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It is quite easy to propose an  empirical potential for conformational analysis such that given crystal 
structures lie near local minima. What is much more difficult, is to devise a function such that the native 
structure lies near a relatively deep local minimum, at least in some neighborhood of the native in 
conformation space. An algorithm is presented for finding such a potential acting on proteins where each 
amino acid residue is represented by a single point. When the given structure is either an  a-helical, 
p-strand, or hairpin bend segment of pancreatic trypsin inhibitor, the resulting potential function in each 
case possesses a deep minimum within 0.10 A of the native conformation. The improved energy em- 
bedding algorithm locates a marginally better minimum in each case only 0.1-1.3 away from the 
respective native state. In other words, this potential function guides a conformational search toward 
structures very close to the native over a wide range of conformation space. 

I. INTRODUCTION 

In order to predict the conformation of a 
molecule, one generally carries out a local 
energy minimization, given some energy 
function and some reasonable starting con- 
formation. Even if the energy function is very 
realistic, there are generally very many local 
minima, so that refining a good initial guess 
is quite practical, but otherwise one must 
choose many different starting conformations 
in order to locate the global minimum of en- 
ergy (and any other local minima which are 
only slightly higher and are therefore physi- 
cally important). As one deals with larger and 
larger molecules, this “multiple minima” 
problem worsens exponentially, so that for 
proteins, energy refinement of a very good 
structure (<1 A from the native) is possible, 
but a priori prediction of the conformation is 
out of the question. Of course there is always 
the old debate whether the native structure of 
a protein corresponds to the global minimum 
of its free energy (even assuming one could 
calculate such a function realistically 
enough) or whether the native structure is 
kinetically determined. In this article, we 
take the empirical position that however the 

real protein does it, we would be satisfied 
with a possibly unrealistic potential function 
that embodies the correct result to the extent 
that a conformation near the crystal struc- 
ture is one of the lowest local minima. Energy 
embedding’ is a method that tends to find 
very low energy minima, but not necessarily 
the global minimum, subject to whatever ad- 
ditional geometric constraints one might 
have such as ring closures, radius of gyration, 
etc. The algorithm is explained in detail 
in the Methods section, but, basically, i t  
begins by finding a local minimum of the 
given potential function in a very high dimen- 
sional Euclidean space where there are gen- 
erally fewer local minima. Then it converts 
this starting conformation into a three- 
dimensional one, while preserving the geo- 
metric constraints and otherwise keeping the 
energy as low as possible. The trouble is that 
the energy embedding is almost too good! For 
example, the method applied to bovine pan- 
creatic trypsin inhibitor (BPTI) using the 
Oobatake-Crippen potential, produces an 
unrealistically compact structure having an 
rms interresidue distance matrix deviation 
from the native of 7.0 A, and an energy of 
-124 units.’ In comparison, local minimiza- 
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tion in three dimensions (E3) starting at the 
crystal structure moves only 1.2 A, and has 
an energy of - 119. Similar calculations with 
an isolated hairpin loop (residues 14-38 of 
BPTI) showed that energy embedding consis- 
tently reached conformations much better in 
energy than the native, by forming extremely 
compact structures with no recognizable sec- 
ondary structure. The conclusion was that the 
potential needed special strong local inter- 
actions to properly maintain secondary struc- 
ture under energy embedding, even though 
they were not necessary in order to agree with 
the crystal structure under ordinary local 
minimization. 

We s u b s e q u e n t l y  d e v e l o p e d  t h e  
Crippen-Viswanadhan potential, which still 
approximates each amino acid residue as a 
point located at  the C" atom, and considers 
only isotropic pairwise  interaction^.^ It 
passed a number of exacting tests, such as 
having a local minimum near the native 
structure for several different small proteins, 
returning to the native by energy minimiza- 
tion after conformational perturbations < 
1 A, and preserving secondary structural fea- 
tures under local minimization. However, 
once again, energy embedding applied to the 
26 residue helical protein mellitin produced 
an extremely compact structure differing 
from the native by 10.4 A, and having an en- 
ergy 31.5 kcal lower. Detailed analysis of en- 
ergy embedding on the C-terminal six residue 
helix of mellitin alone, showed that virtual 
bond lengths and angles along the chain were 
correctly maintained, but the overall con- 
formation was too compact, although ener- 
getically (-6.1 kcal) much better than the 
native -4.3 kcal. An exhaustive search over 
all conformation space for such a six residue 
freely jointed chain in 30" increments located 
a conformer with energy = -6.2 kcal, and 
strong conformational resemblance to the en- 
ergy embedding result. In other words, the 
embedding algorithm was performing very 
well, but the given potential function did not 
correspond adequately to reality over large 
regions of conformation space, even though it 
did very well quite near the native. 

