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Abstract. High-precision measurements of the cross section, the vector analyzing
power iT;, and the three tensor-analyzing powers T,,, T,, and T,, of the
*He(d, p)*He reaction have been performed in the energy range between 1.0 and
13.0 MeV in steps of 1 or 2 MeV. Angular distributions of the cross section have
been obtained between 22.5° and 157.5° in the laboratory system. The polariza-
tion observables have been measured between 10° and 170°.

1 Introduction

The investigation of the nucleon-nucleon (N-N) interaction and its application to
few-nucleon systems are fundamental tasks in nuclear physics. Theoretical models
use as testing grounds preferably nuclear reactions involving few-nucleon systems.
In general, differential cross-section data mainly reflect the features of the central
force, while from polarization observables mostly the details of the spindependent
interactions are extracted. At low energy polarization effects are very small in N-N
scattering. However, in few-nucleon systems it is found that polarization observables
can increase by one to two orders of magnitude. The complexity of the structure
of few-nucleon systems with A > 3 is increased by the existence of resonances.
The possibility of measuring polarization observables to a very high precision
allows one to detect in an analysis of these data also tiny effects in the underlying
interactions.

In the past, the five-nucleon systems He and °Li have been the subject of many
experimental and theoretical studies [1-10]. Basically there exist only two con-
figurations with a two-cluster structure, the 4 + 1 and the 3 + 2 configuration. Since
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the simplest 4-nucleon cluster, the a-particle, is very stable and also the 3-nucleon
systems have a high binding energy the most probable three-cluster structure has a
3 + 1 + 1 configuration. The 4 + 1 configuration has been extensively investigated
by elastic p-a scattering [1] up to fairly high excitation energy and partly by n-o
scattering [ 1]. The phase-shift analyses of these data have successfully clarified the
corresponding p-« structure in this nucleus. Compared with these results the d-*He
clustering is not so well known, since the 3 + 2 configuration was studied sys-
tematically by the d-*He elastic scattering only for incident deuteron energies
smaller than about 14 MeV [11, 12]. The configurations of the five-nucleon system
at higher excitation energy can be investigated effectively by the *He(d, p)*He
reaction. This reaction also has the advantage that the tensor interaction plays an
important role due to the deuteron in the incident channel. Information about
the processes and configurations involved can be gained not only by the differ-
ential cross section and the vector polarization but also by the tensor polarization
observables.

The d-3He entrance channel leads to a highly excited °Li nucleus. This en-
trance configuration of the compound nucleus transforms into a *He + p exit-
channel configuration, which releases a high amount of energy. The Q-value of the
SHe(d, p)“He reaction is + 18.35 MeV. The theoretical treatment of this reaction is
facilitated, since neither the 3He nor the 2H cluster in the entrance channel have
excited states and therefore no internal excitation of these single clusters in this
configuration has to be taken into account. In the exit channel only highly excited
states in “He exist, which have a weak excitation probability. Therefore model
calculations are relatively simple and can concentrate on the aspects of the more
interesting N-N interactions in a few-nucleon system.

The 3He(d, p) “He reaction is also known as an analyzer reaction for deuteron
polarimeters, since not only the vector-analyzing power but also all three tensor-
analyzing powers have high values over a large energy range. They all are smooth
and therefore allow for thick targets in a polarimeter, such that the deuteron
polarization components can be determined accurately even in double-scattering
experiments.

For these reasons we have measured the vector- and tensor-analyzing powers
as well as the cross section of the 3He(d, p)*He reaction in the energy range between
1 and 13 MeV in small energy steps. Nearly complete angular distributions of these
observables have been determined. The new data have a much higher precision than
previous results [13], due to better statistical accuracy as well as better absolute
calibration.

2 Experimental Method
2.1 Measurement of the Differential Cross Section a(0)

The measurement of the cross section was performed with an unpolarized beam.
The cross section o(f) is given by the ratio of the number of emitted protons N, to
the number of incident deuterons N, the target density n,, and a geometrical factor
G/sin 6,

N, sinf

r . 1
Nyn, G (1)
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The quantity G was calculated for our detector system via the formalism of Silver-
stein [ 14]. The number of protons N, was determined from the spectra of detectors
symmetrically positioned on the left and the right. The number of incident deuterons
N, was measured in the Faraday cup, which was connected to a current integrator.
The target density n, was determined by the measurement of the pressure and
temperature of the gas target.

2.2 Measurement of the Analyzing Powers

In the helicity frame of an atomic beam-type polarized ion source the polarization
of the produced deuterons is described most conveniently by the vector polarization
f,, and the tensor polarization 7,,. These source parameters refer to the direction
of the magnetic field in the ionizer of the source, which is parallel to the momentum
of the extracted beam. A nuclear reaction induced by an accelerated beam can be
described in a target coordinate system as shown in Fig. 1. Here the z-axis points
along the incident-beam momentum k., y is along the normal to the scattering
plane n = k;, x k.. The spin-alignment axis s makes an angle « with k,, and the
projection of s onto the xy-plane has an angle § with respect to n.

