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Abstract 

Our procedure for employing analytical gradients of ab initio potential energy hy- 
persurfaces in the description of centrifugally distorted molecules is applied to an 
asymmetric top, namely water. Both single determinantal (HF/6-3 1G**) and configu- 
ration-interaction (c1sD/6-3 1G**) surfaces were utilized. Quartic centrifugal spectro- 
scopic coefficients are obtained in both cases and are in reasonable agreement with 
experiment. It is shown that the calculated dependence of the energy upon the rota- 
tional angular momentum is better represented by a Pad6 approximant than by the 
conventional power series. 

Introduction 

In a recent publication [ 11 we outlined a procedure for employing analytical gradi- 
ents of ab initio potential energy hypersurfaces in the description of centrifugally dis- 
torted molecules. The method is readily applicable at any computational level for 
which gradients are available; it does not require knowledge of second derivatives or 
vibrational frequencies. Stationary points are located in this structurally oriented 
method on the effective hypersurface defined as the sum of electronic and rotational 
energies. Centrifugal distortion pathways and centrifugal stabilization energies are 
defined; from the latter quartic centrifugal distortion spectroscopic constants were ob- 
tained in the first study [l] for H l ,  NH,, CH,, BF,, and SF,. Comparisons with ex- 
perimentally determined constants were generally quite satisfactory, with calculated 
values being typically 10% smaller than those observed and with this error being pri- 
marily the result of the overestimation of the curvature of the electronic hypersurfaces 
at the computational level employed, namely ~F/6-31G**. Particularly satisfying was 
the excellent description of both the scalar and tensor quartic coefficients, D, and D,, 
respectively, for the spherical tops CH, and SF,. In a second article [2] we outlined 
an extension of the method to asymmetric tops and gave results for a particularly im- 
portant molecule, namely ozone, for which we have also made a theoretical study of 
the effects of anharmonicity on its ultraviolet continuum band shape [3]. In the 
present article we explore two additional questions about centrifugal distortions, 
namely what are the effects of electron correlation on the centrifugal stabilization en- 
ergies, and what is the significance of the approximately linear fall-off of effective 
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quartic spectroscopic constants as observed in our earlier computations [ 1,2]? Both 
questions are approached through computational studies for another important asym- 
metric top, namely water, with calculations being reported at both self-consistent 
field (SCF) and configuration-interaction (CI) levels. The water molecule was selected 
because hydrides exhibit large nonrigidity effects, and because for this hydride, as 
well as for H,S and PH,, it has been demonstrated [4-101 that the representation of 
the dependence of the rotational energy upon the angular momentum in terms of Pad6 
approximants provides much better spectral fits than the conventional power series 
representation that is often divergent or poorly convergent. We noted earlier [ 1,2] an 
approximately linear fall-off of our computed quartic centrifugal distortion coeffi- 
cients with increasing angular momentum, this fall-off not matching the quadratic 
fall-off expected from the next (sextic) term in a power series representation. We 
demonstrate here the compatibility of an approximate linear fall-off to a Pade repre- 
sentation, thus providing further support for their use in spectral fittings. 

In our previous studies [ 1,2] at the ~ ~ / 6 - 3 1 G * *  level we were unable to ascertain 
the portion of the discrepancies between calculated and observed quartic centrifugal 
distortion coefficients that was attributable to errors in the electronic structure calcu- 
lations from the portion attributable to the limitations of our quasistatic model of cen- 
trifugal distortions. Our present example of water affords an opportunity to carry out 
a study utilizing analytically computed gradients at the CI level, thus reducing elec- 
tronic structure errors and enabling a better test of the quasistatic model. The test is 
severe in the case of water, for the observed [ll] inertial defect A of 0.052 amu2 
(about 8.5% of the smallest moment Z,) indicates substantial vibrational averaging 
even in the ground state. 

Method 

We define as before [l ,  21 an effective potential energy hypersurface E(Q, J) as 

E(Q, J) = Ee,(Q) + Er(Q, J) 7 (1) 
where Eel denotes the electronic energy, E, the rotational energy, Q the set of nuclear 
coordinates, and J the rotational angular momentum. Molecular vibration is ignored 
in the present form of our method, whereas molecular rotation is treated classically. 
Thus the method provides a description of vibrational ground states in terms of vibra- 
tionless rotating deformable bodies. 

We locate stationary points on the hypersurface by the condition that VE(Q, J) = 0. 
Such points are not necessarily local minima, since they may be saddle points or 
local maxima instead. However, for structures close to the true (J = 0) equilibrium 
geometry, they have typically been found [ 11 to be local minima. Let m be the number 
of internal coordinates upon which the rotational energy depends through the moment 
of inertia tensor. Then for a total of n = 3N - 6 internal coordinates, where N is the 
number of atoms in the molecule, there are n equations to be solved, namely, 

d(Ee, + E,)/dQ, = 0, i = 1, m 

dEe,/dQ, = 0,  j = m 1- 1,n 

where {Qi} are the coordinates appearing in E,. 



