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Abstract: Molecular evolution may be considered as a walk in a multidimensional fitness
landscape, where the fitness at each point is associated with features such as the function,
stability, and survivability of these molecules. We present a simple model for the evolution of
protein sequences on a landscape with a precisely defined fitness function. We use simple
lattice models to represent protein structures, with the ability of a protein sequence to fold
into the structure with lowest energy, quantified as the foldability, representing the fitness of
the sequence. The foldability of the sequence is characterized based on the spin glass model
of protein folding. We consider evolution as a walk in this foldability landscape and study the
nature of the landscape and the resulting dynamics. Selective pressure is explicitly included
in this model in the form of a minimum foldability requirement. We find that different native
structures are not evenly distributed in interaction space, with similar structures and structures
with similar optimal foldabilities clustered together. Evolving proteins marginally fulfill the
selective criteria of foldability. As the selective pressure is increased, evolutionary trajectories
become increasingly confined to ‘‘neutral networks,’’ where the sequence and the interactions
can be significantly changed while a constant structure is maintained. q 1997 John Wiley &
Sons, Inc. Biopoly 42: 427–438, 1997
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INTRODUCTION manner in which they arose. For instance, evolution-
ary considerations can explain how the plasticity of
protein sequences can coexist with a tremendousProteins are the result of a long evolutionary pro-

cess. We can better understand the properties of robustness of the resulting structures, why certain
native structures are overrepresented among biolog-these biological macromolecules by considering the
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428 Govindarajan and Goldstein

ical proteins, and what interactions dominate in the minuscule fraction of all possible conformations.29

While ‘‘foldability’’ is not the only factor compris-folding process and why.1–8 Considering evolution-
ary relationships can assist in predictions of the ing the fitness function, it must be a major compo-

nent in the selection process. By understanding howstructures of specific proteins (for reviews, see Refs.
9–11). Ancestral protein sequences can be recon- proteins evolve based on the need to maintain an

adequate foldability, we can understand a majorstructed based on the sequences of modern existent
proteins.12–15 These ancestral proteins can then be force governing natural selection as it occurs on the

molecular level. In addition, based on the observa-synthesized in the laboratory and their biochemical
properties measured, providing information about tion that proteins with similar folds often have com-

pletely unrelated functional roles, and similar func-how their specific functional features arose.16–18 All
of these applications rely on understanding the pro- tional roles may be performed by proteins with un-

related structures, 30 we can consider that thecess of molecular evolution, specifically as it occurs
in proteins. selection pressure that acts on structures may be in

some sense orthogonal to the selection pressure thatOne of the major advances in our thinking about
evolution was the introduction of the concept of a is based on functional properties. In such a case,

we can understand protein structures by consideringfitness landscape, representing the fitness of a par-
ticular system (such as a protein) as a function of only selection pressures that act on structural prop-

erties such as the ability to fold.the parameters of that system (the protein se-
quence).19 Evolution occurs as movement in this One major obstacle to studying the folding be-

havior of biological proteins is that we do not under-landscape. Just as the dynamics of mechanical mo-
tion is determined by the energy landscape, the char- stand the interactions in the protein that govern the

folding process, especially interactions between theacteristics of the evolutionary dynamics is deter-
mined by the fitness landscape. While some of the protein and the solvent. Shakhnovich and co-work-

ers developed a novel approach to answering ques-more general features of evolution have been inves-
tigated through the use of abstract models, 20–23 any tions about protein folding and evolution by postu-

lating an alternative world where biological proteinsattempt to understand the characteristics of biologi-
cal macromolecules must take into account the na- exist on three-dimensional lattices, and where the

true energy function is known in advance.31,32 Byture of the fitness landscape for these particular mol-
ecules. Previous studies have focused on the specific modeling evolutionary selection given the exact en-

ergy function, it is possible to model the foldinglandscapes for RNA, and more recently, proteins,
considering the mapping of sequence to structure.24–28 behavior of evolutionarily optimized proteins, at

least optimized for the ‘‘alternative’’ universe underWhile highly instructive, such studies are not based
on fitness in an evolutionary sense, except for the study. Confining the proteins to a lattice makes it