In this target coordinate system (cf. Fig. 1) the spin-dependent cross section for
a nuclear reaction with polarized deuterons is given by

: . 1 A
o(®) = 00(@))-{1 + \/ism a-cos f-tyo-1iTy, +§(3 cos? o — 1) 150" Tho

3 . - A 3 . A
+ \/ism 200-8in 1,4 Th, —\/551112 - coS 2[3'{20-7“22}, 2

where the analyzing powers T,, are denoted after the Madison Convention [15]. In
the present work the four analyzing powers T,, are measured in four separate runs
where the direction of s is chosen by the angles « and § such that the experimental

Fig. 1. Target coordinate system
for the description of the incident
polarized beam. The momentum of
the incident beam k,, is along the z-
direction
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errors are minimized. These spin angles could be set to the desired values by a Wien
filter, which can be rotated around the beam axis, mounted between the polarized
ion source and the tandem accelerator.

The three rf-transitions in the neutral atomic beam of the source allow to change
between positive and negative values of the beam polarization. In Table 1 the three
rf-transition configurations are shown. Switching between configuration b and ¢
changes the sign of the source parameters £, , and f,, and switching between d and
e changes the sign of the purely vector-polarized beam. The sign changes which
occured about every second were controlled by the target current integrator col-
lecting a preset amount of charge for every polarization state. In the computer the
spectra for both polarization states were stored separately. The rf-transitions were
tuned carefully in order to obtain the same absolute value of the polarization for
both signs. For each scattering angle ® a pair of detectors was mounted in the
horizontal plane, one on the left-hand side with a spin-rotation angle § and the other
on the right-hand side at the same angle ® and the spin-rotation angle § + . From
these two detectors and the negative and positive beam polarization four counting
rates N;, Ny, Ni, Ni are obtained, from which the ratios L and R—for the left
and right detectors, respectively—can be calculated, both being independent of the
solid angles,

NE——NE : ) . 1 2 A
LZZ_V+—+7V__= + 2smoc-cosﬁ-t10-zT11—|-§(3cos oa— 1)1, Tho
L L
5 3 A
+ Esm2<x-smﬁ-t20-T21—— 5 Sin o cos2B-t,5° 1,5,
Np — Ny ) A 1 .
=-ﬁli—‘+—NRt= - ZSlncx-cosﬁ-tm-iTu+§(30052a—1)-t20~T20
R R

3 N 3 .
—\/%smm'smﬁ-tzo-Tzl——\/zsmzoc-cos2ﬁ~t20-T22. (3)

From these ratios one can determine the sum

L+ R
2

which depends only on the even analyzing powers T,, and T5,.
For a = 0° the term with T,, vanishes and for o = 90° and = 0° or 90° this
term will reach its maximum.

1 A . A
= E(3 cos® o — 1) 1,0 Tho —\/% sin® o-cos 28150 T, s 4)

Table 1. Configuration of rf-transitions

256 355  Weakfield 7, to
a Off off Off 0 0
b  Off On On ~1,4/6  +1/2
¢ Off On off +1/6  —1//2
d  On On Off +J23 0
e Off off On ~J23 0
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The difference

L - R . A 3 . . A

5= 2-sino-cos B-t;oiTy, + \/ism 200-8in -ty Toy %
depends only on the odd analyzing powers T,, and iT; ;.

For f# = 90° the term with iT;, will vanish and the term with T,, will reach the
maximum for o = 45°. On the other hand the term with iT; ; will have the maximum
value for f = 0° and o = 90°.

From these considerations it is concluded that the optimal choice of « and f for
determining all four analyzing powers with the aid of Egs. (4) and (5) is

OCZOO: 2O=f

6 =90°%8=90% T,,=

—— 4+ ——="Ty, (withknown T,,),
6

a:450,ﬁ:900: T21 = ' 5

o =90°p=0° iT,, = ————— (withpurely vector-polarized beam).

(6)

If the spin-direction angles « and f deviate from the correct values by Ax and Ap,
the following errors for the T,, are obtained,

3 3
AT20=2—Aoc2'T20+\/icos2ﬁ'Acx2-T22,
1 2 2 g 2
AT22: EA(X +2Aﬂ .EZ— EA(X '7-'20,
1 2
AT, = <2Aoc2 + iA/%Z)- Ty + —\é——(Aﬁ + Aa AB)-iT,,,

1

All terms in Ao are quadratic and therefore in the worst case, i.e., for all T;, maximal,
an error of about 0.0025 is obtained for a value of Ax = 2°. This means that a
determination of o + 2° is sufficient for an accuracy in T;, of magnitude 0.0025. The
same is true with respect to the angle f, except for T;,: In this case there exists a
term with Af-iT;,, which is only linear in A, and therefore requires Af < 1° for
an error smaller than 0.0025 in T, .

In conclusion the advantages of this method are the following:

(a) Since only two detectors in one plane are used, it is easier to measure at
extreme forward and backward angles or to measure more scattering angles
© simultaneously than with a device with four detectors in two planes.

(b) The measurement is independent of the ratio of the solid angles of both
detectors.
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(¢) For an accuracy of T;, of the order of 0.0025, a determination of the spin-
direction angles « and f to only * 2° is sufficient. However, the same
accuracy for T,, requires an accuracy of f better than + 1°.

(d) The statistical accuracy of the measured T,, is better for a measurement
changing the sign of the beam polarization than for a measurement com-
paring only the polarized and unpolarized beams.

