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Weak Limits of Zeros of Orthogonal Polynomials 

J. L. Ullman and M. F. Wyneken 

Abstract. Let/.~ be a positive unit Borel measure with infinite support on the 
interval [ -1 ,  1]. Let Pn(x, tz) denote the monic orthogonal polynomial of  degree 
n associated with /~, and let v,(p.) denote the unit measure with mass 1In at 
each zero of  P.(x,/x). A carrier is a Borel subset of the support o f / z  having 
unit g-measure,  and a measure v is carder related to/~ when it has the same 
carriers as p.. We demonstrate that for each carrier B of positive capacity there 
is a measure v, which is carder related to g., such that the equilibrium measure 
of  the carder B is the weak limit of the sequence {vn(v)}~= P 

1. Introduction 

Let /z be a positive unit Borel measure with infinite support on the interval 
I = [ -1 ,  1]. Let Pn(x, I~) denote the monic orthogonal polynomial of degree n 
associated with g, so that 

( f  )1/2 {~ if m ~ n  
Pro(x, tz)P.(x,/z) d/~ -- Nn (/Z)Smn, &"" ---- if m = n '  

and N.( /z)  is the LE-norm. The polynomial P.(x, tz) has n simple zeros on I. 
Let v. = v. (/z) denote the zero measure of Pn(x, Iz), i,e., the unit measure with 
mass 1/n at each zero of  P.(x, tz). If for a unit Borel measure v defined on I 
we have lim._.oo Sfdv.  = Sfdv for all functions f (x)  continuous o n / ,  we say that 
the sequence {v.}.~_-i converges weakly to v, or v is a weak limit of {vn}.~_-l, and 
we write lim.~oo v. = v. By a theorem of  Helly, {v.}.~176 1 always has weakly 
convergent subsequences. 

In this paper we demonstrate that the equilibrium measures of the carriers are 
weak limits of  the zero measures of the orthogonal polynomials associated with 
the so-called carrier related measureL A carrier is a Borel subset of  the support 
having unit measure, and two measures are carrier related when they share the 
same set of  carriers. An equilibrium measure is a potential theoretic measure 
which in the instance of a compact set is energy minimizing. 

Other related results and open questions will be discussed in Section 5. 
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2. Statement of Theorem 

The support  S(I-~) of  a positive unit Borel measure /z  on I is the smallest closed 
set of  unit ~-measure.  When S(tz) is an infinite set such a measure /z  is called 
a weight measure. 

The capacity of  a Borel set B is taken as its inner capacity 

C(B) = sup C(K),  
K ~ B  

where K is a compact  subset of  B, and C(K)  is the capacity of  K as derived 
from the logarithmic potential function [5] 

U(z, ~) = f log(lz - t1-1) d/~(t). 

The following are properties of  capacity [5]: for Borel sets B1 and B2, 

(i) BI= B2~ C(BO  < - C(B2) , 
(ii) C(BO = 0 0  C(Bz u B,) = C(B2-  B,) = C(B2), 

. .  C oo (iii) for compact  K ,  = K,+I = I (n = 1, 2, .), lim,_.~ C(K,)  = ([._J,=l K, ) .  

Associated with a set of  carrier related measures are two numbers, 

C = i n f  C(B) ,  (~ = s u p  C(B), 

taken over the carriers B. When C = C we say tha t /z  is a determined measure, 
and undetermined otherwise. To see the existence of  an undetermined measure 
let O be a dense open subset of  I with C ( O ) = ) t  <�89 Let f ( x )  be a positive, 
Lebesgue integrable function defined on O with ~o f d x  = 1. I f  we define a measure 
/~ b y / x ( B )  =~n,-,ofdx for Borel sets B, then/x is a unit measure with _C = )t and 

= �89 [5].  
The equilibrium measure for a bounded Borel set B of positive capacity is the 

unique measure/zB which satisfies the following [3, p. 92]: 

(i) S(/~B) is bounded,  
(ii) U(z,/~)-<log((C(B) -~) for all z ~ C .  

(iii) U(z, I~B)=Iog((C(B) -1) for all z in a Borel subset B* of B of the same 
capacity. 

We now state the theorem which we will prove in the next section. 

