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L2L2L2-COHOMOLOGY OF GEOMETRICALLY INFINITE
HYPERBOLIC 3-MANIFOLDS
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Abstract
We give results on the following questions about a topologically tame hy-
perbolic 3-manifold M :
1. Does M have nonzero square-integrable harmonic 1-forms?
2. Does zero lie in the spectrum of the Laplacian acting on Λ1(M)/Ker(d)?

1 Introduction

Let M be a complete oriented Riemannian manifold. A basic problem is
to understand the spectrum of the Laplacian 4p acting on the square-
integrable p-forms Λp(M). In this paper we are concerned with the bottom
of the spectrum. We address the following questions:

1. Does M have nonzero square-integrable harmonic p-forms?
2. Does zero lie in the spectrum of 4p?
If M is compact then Hodge theory tells us that questions 1 and 2 are

equivalent and that the answer is “yes” if and only if Hp(M ;C) 6= 0. In
particular, the answer only depends on the topology of M .

If M is noncompact then things are different. First, questions 1 and 2
are no longer equivalent - think of M = R. Second, the answers to these
questions no longer only depend on the topology of M . They depend on
both the topology of M and its asymptotic geometry in a subtle way which
is not understood.

In this paper we look at the above questions for a class of Riemannian
manifolds with interesting asymptotic geometry, namely connected hyper-
bolic 3-manifolds M which are topologically tame, i.e. diffeomorphic to the
interior of a compact 3-manifold with boundary. We review the relevant
geometry of such manifolds in section 3. Their ends can be characterized
as cusps, flares and tubes. Roughly speaking, a cusp is contracting at in-
finity, a flare is expanding and a tube is asymptotically cylindrical. M is
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called geometrically finite if its ends are all cusps or flares and geometrically
infinite otherwise.

Using the Hodge decomposition, the square-integrable differential
forms on M can be split into Ker(40), Λ0(M)/Ker(d), Ker(41) and
Λ1(M)/Ker(d). Hereafter we assume that M is noncompact. The only
possible elements of Ker(40) are constant functions and so if vol(M) <∞
then Ker(40) = C, while if vol(M) = ∞ then Ker(40) = 0. The next
result of Canary tells what happens on Λ0(M)/Ker(d) [C1].

Theorem 1. Zero lies in the spectrum of the Laplacian acting on
Λ0(M)/Ker(d) if and only if M is geometrically infinite.

Thus the spectrum of the Laplacian, acting on functions, is sensitive
to whether M has any tubular ends, but is not sensitive to the geom-
etry of those ends. If M is geometrically finite, Mazzeo and Phillips
computed dim (Ker(41)) and the essential spectrum of the Laplacian on
Λ1(M)/Ker(d) [MPh]. In particular, if M is geometrically finite then zero
always lies in the spectrum of the Laplacian acting on Λ1(M)/Ker(d).
One could ask whether there is a direct analogue of Canary’s theorem for
Λ1(M)/Ker(d). However, the following example shows that this cannot be
the case.

Let S be a closed oriented surface of genus g ≥ 2 and let φ ∈ Diff(S) be
an orientation-preserving pseudo-Anosov diffeomorphism of S. Thurston
showed that the mapping torus MT of φ has a hyperbolic metric [Ot],[T3].
The corresponding cyclic cover M of MT is a geometrically infinite hyper-
bolic 3-manifold. In section 4 we prove

Theorem 2. Zero lies in the spectrum of the Laplacian acting on
Λ1(M)/Ker(d) if and only if φ∗ ∈ Aut(H1(S;R)) has an eigenvalue of
norm one.

It is known that any element of Sp(2g,Z) can occur as φ∗ for some
pseudo-Anosov diffeomorphism of S [Pa]. Thus the result of Theorem 2
is not vacuous. It shows that the spectrum of the Laplacian, acting on
1-forms, is sensitive to the geometry of the tubular ends.

