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Weak Limits of Zeros of Orthogonal Polynomials

J. L. Ullman and M. F. Wyneken

Abstract. Let p be a positive unit Borel measure with infinite support on the
interval [-1, 1]. Let P,(x, u) denote the monic orthogonal polynomial of degree
n associated with u, and let v,(u) denote the unit measure with mass 1/n at
each zero of P,(x, u). A carrier is a Borel subset of the support of x having
unit u-measure, and a measure » is carrier related to u when it has the same
carriers as u. We demonstrate that for each carrier B of positive capacity there
is a measure », which is carrier related to u, such that the equilibrium measure
of the carrier B is the weak limit of the sequence {7, (¥)}5-;.

1. Introduction

Let u be a positive unit Borel measure with infinite support on the interval
I'=[-1,1]. Let P,(x, u) denote the monic orthogonal polynomial of degree n
associated with u, so that

172 0 if m#n
(J.Pm(x,u)Pn(x,n)dﬂ) =N, (1) 8n, an={

1 if m=n’

and N,(u) is the L>-norm. The polynomial P,(x, ) has n simple zeros on I.
Let v, =v,(n) denote the zero measure of P,(x, i), i.e., the unit measure with
mass 1/n at each zero of P,(x, u). If for a unit Borel measure » defined on I
we have lim,_, | fdv, = [ fdv for all functions f(x) continuous on I, we say that
the sequence {»,}~; converges weakly to », or v is a weak limit of {»,};-,, and
we write lim,.. v, =v. By a theorem of Helly, {v,}n-, always has weakly
convergent subsequences.

In this paper we demonstrate that the equilibrium measures of the carriers are
weak limits of the zero measures of the orthogonal polynomials associated with
the so-called carrier related measure$. A carrier is a Borel subset of the support
having unit measure, and two measures are carrier related when they share the
same set of carriers. An equilibrium measure is a potential theoretic measure
which in the instance of a compact set is energy minimizing.

Other related results and open questions will be discussed in Section 5.
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2. Statement of Theorem

The support S(u) of a positive unit Borel measure u on I is the smallest closed
set of unit u-measure. When S(u ) is an infinite set such a measure u is called
a weight measure.

The capacity of a Borel set B is taken as its inner capacity

C(B}=sup C(K),
KcB

where K is a compact subset of B, and C(K) is the capacity of K as derived
from the logarithmic potential function [5]

Uz u) =J log(|z—1|™") du(1).

The following are properties of capacity [5]: for Borel sets B, and B,,

(i) B,= B,=C(B,)=C(B,),
(i) C(By)=0=>C(B,u B))=C(B,— B,)=C(B,),
(iii) for compact K,< K,.;<I (n=1,2,...), lim,., C(K,)=C(U%-;: K,).

Associated with a set of carrier related measures are two numbers,
C =inf C(B), C =sup C(B),

taken over the carriers B. When C = C we say that u is a determined measure,
and undetermined otherwise. To see the existence of an undetermined measure
let O be a dense open subset of I with C(O)=A <j3. Let f(x) be a positive,
Lebesgue integrable function defined on O with jo fdx=1.1f we define a measure
i by w(B) = [p~o fdx for Borel sets B, then y is a unit measure with C = A and
C=1[51

The equilibrium measure for a bounded Borel set B of positive capacity is the
unique measure up which satisfies the following [3, p. 92}:

(i) S(up) is bounded,
(i) U(z, up)=<log((C(B)™") for all zeC.
(iii) U(z, ps)=1log((C(B)™") for all z in a Borel subset B* of B of the same
capacity.

We now state the theorem which we will prove in the next section.

Theorem. Let u be an undetermined weight measure with C > 0, and let B be any
carrier of u. Then there exists a carrier related measure v such that

hm V,,(V) = Mg,
n-co

and

lim (N, (»))"" = C(B).
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We conclude this section by stating three other results on weak limits due to
the first author whose proofs will appear elsewhere. Let u be a weight measure
with C >0. Let 2 denote the equilibrium measure of the support, let p denote
the equilibrium measure which is common to the carriers whose capacity is C,
and let A, (v) = ([ (P.(x, v))* dv)"/*".

A. If p is determined, then for any carrier related measure v,
lim »,(v) = 4.
n-=-o00

B. If u is undetermined, then for a carrier related measure »,

(i) limA,(v)=C = lincxov,,(v)=/i,
(ii) lim A, (»)=C = lir?ou,,(v)=;2.‘

C. If p is undetermined, and v is any weak limit of the zero measures of
some carrier related measure, then

£(B)=v(B)=u(B)
for any Borel subset B of {z: U(z, p) =log(C™")}.