Theorem. Let ix be an undetermined weight measure with _C > 0, and let B be any 
carrier of lz. Then there exists a carrier related measure u such that 

lim ~,, (v) = jzB, 
r l ~ o o  

and 

lim (N.(r')) ~/" = C(B). 
n~oo 
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We conclude this section by stating three other results on weak limits due to 
the first author whose proofs will appear  elsewhere. Let/x be a weight measure 
with _C > 0. Let/~ denote the equilibrium measure of the support, let ~ denote 
the equilibrium measure which is common to the carriers whose capacity is C, 
and let An(V)= (S (P.(x, v)) 2 dr) l/2n. 

A. I f /z  is determined, then for any carrier related measure v, 

lim vn( v ) =/2. 
n ~ o o  

B. I f /z  is undetermined, then for a carrier related measure z,, 

(i) lim A,(v)=_C ~ lim v . (v )= / l ,  
n ~ c x ~  n ~ o O  - -  

(ii) l i m A , ( v ) = t ~  ~ lim Vn(V)=/L 
n ~ o o  n - ~ c x 3  

C. I f / z  is undetermined, and v is any weak limit of the zero measures of 
some carrier related measure, then 

~ ( B )  <_ v (B)  <_ ~_(B) 

for any Borel subset B of {z: U(z, ~) =log(_C-])}. 

3. Proof of  Theorem 

The property of being carrier related is equivalent to being mutually absolutely 
continuous [7], and hence it will suffice to construct a positive a.e. /.~ Borel 
measurable function to(x), S to(x)d/z = 1, such that dr=to(x)dim yields the 
requisite property. 

We now state three lemmas. Lemmas 2 and 3 will be proved in Section 4, and 
Lemma 1 is due to Szeg6 and Tonelli. 

Lemma 1 ([4, p. 7 3 ]). Let K be a compact subset of I, and let M, (K)  = infll P, (x) II r 
where the infimum is taken over all monic polynomials P,(x) of degree n, and 
lIP. (x)ll,~ = maxlp .  (x)l over x ~ K. 

(i) I f  K contains at least n points, then there is a unique monic Chebychev 
polynomial T, ( x, K)  of degree n satisfying 11T,(x, K)IIK = M, ( K ). 

(ii) I f  K is infinite, then lim,_.oo ( M , ( K ) )  1/" = C(K) .  
(iii) F o r x r  IT,(x, K)I-<2". 

Let K be a compact set of positive capacity and let 1"/ be the unbounded 
component of  the complement of  K in C. The potential function U(z, I~r) is 
harmonic for z ~ l~, and when it is continuous on C we say that K is regular. 
Ancona [1], [2] has shown that each Borel set B with C ( B ) >  e > 0 has a regular 
compact subset ~r such that C ( ~ )  > C(B) - 8 for each value of 8 where 0 < 8 < e. 

Let N~(z) denote the e-neighborhood of z, i.e., N~(z) = {w: [w-  z I < e}. 
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Lemma 2 ([6]). Let tx be a weight measure, let B be a Borel subset of  S(I,t), and 
let if{ be a regular compact subset of  S(Ix ). Assume that tz( B c~ N~( x ) ) > O for each 
x ~ ~ and al le  > O. Then 

(i) for each positive integer n, there is a nonnegative Borel measurable function 
~c, (x),  called a transfer function, with the properties that ~ r, (x) die, = n-2 
and A, = {x: r . ( x )  > 0} is a compact subset o f  B, and 

(ii) there is a sequence of  positive numbers {c,},~176 1 depending only on 5( with 
the property that l i m n ~ ( c . )  1/" = 1 and such that if P, (x) is any polynomial 
of  degree n, then 

I (P.(x))2~'.(x) dtz >- c. llP.(x)ll~- 

Lemma 3. Let ~ be.a weight measure, let v be a carrier related measure, and let 
B be a carrier of  positive capacity A. Then the following two statements are equivalent: 

(i) lim v~ (z,) = tzB, 
r l  ...~ c t3  

(ii) li---m tP.(x, t,)l 1/" ~ A 

for all x in some Borel subset B* of  B of  the same capacity. 

o o  

Now assume C(B)  = A. Let {ep}p=o be a sequence of positive numbers decreas- 
ing to zero. For each integer p (p = 1, 2 , . . . )  we may assume there exists a regular 
compact  set ~p and a compact  set Kp with ~p c Kp = B, C(~p)  > max(A - ep, 0) 
and /z (Kp)  > max(1 - ep, 0). Moreover, we may assume Kp = Kp+l, and from the 
Wiener criterion [4, p. 104] we may assume ~p c ~ + 1  (P = 1, 2 . . . .  ), 