The manifolds considered in Theorem 2 are very special. The question
arises how to extend Theorem 2 to general hyperbolic 3-manifolds M of
finite topological type. First, we dispose of the case when M has zero
injectivity radius. In section 5 we prove

Theorem 3. If infm∈M inj(m) = 0 then the essential spectrum of the
Laplacian acting on Λ1(M)/Ker(d) is [0,∞).
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We are left with the case of positive injectivity radius. There is an
obvious problem in studying the spectrum of the Laplacian on M in that
we do not have an explicit description of the Riemannian metric of M . For
example, even in the above case of a mapping torus, the hyperbolic metric
on MT is constructed by a limiting process. Our way of getting around
this problem is to translate questions about the bottom of the spectrum
into questions about the reduced and unreduced L2-cohomology of M . It
is much easier to compute the L2-cohomologies of M than to compute the
spectral resolution of its Laplacian. Furthermore, the L2-cohomologies of
M only depend on the biLipschitz diffeomorphism class of M . In our case
we do know what M looks like up to a biLipschitz diffeomorphism, thanks
to the work of Minsky [Mi2].

Let M be a topologically tame hyperbolic 3-manifold with positive in-
jectivity radius. We make the technical assumption that the ends of M
are incompressible. For brevity, we call such a hyperbolic 3-manifold nice.
Minsky gave a length space which models the large-scale geometry of M .
By a slight variation of his work, we construct a model manifoldM which is
biLipschitz diffeomorphic to M . The geometry of a tubular end [0,∞)× S
of M is given by a ray γ in the Teichmüller space TS of the surface S.
The endpoint of γ, a point in Thurston’s compactification of TS , is the
end invariant of the tubular end. It is known that M is determined up to
isometry by its topology and its end invariants [Mi2]. Hence the question
is how exactly these determine the spectrum of the Laplacian.

Each point γ(t) along the ray gives an inner product 〈·, ·〉t on H1(S;R).
Let Γ(H1) be the Hilbert space of measurable maps f : [0,∞) → H1(S;R)
such that

∫∞
0 〈f(t), f(t)〉t dt <∞. Put

Γ′(H1) =
{
f ∈ Γ(H1) : f is absolutely continuous and ∂tf ∈ Γ(H1)

}
.

In section 6 we prove

Theorem 4. Let M be a nice hyperbolic 3-manifold. Then zero is not in
the spectrum of the Laplacian acting on Λ1(M)/Ker(d) if and only if each
end of M is tubular and the corresponding operator ∂t : Γ′(H1) → Γ(H1)
is onto.

The next result gives a sufficient condition for ∂t to be onto. In section
7 we prove

Theorem 5. Suppose that there is a decomposition H1(S;R) = E+⊕⊕⊕E−
and constants a, c+, c−>0 such that for all v+∈E+, v−∈E− and s1≥s2≥0,

‖v+‖s1 ≥ c+ ea(s1−s2)‖v+‖s2
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and
‖v−‖s1 ≤ c− e−a(s1−s2)‖v−‖s2 .

Then ∂t is onto.
We also give a conjectural algorithm to determine directly from the end

invariants whether or not zero lies in the spectrum of the Laplacian acting
on Λ1(M)/Ker(d), at least for most end invariants.

Finally, we give results on Ker(41). In section 6 we prove
Theorem 6. If M is a nice hyperbolic 3-manifold then dim(Ker(41))
<∞.

Let K be a compact submanifold of M onto which M retracts. Put
L1 = Im(H1(K;R)→ H1(∂K;R)) .

It is a Lagrangian subspace of H1(∂K;R). In section 8 we prove
Theorem 7. Let M be a nice hyperbolic 3-manifold. Suppose that zero
is not in the spectrum of the Laplacian acting on Λ1(M)/Ker(d). For each
end of M , consider the vector space Ker(∂t : Γ′(H1) → Γ(H1)). Together,
these give a Lagrangian subspace L2 of H1(∂K;R). There is a short exact
sequence