Clearly, energy embedding is a powerful 
method for conformational calculations, but 
it puts unprecedented demands on the poten- 
tial function. In order to find a better poten- 
tial, it is necessary to choose its functional 

form and then adjust the parameters in it for 
best performance. Energy embedding must 
have the conformational energy consist of in- 
teractions between isotropic points, but the 
points could represent atoms or groups of 
atoms. In this work, the goal is to calculate 
the general polypeptide tertiary structure, so 
having one point per residue is probably ade- 
quate, and having a smaller number of points 
reduces computer time. Specifically, we re- 
quire that the total energy U consist of a sum 
over all pairwise interactions between the n 
residues, with each interaction depending on 
the distance d ,  between the residues and pos- 
sibly other factors { p } ,  such as sequence sepa- 
ration and residue types. 

(1) 

That excludes in particular any torsional 
terms. In this work, we have chosen to group 
the terms of eq. (1) so as to separate the short- 
range interactions that are important for 
secondary structure from the long-range 
interactions: 

L<J 

n-1 n-2  

U = c e(da,r+l) + c e(dL,r+2; t r+J  

+ 2 e(d,,a+3; ta+l ,  tlt2) 

a = l  1 = l  
n-3  

I =  1 
n-4 n 

+ c c e(d,,J,tl,t ,) (2) 
a = 1  j=a+4  

where t, is the type (Gly, Ala, . . . ,Val) of the 
i-th amino acid residue. Much of the justifi- 
cation for this functional form has already 
been given.3 The novel feature is that each 
interaction term has the same form: 

Note tha t  where two residue types are  
thought to be important in characterizing the 
interaction, the corresponding a's are simply 
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added, and similarly with the b’s. This keeps 
U linear in the a’s and b’s while requiring 
only 20 of each (one for every residue type) 
instead of 400 (one for every residue type 
pair). An alternative way of parameterizing 
such an interaction is directly in terms of the 
depth of the well, w, at the distance of optimal 
approach, dopt. 

($) - (g) = [ (4>’ - 2(2)2] (4) 
These two forms are readily interconvertible, 
and it is especially useful to note that 

Given this somewhat arbitrary choice, dic- 
tated in part by a desire to approximate 
physical reality and in part by demands of 
mathematical simplicity, it remains to  deter- 
mine the values of the 122 as and bs. Starting 
from the general idea that the native struc- 
ture should have very low energy, there are 
several ways to formulate this notion mathe- 
matically, remarkably few of which work. For 
example, a necessary (but not sufficient) con- 
dition for the native structure t o  have 
minimal energy is that the gradient for that 
conformation be zero: 

Unfortunately, this is trivially achieved in 
terms of eq. (4) by A , B  + 0, or equivalently 
w + 0. The resultant potential is useless be- 
cause U = 0 for all conformation space. Al- 
ternatively, if we minimize Unat with respect 
to the parameters subject to the constraint of 
eq. (6) while requiring all w > 1 and d,, > 0, 
there is in general no solution. If instead we 
attempt to minimize with respect to parame- 
ters the magnitude of the gradient at the 
native subject to the physically reasonable 
constraints tha t  all w > 1 and do,, > 0, 
then most w + 1 and d,, + 0, once again 
leaving the potential surface trivially flat. 
The basic conflict is that the surface must 
be flat  only very near  the  native con- 
formation, not globally; and there must be 
some interactions with strong weight in order 
to  differentiate between native and non- 
native conformations, but there is no point to 
arbitrarily scaling up interaction strengths 
because only the relative energies of con- 
formations are important. 