possible to do an exhaustive enumeration of allneed for the lowest energy conformation to be non-
degenerate. As such, it is not possible to consider maximally compact structures, allowing the exact

computation of thermodynamic properties. This ap-how selective pressure, the pressure due to natural
selection, would affect the evolutionary dynamics. proach also allows us to take advantage of theoreti-

cal work that has greatly increased our understand-One of the reasons why the fitness landscape
approach has mostly relied on abstract models is ing of the properties of proteins that allow for rapid

folding (for reviews, see Refs. 4, and 33–37).the difficulty of applying the concept to complicated
biomolecules such as proteins in the appropriate These simple models allow us to compute measures

of the foldability, and to explore the nature of thebiochemical context. Proteins represent a large class
of different molecules that fulfill diverse structural resulting fitness landscape and how the need to fold

can influence the course of protein evolution. Theand functional roles. The fitness of a protein is com-
plicated and multifaceted, involving function, sta- hope is that the model energy function is qualita-

tively similar to the real energy function, and thebility, and survivability, and is specific for each
particular protein. One property common to essen- questions being addressed sufficiently coarse-

grained, so that the approximate nature of the theo-tially all proteins, however, is that they have to be
able to fold rapidly in order to avoid irreversible retical model does not compromise the results.

In recent work, we used simple lattice models toprocesses such as proteolysis or aggregation. As
pointed out by Levinthal, protein folding is a non- consider the properties of proteins optimized for

maximum foldability, and the relationship betweentrivial process, involving finding the native confor-
mation in a time too short to sample more than a the optimizability of different structures and how
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Foldability of Model Proteins 429

often these structures would be found among bio- the most useful metric for measuring the distance
logical proteins.2,3,6 In this paper, we describe results between sequences.
concerning the evolution of proteins, where the fit- We therefore consider a separate space, the inter-
ness is defined by the foldability. We look at both action space I, representing the space of all pairwise
static and dynamic properties on this foldability contact interactions in the protein G k å {g k

ij},
landscape. We characterize the nature of the land- where g k

ij represents the energetic contribution when
scape, investigating the mapping between se- residues i and j of protein sequence k come into
quences, interactions, native states, and fitnesses. contact. The use of pairwise contact potentials is
We also describe how we can identify points on the motivated by work that showed optimal folding oc-
foldability landscape representing specific amino curs when local structural propensities are relatively
acid sequences, model the changes of the sequence weak,3 and by the fact that local structural propensi-
as the protein undergoes evolution, and observe how ties are not highly conserved during site mutations.7
this is influenced by the degree of selective pressure. We further assume that the contact potentials only
We observe that as the selective pressure increases, depend on the identity of the residues making con-
the evolutionary dynamics become confined to tact, so that g k

ijÅ g(ak
i , ak

j ) . For a 27-residue protein
‘‘neutral networks’’ where the structure remains on a cubic lattice, there are exactly 156 possible
fixed, even as the sequence and interactions are rap- pairs of residues that can come into contact, so the
idly modified. We also find evidence for the mar- interaction space is a 156-dimensional space with
ginal foldability and stability of proteins that arise any specific sequence corresponding to a point in
during evolution. this space. The mapping G k Å G(Ak) from the se-

quence space A to the interaction space I is deter-
mined by the exact form of g(ak

i , ak
j ) . We use the

THEORY parameter values originally derived by Miyazawa
and Jernigan.39 As these parameters were derived

Spaces, Metrics, and Mappings from a data base of protein structures, they represent
potentials of mean force that implicitly include in-

Our lattice model consists of 27-residue proteins
teractions of the protein with the solvent.confined to a 3 1 3 1 3 cubic lattice, where each