3 Experimental Arrangement
3.1 Polarized Beam

The measurements of the cross section and the analyzing powers were carried out
with the polarized deuteron beam from the ETH EN tandem accelerator. The
polarized ion source [16] was based on the atomic beam method with rf-transitions
in the neutral beam followed by an ionizer and a charge exchanger. A beam-rotation
device (Wien filter) oriented the spin in the direction that was optimal for the
determination of the analyzing power under consideration (cf. Sect. 2). After ac-
celeration by the tandem accelerator the beam was analyzed in a 90° magnet, then
deflected by a 15° switching magnet, finally sent through two tantalum collimators
5 and 3 mm in diameter spaced 30 cm apart. The first collimator consisted of four
sectors, where the beam intensity hitting the sectors could be measured. The final
collimator was cut in half (left and right) and the two segments were isolated from
ground and from each other. This arrangement enabled the control of the focussing
of the beam entering the *He gas target.

3.2 Scattering Chamber

The measurement of the observables was performed in a scattering chamber 75 cm
in diameter. The polarized beam entered through the collimator system into the *He
gas target and was collected in a Faraday cup equipped with an electrostatic
suppressor electrode. The emitted protons were collimated by a rectangular-slit
system with antiscattering baffles placed between the defining apertures. The first
slits were 2 mm wide, at a distance of 48 mm from the target center, the second slits
were located on a radius of 244 mm. Their widths were 4 mm, the heights were
nominally 38 mm, which could be reduced for forward angles. These slit apertures
were machined to within 0.02 mm of the nominal values. The angular resolution is
A® = 4 0.5° (FWHM). A pair of two slit systems, each having four detector
positions spaced by 5°, was used in the present experiment. The slit systems were
mounted on two turntables located symmetrically around the direction of the
incident polarized beam. Thus the 4 detector pairs covered an angular range of 15°
on the left- and right-hand sides, what allowed the measurement of four asymmetries
simultaneously. A total angular range between 10° and 170° could be measured with
this setup. The turntables could be adjusted remotely controlled to the desired
position to within 0.1°,

3.3 Gas Target

The gas target was a cylinder 16 mm in diameter having a beam-entrance window
5 mm in diameter and an exit aperture 6 mm high ranging from — 135° to + 135°.



Investigation of the 3He(d, p)*He Reaction Between 1 and 13 MeV 171

Rotation of the target by 180° opened the corresponding backward angular range.
The entrance and exit windows were made of 2.5 um thick Havar foils glued in place
by means of an epoxy resin. The target contained 1.5 bar *He gas with a purity of
99.9%.

3.4 Detector System

The emitted protons from the reaction were measured by silicon-surface barrier
detectors with a sensitive area of 10 x 40 mm. These detectors were 1 mm thick
stopping protons of up to 12 MeV completely. Aluminium absorbers were used in
order to reduce the energy of the protons from the reaction and to stop other
reaction products completely, e.g., the elastically scattered deuterons.

3.5 Beam Polarimeter

The tensor polarization of the deuteron beam was monitored continuously in a
polarimeter. This device is based on the *He(d, p) *He reaction too. A *He gas cell
was mounted at the end of the Faraday cup. The emitted protons were measured
at an angle of 0° with a circular detector subtending an effective angle A® < 1°.
While the deuterons from the primary beam were stopped in the back wall of the
gas cell the protons passed through and were detected in a CslI scintillator. For a
scattering angle of 0° the polarimeter was only sensitive to the t,, component of the
beam. The counting rate N in the detector is given by

N* = Ny[1 + 5,0 T50(0°)] = No[1 £ 5(3 cos? & — 1)i,0 T5(0°)1, (8)

where N, is the counting rate for an unpolarized beam. By switching the beam
polarization between + and — values the corresponding counting rates N* and
N~ of the protons in the polarimeter detector allowed the determination of the value
of the beam polarization,

-1 N+ — N~

R 1
fho = [5(3 cos? o — I)TZO(OO)] NI 9)

The analyzing power T,,(0°) is smooth over a large energy range and has been
determined in refs. [17, 18]. A typical tensor polarization of f,, = 0.59 correspond-
ing to 83% of the theoretical maximum was observed.

The polarization of the vector-polarized beam was determined from the calibra-
tion iT,; of the *He(d, p) *He reaction at 10 MeV [19]. A typical value of the vector
polarization is it;; = 0.42, i.e. 82% of the theoretical maximum.

3.6 Electronics

The signals of the eight silicon detectors were amplified by preamplifiers and
spectroscopy amplifiers and passed through an analog multiplexer, ADC, and
Camac-buffer into a PDP15 computer. After a preselected charge measured in the
current integrator the sign of the beam polarization was changed. This guaranteed
that the number of incident deuterons was the same for both polarization states.
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For the correction of the deadtime the measurement and the current integrator
were stopped during the processing of the signals in the ADC and the computer.
The dead time in the ADC was kept below 59%,.

The spectra of the single detectors were analyzed on-line. Typically a back-
ground of about 19, was observed below the proton peaks, which was approximated
by a linear function and subtracted from the total number of counts in the peaks.

4 Results
4.1 Cross Section

New measurements of the differential cross section were performed at E; = 1, 2, 12,
and 13 MeV. These angular distributions were measured between 6,,, = 22.5 and
157.5° in steps of 5°. The measurement was carried out partially in overlapping
configurations in order to assure the consistency of the results. The results are shown
in Figs. 2 and 3 together with earlier cross-section measurements from our labora-
tory [13] in order to give a survey of the behaviour of this observable as a function
of energy. The statistical errors for all results are smaller than 0.7%, and therefore
smaller than the data points in Figs. 2 and 3. The curves are Legendre-polynomial
fits to the data. Numerical values of the new data are given in Table 2. The
total cross section a,,/4n, which is equal to the Legendre-polynomial coefficient
Gg0(0), is shown in Table 3. The normalized higher Legendre-polynomial coefficients
doo(L) = ago(L)/aye(0) are given in Table 4.