11. NUMERICAL METHODS 

The first order of business is how to formu- 
late and solve the search for energy parame- 
ters. From eqs. (3) and (2), we see that U is 
linear in the as and bs. In order that each 
interaction have a separation of minimal 
energy, it must also be true that all a, b 1 0. 
If there is a perturbed (non-native) conformer, 
we want it to have a higher energy than the 
native. Presumably, the further away it is 
from the native, the worse its energy should 
be. Let Spert,nat be the rms deviation between 
the two. Now if the perturbed structure has a 
slightly higher energy than the native does, 
we can trivially make the difference as large 
as we want by multiplying all as and bs by 
some large positive number: To counter- 
balance this effect, we seek to keep the pa- 
rameters small. Precisely formulated, this all 
amounts to a linear program: 

minimize Ca + b (7) 
subject to 

and 
Uprt - Umt 2 Spert,nat for all pert 

a , b  1 0  
It turns out to speed the calculations consid- 
erably if some a priori constraints are also 
included: 

and 

4 I dopt,i,j 5 20 V i, j 
These amount to assuming always trans pep- 
tide bonds, requiring that the observed dis- 
tance (-4 A) of closest approach between C % 
never be violated, and that no interactions 
be entirely repulsive. This same idea of 
forcing a rough valley in the energy surface 
by such linear constraints had been tried 
earlier3, but not very successfully because 
often the inequalities corresponding to im- 
portant perturbed structures are nearly lin- 
early dependent, and the standard simplex 
algorithm becomes numerically unstable. 
Instead, we solved eq. (7) by the highly stable 
revised simplex a lg~r i thrn .~  

The perturbed structures referred to in 
eq. (7) were generated in two ways. Initially, 
the native structure was perturbed by in- 
crementing and decrementing in turn by 5% 
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each d l , l + l .  Taking all these inequalities in 
eqs. (7) and (8) into account and solving for 
the parameters Q, bl, ~ z , G L ~ ,  . . . , b ,  Val, Val, re- 
sults in the current potential function, eq. (2). 
Starting at the native conformation and 
minimizing the potential with respect to 
the C a Cartesian coordinates in E, generally 
results in a new perturbed conformation at 
some distance 6 from the native with an 
energy lower than the native, which is un- 
desirable. Introducing this new inequality 
constraint and resolving the linear program 
produces a new set of parameters. Some may 
have increased while others decreased, but in 
general the new sum over all parameters is 
slightly greater than before. New constraints 
were introduced in this fashion one by one 
until 6 5 0.1 A. At the end of this process, we 
have found the flattest potential surface such 
that aZZ the perturbed structures are higher 
than the native, and indeed, the further they 
are in conformation from the native, the 
higher their potential. Some kind of reason 
has been found for each perturbed structure 
so that its intramolecular interactions are 
worse than those of the native, on the whole. 
These reasons are not stated explicitly by 
the algorithm, and might be hard to deduce 
by inspecting the final parameters, because 
relatively good interactions in one part of a 
perturbed structure may be cancelled out by 
bad ones elsewhere. 

Parameters were derived for most of the 
runs listed in Table I1 by the above procedure. 
However, a few cases of a nine residue seg- 
ment employed a slight variation in the way 
constraints are generated. The reasoning is 
that when we consider local structures in pro- 
teins, such as segments of a-helix, p-strand, 
and bends, probably the most important 
factors in determining the conformation of 
that segment are interactions within it and 
between it and its immediate surroundings, 
rather interactions within the remainder of 
the protein. Denoting the residues of the seg- 
ment by S and those of the rest of the protein 
by 9, the total energy 

where U ( S )  is a sum over all interactions 
within the segment S, and U(S,  s )  is the sum 
of interactions between residues in S and the 
remainder of the protein, 9. Then we claim 
U ( S )  has a negligible influence on the con- 
formation of S compared to U ( S )  and UCS,S). 

u,,, = U ( S )  + U ( S , S )  + U ( S )  

Therefore we demand 

u(Sn) + u(Sn, 9,) + 6(Sn, s p )  

5 US,) + U(S,,S,> (9) 
where S,  and S, represent the native and 
perturbed states respectively of the segment 
S; and S(S,, S,) is the rms deviation between 
these two states of the local segment. Adding 
such inequalities to  the usual ones after 
each perturbed structure is found, produces 
parameters which tend to strengthen the 
segment’s preference for its native structure 
independent of the rest of the protein. Since 
the inequalities involving the whole protein 
(eq. 7) are included as before, the resulting 
parameters have taken into consideration 
the conformational demands of residues in all 
parts of the protein. 

The energy minimizations were carried 
out by Newton’s method with analytical 
first and second derivatives acting on one 
residue at a time, cycling repeatedly down 
the chain of residues until the magnitude 
of the gradient was sufficiently small. In 
practice, this is an extremely satisfactory 
method of minimization5, clearly superior to 
steepest descents, conjugate gradients, and 
even Newton’s method working on all points 
simultaneously. 