Let Kp, s = { x ~ R :  there exists y e K p  such that [x-y[<-8}.  Let 8p ( p =  
- 1 ,  0, 1, 2 , . . . )  denote positive numbers whose values will be determined recur- 
sively. Let Bp = Kp,~p_2 c~ Kp+l,Sp_, n B (p = 1, 2 , . . . ) .  By Lemma 2 there exists for 
each integer n a transfer function r (x) supported on a compact  subset Ap, n of 
Bp, such that for any polynomial  P, (x )  of  degree n 

I (P.(x))2~'p,~(x) d~ >- c~,.llP~(x)ll~. 

with lim,_,~ ( cp.,) ~/" = 1. 
Let cp be an integer such that n > cp implies (cp,,) 1/" >- 1 - % (p = 1, 2 , . . . ) .  For 

an infinite compact  set L with C ( L ) <  ;t + e, let [L, e] denote the least positive 
integer for which n > [L, e] implies II T.(x, L)IIL--- (X + e)"; this exists by Lemma 
1. Let [E, s] denote the least positive integer m for which ~,>m n -2--- (A/2) 2s. 

We now describe the beginning and general steps of  the recursive construction. 
Let so = to = 0, Ao = 0 ,  8_1 = 80 = 1 and Lo = K2,e~u Ao. For the first stage let 
sl = max([Lo,  Co], So+ 1), tt = max([X, st], c2, to+ 1). Then choose AI.~ , . . . ,  At,it 
and let A1 = Al,x u .  �9 . u Al,t~ u Ao. Finally, define St, L1, by L1 = K3,~, u A1 so 
that C(L~)<A+e~  [3, p. 86], 

Before starting the pth stage, we have determined Sk, tk, Ak, Lk, and 8k, k = 
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1 ,2 , . . .  , p - 1 .  We then let sp = max([Lp_l, ~p_~], sp_l+ 1), t e = max([s sp], cp+~, 
tp_l+l) .  Then choose Ap,,p_,+l . . . . .  Ap,,p and let Ap=Ap, ,~_ ,+~u. . .uAp, ,w  
Ap_~. Finally, define ~p, Lp, by Lp = Kp+2.8, u Ap so that C(Lp) < A + ep. 

Thus by recursive definition we have established the existence of sequences 
{Sk}, {tk}, {Ak}, {Lk}, and {ak} ( k = 0 ,  1 . . . .  ) with the properties 

(a) {sk} is an increasing sequence, 
(b) Sk>-[Lk_l, ek-l] for k - l ,  
(c) {tk} is an increasing sequence, 
(d) tk>--Ck+~ for k->l ,  
(e) tk >-- [s Sk] for k - 1, 
(f) Ak+2 ~ Lk for k --- 0, since Ak c Lk, Ak+l,. c Bk+l c Kk+2.~ c Lk for tk + 1 <- 

n --< tk+l, and Ak+2,, c Bk+2 c Kk+2.a~ c Lk for tk+~ + 1 <-- n <<- tk+2, 
(g) Kk+2 c Lk for k - 0, and 
(h) C ( L k ) < A + e k  for k - 1 .  

We refer to these as properties (a), (b), etc., later in this section. Then let 

w~ (x) = XK, (x)(t~( Kp) )- '(  ( ;t /2) 2".-' - (;t/2)2:,), 

where Xx, (x) is the characteristic function of the set Kp, and let 

<,>(:<)=c ~. w.(~)+c ~ Z ~',,.(x)=W,(x)+ W2(x), 
p=l  p=l  t p - l < n ~ t  p 

where c is chosen so that S to(x) d/z = 1. Note that W~(x)> 0 a.e. #. 
Then for sp+l < n -< sp+2, p = 1, 2 , . . . ,  

N~(~) = J (P.(x. ~))2 d~ 

= I (P.(x, ~))2~(x) d~ 

<- f (T.(x, L~))=~(x) d~ 
3 

([5]) 

= I  (T"(x 'Lp))2to(x)dlz+Is  (T"(x'Lp))2W3(x)dI~ 
Lp (~)-Lp 

+Is (r.(x. L,))2W2(x) cl~ 
(~)-Lp 

= I :+  I2+/3,  

Now I 1 -  (A + %)2. (properties (b) and (h)). 
Next we have 

f Wl(x) a~ 12_<2 2" 
J S  O,)-Lp 

-< c22" I ~ Xrk(xl( tz(Kk)l- ' ( (A/2)  2=~-' -(A/2) 2"k) d/~ 
~-_ -- k=l t-Jk p+3(Kk Kp+ 2) 

(property (g)) 
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= c22" ~ I~(Kk-Kp+2)(tz(Kk))-'((A/2) 2:k-'-(A/2)2:Q 
k=l 

<--c22" ~ ((A/2)2"k-;-(A/2) 2sk) 
k =p+3 

= c22"(A/2)2sp+2 

--< CA 2sp+2 

< CA 2n. 