4.1.1 Systematic Errors

The systematic errors are listed in Table 5. The error in the geometry facter G
includes all uncertainties in the dimensions of the slit systems and the diaphragms
in front of the detectors. Changes in the beam position result in a change of the solid
angle of the slit system. In first approximation this effect cancels out, since both left
and right detectors are used for the determination of N,,.

The remaining uncertainty in the cross section is

Ac/o = (AR/R sin )2, (10)

where R is the distance between target and detector. For an estimate of this value
in Table 5 an unrealistically large AR = 0.5 mm was assumed. As can be seen in
Table 5 the resulting uncertainty is still very small. The density of the target was
determined by the pressure and temperature of the target. For the uncertainty of
the density the corresponding errors in these quantities were taken into account.
The purity of the *He target gas was better than 99.9 mol%;. The target volume was
flushed several times before the final filling.

From the analysis of the spectra the background was found to be typically 1%.
The total uncertainty in the analysis is given in Table 5.

4.1.2 Absolute Calibration

In general the uncertainty in the absolute calibration of the differential cross section
is included in the systematic error of Table 5. However, because of difficulties in the
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Fig. 2. Differential cross sections of the *He(d, p) “He reaction between 1.0 and 7.0 MeV. The curves
are Legendre-polynomial fits

measurement of the absolute beam intensity at E; = 1 and 2 MeV these data were
normalized by the results of Neng-Ming [20] at an angle of 6,,, = 90°. These
problems appear due to the loss of deuterons caused by the scattering in the windows
of the gas target at these low energies. The uncertainty of the absolute value at 1



174 Investigation of the 3He(d, p)*He Reaction Between 1 and 13 MeV

0° 30° 60° 90° 120° 150° 180° O° 30° 60° 90° j20° 150° i80Q°

15 T T T T T T T T T 15
mb mb
st 8.00 MeV i1.50 MeV =

0 | 4k H10

5 4 5

o { ! ! L 1 ! ! [ ! 0

15 T T T T —T T T T T T ]

9.00 MeV 12.00 MeV

10+ .

g

0 a4 ! 1 L ! ! ! L ! o
15 I T LE— T T T R E— 15
10.00 MeV 13.00 MeV
]
- 10
- 5
o L L L L L ! 1 ] I 0

0° 30° 60° 80° 120° 150° 180° O° 30° 60° 90° 120° 150° 180°
ecm Gcm

Fig. 3. Differential cross sections of the 3He(d, p)*He reaction between 8.0 and 13.0 MeV. The
curves are Legendre-polynomial fits

and 2 MeV is therefore about 6%. Losses of protons due to interactions in the silicon
detectors are negligibly small at the energies in this experiment. Proton contamina-
tion in the primary beam due to deuteron disintegration by the collimator is
discriminated in the detectors by the high Q-value of the *He(d, p) “He reaction.



Table 2. Differential cross section in mby/sr

1.0 MeV 2.0 MeV 12.0 MeV 13.0 MeV
0., (deg) do/dQ 0., (deg) do/dQ 0., (deg) do/dQ 0., (deg) do/dQ
24.1 37.61 24.7 12.10 27.3 3.66 274 3.35
294 36.76 30.2 12.16 33.2 2.37 334 2.06
34.7 37.61 356 11.82 39.2 2.06 394 1.87
40.0 37.68 41.0 11.59 45.1 2.52 453 242
453 3641 46.4 11.44 50.9 3.26 51.2 3.23
50.6 37.11 51.8 11.33 56.7 3.84 57.0 3.86
55.8 37.15 57.1 10.85 624 4.23 62.7 4.17
61.0 3591 62.4 10.81 68.0 4.14 68.3 4.08
66.2 3641 67.6 10.75 73.6 3.76 739 3.65
71.5 36.30 72.9 10.58 79.1 3.15 79.4 295
76.5 35.70 78.0 10.58 84.4 2.52 84.8 2.27
81.6 36.06 83.2 10.25 89.7 1.94 90.1 1.69
86.5 3595 88.3 10.21 94.9 1.54 95.3 1.36
91.7 35.21 93.3 9.90 100.0 1.38 100.4 1.23
96.7 35.35 98.3 9.86 105.0 1.39 105.4 1.29
101.5 34.96 103.3 9.84 109.9 1.60 110.3 1.53
106.6 34.68 108.2 9.72 114.7 1.89 115.1 1.84
111.5 35.00 113.0 9.69 1194 2.17 119.8 2.13
116.5 35.17 117.9 9.76 124.1 244 1244 2.36
121.2 34.19 122.6 9.70 128.6 2.63 128.9 2.50
126.0 34.79 127.4 9.73 133.0 2.80 1333 2.62
131.0 34.19 1321 9.76 137.4 2.93 137.7 2.68
135.6 33.98 136.8 9.53 141.7 3.05 142.0 2.72
140.0 34.08 141.4 9.66 145.9 3.17 146.2 2.88
145.0 3345 146.0 9.70 150.1 341 150.3 3.07
149.8 34.29 150.6 9.59 154.2 3.67 154.4 3.30
154.5 33.94 155.2 9.77 158.2 3.98 1584 3.67
159.0 33.02 159.7 9.73 162.3 4.30 162.4 4.04