The second item of methods is the sub- 
stantial improvements on the energy embed- 
ding algorithm since the technique was last 
described.’ The first step is to find coordin- 
ates,c,,k,i = 0 ,..., n - l , k  = 0 ,..., n - 2,in 

for the n residues. For the initial guess, 
we place the residues at the corners of a regu- 
lar hyper-tetrahedron with edge r = 5.0 A. 

c1.k = 0, k ? i  (10) 

The initial guess is  refined by Newton 
minimization, moving one residue at a time. 
Although Newton’s method calculates both a 
direction to move the residue and a step size 
along that direction, when far from the mini- 
mum, these estimates may not always lead to 
an energy decrease. The Armijo linesearch 
has proven to be very reliable for modifying 
the Newton step when necessary.‘ 

it 
is necessary to project the structure down to 

Once the n points are embedded in 
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E3. The original method went to some pains to 
decide what three dimensional subspace 
should be preserved', but subsequent experi- 
ence has shown that the choice is generally 
not very clear-cut. Instead, we simply de- 
mand that the fourth and higher coordinates 
of each point approach zero while otherwise 
trying to keep the energy minimal. To put it 
more precisely, let the coordinates matrix 
C = (c,), for points i = 1, .  . . , n and coordi- 
natesj = 1, .  . . , n - 1. Then given the initial 
minimal energy conformation Cinit in En-l ,  

minimize U ( C )  ( 1) 
C 

subject to 
c, = 0 j = 4 ,..., n - 1 

This is simply a nonlinear constrained opti- 
mization problem which can be nicely solved 
by augmented Lagrangian~~. For simplicity 
of notation, let the vector of all unwanted 
coordinates be g = ( c ~ , ~ ,  c1.5, . . . , cn, n-l). Then 
in this case the augmented Lagrangian func- 
tion is 

for i = 1 ,..., n ;  

1 

L(C, A, w) = U ( C )  + A * g + l w g 2  (12) 2 
where A is the vector of Lagrange multipliers 
and w is a weight on the constraint terms. 
Initially in iteration 0, w(O) = 0.01 and A"' = 

0. Then in iteration K ,  minimize L(C'k', 
, w ( ~ ) )  with respect to C by the usual 

Newton method, resulting in C@+') and g(k+l). 
Now update 

(13) 

A ( k )  

( k )  ( k + U  AIk' + w g, A ( i k + l )  = 

The cycles of minimization (eq. 12) and up- 
dating (eq. 13) are repeated until the unde- 
sired coordinates are reduced essentially to 
zero (Ilgll < 0.01 A). During this process, w 
generally gradually increases, which con- 
verts L from a standard Lagrangian to a 
penalty function. The method is more robust 
than the unmodified Lagrangian approach, 
but by having Lagrange multipliers and by 
introducing the penalty terms gradually, con- 
vergence is faster than simply minimizing 
U + wg2 for large w. If the initial con- 
formation in was really well minimized, 
then U increases as llgll- 0 because the 
molecule cannot make as many favorable 
interactions in a lower dimensional space. 

Sometimes, the repeated cycles of minimiza- 
tion of L offer such additional opportunities 
for reducing U ,  that  the energy actually 
slightly decreases. Meanwhile, the various 
components of A increase from zero, reflecting 
the energetic cost of reducing the correspond- 
ing gi to zero, but eventually A + 0 because 
there is no force component acting in the 
fourth and higher coordinate directions when 
all points lie in E,. 

In this work, the only constraints are that 
g = 0, but additional experimental con- 
straints could easily be included in eq. (12) as 
long as they could be expressed as (nonlinear) 
equality or inequality constraints on the coor- 
dinates. In other words, this augmented 
Lagrangian approach is a generally useful 
method for energy embedding. 