In the simple model that we describe below theresidue occupies one lattice point. The interresidue
properties of the protein are only dependent of thedistance is equal to the lattice spacing.
relative values of the interaction parameters, andWe are concerned with three different spaces,
are insensitive to either additive or multiplicativethe sequence space, the interaction space, and the
constants. For this reason, we scale all of the param-conformation space. The sequence space A, first
eters so that the average interaction in the proteinintroduced by Maynard-Smith, represents the space
is equal to zero and the sum of the squares of theof all possible amino acid sequences Ak å {ak

i },
interactions is equal to one. This corresponds towhere ak

i is the amino acid in the i th position in
projecting the high-dimensional interaction spacesequence k .38 Our 27-residue model proteins consist
onto a unit hypersphere. In the present study weof the 20 naturally occurring amino acids, so the
use the angular distance ukl between points on thesequence space contains 2027 discrete points. The
hypersphere surface as a measure of the proximitymost natural metric between different points in this
of two points in this space.space is the Hamming distance hkl , representing the

The properties of the proteins that we are inter-number of amino acid changes necessary to go from
ested in, including the native state N k and thesequence k to another sequence l . Unfortunately,
foldability-fitness F k , are functions of the pointthe interactions between residues in a protein are
in the interaction space and thus of the sequence:more complicated than the simple base matching
N k Å N (G k ) Å N (G(A k ) ) , and F k Å F (G k )that occurs in other biological macromolecules such
Å F (G(A k ) ) . In order to compute N and F weas RNA. There are some mutations (a threonine to
need to consider the third space, the conformationa serine) that are much more conservative than oth-
space, which is the physical space in which theers (a cysteine to a phenylalanine) . The magnitude
protein exists. For our 27-residue protein con-of the effect of any mutation will also depend upon
fined to a 3 1 3 1 3 lattice, this is simply the setthe location of the mutation in the protein structure
of 103,346 possible conformations (neglectingand on the identity of the other residues in the pro-

tein. For these reasons, the Hamming distance is not rotations and reflections ) represented by self-
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avoiding walks through the lattice. The energy the fitness in our simple model. Wolynes and co-
workers showed how this ratio could be maximizedof any conformation m is of the simple form
in order to produce energy functions optimized for
tertiary structure prediction.41–43 A discretized formEm Å ∑

iõj

g k
ijD

m
ij (1)

of this optimization procedure was used by Shakh-
novich and co-workers in order to produce se-

where Dm
ij is equal to one if residues i and j are not quences that would fold readily in Monte Carlo sim-

adjacent in sequence but are on adjacent lattice sites ulations.44–47 A criterion related to F was found by
in conformation m , and zero otherwise. Every com- Chan and Dill and by Karplus and co-workers to
pact conformation contains exactly 28 residue pairs distinguish random sequences that fold easily from
in contact, corresponding to 28 nonzero values of those that do not.31,32,48 As we can compute the en-
Dm

ij . For any set of interactions G k we can calculate ergy of every compact conformation of our model
the energy of every possible compact conformation, proteins, F is easily calculated. This assumes that
and identify the native state N k as the compact state only the compact conformations are thermodynami-
of lowest energy. The natural metric between native cally relevant. This assumption has been supported
states N k and N l is the q value, representing the by recent theoretical work that shows that the ge-
percentage of the contacts that are the same in both neric forces favoring compaction should be quite
states: strong under optimal folding conditions.49

It is possible to solve in closed form for the set
of interaction parameters G k

opt å {g k
ij}opt that maxi-qkl Å

1
28

∑
iõj

DNk

ij DN l

ij (2)
mizes the foldability for any native structure N k ,
and to calculate the optimal foldability F k

opt , the fol-
dability at this optimum.41–43 There is roughly aTwo identical conformations will have a q value of

1. The average q value between two random struc- Gaussian distribution of F k
opt values among the

tures is approximately q Å 0.19, with a standard 103,346 native structures, with a mean value of
deviation of 0.07. 12.44 and a standard deviation of 0.37.2 One corol-

lary of the existence of this optimization procedure
is the fact that the optimal point in the interactionFoldability and Fitness
landscape for any native structure is unique. The