CENTRIFUGAL DISTORTIONS IN MOLECULES 409 

Selecting a principal axis system to describe the rotations of an asymmetric top, we 

(3) 

where J,  , Jb , and J ,  are the projections of the rotational angular momentum on the 
axes a, b, and c. These axes are typically taken to correspond to the customary order- 
ing of rotational constants as A > B > C ,  where these effective constants may de- 
pend on J as well as Q. For water a is the in-plane axis perpendicular to the C, axis, 
b is the C, axis, and c is the axis perpendicular to the molecular plane. For asym- 
metric tops whose principal axis directions change with J, it may be more convenient 
not to assume a principal axis representation to begin with, but for water this is not 
the situation. The distortions accompanying rotation about any one of the principal 
axes of water preserve the C,, symmetry, so that there are only two structural 
parameters. We find it convenient to describe the molecule using the Cartesian coor- 
dinates (x ,  y, z )  for the two hydrogen atoms as (b, 0, a) and (b ,  0, -a) ,  with the oxy- 
gen at the origin. The Cartesian axes are associated with the rotational axes according 
to the I' representation, namely n with b, y with c, and z with a. In terms of the dis- 
tances a and b, the bond length R and bond angle 0 are given by 

write E, simply as 

ELQ, J) = A(Q, JV,' + B(Q, J)Ji + C(Q,  JVf, 

R = (a' + b')"' (44  

0 = 2tan-'(a/b) (4b) 

The moments of inertia are 

I ,  = I ,  + I ,  (5c) 

where mH is the mass of an H atom, mo is that of an 0 atom, and M is the holecular 
mass. 

The condition V E ( Q ,  J) = 0 when combined with the moments of inertia in (5) 
yields the following: 

Jllc 
aEe,/aa - 2m&f/lf = 0 

dEe,/ab - 2mHmobJf / l fM = 0 (6f) 
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For J {I a we simply select b, obtain a by criterion (6a), calculate dE,,/db at the struc- 
ture corresponding to a and b, and then solve (6b) for J , .  The procedure for JI) b is 
similar, whereas that for J 11 c requires a simultaneous solution of (6e) and (6f) that 
may be expressed by the condition that 

(dE,l/da)/(~Eel/db) = Ma/m& (7) 

We define as before [ 1,2] a centrifugal stabilization energy AE as the difference 
between the energy of a rigid molecule with J and that of the deformable molecule 
with the same J. That is, 

(8) 
where AE,,(J) is the negative difference between E,, at Q = Q", the equilibrium 
geometry, and at Q = Q(J), the quasiequilibrium geometry for a given J, and AE, 
is the positive difference between E, at Q = Q" and at Q = Q(J). Typically, AE, 
has approximately twice the magnitude of AE,,, so that the sum AE is positive with 
one-half the magnitude of AE,. 

It may appear inconsistent to assume a classical description of molecular rotation 
for an asymmetric top and then to consider J to be parallel to the intermediate princi- 
pal axis b in (6c) and (6d), since such a rotation is unstable in the sense that it corre- 
sponds to a saddle point on the rotational energy surface, with intersecting contours 
of constant energy, corresponding to semiclassical trajectories, leading away from it. 
However, the Eqs. (6c) and (6d) representing the quasiequilibrium are nonetheless 
valid, since J parallel to any principal axis implies dynamical balance (unstable in 
some cases), with J parallel to the angular velocity a. What we are so far unable to 
describe with our method are the dynamically unbalanced cases of J not parallel to a 
principal axis and hence not parallel to a. 

The electronic structure calculations were made at two levels, both using the 
GAUSSIAN 82 program [12] with the split valence plus polarization basis set 
6-31G** [13, 141. The first was the single-determinental level and is designated HF/ 
6-31G**. The second was the configuration-interaction level with all single and dou- 
ble excitations (including those from core levels) from a single reference configura- 
tion. This computational level is designated crs~/6-3 lG**. Analytical gradients were 
employed at each level in locating both the unconstrained (J = 0) and constrained 
(J # 0) stationary points. 