111. RESULTS 

The objective of this paper is to determine 
a set of energy parameters such that energy 
embedding can locate the native structure of 
at least one molecule, namely the one with 
which the parameters were derived. (Using 
the potential to correctly predict the con- 
formations of other molecules is a more 
ambitious goal for the future). As explained 
in the Introduction, our earlier empirical 
potentials guided energy embedding toward 
protein structures that were too compact. 
Hence, finding parameters that would mimic 
local structures, such as a -helix, p-strand, 
and bends, would be of considerable im- 
portance. Also, as the computer time for the 
repeated energy minimizations is roughly 
proportional to the cube of the number of resi- 
dues, we restricted the present study to the 
following four segments of BPTI: (1) residues 
47-51 (short a-helix), (2) residues 14-20 
(short extended structure), (3) residues 
22-30 (tight hairpin consisting of the bend 
and two arms), and (4) residues 47-56 (a 
longer a-helix). In what follows, we first de- 
scribe the results of the latter three larger 
segments in detail, and then consider the 
short a-helix to illustrate how the successive 
addition of linear inequalities raises the en- 
ergy of all of conformation space above that 
of the native until at  the end, the native is at  
the global minimum. 

Residues 14-20 (7-mer): The linear pro- 
gram search for parameters for this mo- 



Empirical Potential For Proteins 

r - 
0.0 3.8 5.9 17.0 11.1 11.1 11.4 
3.8 0.0 3.8 6.1 16.4 20.0 13.6 
5.9 3.8 0.0 3.8 4.0 20.0 13.6 

17.0 6.1 3.8 0.0 3.8 5.9 20.0 
11.1 16.4 4.0 3.8 0.0 3.8 5.9 
11.1 20.0 20.0 5.9 3.8 0.0 3.8 
- 11.4 13.6 13.6 20.0 5.9 3.8 0.0- 

977 

- 0.0 
3.8 
6.0 
9.0 

10.4 
13.3 
14.2 

- - 

3.8 6.0 9.0 10.4 13.3 14.2 
0.0 3.8 6.5 9.1 12.0 13.9 
3.8 0.0 3.8 6.2 9.6 11.8 
6.5 3.8 0.0 3.8 6.4 9.4 
9.1 6.2 3.8 0.0 3.8 6.2 

12.0 9.6 6.4 3.8 0.0 3.8 
13.9 11.8 9.4 6.2 3.8 0.0 

Notice how the optimal distance between two 
residues is not always the native distance, 
and indeed there is considerable tension in 
some regions. This implies that there was not 
an overabundance of parameters compared to 
conformational degrees of freedom. Indeed, 
finding parameters would be trivial if there 
was a unique a-b pair for every native dis- 
tance. In that case, simply choose the a and b 
so that d,, = d, for all i andj,  and thus, the 
native structure would be the global mini- 
mum. We cannot do this because the same 
interaction term and same parameter pair 
may be invoked in two different interactions 
having different native distances. For exam- 

Table I. The Relevant Energy Parameters Used by 
the Extended Segment BPTI 14-20. Notation as in 
eq. (3). 

a1 = 3284.8062 b i  = 460.2432 

a2,Ala  = 24344.2343 
a2,1ie = 16500.7636 
a z . ~ ~ ~  = 32168.2304 
az,Arg = 1422.0629 

a 3 , ~ l ~  = 263.7835 
~23.11~ = 7840.8765 
~ 2 3 . L ~ ~  = 15903.8115 
a3,Arg = 12620.0244 

b 2 , ~ l ~  = 1295.6050 
bz,Ii, = 932.3348 
b2.Ly, = 1817.6440 
bz3Arg = 177.4268 

b3,aia = 32.9705 
b3,11e = 39.1601 
b3,Lys = 79.4740 
b3,.4, = 63.1821 

al ,Alo  = 0.0808 bl,..jla = 0.0101 
ai,iie = 22.3884 bi,iie = 3854.9218 
ar,cys = 3969.0701 bl,cys = 497.4216 

a i , ~ ~ ~  = 95682.9687 b,A, = 1027.1456 
b[,Lys = 0.0050 al,Ly, = 0.0006 

pie, 
and b 1 , c y s .  

and 4 6  both require a l , I l e ,  b l , I I , , a l , C y s ,  

The next step is to locate a good minimum 
in E,. As explained in the Methods section, 
the molecule is first placed as a regular sim- 
plex, where each residue is 5 A from all the 
others. Such an arbitrary conformation is not 
at all favorable, having energy = +406.3, 
but subsequent minimization by 17 iterations 
of Newton’s method brings the energy down to 
- 179.99, which happens also to be the energy 
of the near-native minimum in E,. In fact, it 
has no distance which differs more than 0.2 A 
from the corresponding native distance. 
Although some of the largest coordinates are 
in the 4th, 5th, and 6th dimensions, this 
conformer nearly lies in a three dimensional 
subspace of E,. 