Recent theoretical work has concentrated on the set of optimal parameters can therefore serve as a
thermodynamic requirements necessary for rapid way of defining the location of the different native
folding. In analogy to spin glasses in condensed structures in the interaction space. Because the num-

ber of possible sequences for even a short proteinmatter physics, two thermodynamic transitions for
of length 27 is so much larger than the number ofthe protein are considered: the first a transition to the
possible structures (by 30 orders of magnitude), thenative state at some temperature Tf and the second to
interaction space is rather densely populated relativea glassy phase at a temperature Tg .40 If the glass
to the topological features in the landscape—thetransition temperature is higher than the folding
median distance between two nearest neighbors istemperature, then the protein will not be able to fold
only u Å 0.2p. The distribution of random se-but will instead get trapped in local minima. Close
quences in the interaction space based on the Miya-to the glass transition temperature, the dynamics
zawa–Jernigan potentials is indistinguishable fromwill be slow and non-Arrhenius. In order for rapid
the random distribution of points in I, indicatingfolding to be possible, the protein must be able to
that the discrete points corresponding to specificfold at a temperature sufficiently high relative to the
sequences are relatively uniformly distributed in theglass transition temperature. As the physiological
interaction space. This allows us to either considertemperature must be below Tf in order for the protein
the discrete points in interaction space correspond-to be thermodynamically stable, Tf must be signifi-
ing to different sequences, or alternatively to con-cantly higher than Tg .
sider the interaction space as a continuous spaceUsing the Random Energy Model, it can be
with smooth peaks, valleys, ridges, and plateaus.shown that Tf /Tg is directly related to the ratio of

the energy gap between the native state and the
RESULTS AND DISCUSSIONrandom conformations and the width of the distribu-

tion of energies of these random conformations.41–43 In this section, we analyze the model described
above. Because of our ability to rapidly find the setWe define this ratio as the foldability F, which is
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of interactions corresponding to fitness maxima, we
first concentrate on the nature of the interaction
space and the locations of these maxima, ignoring
the fact that real sequences correspond to discrete
points in this space and that the various fitness max-
ima are not likely to correspond to actual sequences.
The questions we would like to address include the
following:

1. How are the fitness maxima distributed
through the space?

2. Do similar native structures have fitness max-
ima that are near each other in the interaction
space?

3. Are maxima corresponding to especially high
or low fitness values located close to each
other in the interaction space?

FIGURE 1 Pair-correlation functions g(u) for the dis-
tribution of optima in interaction space ( ) comparedWe then consider the sequence space as well,
with the distribution of random points ( – – – ).and investigate how sequence mutations correspond

to movement in the interaction space and how the
need-to-fold effects this movement. This allows us
to address an additional set of important questions: cates that the optima are not distributed randomly

throughout the interaction landscape. The long tail
to the distribution extending in the direction of1. How does movement in sequence space corre-

spond to movement in the interaction space? smaller u values indicates that the optimal maxima
for different structures are quite clustered. For in-2. How does the fitness landscape influence the

movement in sequence space, affecting the stance, there is approximately a 3% probability of
two structures having optima with u õ 0.4p, morerelative rates of different mutations?

3. What is the distribution of foldability values than 400 times what would be expected at random.
This might be expected, as the interactions that opti-among evolving sequences?

4. As the sequences and interactions change, mize one conformation might be quite similar to
the interactions that optimize a different but similarwhat happens to the structures?
conformation. Interestingly, the distribution also ex-
tends further in the direction of larger u values,The rest of the paper is an attempt to generate

answers to these questions. suggesting that different optima repel each other. In
order for a protein to be able to fold, not only must
the correct conformation be stabilized, but incorrectStatistics of Fitness Optima
conformations must be destabilized. This effect may
explain the tendency of optima corresponding toWe compute {g k

ij}opt for each of the 103,346 com-
pact structures in the lattice, and look at the distribu- very different structures to be far apart in interaction

space, as the interactions become optimized so thattion of these various fitness maxima in the interac-
tion space with respect to each other. Figure 1 shows radically different structures are of high energy.