AE(J) = AE,,(J) + AE,(J) 9 

Results and Discussion 

In Figure 1 we present in the same style used in our earlier studies [ 1,2] the com- 
puted Centrifugal stabilization energies AE divided by J4 versus J for the three cases 
J (1 a, J I( b, and J 11 c, with results being given at both the ~~ /6 -31G**  and C I S D / ~ -  
31G** levels. The equilibrium geometries differ somewhat for the two levels, with 
the HF bond angle and length R being 105.9" and 0.943A, whereas, the CISD values 
are 104.3" and 0.957A; the experimental [15] equilibrium parameters are 104.5" and 
0.957& respectiveIy. From the extrapolations to J = 0 shown by the dashed lines 
we obtain the quartic coefficients D,, D,, and D, as listed in Table I. The relationship 
of these parameters to the parameters D,, DJK, D,, a,, and 6, is also given in Table I. 
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Figure 1. Centrifugal stabilization energies AE in centimeters-' as defined by Eq. (8) di- 
vided by J4 for H20 with (a) J 11 a, (b) J 11 b, and (c) J 11 c. The open and solid circles denote 
values obtained at the cIsD/6-31G** and HF/6-31G** levels, respectively. The solid lines 
without points indicate values obtained using the (1/2) Pad6 approximant and experimental 

parameters from Ref. (10). 

The latter appear as coefficients in the quartic portion of the quantum mechanical ro- 
tational hamiltonian [ 161 (reduction A) as follows: 

H, = -DjJ4 - DjKJ2J2 - DKJ:  - 26jJiJ2 - 6K(JfJk  + J L J f )  (9) 
where J 2  = J - J,  J k  = J,' - J: ,  and the x ,  y, and z axes correspond to b, c, and a, 
respectively. The agreement with experiment [ 111 is generally satisfactory even at the 
~~/6-31G** level. However, the somewhat surprising result is that the c1s~/6-31G** 
value of 2.00 X cm-' for D, (results for J 11 a extrapolated to J = 0) is substan- 
tially below the observed value of 2.7952 X cm-I. This discrepancy is clearly 
too large to be accounted for by the error in the ab initio rotational constant A,, 
(Table I), although part may arise from errors in the energies and gradients for 
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TABLE I .  Spectroscopic constants for Hi60. 
- 

Parameter” HF/6-31G** CISD/6-3 1G** Obs . 

R 0.943 0.957 0.957 
0 105.9 104.3 104.5 
A, 29.17 27.27 27.8806 
Bo 14.75 14.64 14.5218 
c o  9.80 9.53 9.2177 
Dd 2.40 X lo-* 2.00 x 10-2 2.1952 X lo-’ 
Dbd 2.07 x 1 0 - ~  2.35 x 1 0 - ~  2.2687 X 

D,‘ 2.26 x 1 0 - ~  2.30 x 1 0 - ~  2.3930 X 

vl(a1) 4147 3944 3657.0 
vz(a1) 1770 1710 1594.8 
MJ,) 4264 4062 3755.8 

a All values are given in centimeters’ except for bond length R (angstroms) and bond 

R and 0 from Ref. ( 1 3 ,  vibrational frequencies from Ref. (18), other parameters 
angle 0 (degrees). 

from Ref. (11). 
‘ D a  = DJ + DJx + D,. 
d D ,  = D, f 26,. 

D, = DJ - 26,. 

nonequilibrium structures. Rather, the problem appears to lie in part in describing a 
molecule such as H,O with its comparatively large zero-point bending amplitude in 
terms of the quasistatic model. This point is discussed further below in connection 
with the centrifugal distortions expected for D20. We note here that in a recent com- 
parison [17] of empirical and ab initio force fields for PH,, it was concluded that the 
vibrational dependence of centrifugal distortion constants may be quite large for 
small molecules containing light atoms. 

Although vibrational frequencies are not utilized in our method for obtaining 
centrifugal distortion coefficients, we nonetheless computed frequencies analytically 
from second derivatives at the ~~ /6 -31G**  level and numerically from analytic gradi- 
ents at the c1s~/6-31G** level (Table I). The CISD results indicate significant im- 
provement over the HF results, although the frequencies are all still too high [18]. 
Although the energies and gradients we use to obtain D values represent the actual HF 
or CI surfaces, including anharmonicities, rather than the harmonized surfaces associ- 
ated with these frequencies, it is clear that there is a contribution to the errors in the 
D values from the excessive curvature even of the CISD surface, with this error being 
possibly as much as 15% (D values vary inversely as the square of frequencies). 

The computed centrifugal distortion pathways as bond angle changes versus bond 
length changes for the three cases J I/ a, J ( 1  b, and J 11 c may be expressed in terms of J 
for the c1s~/6-3lG** level as follows: 

(1) Jlla AR = 8.4 x io-’~: (104 
A@ = -4.4 X 10-2J: (lob) 

(2) Jllb AR = 2.9 x io-’~; ( 10c) 
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A @  = 1.5 x lO-’J,’ (10d) 

(3) J b  AR = 2.2 x i o - ~ ;  (10e) 

A @ = O  ( 100 

In the above AR is the change in bond length in A, A @  is the change in bond angle 
in degrees, and J ,  , Jb , and J,  are the dimensionless components of J. The bond angle 
change for J 11 c is nearly zero, since the centrifugal force on each H atom is nearly 
parallel to the 0-H bond axis (exactly parallel for infinite oxygen mass). The dis- 
placements may be expressed in terms of the zero-order rotational energies using the 
calculated rotational constants from Table I as follows: 