Finally, 

/3 -- 2 2" f W2(x) d/z 
ds (~)-Lp 

<-c22"ft d ~ X 
~.l(Ak--Ak_l--Lp) p = l  tp_t<n~t p 

~ p = l  tp_l<n<--tp 

<< C2 2n ~ n -2  
n = tp+2 + t 

<- c22n(A/2)2'~§ (property (e)) 

C A 2 ~  +2 

< CA 2n. 

(property (f)) 

Thus N2(v) - (1 +2c)(A + ep) 2n, and hence l-~._,oo An(v) - h. 
By Lemma 3 it remains to show that 

li-"m IP~(x, v)l ~/n <- h for x ~ U Y[p. 
n ~  P = I  

oo 
However, if this is false there exists some positive number e, some x ~ Ue=l  ~p, 

k and an increasing sequence of positive integers { .}.=: such that IPk.(X, v)l> 
(A + e) k" (n = 1, 2 . . . .  ). Then, if n is sufficiently large and tv_l < kn -< tp, 

Nk~ ( v) >-- c( cp, ko)ll Pko (x, - c(1 - ep)k.(A + e) zk. 
(property (d)) which when n tends to infinity leads to the contradiction of the 
inequality above. 

Finally, lim,_,ooA~(v)_>A follows from the additional fact that for monic 
polynomials P,(z) of degree n and compact sets K, IlP,(z)[]r >_(C(K)) n [4, 
p. 62]. �9 

4. Proofs of Lemmas 

Proof of Lemma 2. For the regular compact set ~c let 

5~ = {x e C: there exists y ~ if/" such that tx -Yl --< 8}. 
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Let G(z, f l)=log(C(5()-~)-U(z,  lzx) be the Green's function for fl, the 
unbounded component  of  the complement of 2~, and let Gs ( f l )=  max(G(z, fl)) 
over ze~8.  We demonstrate first that there is a sequence { d . } . ~  with 
lim._.~o(dn) ~/" = 1 such that 

IlP'(z)ll~,,. -< d.llP.(z)ll~ 

for a polynomial Pn(z) of  degree n. 
Let z e ~ / .  and let C be the circle of radius 1In centered at z. From P'(z)= 

(2~ri)-' Sc P . ( t ) ( t -  z) -2 dt it follows that IIpX(z)ll~,,.--- nllP.(z)ll~2,.. 
By the maximum principle loglP.(z)[- nG(z, fl) <- logllPn(z)l]~ for z e 1~, 
and hence tlP~(z)lt~2,. <-(exp(G2/~(fl)))"HPn(z)llx from which we obtain the 
desired inequality with d. =n(exp(G2/n(fl))) n. The regularity of ~ implies 
lim...oo(d.) 1/n = 1. 

Next, assume tP~(zo)l=llPn(z)ll~ for some Zoe~. From P . ( z ) =  
+ z Pn(zo) Szo P'(t)  dt it follows that for z satisfying I z -  Zo]---8. with 8. = (2d.) -~, 

t e .  ( z ) l -  I P. (zo)l-  Iz - Zo[ II P'(z)l l~, , .  

-> II Pn(z ) l l~ (a - Iz -zo ld . )  

- (1/2)llP~(z)ll~. 
Let xj = -1  +j(Sn/2) ,  and let m, = [ 4 / 8 , ] +  1 (integer part). Le t / j  = [xj_~, xj], 

so S(/z) c 11 ~ "  �9 ' w I,~. Let Ik, k = 1, 2 , . . . ,  k,,, kn -< ran, denote those intervals 
/j which intersect ~,  and let Xk ~ ~Ca Ik. Let Ak be a compact subset of  B c~ 
N(s~ with /~(Ak)>0. Hence, if x ~ ,  then X~Ik for some k, so that for 
any y ~ Ak, Ix --Yl <-- Ix -Xk[ + ]Xk --Yl <-- 8,. 