Table 3. Total cross section

Ot /4T = a0 (0) in mb

E; (MeV) /4T
1.0 35.55 £ 007
2.0 10.42 + 0.02
2.8 6.60 + 0.01
4.0 548 +0.02
5.0 5.13 £ 0.02
6.0 498 + 0.02
7.0 4.54 £ 0.02
8.0 4.19 + 0.02
9.0 3.76 £ 0.02
10.0 3.46 £ 0.02
11.5 3.08 + 0.02
12.0 3.00 £ 0.01
13.0 2.85+ 001
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Table 4. Normalized Legendre polynomial coefficients dgo{L) = app{L)/a40(0) from the analysis of the
differential cross section

E; (MeV) doo(1) doo(2) doo(3) doo(4) dyo(5)
1.0 0.0579 (33)
2.0 0.1261 (30) 0.0644 (40)
2.8 0.1693 (30) 0.1861 (41) 0.0490 (53) 0.0365 (59) 0.0459 (67)
4.0 0.2663 (74) 0.5025 (120) 0.1607 (138) 0.1264 (174) 0.1530 (168)
50 0.3099 (84) 0.7051 (113} 0.1923 (152} 0.1757 (160) 0.2408 (183)
6.0 0.3325 (69) 0.7366 (101) 0.1620 (119) 0.2292 (140) 0.3524 (127)
7.0 0.3154 (79) 0.7095 (108) 0.1296 (141) 0.3299 (145) 0.5051 (167)
8.0 0.2739 (100) 0.6823 (162) 0.0486 (185) 0.4206 (219) 0.6109 (208)
9.0 0.2708 (128) 0.6691 (181) 0.0101 (250) 0.4674 (250) 0.7268 (279)
10.0 0.2485 (97) 0.6384 (156) —0.0879 (175) 0.4536 (203) 0.7489 (196)
11.5 0.2728 (127) 0.6068 (205) —0.1350 (221) 0.4250 (260) 0.8218 (250)
120 0.2742 (68) 0.5996 (109) —0.1715 {120} 04174 (139) 0.8291 (132}
13.0 0.3082 (74) 0.5989 (118) —0.1747 (128) 0.4182 (148) 0.8705 (142)
E; (MeV) doo(6) doo(7) doo(B) dgo(9)
4.0 0.0781 (188) 0.0391 (154) 0.0295 (155)
5.0 0.0998 (154) 0.0189 (154)
6.0 0.1255 (130)
7.0 0.2102 (141) 0.0403 (141)
8.0 0.3306 (232) 0.0765 (185) 0.0495 (182)
9.0 0.4462 (247) 0.1321 (268) 0.0547 (199) 0.0303 (191)
10.0 0.5505 (222) 0.1257 (180) 0.0735(177)
11.5 0.7070 (280) 0.1408 (228) 0.0537 (244)
12,0 0.8001 (151) 0.1678 (120) 0.0979 (116)
13.0 09312 (162) 0.1933 (129) 0.1201 (124)

Table 5. Systematic errors

Geometry factor AG/G 1.2%
BReam position changes As/o < 0.013%
Density of the target gas 0.2%
Analysis of the spectra 0.5%
Charge determination (current integrator) 0.5%
Total systematic errors 1.3%

4.2 Analyzing Powers

Angular distributions were measured for the vector-analyzing power i1}, and the
three tensor-analyzing powers T,q, T, and T,,. This investigation was performed
at 1 and 13 MeV and between 2 and 12 MeV in steps of 2 MeV. The angular range
of these measurements extended from 6,,,, = 10° to 170° in steps of 5°. The statistical
errors of the results vary between 0.004 and 0.009. The results are presented
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in Figs. 4 to 7. The data points in these figures are larger than the statistical
errors. The curves are Legendre-polynomial fits. Numerical values of the data
are given in Tables 6a to 6 h. The normalized Legendre-polynomial coefficients
diy(L) = a,(L)/ay(0) are presented in Tables 7a to 7d.

o° 30° 60° 90° 120° 150° o° 30° 60° 90° 120° {50° 180°
0.2 T T I T T T T T T 0.8
I Mev {0 MeV
O P S B e e P S ¥ '. - { — 0‘6
| | 1 | |
T T T T T n N 0.4
02 -2 MeV 7
_ L 402
M o ity Lot .
e ‘ L ' + a —+ ' o Iy
04 T T T T T
4 Mev —-0.2
02 - —
i > - H-0.4
o 1 1 —1
<+ ~
i Los
.02 1 I I 1 |
06 ! T T H T
6 Mev
04 W
02 |- N
0 ——t—+ | —
-02 - T
04 -
1 | 1 1l I
08 T T T T T
8 MeV
06 o
04 .
02 _
0 + f y —t
-02 - 4 F 404
-04 |- 4 - o2
-06 - - : % F——t—t o
| I | | !
0° 30° 60° 90° 120° 150° 180°L do2
cm
= d04
H —-06
1l 1 1 ] ol .08
0° 30° 60° 0° 120° 150° 180°
Bem

Fig. 4. Vector-analyzing powers iT;; as a function of scattering angle between 1.0 and 13.0 MeV.
The curves are Legendre-polynomial fits
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Fig. 5. Tensor-analyzing powers T,, as a function of scattering angle between 1.0 and 13.0 MeV. The
curves are Legendre-polynomial fits
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curves are Legendre-polynomial fits
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Fig. 7. Tensor-analyzing powers T,, as a function of scattering angle between 1.0 and 13.0 MeV. The
curves are Legendre-polynomial fits