These interpretations are supported by looking atg(u) , the pair-correlation function for the maxima,
representing the probability that two maxima are how the distances in interaction space correlate with

the differences in the native structure. Figure 2located a distance u apart in the interaction space.
This is compared with the distribution of pairs of shows a density plot of P(qÉu) , the conditional

probability that two structures whose optima arerandom points in this space, which follows a sin nu
distribution where n is the dimension of the interac- separated by u in interaction space correspond to

native structures related by a given value of q . Astion space; due to the nature of the very high dimen-
sional hypersphere, this function has a relatively shown, the neighborhood effect shows that similar

structures are close together in the interaction land-sharp maximum at u Å p /2.
The significant deviation of the two curves indi- scape, with the similarity of structures gradually
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FIGURE 2 Density plot of P(qÉu) , the conditional probability that structures whose optima
are separated in interaction space by an amount u will have similar native structures, as measured
by q . As shown, similar structures are relatively close in interaction space, while dissimilar
structures are actually more separated than would be expected at random.

decaying with a persistence length of approximately for the structures that are poorly optimizable to shift
from one motif to another, while the highly optimi-u Å p /4. Structures separated by more than u Å p /

2 have an average q values even smaller than what zable structures would be more robust to changes
in sequence. Assuming that structural consistencywould be expected for pairs of random structures.

In previous work, we showed that similar struc- is favorable, this observation would support the link
between optimal foldability and the robustness oftures have similar values of F k

opt .
2 Given the preced-

the native structure to site mutations, as we sug-ing results indicating that similar structures are lo-
gested earlier based on other considerations.2,6

cated near each other in interaction space, it is rea-
sonable to postulate that there would be a tendency
for optima of similar heights to be clustered. Figure Evolution in the Fitness Landscape
3 shows this to be the case; the heights of maxima
are correlated on a scale comparable with the corre- One way of exploring the nature of the fitness land-

scape is to consider the properties of an evolutionarylations in similarity of structures. Interestingly, this
tendency to cluster is especially strong among the walk in that landscape. This also can serve as a

simple model for the evolutionary process wheremost poorly optimizable structures (data not
shown). This is because the structures with lower sequence heterogeneity among members of the spe-

cies is ignored. We have to concern ourselves withoptimal foldabilities have many contacts that are
common in random structures, while the structures real sequences of amino acids corresponding to

points in sequence and interaction space, rather thanthat are highly optimizable have many rare con-
tacts.2 For this reason, the poorly optimizable struc- the continuous space, using the parameters derived

by Miyazawa and Jernigan to generate the contacttures have more contacts in common. The conse-
quence of this is that there would be more tendency interactions as a function of the sequence.39
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erogeneous nature of the amino acids. As a result,
a site mutation may correspond to a smaller or larger
change in I. Figure 4 shows P(du) , the distribution
of step sizes du in I caused by site mutations during
the simulated evolution, for various values of Fcrit .
As the selective pressure increases, the distribution
shifts to smaller values of du as more conservative
mutations have a higher probability of being ac-
cepted than less conservative mutations. Figure 5
shows the off-diagonal elements of the mutation
matrix observed for various values of Fcrit . At low
values of Fcrit , all possible mutations are equally
likely. As the fitness criterion increases and the mu-
tations become increasingly conservative, the muta-
tion matrix starts to more closely resemble the muta-
tion matrix observed for biological proteins, also
shown in Figure 5. The fact that different degrees
of selective pressure effects both the absolute aminoFIGURE 3 Correlation function »(Fi 0 FU )(Fj 0 FU ) …u ,
acid substitution rate as well as the relative substitu-representing the correlation of the peak heights for struc-
tion rates suggests that mutation matrices should betures whose optima are separated by a distance u in inter-
evolutionary-rate dependent, as was demonstratedaction space. FU represents the optimal value of the folda-
by Koshi and Goldstein, who derived separate muta-bility averaged over all possible structures.
tion matrices for the framework and hypervariable
region of antibody molecules.7 The general agree-