0 −→ Im(H1(K,∂K;R)→ H1(K;R)) −→ Ker(41) −→ L1 ∩ L2 → 0 .
The organization of this paper is as follows. In section 2 we define the

reduced and unreduced L2-cohomology groups and give their basic prop-
erties, along with their relation to the spectrum of the Laplacian. Some
of these results are scattered throughout the literature, but we have tried
to give a coherent presentation. In section 3 we review the geometry of
hyperbolic 3-manifolds and results of Minsky. In section 4 we compute the
reduced and unreduced L2-cohomology groups of cyclic covers of general
mapping tori. In section 5 we consider hyperbolic 3-manifolds with vanish-
ing injectivity radius. In section 6 we describe the L2-cohomology groups
of tubular ends in terms of the operators ∂t : Γ′(H1)→ Γ(H1). In section 7
we give sufficient conditions for the vanishing or nonvanishing of the unre-
duced L2-cohomology groups of tubular ends. We also describe results of
Zorich and their relation to spectral questions. In section 8 we consider
reduced L2-cohomology groups of hyperbolic 3-manifolds.

For notation, we will refer to statement 3 of Proposition 7 as Proposi-
tion 7.3, etc.

I thank Josef Dodziuk and Rafe Mazzeo for discussions. I thank Ken-
neth Palmer, Yair Minsky and Anton Zorich for explanations of their work
and the latter two for comments on parts of this paper. I especially thank



Vol. 7, 1997 L2-COHOMOLOGY 85

Curt McMullen for many helpful conversations. I thank the IHES, the
Max-Planck-Institut-Bonn and the Bonner Kaffeehaus for their hospitality.

2 L2L2L2-cohomology

Let M be an oriented Riemannian manifold which is geodesically complete
except for a possible compact boundary. Consider the Hilbert space

Λp(M) = {square-integrable measurable p-forms onM}(2.1)

and the subspace

Ωp(M) = {ω ∈ Λp(M) : dω is square-integrable on int(M)} ,
(2.2)

where dω is initially interpreted in a distributional sense. There is a cochain
complex

. . .
dp−1−→ Ωp(M)

dp−→ Ωp+1(M)
dp+1−→ . . .(2.3)

One can check that Ker(dp) is a closed subspace of Λp(M).

Definition 1. The p-th L2-cohomology group of M is Hp
(2)(M) =

Ker(dp)/ Im(dp−1). The p-th reduced L2-cohomology group ofM is Hp
(2)(M)

= Ker(dp)/Im(dp−1), a Hilbert space.

We will sometimes call Hp
(2)(M) the p-th unreduced L2-cohomology

group. Let M ′ be another manifold like M . Let Ω∗(M ′) be its cochain
complex, with differential d′.

Lemma 1. Suppose that there are linear maps
i : Ω∗(M)→ Ω∗(M ′) , K : Ω∗(M)→ Ω∗−1(M) ,
j : Ω∗(M ′)→ Ω∗(M) , K ′ : Ω∗(M ′)→ Ω∗−1(M ′)

(2.4)

such that
i ◦ d = d′ ◦ i , j ◦ d′ = d ◦ j ,

I − j ◦ i = dK +Kd , I − i ◦ j = d′K ′ +K ′d′ .
(2.5)

Then j induces an isomorphism between H∗(2)(M
′) and H∗(2)(M). If i and j

are continuous then j also induces an isomorphism between H∗(2)(M ′) and
H∗(2)(M).

Proof. We leave the proof to the reader. �

The natural geometric invariance of L2-cohomology turns out to be
Lipschitz homotopy equivalence. We will only consider maps f : M →M ′

such that f(∂M) ⊂ ∂M ′.
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Definition 2. 1. A map f : M →M ′ is said to be Lipschitz if f is almost
everywhere differentiable and there is a constant C > 0 such that for almost
all m ∈M and all v ∈ TmM , |(df)mv| ≤ C|v|.

2. Two Lipschitz maps f0 : M → M ′ and f1 : M → M ′ are Lipschitz-
homotopic if there is a Lipschitz map F : [0, 1] ×M → M ′ which restricts
to f0 and f1 on the boundary.