4.2.1 Finite-Size Corrections

The finite size of the solid angle given by the slit system and the diaphragms may
require a correction in the analyzing-power results. This problem is particularly
critical for the extreme forward and backward angles. For the determination of the
quantities T, from the detector counting rates, values of the beam polarization ¢,
are used which correspond to a point geometry of the detectors. In reality, however,
the diaphragms in front of the detectors have an extension + A¢ in direction of the
aximuthal angle ¢. A deviation A¢ corresponds to a rotation of the normal of the
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Table 7a. Normalized Legendre-polynomial coefficients d; (L) = a{L)/ay,(0) from the analysis of
the analyzing power iT;

E4 (MeV) dy(1) d,(2) d;(3) d;(4) dy4(5)

1.0 —0.0379 (25) ~0.0124 (16) —0.0058 (11)

2.0 —0.0750 (31) —0.0705 (19) —0.0304 (15) 0.0013 (13)

2.8 —0.0643 (85) —0.0400 (55) —0.0621 (42) 0.0067 (36)

4.0 —0.0378 (16) 0.1298 (13) —0.0936 (9) 0.0345 (9)

50 —0.0008 (62) 0.4037 (43) —0.0940 (39) 0.0718 (27) —0.0059 (27)

6.0 0.0384 (22) 0.6227 (19) —0.0756 (14) 0.0678 (12)

8.0 0.0227 (19) 0.7681 (18) —0.0109 (14) 0.0585 (12) 0.0180 (10)
10.0 —0.0669 (21) 0.7243 (17) 0.0351 (13) 0.0553 (12) 0.0403 (10)
115 —0.1054 (78) 0.6094 (59) 0.0852 (46) 0.0592 (39) 0.0546 (39)
12.0 —0.1775 (26) 0.6186 (21) 0.0583 (17) 0.0569 (16) 0.0633 (13)
13.0 —0.2107 (20) 0.5561 (17) 0.0681 (14) 0.0651 (13) 0.0749 (11)
E; (MeV) dy1(6) dy1(7) dy;(8)

5.0 —0.0020 (27} 0.0082 (23)

8.0 0.0057 (9)

10.0 0.0065 (9)

115 0.0124 (39) —0.0046 (33) —0.0098 (33)
12.0 0.0100 (13) —0.0024 (12) 0.0017 (10)
13.0 0.0159 (10) —0.0008 (9) 0.0021 (8)

scattering plane, which changes f in the target coordinate system. In a scattering
plane rotated by an angle ¢ around the beam axis z the effective value of the
components of the beam polarization changes by the factor cos(g- ),

Re(ti,(B)) = cos(q- B)- Re(,,(0%)), (11)

where g refers to the corresponding index in t,,. The maximum value of A¢ is given
by the height s of the diaphragm, the distance R between target and detector, and
the scattering angle 6,,,,

A¢ = arctan 3 Rosinf (12)

The effective polarization <t,, ) is obtained by the average over ¢ in the limit of + Ag,
sin(q - A¢)

(g =TA¢—'tkq=(1 — C) tyys (13)

with C as a correction factor (cf. Table 8). No correction is required for ¢,,, since
this component is independent of the azimuthal angle.

Another correction has been made for extreme scattering angles 6 due to the
finite height of the detectors. At forward angles this height was smaller than at larger
angles. This leads to corrections smaller than the uncertainty of the angular setting
of 0.1°. The corrections for the present geometry and the different observables are
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Table 7b. Normalized Legendre-polynomial coefficients d,o(L) = a,0(L)/d0(0) from the analysis of
the analyzing power T5,

E;(MeV)  d5(0) dyo(1) d30(2) d10(3) d30(4)

1.0 0.0085(10)  —0.0986(15)  —0.6110(22) 02525(23)  —0.0657 (28)

2.0 —00067 (10)  —02501(16)  ~0.5234(22) 0.3853(26)  —0.2220(29)

2.8 —~00108 (30)  —0.3534(45)  ~0.5359 (65) 02349 (76)  —0.3616 (91)

40 —00351(14)  —04716(36)  —0.6675(54)  —02152(71)  —0.6558 (75)

50 —00445(33)  —0.5041(62)  —08294(86)  —04768(111) —0.8354(119)

6.0 ~00818(12)  —0.5129(30)  —08656(44)  —0.5673(52)  —0.8901 (56)

8.0 —0.1459 (17)  —0.5668(45)  —0.6920(70)  —0.6286(86)  —0.8089 (98)
10.0 —0.1650(15)  —0.6167(38)  —04990(59)  —0.6098(73)  —0.5832(81)
11.5 —0.1665(39)  —06501(78)  —04036(107) —0.5743(143)  —0.4393 (153)
12.0 —0.1540 (9) 06249 (23)  —03528(35)  —0.5493 (44)  —0.3927 (50)
130 ~0.1433(10)  —06147(27)  —02954(40)  —05119(51)  —0.3221(56)
E;(MeV)  d3o(5) d30(6) dyo(7) d10(8) d3009)

1.0 —0.0202 (31)

2.0 —00602(32)  —0.0258 (36)

2.8 —0.1337(100) —0.1094 (111)  --0.0435(117)

40 02081 (78)  —02645(73)  —01419(70)  —0.0308(60)  —0.0114 (54)