We consider site mutations as our elemental evo-
lutionary step; we randomly change one amino acid
into another, keeping the rest of the sequence con-
stant. We can then calculate the new point in inter-
action space G * and the new foldability F *, as well
as the possibly new native structure N *. Results of
lattice simulations indicate that there is a minimum
value of the foldability Fcrit required for the protein
to be able to fold sufficiently rapidly.31,32 For model-
ing evolution in the presence of such selective pres-
sure, we accept only those mutations that result in
a value of F * larger than Fcrit . This allows us to
include an adjustable selective pressure in our
model; increasing the selective pressure corre-
sponds to increasing Fcrit . A ‘‘generation’’ is consid-
ered to occur whether or not the attempted mutation
is accepted. Evolution of sequences are carried out
for a period of 10,000 generations on 5 different
sequences selected at random, under varying de-
grees of selective pressure. When the initial selected
sequence has a foldability less than Fcrit , a simple

FIGURE 4 Distribution of step sizes in interactionhill-climbing algorithm is used to find a similar se-
space du corresponding to single site mutations underquence with an adequately high foldability as a
different degrees of selective pressure, represented by

starting point for the simulation. In all cases, the various values of Fcrit : weak selective pressure (Fcrit Å 3.0,
first 100 generations are omitted from the analysis. ), medium selective pressure (Fcrit Å 5.0, – – – ),

One complication imposed by the use of our in- and strong selective pressure (Fcrit Å 6.0, rrr) . As the
teraction landscape is that there is not a simple rela- selective pressure increases, the mutations become more
tionship between changes in the sequence and conservative, resulting in smaller steps in the interaction

space.movement in the interaction space, due to the het-
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434 Govindarajan and Goldstein

FIGURE 5 Mutation matrices corresponding to the relative probability of various mutations,
as a function of selective pressure, compared with the mutation matrix derived from biological
proteins.54 The density of the off-diagonal elements represent the relative probability of one
residue mutating to another in a given period of evolutionary time. Rather strong selective
pressure is required in order to give the distribution of relative mutation rates seen in biological
proteins.

ment between the mutation matrices calculated with simple form of the foldability criterion and the en-
ergy function, the absence of any criterion besidesour simple model and that actually observed in bio-

logical proteins is relatively good, given the overly foldability in the fitness function, and the use of a
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served in proteins, often rationalized by the need to
ensure some degree of conformal flexibility. We
show that, while such arguments may be correct, it
is not necessary to postulate additional reasons for
marginal stability—they would naturally arise
given the distribution of fitness parameters in inter-
action space.

As the selective pressure is increased, the evolu-
tionary walks on the landscape became increasingly
confined to ‘‘neutral networks,’’ paths through the
sequence space where structure is preserved. This
tendency is emphasized in Figure 7, which shows
a density plot of the probability that two sequences
representing different points on an evolutionary tra-
jectory separated by a distance u in the interaction
space would have native structures separated by q
in configuration space. The role of these neutral
networks and their influence on the evolutionary
process have been emphasized by Fontana and co-FIGURE 6 Distribution of F values during the evolu-
workers, who found that it is possible for the se-tionary trajectories for various values of Fcrit ( ) ,

compared with the distribution for trajectories under no quence of RNA to vary considerably for a fixed
selective pressure (Fcrit Å 0, rrr) . Most of the trajectory structure.27,50 It is possible, given the simple Bool-
is confined to regions where the foldability is only slightly ean code of RNA base pairing, for the sequence to
greater than the critical foldability. Under such circum- change considerably with the interactions changing
stances, proteins would be expected to be only marginally but little. (Exchanging C for G and T for A would
foldable. This tendency is increased with increasing se- likely not change the final structure, although the
lective pressure.

Hamming distance between the two structures
would be a maximum.) Here we demonstrate, at
least for proteins, that the neutral networks occupymodel for the protein that is highly simplified where

almost all of the residues are exposed. It is interest- large regions of interaction space, not just sequence
space. The fact that the sequences and the interac-ing to note that the selective pressure necessary to

produce a heterogeneity of mutation rates ap- tions can vary within a fixed structure, in good
agreement with experimental observations.51,52proaching biological proteins correspond to a rela-

tively high selective-pressure regime.
As has not always been sufficiently appreciated,

evolution does not necessarily correspond to optimi- CONCLUSION
zation. Because of the high dimensionality of the
interaction landscape, the volume of interaction In order to understand and model protein evolution,