3. Proof of Theorem

The property of being carrier related is equivalent to being mutually absolutely
continuous [7], and hence it will suffice to construct a positive a.e. u Borel
measurable function w(x), [w(x)du =1, such that dv=w(x) du yields the
requisite property.

We now state three lemmas. Lemmas 2 and 3 will be proved in Section 4, and
Lemma 1 is due to Szegd and Tonelli.

Lemma 1([4,p. 73]). Let K bea compact subset of I, and let M, (K ) = inf|| P, (x)|| x
where the infimum is taken over all monic polynomials P,(x) of degree n, and
| P (x)||x = max|P,(x)| over xe K.

(i) If K contains at least n points, then there is a unique monic Chebychev
polynomial T, (x, K) of degree n satisfying || T, (x, K)[ x = M, (K).
(i) If K is infinite, then lim, . (M,(K))V" = C(K).
(iii) Forxel, |T,(x, K)|=<2"

Let K be a compact set of positive capacity and let 2 be the unbounded
component of the complement of K in C. The potential function U(z, ug) is
harmonic for z€ (), and when it is continuous on C we say that K is regular.
Ancona [1], [2] has shown that each Borel set B with C(B)> ¢ >0 has a regular
compact subset # such that C(%)> C(B)— & for each value of 8§ where 0 <5 <¢.

Let N.(z) denote the £-neighborhood of z, i.e., N,(z) ={w:|w—z|<e}.
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Lemma 2 ([6]). Let u be a weight measure, let B be a Borel subset of S(u), and
let # be a regular compact subset of S(u). Assume that u(B n N,(x))>0 for each
xeX and all € >0. Then

(i) for each positive integer n, there is a nonnegative Borel measurable function
(%), called a transfer function, with the properties that § 7,(x) du=n"?
and A, = {x: 1,(x)> 0} is a compact subset of B, and

(ii) there is a sequence of positive numbers {c,},~, depending only on ¥ with
the property that 1im,,_, (¢,)"/" =1 and such that if P,(x) is any polynomial
of degree n, then

J (P, (x))1,(x) dp = ¢, || P (x)]| 3.

Lemma 3. Let u be.a weight measure, let v be a carrier related measure, and let
B be a carrier of positive capacity A. Then the following two statements are equivalent.

(i) lim v, (v) = up,
(ii) Tim | P, (x, »)|/" = A
for all x in some Borel subset B* of B of the same capacity.

Now assume C(B)=A. Let {¢,},_, be a sequence of positive numbers decreas-
ing to zero. For each integer p (p=1, 2,...) we may assume there exists a regular
compact set ¥, and a compact set K, with %, < K, < B, C(%,)> max(A —¢,,0)
and p(K,)> max(1-~¢,, 0). Moreover, we may assume K, < K,.,, and from the
Wiener criterion [4, p. 104] we may assume ¥, < ¥,.; (p=1,2,...).

Let K,s={xecR: there exists ye K, such that |x—y|=<8}. Let 8, (p=
-1,0,1,2,...) denote positive numbers whose values will be determined recur-
sively. Let B,=K,5 N K15, NnB(p=12,.. .). By Lemma 2 there exists for
each integer n a transfer function 7, ,{x) supported on a compact subset A, , of
B,, such that for any polynomial P,(x) of degree n

J (Po (%)) 70 (x) dpt = ¢, Pa (6)| %,

with lim,. (¢,.)" " =1.

Let ¢, be an integer such that n > c, implies (¢,,)""=1-¢, (p=1,2,...). For
an infinite compact set L with C(L)<A +¢, let [L, €] denote the least positive
integer for which n>>[L, €] implies || T,(x, L)||. =< (X + £)"; this exists by Lemma
1. Let [, s] denote the least positive integer m for which ¥, n>=(r/2)%.

We now describe the beginning and general steps of the recursive construction.
Let so=1,=0, Ag=D, 86_1=8,=1 and L= K, 5L A,. For the first stage let
s, =max([ Lo, €], So+1), & =max([Z, 5,1, ¢z, to+1). Then choose A, ;,..., Ay,
and let A;=A, ;U UA,,UA,. Finally, define §,, L,, by L=K;5UA, 50
that C(L,)<A+¢, [3, p. 86},

Before starting the pth stage, we have determined sy, &, Ay, Ly, and &, k=
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1,2,...,p—1. We then let s, =max([L,_,, £,_,], s,-1 +1), {, = max([3, s, }, 6,11,
t,_;+1). Then choose Apr t1..., A, and let A,=A,, U UA,, U
Ap-,. Finally, define 8,, L,, by L, =K,.,5, U A, so that C(L,) <A +eg,.