NOW let An = A~ w.  �9 �9 w Ak~, let 

k 

"rn(X)=(n2kn) -1 E Xak(X)(Id'(mk)) -1, 
k = l  

and let c, = (4n2k,) -~. �9 

Proof of Lemma 3. Assuming (i) it follows from the lower envelope theorem 
[3, p. 85] that 

U(x, t.Ls) <- lim U(x, v~(u)) = lim loglPn(x, u)l -~/n, 
n --~ oo .--~oo 

where strict inequality is possible only on a set Z~ of  capacity zero. Then 

li-'--m ]P,,(x, v)l l /"=A for x ~ B * - Z 1 ,  

where 

U(x,/xB) = log(A-l) for x ~ B* c B, C(B*) = A. 

Assuming (ii) we have 

lim U(x, vn(u))>log(A -1) for xeB*.  
n --~ oo 

Let Vo be any weak limit of  a subsequence of  { u , ( u ) } ~ ,  say lim~_.~ u ~ (u )=  ~o. 
It then suffices to show that Uo =/z~[5]. 
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By the lower envelope theorem U(x, Uo)---lirnn_.oo U(x,u~ n) where strict 
inequality is possible only on a set Z2 of  capacity zero, and hence U(x, Vo)>- 
log(A-l) for x c B* - Z2. Let Kn (n = 1, 2 , . . . )  be compact subsets of  B* - Z2 such 
that Kn c Kn+l, C(Kn) > 0, and limn-~oo C(Kn) = A. Let/~n denote the equilibrium 
measure for K, ,  and let 

Vn(X) = ( U(x, tZn)- I o g ( C ( K n ) - ' ) ) - ( U ( x ,  v0)-  log(A-')).  

Observe that Vn(X)<-O for x~ B*-Z2.  Also, v,,(x) is harmonic and bounded 
above on C - (Kn w S(vo)) since limx_,oo( U(x, ~n) - U(x, Vo)) = 0. By upper semi- 
continuity limx-.xo vn(x)<-0 for x ~ C - ( K ,  u S(vo)) and Xo in the boundary of 
(K,, w S(vo))- Z2, and hence, by the generalized maximum principle [4, p. 77], 

v,(x)<-O for x~C-(K, ,wS(vo)) .  

Let tXo be any weak limit of a subsequence of {/zn}~~ ~, say limn_.~ p.,, =/Zo. Then 

U(x,/Zo) - lim U(x,/~,~ --- lim log((C(K,.)) -1) = log(A-l) 
n - - ~ o o  n - ~ o o  

for all x with equality holding on ~-]n~--1 Kn - Z 3 ,  C(Z3) = 0. It then follows from 
the uniqueness of an equilibrium measure that/Zo =/zB, and hence limn-.oo/z, =/zB, 
and 

lim U(x, /zn)= U(x, lxB) for x c C , I .  
n --~ or3 

Thus it follows that for x ~ C - I  the bounded harmonic function U(x, ~B)-  
U(x, Uo) is nonpositive, so by the maximum principle U(x, ~B) = U(x, ~'o) for 
x ~ C - I, and hence/zB = Vo [4, pp. 34, 50]. �9 

5. Some Related Results and Some Open Questions 

If  we let h,( /z)  = (Nn(tz)) 11", then we have the following results: 

(a) ([5], [9]). _C(/~) < limn-.~o A,(g)  < l']mn-,~ An(g)-< C(g) .  
(b) ([7]). {h,(~)},~176 need not converge if _C < C. 
(c) ([7]). The limit point set of {hn(/z)},~o is a closed interval. 
(d) ([8]). For any [ a , / 3 ] c  [_C, C] there exists a carrier related measure v such 

that the limit point set of {hn(V)}n~176 equals [a,/3]. 

Thus if _C = r l im,~o An = r and if C_ < C no further information can be 
obtained about the norm behavior from measurements on the carriers. 

Thus the relationship between the carriers of a weight measure and the norm 
behavior is completely settled, and we look at the weak limits of zeros of 
orthogonal polynomials. In the light of the result of  the present paper we have 
the following open questions: 

(a) If _C > 0, is every weak limit the equilibrium measure of a carrier? 
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/.~ oo 
(b)  I f  {A,(v)},~176 conve rges  to A, _C<A < (~, does  {v , (  ))~=l c o n v e r g e ?  
(c) H o w  can  the  w e a k  l imi ts  tha t  arise f rom one  m e a s u r e  ~ be  cha rac t e r i zed?  
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