3. Two Lipschitz maps f : M →M ′ and g : M ′ →M define a Lipschitz-
homotopy equivalence between M and M ′ if f ◦ g and g ◦ f are Lipschitz-
homotopic to the identity.

A Lipschitz map f : M → M ′ induces maps f∗ : H∗(2)(M
′) → H∗(2)(M)

and f∗ : H∗(2)(M ′)→ H∗(2)(M).

Proposition 1. If f : M → M ′ and g : M ′ → M define a Lipschitz-
homotopy equivalence between M and M ′ then f∗ induces an isomorphism
between H∗(2)(M

′) and H∗(2)(M), and between H∗(2)(M ′) and H∗(2)(M).

Proof. The homotopy-equivalence gives continuous linear maps i = g∗,
j = f∗, K and K ′ satisfying the hypotheses of Lemma 1. �

Let δ denote the formal L2-adjoint of d. Let ∗ denote the Hodge duality
operator. Let b : ∂M →M be the boundary inclusion. Let Λ∗∞(M) denote
the smooth compactly-supported forms on M . Note if ω ∈ Λ∗∞(M) then
b∗(ω) may be nonzero. Define a sequence of inner products 〈·, ·〉s on Λ∗∞(M)
for s ∈ N inductively by 〈·, ·〉0 = 〈·, ·〉L2 and

〈ω1, ω2〉s+1 = 〈ω1, ω2〉s + 〈dω1, dω2〉s + 〈δω1, δω2〉s .(2.6)

Define the Sobolev space H∗s(M) to be the completion of Λ∗∞(M) under
〈·, ·〉s.

The Laplace operator is 4 = δd + dδ. It is a self-adjoint operator on
Λ∗(M) with domain

Dom(4) = {ω ∈ H∗2(M) : b∗(∗ω) = b∗(∗dω) = 0}(2.7)

and if dim(M) > 0 then it is unbounded. If ρ ∈ L∞([0,∞)) then ρ(4) is
a bounded operator on Λ∗(M). Let 4p be the restriction of 4 to Λp(M).
We have

Hp
(2)(M) ∼= Ker(dp) ∩ (Im(dp−1))⊥

(2.8)

= {ω ∈ Ωp(M) : dω = δω = b∗(∗ω) = 0} = Ker(4p) .

By elliptic theory, Ker(4p) consists of smooth forms and so H∗(2)(M) can
be computed using only smooth forms. We now show that the same is true
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for H∗(2)(M). Put

Ωp,∞(M) = {ω ∈ Ωp(M) : ω is smooth} .(2.9)

There is a complex

. . .
dp−1−→ Ωp,∞(M)

dp−→ Ωp+1,∞(M)
dp+1−→ . . .(2.10)

Proposition 2. The cohomology of the complex (2.10) is isomorphic to
H∗(2)(M).

Proof. There is an obvious cochain map i : Ω∗,∞(M) → Ω∗(M). Let η ∈
C∞([0,∞)) be identically 1 on [0, 1] and identically 0 on [2,∞). Then η(4)
is a smoothing operator and gives a cochain map j : Ω∗(M) → Ω∗,∞(M).
Define ρ ∈ C∞([0,∞)) by ρ(x) = 1−η(x)

x and define K : Ω∗(M)→ Ω∗−1(M)
by K = δρ(4). Then I − ij = dK + Kd and similarly for I − ji. The
proposition follows. �

We now show that the L2-cohomology groups can be computed by
means of standard elliptic complexes for manifolds with boundary.

For s ∈ Z, there is a Hilbert cochain complex Ds(M) given by

0→H0
s+dim(M)(M)→H1

s+dim(M)−1(M)→ . . .

→Hdim(M)−1
s+1 (M)→Hdim(M)

s (M)→ 0 ,
(2.11)

where we implicitly truncate the complex when the Sobolev index becomes
negative.

For fixed p, consider the Hilbert cochain complex Dabs(M), concentrated
in degrees p− 1, p and p+ 1, given by

Dp−1
abs (M) = {ω ∈ Hp−1

2 (M) : b∗(∗dω) = b∗(∗ω) = 0} ,
(2.12)

Dpabs(M) = {ω ∈ Hp1(M) : b∗(∗ω) = 0} ,
Dp+1
abs (M) = Hp+1

0 (M) .