Thus by recursive definition we have established the existence of sequences

{8}, {5}, (AL, {L), and {8,} (k=0,1,...) with the properties
{a) {s.} is an increasing sequence,
(b) si=[L._y, &x-1) for k=1,
(c) {t} is an increasing sequence,
(d) =gy for k=1,
(e) n=[Z, s ] for k=1,
(f) A2 Ly for k=0, since A, < Ly, Apsy < Bi1 © Kz, Ly for g +1=<
N=tiyy, and Apipn © Biya © Kiya s, < Ly for iy t1=n=<t,,,
(g) Kiiz< Ly for k=0, and
(h) C(L)<A+g for k=1.

We refer to these as properties (a), (b), etc., later in this section. Then let
w, (%) = xx, () (1 (K,)) (A /2)%-1 = (A /2)%%),
where XK, (x) is the characteristic function of the set K, and let
ox)=c ¥ w(x)+tc Y X 7.(x)=Wi(x)+ Wy(x),
p=1 p=t 1, <n=t,

where ¢ is chosen so that | w(x) du = 1. Note that W,(x)>0 a.e. p.
Then for 5, <n=s5,.,, p=12,...,

-

No(v) = | (Pu(x, v))* dv

= | (Pu(x, 2))’0(x) du

.

(T.(x, L)Yw(x)du  ([5])

iA

~

=], (Tu(x, L)) o(x) dﬂ“"j (Tu(x, L)) Wi(x) du

Ji, S(u)-L,

+J (Tu(x, L,))* Wi(x) du
S(u)-Ly

= Il + 12+ I3.
Now I, = (A +¢,)*" (properties (b) and (h)).
Next we have

L=2% I Wi(x) du
S(p)—-L,

smjuw e E IR /2= (3 27%) d

Kpip) k=1

(property (g))
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= c2™ El 1Ky — Kpaa) (1 (Kie)) (A /2) 51 = (X 2)%%)

2 T (/2= (027

=2 (A/2)%+
< A2

=cA?"

Finally,

L=2%" J Wy(x) du
S(u)-L,

©

= c2’"J LT talx)du

Uf—](Ak_Ak_]—LP) p=1t,_<nst,

o
2

=2 J 2 L Talx)du  (property(f))

Uf=p*3(Ak—Ak—1) r=1 oy <n=t,

©

< c22n Z n—z

n=1fp4g*t

=c2’"(A/2)*  (property (e))

=< CcA 2sp+2
=cA™"

Thus N2(v)=<(1+2c)(A +¢,)*", and hence lim, o A,(¥) < A.
By Lemma 3 it remains to show that

Tim |P,(x, v)|/"=A  for xelJ %,.
n—>o P=1

However, if this is false there exists some positive number &, some xe|_7_, %,,
and an increasing sequence of positive integers {k,}-; such that |P, (x, »)|>
(A+e) (n=1,2,...). Then, if n is sufficiently large and t,_, <k,=<1,,

Ny, (#) = (¢, ) | Pr, (%, )13, = (1= £5) (A + )%
(property (d)) which when n tends to infinity leads to the contradiction of the

inequality above.
Finally, lim, .. A,(#)=A follows from the additional fact that for monic

polynomials P,(z) of degree n and compact sets K, ||P,(2){|x =(C(K)" [4,
p. 62]. |

4. Proofs of Lemmas

Proof of Lemma 2. For the regular compact set X let

¥s = {x € C: there exists y € % such that |x —y| < §}.
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Let G(z,Q)=1og(C(¥) ')~ U(z, ux) be the Green’s function for , the
unbounded component of the complement of %, and let G;(Q) =max(G(z, 1))
over z€¥;. We demonstrate first that there is a sequence {d,}n-; with
lim,,«(d,)"™ =1 such that

P25, = dall Pa(2) |
for a polynomial P,(z) of degree n.

Let ze #,,, and let C be the circle of radius 1/n centered at z. From P, (z) =
Qmi) " je Pu()(t—2)2dt it follows that ||PL(2)|x,,, < n|Pu(2)]l,.-
By the maximum principle log|P,(z)|—nG(z, Q)=<log|P.(z)||sx for zeQ,
and hence | P,(2)|s,, <(exp(G,/s(2)))" (| P(2)||x from which we obtain the
desired inequality with d, = n(exp(G,,/,(Q)))". The regularity of X implies
lim,,.(d,)"Y"=1.