50 —0.1644 (146)  —0.4255(150) —0.2336(164) —00517(162)  —0.0546 (170)

6.0 ~00201(55)  —0.5556(55)  —02210(48)  —0.0292 (46)

8.0 —0.0650(98)  —0.7581(95)  —02294(84)  —0.0659(76)  —0.0263 (60)
10.0 —02095(82)  —08010(78)  —02242(73)  —00788(67)  —0.0384(57)
115 ~03093(176)  —0.7899 (172)  —0.2452(185)  —0.0943 (185)  —0.0566 (192)
12.0 —03265(53)  —07728(51)  —02319(48)  —00936(45)  —0.0528 (44)
130 —03825(60)  —07505(58)  —02508(56)  —0.1166(53)  —0.0691 (49)
E;(MeV)  dy(10) dyo(11)

8.0 —0.0094 (53)

10.0 —0.0085 (46)
12.0 ~00144(39)  ~0.0054 (35)
13.0 —0.0198 (40)  —0.0053 (37)

collected in Table 8 for extreme angles. For the intermediate angular range the
corrections are very small and are therefore neglected. These corrections are applied
to the data shown in Figs. 4 to 7.

4.2.2 Spin Direction of the Beam

Systematic errors arise from the uncertainty of the spin direction after the rotation
in the Wien filter. The investigation of the accuracy of the angular setting of « and
Bindicates that in the present measurement the maximum uncertainty is Ax = Af =~
+ 1°, which, according to Egs. (7), gives an uncertainty in the T, of AT, = 0.0006,
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Table 7c. Normalized Legendre-polynomial coefficients d,, (L) = a,,(L}/a,o{0) from the analysis of

the analyzing power T,

E;(MeV) dy (1) d;1(2) d31(3) d;:(4) dy1(5)

1.0 0.1111 (28) 0.4802 (18) —0.1405(14) 00276 (12) 0.0042 (10)

2.0 0.2409 (24) 03735 (15) —02334(13) 00913 (11) 0.0180 (10)

2.8 0.3443 (145 0.3528 (85) —~02034(76)  0.1579 (64) 0.0321 (58)

40 03771 (23) 0.3316 (18) 00246 (16)  0.2661 (15) 0.0611 (14)

5.0 0.3908 (78) 0.4360 (62) 0.1307(55) 03838 (47) 0.0527 (39)

6.0 0.3202 (23) 0.4082 (21) 0.1615(19)  0.4030(18) 0.0105 (16)

8.0 0.1795 (20) 03057 (18) 0.1259(18) 03643 (18) 0.0085 (16)
10.0 0.0607 (14) 0.1989 (12) 0.0863 (12)  0.2746 (12) 0.0488 (12)
11.5 0.0078 (72) 0.1567 (52) 0.0618(39)  0.2016 (39) 0.0852 (39)
12.0 —0.0141 (15) 0.1235 (13) 00499 (13)  0.1869 (13) 0.0842 (12)
13.0 —0.0417 (15) 0.0956 (13) 00336 (13)  0.1519(13) 0.0940 (12)
E; (MeV) d5,(6) d2:(7) d5(8) d,(9) d,,(10)

2.0 0.0077 (8) 0.0017 (8)

2.8 0.0215 (55)

40 0.0670 (12) 0.0298 (11) 0.0030 (10)

5.0 0.1229 (35) 0.0542 (39) 0.0168 (35)

6.0 0.1538 (14) 0.0528 (12) 0.0074 (10)

8.0 0.2010 (14) 0.0563 (13) 00142 (10)  0.0037 (9)
10.0 0.2190 (10) 0.0552 (9) 0.0197 (8) 0.0076 (7) 0.0013 (6)
115 02218 (33) 0.0598 (33) 0.0241(33)  0.0059 (33) —0.0007 (26)
12.0 0.2105 (11) 0.0580 (9) 0.0235 (9) 0.0104 (7) 0.0024 (6)
13.0 0.1992 (11) 0.0573 (10) 0.0235 (8) 0.0112 (8) 0.0038 (7)

AT,, = 0.0013, AT,; = 0.0073, and AT,, = 0.0019. These systematic errors are
mostly smaller than the statistical errors. The T,, component is particularly sensitive
to the orientation of the spin.

4.2.3 Switching of the Sign of the Polarization

For the determination of the observables from the detector counting rates it is
assumed that the absolute values of the beam polarization are strictly equal, when
the sign of the polarization is changed. Tests carried out with the beam polarization
in the different modes of Table 1 show that in the worst case a difference 0.010 +
0.005 occurs. Therefore the polarization values deviate from their mean value by
less than 0.005.