Now the energy embedding procedure at- 
tempts to drive the unwanted coordinates to 
zero. In this case, convergence would have 
been faster if the structure had been rotated 
in E ,  so that the unwanted coordinates were 
as small as possible. However, in general, the 
structure tends to be so nearly spherical that 
such a procedure is of little help. It took 
8 cycles (see Eq. 13) to reduce the sum of the 
squares of the unwanted coordinates g 2  to 
0.03, while the weight w increased from 0.01 
to 0.64. All coordinates changed substan- 
tially, and the energy remained constant at  
- 179.99. The rms deviation between the final 
structure and the native was 0.09 A, which 
essentially amounts to the same minimum 
(Fig. 1). 

Residues 22-30 (9-mer): The linear pro- 
gramming and the energy embedding results 
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Figure 1. Least squares superposition of the native 
extended fragment (residues 14-20) in dotted lines 
upon the conformation calculated by energy embedding 
(solid lines). 

for the 9-mer and all other segments studied 
are presented in Table 11. 

The 9-mer segment involves an open loop 
structure connecting two extended parts and, 
hence, serves as a typical case for bend struc- 
tures in proteins. We used this segment for 
four different runs of the linear programming 
procedure. In the first run, as in the 7-mer 
study, constraints were added one at a time 
considering the whole segment while com- 
puting the constraint (see eq. 7). In run 2, two 
constraints were added at  a time, the first 
constraint being made of the whole segment, 
as in run 1, and the second constraint being 
computed using only the four central residues 
of the segment, which correspond to the real 
bend part of the system (see eq. 9). The latter 
constraint, thus, gives specific weight to the 
local bend structure while the whole segment 
energetic considerations are handled as be- 
fore by the former. In run 3, again two con- 
straints are added at a time, the second one 
now being computed using only the first three 
and the last three residues of the segment. 
This case corresponds to giving additional 
weight to the end arms of a bend structure. In 
run 4, we included only the second constraint 
of run 3. All four runs began with the same 
57 initial constraints, which produced en- 

ergy parameters that had a minimum 2.1 A 
from the native conformation with energy 
- 105.3 units. From there, however, each 
run progressed characteristically until 
termination when local minimization from 
the native moved <0.1 A. The number of con- 
straints needed and the energies of the final 
structures also differed accordingly. While 
the parameters derived from runs 1 , 2 ,  and 3 
were able to embed their structures with an 
rms of 0.8 - 1.2 A, the run 4 potential guided 
energy embedding to a final conformation 
with an rms of only 0.5 A. This is extremely 
close to the native, as shown in Fig. 2. These 
results are consistent with the belief that a 
tight bend forms not because the four bend 
residues inherently prefer that conformation, 
but rather because the two strands thus 
brought together interact favorably. Out of 
the 42 expected parameters, run 3 produced 
36 nonzero values, given in Table 111. 

We are particularly keen to pursue further 
the improvement run 4 represents over the 

Figure 2. Least squares superposition of the native 
hairpin bend fragment (residues 22-30) in dotted lines 
upon the conformation calculated by energy embedding 
(solid lines). 

Table 11. Linear Programming and Energy Embedding Results of the Segments of BPTI 

Residue Linear programming Energy embedding 
segment 
(BPTI) Run Status Constraints Energy" rmsb Energy" rmSb 

22-30 
1 
2 
3 
4 

47-56 

14-20 

47-51 
1 
2 

Initial 
Final 
Final 
Final 
Final 
Initial 
Final 
Initial 
Final 
Initial 
Final 
Final 

57 
147 
291 
291 
197 
65 

232 
39 

145 
25 
44 
79 

- 105.34 
-187.02 
- 164.36 
-364.13 
-159.71 
-159.56 
- 169.44 
-66.19 
- 180.00 
-36.81 
-55.71 
-62.00 

2.10 
0.09 
0.08 
0.10 
0.08 
3.39 
0.09 
4.47 
0.08 
0.87 
0.07 
0.03 

- 188.39 
-165.52 
-362.64 
-159.65 

- 172.60 

- 179.99 

-55.74 
-61.94 

1.19 
1.21 
0.82 
0.51 

1.09 

0.09 

0.36 
0.16 

"arbitrary units 
b A  
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other runs due to including extra constraints 
on subsets of residues. 