Next, assume |P,(zo)|=|P.(2)|x for some z,e¥. From P,(z)=
P,(z0)+[ Pn(t) dt it follows that for z satisfying |z — zo| < 8, with 8, =(2d,)™",
[Pa(z)| 2 | Pa(20)| = |2 — 20| ”P;(Z)”m,n
= P ()1~ |2~ 2ld)

= (1/2)]| Pa(2)]| -

Let x;=—1+(8,/2), and let m,=[4/8,]+1 (integer part). Let I, =[x;_,, x;],
so S(u)cu---ul,.Let L, k=1,2,...,k,, k,<m,, denote those intervals
I; which intersect X, and let x, e ¥ n I,. Let A, be a compact subset of BN
Nis,y2(x) with w(A,)>0. Hence, if x€ ¥, then x € I, for some k, so that for
any yeAk, |x_y|slx~xk|+|xk_y|56n~

Now let A, =AU - UA,, let

ra(x) = (k)" z X (XA,

and let ¢, = (4n’k,)". |
Proof of Lemma 3. Assuming (i) it follows from the lower envelope theorem
[3, p. 85] that

U(x, up)=lim U(x, v,(v)) = lim log|P,(x, )|/,

n—-»oo n-»oo
where strict inequality is possible only on a set Z, of capacity zero. Then

Tim |P,(x, »)]"=A  for xeB*-2Z,

where
U(x, ug) =log(A™") for xe B*< B, C(B*)=A.
Assuming (ii) we have

lim U(x, v,(v))=log(A™")  for xeB*

n-»>oo

Let v, be any weak limit of a subsequence of {v,(v)}5-,, say lim, o, 7, (v) = v,.
It then suffices to show that v, = ug[5].
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By the lower envelope theorem U(x, »,)<lim, .. U(x, »,,) where strict
inequality is possible only on a set Z, of capacity zero, and hence U(x, v,)=
log(A™") forxe B¥*~Z,. Let K, (n=1,2,...) be compact subsets of B* — Z, such
that K, < K., C(K,)>0, and lim,,, C(K,) = A. Let u, denote the equilibrium
measure for K,,, and let

Ua(x) = (U(x, pn) —log(C(K,) ™)) = (U(x, vo) —log(A™)).

Observe that v,(x)=<0 for xe B*~Z,. Also, v,(x) is harmonic and bounded
above on C— (K, u S(v,)) since lim,,(U(x, u,) — U(x, v,)) =0. By upper semi-
continuity ﬁrﬁx_,xo 0,(x)=<0 for xe C—(K,,u S(vy)) and x, in the boundary of
(K. S(v)) — Z,, and hence, by the generalized maximum principle [4, p. 77],

v,(x)=<0 for xeC—(K,u S(¥p)).
Let u, be any weak limit of a subsequence of {1} -1, say lim,, . p,, = pto. Then

U(x, uo) = lim U(x, u,,) =< lim log((C(K,,))™") =log(A™")

n->oo n-»>oo

for all x with equality holding on Ui:, K,—Z,, C(Z;)=0. It then follows from
the uniqueness of an equilibrium measure that u, = g, and hence lim, . g, = s,
and

lim U(x, u,) = U(x, pp) for xeC-1

Thus it follows that for x € C— I the bounded harmonic function U(x, pg)—
U(x, v,) is nonpositive, so by the maximum principle U(x, ug)= U(x, v,) for
xe€C—1I, and hence uz = v, [4, pp. 34, 50]. [ |

5. Some Related Results and Some Open Questions

If we let A,(u)=(N,(x))"", then we have the following results:

(a) ([51, [9D). Cp)=lim, e An(p) <TiM,se An(p) =< C(p).

(b)Y ([7D- {A,. ()} -0 need not converge if C <C.

(¢) ([7)). The limit point set of {A,(x)}n=o is a closed interval.

(d) ([81). For any [e, B]<=[C, C] there exists a carrier related measure » such
that the limit point set of {A,(¥)};-¢ equals [e, 8].

Thus if C=C, lim,.eA,=C, and if C< C no further information can be
obtained about the norm behavior from measurements on the carriers.

Thus the relationship between the carriers of a weight measure and the norm
behavior is completely settled, and we look at the weak limits of zeros of
orthogonal polynomials. In the light of the result of the present paper we have
the following open questions:

(a) If C >0, is every weak limit the equilibrium measure of a carrier?



Zeros of Orthogonal Polynomials 347

(b) If {A.(¥)}-o converges to A, C <A <C, does {v,(v)}7-, converge?
(¢c) How can the weak limits that arise from one measure u be characterized?
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