Proposition 3. If s ≥ p + 1 − dim(M) then the part of Ds(M) from
degrees p− 1 to p+ 1 is homotopy equivalent to Dabs(M).

Proof. Let ε > 0 be small enough that there is a coordinate function t ∈
[0, 2ε] near ∂M such that ∂t is a unit length vector field whose flow generates
unit speed geodesics which are normal to ∂M , and ∂M corresponds to t = 0.
Using these coordinates, a tubular neighborhood of ∂M is diffeomorphic to
[0, 2ε] × ∂M . Let Y denote a copy of M but with the product metric
on [0, 2ε] × ∂M . The identity map gives a homotopy equivalence between
Ds(M) and Ds(Y ). Let DY denote the double of Y and let Devens (DY ) be
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the complex of forms on DY which are invariant under the Z2-involution
on DY . There is an obvious inclusion f : Devens (DY ) → Ds(Y ). We now
show that Ds(Y ) and Devens (DY ) are homotopy equivalent.

A differential form ω on Y can be decomposed near the boundary as

ω = ω1(t) + dt ∧ ω2(t) ,(2.13)

where ω1(t) and ω2(t) are forms on ∂M . Let ρ : [0, 2ε] → R be a smooth
bump function which is identically one near t = 0 and identically zero for
t ≥ ε. Let 4̂ denote the Laplacian on ∂M . For u > 0, define the operator

R(u) = I − e−
I+4̂
u2(2.14)

by the spectral theorem. For ω a form on Y , restrict ω to [0, 2ε]× ∂M and
put

(Kω)(t) = ρ(t)
∫ t

0
R(u) ω2(u)du .(2.15)

Then one can check that K acts as a degree −1 map on both Ds(Y ) and
Devens (DY ). If ω is a form on Y then near ∂M ,

ω − (dK +Kd)ω = ω1(0) + (I −R(t))ω1(t) + dt ∧ (I −R(t))ω2(t)
(2.16)

+
∫ t

0
R′(u)ω1(u)du .

One can check that ω − (dK + Kd)ω extends by reflection to an element
of Devens (DY ). Thus we obtain a homotopy equivalence f : Devens (DY ) →
Ds(Y ) and g : Ds(Y ) → Devens (DY ), where f is the inclusion map and
g = I − (dK +Kd).

Next, as s varies the complexes Devens (DY ) are all isomorphic to each
other by powers of I +4DY , at least in their common terms of definition.
Thus we may consider the case s = p+ 1− dim(M). In this case, the part
of Devens (DY ) from p− 1 to p+ 1 is the same as Dabs(Y ).

Finally, we show that Dabs(M) is the same as Dabs(Y ). Let us decom-
pose a form ω on M as in (2.13). Then the boundary condition for ω to
belong to Dpabs(M) is ω2(0) = 0 and the additional boundary condition for
ω to belong to Dp−1

abs (M) is ∂tω1(0) = 0. These conditions determine the
same spaces of forms whether one is on M or Y . �

Proposition 4. The reduced and unreduced p-th L2-cohomology groups
of M are isomorphic to the reduced and unreduced p-th cohomology groups
of the complex Dabs(M).
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Proof. For the reduced L2-cohomology, the claim follows from (2.8). As
the operator (I + 4)−1/2 is an isomorphism from Λp(M) to Dpabs(M), it
follows from Definition 1 that

Hp
(2)(M) ∼= Ker(d) onDp

abs
(M)

Im(d) on {ω∈Hp−1
1 (M):b∗(∗ω)=0,dω∈Dp

abs
(M)} .(2.17)

The Hodge decomposition on M is

Λ∗(M) = Ker(4∗)⊕⊕⊕ Im(d) onH∗−1
1 (M)

⊕⊕⊕ Im(δ) on {ω ∈ H∗+1
1 (M) : b∗(∗ω) = 0} .