Residue 47-56 (10-mer): The results for 
the long a-helix are also very encouraging. 
As seen in Table 11, 167 additional con- 
straints were needed to  obtain the final 
structure, which resembled the native in all 
aspects. The resulting energy parameters, 
when used by energy embedding, generated a 
molecule only 1.09 A away from the native. 
The superposition of the two structures in 
Fig. 3 shows how the majority of the differ- 
ence occurs at the end of the helix, rather like 
the way a real helix tends to  unwind. 

Residues 47-51 (5-mer): So far we have 
demonstrated that our linear programming 
procedure produces potential functiks that 
certainly have local minima, but apparently 
near the native there is a relatively deep one, 
and energy embedding converges either on 

Table 111. The Relevant Energy Parameters Used by 
the Hairpin Segment BPTI 22-30. Notation as in 
eq. (3). 

a l  = 2387.2639 b l  = 327.5735 

az.cly = 5354.3867 b z , c l y  = 349.6054 
a 2 , A l a  = 1547.9705 b z , A l o  = 103.7376 
a2,1deu = 630.6378 bp,Leu = 3.1521 
az,5r = 12223.8789 b z v T y r  = 620.4725 

a2,Asn = 290.3320 bp ,Asn  = 36.2993 
0.0 b z , L y s  = 0.0 - 

az.L.yS - 

a3,GiY = 236.8990 b3.Gly = 1.1572 
a 3 . ~ l a  = 1.3327 b3 ,A lo  = 0.0 
a3.1,eu = 0.00043 b3,Leu = 0.00346 

a3.L,.ys = 96.7723 b3 ,Lys  = 11.3488 
a 3 , A F n  = 2711.0904 b 3 , ~ ~ "  = 13.5517 

a3,Tyr = 136.4423 b 3 , ~ ~ ~  = 0.0 

al,Gl,y = 1127.3878 

al,Lru = 3870.8357 
a l . ~ ~ , v s  = 354.1758 
al,Phe = 421.1347 

= 403.0842 
0.9359 

U , ~ , A L ~  = 1733.6178 

- 
a 1 . L l s  - 
a l , A s n  = 12081.9453 

b l , c i y  = 5.6410 
b l , A l a  = 8.6677 
b l , L e u  = 203.2917 
b15cy, = 44.3326 
b l , p k  = 2.1081 
b l , T y r  = 43.2526 
b l , L y s  = 0.0135 
b l , A s n  = 775.1811 

Figure 3. Least squares superposition of the native 
helical fragment (residues 47-51) in dotted lines upon 
the conformation calculated by energy embedding 
(solid lines). 

that or a nearby minimum that is nearly as 
good. Pragmatically speaking, our only con- 
cern is that energy embedding should func- 
tion this well, given the energy parameters. 
However, with a segment as small as the 
5-mer, we can also globally examine con- 
formation space to see whether the native is 
indeed the global minimum, and what the 
energy looks like elsewhere. As can be seen in 
Table I, there is always a strong virtual bond 
stretching term in these parameter sets (al 
and b J ,  so obviously any deviation from 3.8 A 
is strongly penalized. Therefore, we searched 
all conformation space viewing the 5-mer as a 
freely jointed chain, having 3 vicinal bond 
angles and 2 torsional angles as variables. 
These five degrees of freedom were searched 
in 30" intervals, although essentially the 
same results were found with a 20" step size. 
The linear programming procedure started 
with 25 initial constraints and an rms of 
0.87 A, and positioned the minimum energy 
structure close enough to the native after 
19 cycles, when no subsets were used (run 1). 
The final energy parameters led to an energy 
embedding result 0.36 A away from the 
native. Alternatively, including an extra 
constraint about a subset consisting of resi- 
dues 1, 2, and 3 (run 21, required 27 cycles, 
but the parameters produced led to an energy 
embedded conformer only 0.16 A away from 
the native. As shown in Fig. 4, the successive 
parameter sets produced in the 19 cycles of 
run 1 tend to cup the energy surface more and 
more strongly until finally the global search 
is unable to find any conformations having 
lower energy than the native, and there is a 
very strong positive correlation between 
higher energy and greater distance in con- 
formation space from the native. Although 
the fraction of conformations found with en- 
ergy greater than that of the native pro- 
gressed from 0.876 to  1, the progression was 
not entirely monotonic throughout the  
19 cycles. 

