit @&fz2] 
for a transition from one member of a pseudo spin-orbit doublet to the other; that is, 
for the transition [&&;i]Q = 2-3 -+ lflEz 2 J&2 = 2-t-t (ZK = 2 - jt -+ Z’K’ = 
;i -I-+). For this purpose it is best to express the magnetic moment operator in the form 

c = gRZ+(91-gR)Z+(~gl-391-gR)j;+(gs--91) ;rtir(l’, ,)‘i+ (A.14) 

In the limit of good ii$A this leads to the B(M1) value 

B(Ml)([fi&;i]Q = K = 2-3, Z -+ [%&;ilG’ = K’ = ;i+f, I’) 

(ASS) 

Since the same transition in the corresponding asymptotic limit [A%,n] is forbidden, 
AA = 2, (e.g., [3%]3+ + [3%]$’ corresponds to [411]3+ -+ [413]3’); it is useful 
to express the results in terms of Weisskopf hindrance factors F,, where 

w‘f lb F,,r=-, 
fw) 

with B(Ml), = (A.16) 

Hindrance factors, F,, for the pseudo spin-orbit doublets of the fl = 3 and R = 4 
shells are shown in table 14 for the transitions with Z = K = A-3 and I’ = K’ = 
i-i-3, (where we have assumed gR = 0.4 for the fif = 3 shell and g, = 0.3 for the 
R = 4 shell). We note that for many of the pseudo spin-orbit doublets these hindrance 
factors are too small, when compared with the experimental values. 
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TABLE 14 

Ml hindrance factors Fw for transitions 

[&%,~] Z = K = n = A-& + [&&(i] I’ = K’ = 9’ = x+d_; asymptotic limit 

[fi&& Fw [&%7,A] FW 
--- 

___ __I 
I3031 1850 I4041 6650 
___ __- 

[3121 17 [413] 27 
*I_ -.-?. 

I3211 3.5 14221 6.3 
___ _-_ 

1301 I 300 I4021 5250 
1-e 

I4311 82 
*__ 

I4111 3.1 
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