( 1 )  J b  AR = 2.9 X 10-6EZ (1W 

(1lb) A @  = -1.5 x ~ o - ~ E ;  

(2) J 11 b A R  = 2.0 X 10-6Ei (1lc) 

A ~ O  = 1.0 x IO-~E; (1 Id) 

(3) Jllc A R  = 2.3 X 10-6E: (1 le) 

A O s O  Ulf) 

In the above the energy components are in centimeters-’, whereas AR and A@ are in 
angstroms and degrees as before. We note, as we did for ozone [2], that the bond 
lengthening is roughly isotropic when expressed in terms of rotational energy rather 
than angular momentum. 

To convert our calculated D values to those appropriate for D20  is trivial for J {I a 
and JIIb, as the values are simply multiplied by [mHM(D,0)/mDM(H,0)]2 - 1/3.24 
and (mH/mD)’ - 1/4 for these two cases, respectively. However, for J(lc the D20 
distortion pathway differs from the H,O pathway; for D20 ,  condition (7) on the 
electronic gradients becomes M(D,O)a/m,b - 5a/4b, whereas for H,O it is 
M(H,O)a/m,b - 9a/8b. Our c1s~/6-31G** values (Table I) for D, and D, become 
6.17 X and 5.88 X cm-’, respectively, for D,O as compared with ob- 
served [19] values of 8.039 X cm-’, respectively. We note 
that our percentage error in D, is less for D,O than for H,O, suggesting that the 
smaller zero-point vibrational amplitudes in D20 make our quasistatic model more 
accurate for it than for H,O. The centrifugal displacements for a given J are also 
smaller for D20 than for H20; for J ( 1  a and J (1 b they are simply the H20 values multi- 
plied by [ ~ H M ( D ~ O ) / ~ D M ( H , O ) ] ” ~  - 1 .8-1/2 and (mH/mD)’I2 - 2-l’ , respectively. 

The nearly linear fall-off with increasing J of the A E / J 4  values in Figure 1 closely 
resembles the behavior we previously found [ l ,  21 for other molecules. If sextic and 
no higher terms in the dependence of the energy on the angular momentum were im- 
portant, a parabolic fall-off would be expected. The sextic spectroscopic coefficient 
could then be obtained from the slope of A E / J 4  versus J 2  rather than J .  As noted 
above, it has been demonstrated [4-101 for H,O and other hydrides (H2S and PH,) 
that the use of Pad6 approximants to represent the dependence of the energy upon an- 
gular momentum is greatly superior to the use of conventional power series. Various 

and 5.560 X 
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forms of approximants have been used [4-10,201, with a particularly simple form be- 
ing that recently employed in describing H,D+, HD; , and D l  , namely 

H: = @4l2/(H4 - H6) (12) 

where H, is the quartic Hamiltonian, such as that from (9), and H6 is the analogous 
[ 161 sextic Hamiltonian. Corresponding to (12) there is an effective A E / J 4  that varies 
as J-’ for sufficiently large J and thus approaches zero as J approaches infinity. 
However Pad6 approximants with polynomials of different degrees in the numerator 
and/or denominator will in general have different limiting behavior; if the numerator 
is of a higher degree than the denominator by J 4 ,  then A E / J 4  approaches a constant 
different from D as J approaches infinity. A particularly effective approximant is the 
(1/2) form used by Polyanski [lo] to fit the rotational levels of H,O; constructed 
from quartic, sextic, and octic terms of a power series it, like (12), gives A E / J 4  vary- 
ing as J-*  for large J .  In Figure 1 the solid lines represent A E / J 4  values using this 
form together with Polyanski’s parameters that differ only slightly from the values of 
DeLucia et al. [ 111. Although no rigorous comparison is made, the quasilinear be- 
havior of A E / J 4  as obtained from the Pad6 representation is apparent. [For J 11 c, this 
particular Pad6 representation becomes inadequate at the high J values (>20) consid- 
ered here. ] 

Summary 

Centrifugal distortion coefficients have been obtained for H,O using our quasistatic 
model [ l ,  21 at the ~~/6-31G** and c1s~/6-31G** levels. The c m  values are closer to 
the observed than the HF values for J l l  b and Jllc. However, for J(la, where a is the 
in-plane axis perpendicular to the C, axis, the CISD value is approximately 28% too 
small. The centrifugal distortion involves more of a change in bond angle for this di- 
rection of J than for any other principal direction. Thus, the result is especially sensi- 
tive not only to emor in the bending frequency (implicitly incorporated in our method 
via gradients) but also to vibrational averaging effects expected to be significant for 
hydndes . 
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