4.2.4 Calibration of the Beam Polarization

Continuous monitoring of the beam polarization establishes the stability of the
value of the beam polarization. Since the final polarization value is averaged over
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Table 7d. Normalized Legendre-polynomial coefficients d,,(L) = a,,(L)/a0(0) from the analysis of
the analyzing power T,

E,(MeV)  d,(2) d5,(3) dy(4) d5,(5) d,(6)
1.0 -02232 (10) 0.0388 (4) —0.0045 (3) 0.0000 (2) —0.0003 (1)
2.0 —0.1198 (9) 0.0778 (5) —0.0149 (3) —0.0025 (2) —0.0017 (2)
2.8 —0.0330 (32) 0.0825 (18) —0.0293 (13) —0.0066 (10) —0.0031 (8)
4.0 0.0716 (6) 0.0601 (3) —0.0490 (2) —0.0077 (1) —0.0067 (1)
5.0 0.1394 27y 0.0650 (15) —0.0699 (10} —0.0052 (7) —0.0108 (5)
6.0 0.1294 (10} 0.0686 (6) —0.0855 (4) —0.0012 (3) —0.0145 (2)
8.0 0.0660 (9) 0.0832 (5) —0.0843 (3} 0.0034 (2} —0.0181(2)
10.0 0.0093 (8) 0.0900 (4) —0.0661 (3) 0.0021 (2) —0.0187 (2)
11.5 —0.0274 (42) 0.0877 (22) —0.0567 (10) 0.0004 (9) —0.0175(7)
12.0 -0.0318 (7) 0.0885 (4) —0.0479 (3) 0.0004 (2) —0.0165 (1)
13.0 —0.0460 (5) 0.0852 (3) —0.0398 (2) —0.0001 (1) —0.0147 (1)
E,(MeV)  dyy(7) d,,(8) d3,(9) d,(10) d5,(11)
1.0 —0.0001 (1)
2.0 —0.0005 (1) —0.0001 (1)
2.8 —0.0012 (6)
4.0 —0.0024 (1) —0.0003 (1)
50 —0.0040 (4)
6.0 —0.0043 (2) —0.0004 (1)
8.0 —0.0044 (1) —-0.0010 (1) —0.0002 (1)
10.0 —0.0046 (1) —0.0012 (1) —0.0005 (1) —0.0003 (1)
11.5 —0.0046 (5) —0.0012 (5) —0.0008 (3)
12.0 —0.0051 (1) —0.0016 (1) —0.0007 (1) —0.0002 (1) ~0.0001 (1)
13.0 —0.0053 (1) —0.0016 (1) —0.0008 (1) —0.0003 (1)
Table 8. Geometrical corrections for extreme scattering angles
B (degree)  Ad(degree)  C(Tir, To)%  C(T3)% O (degree)
10 6.4 02 0.8 10.0
15 8.6 0.3 1.5 15.1
20 9.7 0.5 19 20.1
25 10.0 0.5 20 25.1
30 8.0 0.4 14 30.1
35 74 0.3 1.1 35.1
40 6.6 0.2 09 40.1
90 42 <01 <04 90.0
140 6.6 0.2 09 139.9
145 7.4 0.3 1.1 144.9
150 8.0 04 14 149.9
155 10.0 0.5 20 1549
160 12.0 0.8 3.1 1599
165 16.0 1.3 54 164.8
170 230 2.8 11.8 169.7
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many different runs with consistent polarization values, the statistical error of the
primary beam polarization is very small. Hence the absolute calibration error is
determined by the calibration of the tensor analyzing power T,4(E, 0°) of the beam
polarimeter. The calibration error from ref. [2] is given as 1%. The accuracy of the
polarization of the vector-polarized beam is about 2% [19]. These calibration
uncertainties have to be taken into account in using the present results for deuteron
polarimeters and for the comparison with model calculations.

S Discussion and Conclusions

In the energy range between 1.0 and 13.0 MeV angular distributions of the differen-
tial cross section, the vector-analyzing power iT, (, and the three tensor-analyzing
powers T,,, T,,, and T,, have been measured to a high precision. Nearly complete
angular distributions, reaching from 6,,, = 10° to 170° (corresponding to 6, = 12°
to 172°) have been obtained. The cross section is peaked in the forward direction.
As the energy increases, successively one, two or three minima appear in the angular
distributions first near 100°, then near 40°, and finally around 150°. The vector-
analyzing power iTy, starts at low energy with very low values (< 0.03), however,
quickly increases to maximum values around 0.7 with negative values at forward
and positive values at backward direction, crossing the zero line near 90°. All
tensor-analyzing powers on the contrary begin with large values already at low
energy and, in general, an increasing complexity of the structure is observed with
larger energy. Particularly the tensor component T,, shows a strong oscillatory
behaviour at higher energy. These changes in complexity reflect the contribution of
higher partial waves in the reaction under investigation.

The data have been fitted by Legendre polynomials. Excellent fits could be
obtained, what reflects the quality and the consistency of the data. Increasing
L-values of the Legendre polynomials have been necessary to fit the angular dis-
tributions at the higher energies.

The results show that the *He(d, p)*He reaction is an excellent analyzer for
polarized deuterons in the energy range investigated. An exception is the vector-
analyzing power iT;; below 6 MeV. Especially the tensor-analyzing power T, at
small angles shows outstanding features for a polarimeter, since in this angular range
also the largest cross sections occur. This is also the case for T, around 30° in the
energy region between 4 and 13 MeV, however, at higher energies substantial values
of T,, occur only near a minimum of the cross section. This component has large
values also near 150° for energies between 1 and 10 MeV. The oscillatory behaviour
at higher energies will prevent the use of large angular detector openings in a
polarimeter design. Over the whole energy range the T,, component shows regions
with large analyzing-power values. Here the interesting regions are mostly in the
backward direction.

In conclusion the present results suggest the application of this reaction for a
deuteron polarimeter in the energy range of the present investigation. Since the
energy behaviour is smooth, thick *He-targets and for most analyzing-power com-
ponents also large detector solid angles are possible. These features result in a large
polarimeter efficiency, which allows also the measurement of the deuteron polariza-
tion from double-scattering experiments.
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