it is necessary to first characterize the underlyingspace corresponding to different F values increases
sharply with decreasing F, so that most of the se- fitness landscape. We have developed a simple

model for this landscape, based upon the fact thatquences with F ú Fcrit have foldabilities only mar-
ginally larger than Fcrit . This is shown in Figure 6, proteins need to fold. In previous work, we have

shown how selective pressure can explain how thewhich represents the probability that a sequence has
a particular value of F during the evolutionary tra- plasticity of protein sequences can exist with a tre-

mendous robustness of the resulting structures, whyjectory. If Fcrit represents the dividing line between
marginally foldable proteins and marginally un- certain native structures are overrepresented among

biological proteins, and why certain interactionsfoldable proteins, then most biological proteins
would be only marginally foldable.6 Our criterion dominate the folding process.2,3,6 That work was

largely based on a static picture of evolution—thatfor foldability is closely related to thermal stability.
Our results suggest that proteins should be only the size of the various regions in the interaction

space corresponding to different native structuresstable enough to ensure sufficient foldability (as
well as adequate protection against proteolysis and represent how likely that structure is to result from

evolution. This would represent a time-independentaggregation). Marginal stability has long been ob-
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equilibrium picture, where each sequence corre- Evolution, however, represents a dynamic situa-
tion, and it is not obvious how the static picturesponding to a foldable protein was a priori equally

likely. will relate to the results of dynamics. For instance,
topological features of the fitness landscape, such
as plateaus and ridges, can have critical importance
in the evolutionary trajectories. The first step toward
understanding this process is the characterization of
the fitness landscape. By taking advantage of our
ability to calculate a rigorously defined fitness func-
tion by using foldability, we are able not only to
characterize the space, but characterize how move-
ment on the space is affected by the degree of selec-
tive pressure.

Our studies of the topology of the landscape indi-
cates that models that assume a random distribution
of structures in interaction space may be overly sim-
plified. Similar structures are closer in this space
than would be expected at random, while dissimilar
structures are actually further in space, reflecting
the need for non-native structures to be destabilized
in order for the protein to fold rapidly. In general,
structures with similar optimal foldabilities tend to
cluster together. This is especially true of proteins
with rather low optima.

Our dynamical simulations largely conform to
our expectations based on our static evolutionary
model. As expected, the dynamic trajectories spend
a disproportionate percentage of their time as pro-
tein sequences that are marginally foldable. This
tendency becomes especially strong as the selective
pressure is increased. If foldability represents the
dominance of the folding transition over the glassy
transition, this means that glassy behavior might
be exhibited in proteins cooled below physiological
temperatures, as is in fact observed,53 although these
results are somewhat controversial.

It has long been observed that protein structures
remain fixed during evolution, while the sequence
and even the stabilizing interactions change rather
quickly.51,52 It is natural to think that the selective
pressure to preserve function would confine evolu-
tion to such neutral networks, explaining the ob-
served robustness of structure. The fact that most
mutations are rather conservative can explain the
plasticity of the sequence. Two interesting observa-

FIGURE 7 Density plot of P(qÉu) , the conditional tions arise in the evolutionary trajectories of our
probability that two sequences during an evolutionary simple lattice proteins. The first is that conservation
trajectory separated in interaction space by an amount u

of structure is completely compatible with stronglywill have dissimilar native structures, as measured by q ,
varying stabilizing interactions, even at strong de-for various values of Fcrit : (A) Fcrit Å 3, (B) Fcrit Å 5, and
grees of selective pressure. Compensatory but non-(C) Fcrit Å 6. As the selective pressure is increased, the
conservative mutations occur that preserve foldabil-trajectories become increasingly confined to neutral net-
ity. The second is that it is not necessary to postulateworks where there is relatively little change in the re-

sulting structure, even for large changes in interactions. an additional evolutionary constraint on maintaining
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13. Yang, Z., Kumar, S. & Nei, M. (1995) Genetics 141,a fixed structure to explain why structures are
1641–1650.fixed—it is a natural result of the nature of the

14. Jermann, T. M., Optiz, J. G., Stackhouse, J. & Ben-fitness landscape at high degrees of selective pres-
ner, S. A. (1995) Nature (London) 374, 57–59.sure. This is even true when the movement in inter-