(2.18)

Projecting ω from (2.17) onto the last factor in (2.18), we may as well
assume that δω = 0, showing that ω ∈ Dp−1

abs (M). �
Let ip be the obvious surjection from Hp

(2)(M) to Hp
(2)(M). We have

Ker(ip+1) = Im(dp)/ Im(dp). Thus ip+1 is an isomorphism if and only if
Im(dp) is closed.
Definition 3. Define the relative reduced L2-cohomology groups of M by

Hp
(2)(M,∂M) = {ω ∈ Ωp(M) : dω = δω = b∗(ω) = 0} .

(2.19)

The Hodge ∗ operator gives an isomorphism ∗ : Hp
(2)(M) −→

Hdim(M)−p
(2) (M,∂M). There is a nondegenerate pairing∫

M
: Hp

(2)(M,∂M)×Hdim(M)−p
(2) (M) −→ R .(2.20)

For the rest of this section, we assume that ∂M = ∅.
Let K be a compact submanifold of M with smooth boundary ∂K. Put

N = M −K.
Proposition 5. We have that

1. Hp
(2)(M) is finite-dimensional if and only if Hp

(2)(N, ∂N) is finite-
dimensional.

2. The reduced L2-cohomology at p ofDabs(M) equals the unreduced L2-
cohomology if and only if the reduced L2-cohomology at p of Dabs(N)
equals the unreduced L2-cohomology.

Proof. 1. As in ordinary cohomology, there are sequences [ChG]

. . .→ Hp−1
(2) (K)→ Hp

(2)(N, ∂N)→ Hp
(2)(M)→ Hp

(2)(K)→ . . .

(2.21)

and

. . .→ Hp
(2)(K,∂K)→ Hp

(2)(M)→ Hp
(2)(N)→ Hp+1

(2) (K,∂K)→ . . .

(2.22)



90 J. LOTT GAFA

These sequences are not exact in general. Recall that weak exactness at a
term in a sequence of Hilbert spaces means that the kernel is equal to the
closure of the image. The compactness of K along with [LoLü, Theorem
2.2], applied to the von Neumann algebra A = C, implies that (2.21) is
weakly exact at Hp

(2)(M) and (2.22) is weakly exact at Hp
(2)(N). (The

sequences are exact at these terms, but we will not need this fact.) Then
we have the implications

dim
(
Hp

(2)(M)
)

=∞⇒ dim
(
Hp

(2)(N, ∂N)
)

=∞
(2.23)

⇒ dim(Hdim(M)−p
(2) (N)) =∞⇒ dim(Hdim(M)−p

(2) (M)) =∞
⇒ dim(Hp

(2)(M)) =∞ .

This proves part 1 of the proposition.
2. Let Z be a small collaring of ∂K in M , diffeomorphic to [−1, 1]×∂K.

Put K ′ = K ∪ Z and N ′ = N ∪ Z. Then K ′ is diffeomorphic to K and N ′

is diffeomorphic to N , with K ′ ∩N ′ = Z. Let i1 : K ′ → M , i2 : N ′ → M ,
i3 : Z → K ′ and i4 : Z → N ′ be the obvious embeddings. There is a short
exact sequence

0→ Ds(M)
i∗1⊕⊕⊕i∗2−→ Ds(K ′)⊕⊕⊕Ds(N ′)

i∗3−i∗4−→ Ds(Z)→ 0 .

(2.24)

Using the fact that K ′ and Z are compact, [LoLü, Theorem 2.3] implies
that the complex Ds(M) is Fredholm at p if and only if Ds(N ′) if Fredholm
at p. However, in our case Ds(M) is Fredholm at p if and only if its
differential at p has closed image, and similarly for Ds(N ′). As N ′ and
N are diffeomorphic by a diffeomorphism which is an isometry outside of
a compact region, their L2-cohomologies are isomorphic. Part 2 of the
proposition now follows from Proposition 3. �

Proposition 6.

0 /∈ σ(δd on Λp(M)/Ker(d)) ⇐⇒ ip+1 is an isomorphism .