IV. CONCLUSIONS 

This work adds to the evidence that energy 
embedding is a very powerful method for 
locating very low local minima, often nearly 
as good as the global minimum. The algo- 
rithm is clearly not biased toward overly 
compact structures, but rather it is guided to 
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Figure 4. Global survey of the conformation space of 
the 5-mer, treated as a freely jointed chain. Each con- 
formation is plotted according to its energy, U, (where 
Unative = 0) and its rms conformation deviation from 
the native, 6. The U axis runs from 0 to 5 arbitrary 
energy units, and the 6 axis runs from 0 to 5 A. The 
darker the symbol, the more densely the surrounding 
region of the two-dimensional histogram is populated 
with conformations. (a) Initial parameter set, 25 in- 
equalities; (b) parameter set from 29 inequalities; 
(c) parameter set from 39 inequalities; (d) final param- 
eter set, 44 inequalities. 

whatever the given potential prefers. Success 
in conformational analysis using this tech- 
nique depends critically on having a potential 
function that tends to  favor the correct con- 
formations over a rather wide range of alter- 
native structures. Although the form of the 
potential chosen in eqs. (2) and (3) would al- 
low it to be applied to any sort of polypeptide 

> 

d 

(C) 

chain, one can hardly expect the parameter 
values in Table I, for example, to be useful for 
any molecule beyond the particular hep- 
tapeptide from which they were derived. 
Until large numbers of interacting residues 
are used to derive the parameters, the values 
shown in Tables I and 111 are just artifacts of 
linear programming. If the particular oli- 
gopeptide for which they were derived does 
not have an example of a particular inter- 
action, the corresponding parameters will be 
zero, such as a2,Lys and b2,Lys in Table 111. 
Even parameters which are positive will vary 
greatly each time a new inequality is added 
because the new inequality has excluded the 
vertex of the old feasible region, and the sim- 
plex algorithm moves off to a substantially 
different vertex. What does vary gradually 

- 
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after most of the inequalities have been 
added, is the slowly increasing sum of all 
parameters. It is, therefore, not clear at 
this point what values the parameters will 
approach when derived from one or more 
whole proteins. 

We think the real import of this paper is the 
very general method for producing energy 
parameters. As long as the potential is linear 
in its parameters, and there are one or more 
molecules with “desired” conformations as 
opposed to undesirable ones generated in 
some fashion, then the linear programming 
method we have outlined will work. One pos- 
sible outcome is that the set of inequalities in 
eq. (7) is inconsistent, which unequivocally 
demonstrates that the desired potential func- 
tion cannot be constructed. (Of course, pos- 
sibly a different functional form would suc- 
ceed, but this is an arbitrary choice by the 
investigator outside the scope of the algo- 
rithm). The other possible outcome is that fur- 
ther perturbation from the native structure 
by energy minimization produces very little 
movement, and the algorithm terminates, as 
in the test cases shown above. Perhaps very 
many local minimizations would be required, 
but by construction, the algorithm must 
either converge eventually or find inconsis- 
tent inequalities. There is no guarantee that 
satisfying inequalities derived from local per- 
turbations of conformation will eliminate the 
possibility of some more distant structure 
being significantly better than the native, 
although the test cases were fortunate in this 
respect. When even the experts at devising 
potential functions confess it is a difficult 
task, a simple systematic approach such as 
this may be a great help. 

Although this work shows that an empir- 
ical function can be constructed to mimic an 
apparently arbitrary native conformation, 
clearly the next step is to apply the method to 
a whole protein, where the number of con- 
formational degrees of freedom exceeds the 
number of parameters available. There are 
only 122 parameters altogether, so a real pro- 
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tein having more than 43 residues would 
have more degrees of freedom than energy 
parameters, and would thus constitute a 
somewhat more realistic test. This is a non- 
trivial programming task because simply re- 
peatedly solving the linear program in these 
ill-conditioned cases is extremely time con- 
suming for large numbers of constraints. If a 
set of parameters can be found at all, it must 
be verified that energy embedding with this 
potential reproduces the native structure for 
that same protein. If that should work, the 
next step would be to use the same potential 
to embed other proteins, comparing the calcu- 
lated conformations with their known crystal 
structures. At  least there is the encouraging 
result that this functional form and single 
point per residue representation were success- 
ful in several cases of various conformations. 
It remains to  be shown that  a generally 
useful potential can be constructed along 
these lines. 
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