15. Koshi, J. M. & Goldstein, R. A. (1996) J. Mol. Evol.action space is large relative to the correlation
42, 413–420.length between interactions and structure. Such a

16. Malcolm, B. A., Wilson, K. P., Matthews, B. W.,natural confinement to constant structure may have
Kirsch, J. F. & Wilson, A. C. (1990) Nature (Lon-

played a significant role in allowing rapid evolution
don) 345, 86–88.

of proteins to fulfill different functions. The fact 17. Stackhouse, J., Presnell, S. R., McGeehan, G. M.,
that the neutral networks of proteins are strongly Nambiar, K. P. & Benner, S. A. (1990) FEBS Lett.
dependent on the value of the optimal foldability,6

262, 104–106.
combined with the fact that highly optimizable 18. Shih, P., Malcolm, B. A., Rosenberg, S., Kirsch,
structures are further apart in interaction space, can J. F. & Wilson, A. C. (1993) Methods Enzymol. 224,
help us understand the dominance of certain struc- 576–590.
tural motifs among biological proteins in terms of 19. Wright, S. (1932) Int. Proceed. Sixth Intl. Cong.

Genet. 1, 356–366.this confinement.
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We would like to thank Kurt Hillig and James Raines for 21. Derrida, B. & Peliti, L. (1991) Bull. Math. Biol. 53,
computational assistance, and Erich Bornberg-Bauer and 355–382.
Michael Thompson for helpful discussions. Financial

22. Bak, P., Flyvbjerg, H. & Lautrup, B. (1992) Phys.
support was provided by the College of Literature, Sci-

Rev. A 46, 6724–6730.
ence, and the Arts; the Program in Protein Structure and

23. Kauffman, S. A. (1993) The Origins of Order, Ox-Design; the Horace H. Rackham School of Graduate
ford University Press, New York.Studies; NIH grant LM0577; and NSF equipment grant

24. Lipman, D. J. & Wilbur, W. J. (1991) Proc. R. Soc.BIR9512955.
Lond. (Biol.) 245, 7–11.

25. Fontana, W., Stadler, P. F., Tarazona, P., Weinber-
ger, E. D. & Schuster, P. (1993) Phys. Rev. E 47,
2083–2099.REFERENCES

26. Fontana, W., Konings, D. A. M., Stadler, P. F. &
Schuster, P. (1993) Biopolymers 33, 1389–1404.

1. Shakhnovich, E. I. & Gutin, A. M. (1990) Nature 27. Schuster, P., Fontana, W., Stadler, P. F. & Hofacker,
(London) 346, 773–775. I. L. (1994) Proc. R. Soc. Lond. B 255, 279–284.

2. Govindarajan, S. & Goldstein, R. A. (1995) Biopoly- 28. Renner, A. & Bornberg-Bauer, E. (1996) in Pacific
mers 36, 43–51. Symposium on Biocomputing ’97, Altman, R. B.,

3. Govindarajan, S. & Goldstein, R. A. (1995) Proteins Dunker, A. K., Hunter, L. & Klein, T. E., Eds., World
22, 413–418. Scientific, Singapore, pp. 361–372.

4. Dill, K. A., Bromberg, S., Yue, K., Fiebig, K. M., 29. Levinthal, C. (1969) in Mossbauer Spectroscopy in
Yee, D. P., Thomas, P. D. & Chan, H. S. (1995) Pro- Biological Systems, Debrunner, P., Tsibris, J. C. M.
tein Sci. 4, 561–602. & Munck, E., Eds., University of Illinois Press, Ur-

5. Gutin, A. M., Abkevich, V. I. & Shakhnovich, E. I. bana, pp. 22–24.
(1995) Proc. Natl. Acad. Sci. USA 92, 1282–1286.

30. Branden, C. & Tooze, J. (1991) Introduction to Pro-
6. Govindarajan, S. & Goldstein, R. A. (1996) Proc.

tein Structure, Garland Publishing, New York.
Natl. Acad. Sci. USA 93, 3341–3345.
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