Proof. Suppose first that δd has a bounded inverse on Λp(M)/Ker(d).
Given µ ∈ Λp(M), let µ denote its class in Λp(M)/Ker(d). Define an oper-
ator S on smooth compactly-supported (p+1)-forms by S(ω) = d(δd)−1δω.
Then S extends to a bounded operator on Λp+1(M). Let {ηn}n∈N be a se-
quence in Ωp(M) such that limn→∞ dηn = ω for some ω ∈ Λp+1(M). Then
for each n ∈ N, we have dηn = S(dηn) and so ω = S(ω). Thus ω ∈ Im(d)
and so Im(d) is closed.
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Now suppose that δd does not have a bounded inverse on Λp(M)/Ker(d).
Then there is a sequence of positive numbers r1>s1>r2>s2> . . . tending
towards zero and an orthonormal sequence {ηn}n∈N in Λp(M)/Ker(d) such
that with respect to the spectral projection P of δd, ηn∈ Im(P ([rn, sn])).
Put λn = ‖dηn‖. Then limn→∞ λn = 0. Let {cn}n∈N be a sequence in R+

such that
∑∞
n=1 c

2
n =∞ and

∑∞
n=1 cnλn <∞. Put ω =

∑∞
n=1 cndηn. Then

ω ∈ Im(d). Suppose that ω = dµ for some µ ∈ Ωp(M). By the spectral the-
orem, we must have µ =

∑∞
n=1 cnηn. However, this is not square-integrable.

Thus Im(d) is not closed. �

We recall the notion of the essential spectrum of an operator. Let T
be a densely-defined self-adjoint operator on a Hilbert space H. Then
σess(T ) is a closed subset of the spectrum σ(T ) with the property that
λ ∈ σess(T ) ⇐⇒ 0 ∈ σess(T − λI). Let P be the spectral projection of T .
Then σess(T ) has the following equivalent characterizations [K].

Proposition 7. 0 ∈ σess(T ) if and only if any of the following conditions
hold:

1. dim(Ker(T )) =∞ or Im(T ) is not closed.
2. There is a bounded sequence {un}n∈N in Dom(T ) such that lim

n→∞
‖Tun‖

= 0, but {un}n∈N does not have a convergent subsequence.
3. There is an orthonormal sequence {un}n∈N in Dom(T ) such that

limn→∞ ‖Tun‖ = 0.
4. For all ε > 0, dim(Im(P ([−ε, ε]))) =∞.
5. dim(Ker(T )) =∞ or 0 is not isolated in σ(T ).

In particular, if Ker(T ) = 0 then 0 ∈ σess(T ) ⇐⇒ 0 ∈ σ(T ).

Corollary 1. Let M and M ′ be complete oriented Riemannian mani-
folds. Suppose that there are compact submanifolds K ⊂M and K ′ ⊂M ′
such that M −K is isometric to M ′ −K ′. Then

1. 0 ∈ σess (4p on Ker(4p(M)))⇔ 0 ∈ σess (4p on Ker(4p(M ′))).
2. 0 ∈ σess (4p on Λp(M)/Ker(d))⇔ 0 ∈ σess (4p on Λp(M ′)/Ker(d)).
3. 0 ∈ σess (4p on Λp(M))⇔ 0 ∈ σess (4p on Λp(M ′)).

Proof. 1. As 4p acts on Ker(4p(M)) as the zero operator, Proposition 7.1
says that 0 lies in σess(4p on Ker(4p(M))) if and only if dim(Ker(4p(M)))
=∞. The claim follows from (2.8) and Proposition 5.1.

2. As 4p acts on Λp(M)/Ker(d) as δd, the claim follows from Propo-
sitions 5.2 and 6.

3. This is now a consequence of the Hodge decomposition. �
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Remark. Corollary 1.3 is well-known. It is a consequence of [DoL, Prop.
2.1], the proof of which is for functions but extends to differential forms.
We will need the more refined statements of Corollary 1.1, 1.2, which take
into account the Hodge decomposition of forms on M and M ′. The proof of
[DoL, Prop. 2.1], which involves multiplication by a compactly supported
function, does not extend to this case. Consequently, we have given an
independent proof. I thank Jozef Dodziuk for correspondence on these
questions.

3 Hyperbolic 3-Manifolds

For background on hyperbolic 3-manifolds, we refer to [BP],[T1,2]. Let
M = H3/Γ be a complete connected oriented hyperbolic 3-manifold with
finitely generated fundamental group Γ. We assume that Γ is nonabelian,
as the abelian case can be easily handled separately. The sphere at in-
finity of H3 breaks up as the union S2 = Λ ∪ Ω of the limit set and the
domain of discontinuity , on which Γ acts freely. The convex core of M
is C(M) = hull(Λ)/Γ. The quotient Ω/Γ is a finite union of connected
Riemann surfaces, each of which is diffeomorphic to the complement of
a finite number of points in a closed connected Riemann surface. Put
M = (H3 ∪ Ω)/Γ.

There is a constant µ, the Margulis constant, such that if ε < µ and
Mthin(ε) = {m ∈M : inj(m) < ε}

then each connected component of Mthin(ε) is either
1. A rank-two cusp, diffeomorphic to (0,∞)× T 2,
2. A rank-one cusp, diffeomorphic to (0,∞)× (−1, 1)× S1, or
3. A tubular neighborhood of a short geodesic loop in M , diffeomorphic

to S1 ×D2.
Let M0(ε) be M with the cusps in Mthin(ε) removed. There is a notion

of an end E of M0(ε) and of E being contained in an open set U ⊂M0(ε)
[Bo]. An end E is said to be geometrically finite if it is contained in an
open set U such that U ∩ C(M) = ∅. If E is geometrically finite then it
is associated to a connected component of Ω/Γ. The complex structure
on that component is called the end invariant of E. M is said to be
geometrically finite if all of the ends of M0(ε) are geometrically finite and
geometrically infinite otherwise.

If M is geometrically finite then there is a pair (X,P ), where X is
a compact 3-manifold and P is a compact submanifold of ∂X, with the
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property that M is diffeomorphic to int(X) and M is diffeomorphic to
X − P . The parabolic locus P is a disjoint union T ∪ A of surfaces, where
T is a disjoint union of 2-tori, one for each rank-two cusp of M , and A is a
disjoint union of annuli, one for each rank-one cusp of M .

The reduced L2-cohomology and essential spectrum of geometrically
finite hyperbolic manifolds were studied in [MPh]. When specialized to
three dimensions, the results are as follows. If M has finite volume then
H0

(2)(M) ∼= C and if M has infinite volume then H0
(2)(M) = 0. The first

reduced L2-cohomology group of M is given by

H1
(2)(M) ∼= Im

(
H1(X, ∂X − int(A))→ H1(X, ∂X − (T ∪ int(A)))

)
.

(3.1)

The essential spectrum of 4 is
Λ0/Ker(d) Λ1/Ker(d)

M compact
∣∣ ∅ ∅

M noncompact
∣∣ [1,∞) [0,∞)

(3.2)

We no longer assume that M is geometrically finite. The fact that Γ
is finitely-generated implies that M is homotopy-equivalent to a compact
3-manifold [S]. It is an open conjecture, which has been proved in many
cases, that M must be topologically tame, i.e. diffeomorphic to the interior
of a compact 3-manifold. We assume hereafter that M is topologically
tame. There is again a pair (X,P ), where X is a compact 3-manifold and
P is a compact submanifold of ∂X, with the properties that

1. M is diffeomorphic to int(X).
2. P is a union of tori and annuli, one for each cuspidal component of
Mthin(ε).

3. The ends of M0(ε) are in one-to-one correspondence with the con-
nected components of ∂X − P .

An end E of M0(ε) is called simply degenerate if it is contained in an
open set U ⊂M0(ε) homeomorphic to (0,∞)×S for some compact surface
S, and there is a sequence of finite-area hyperbolic surfaces in U , each ho-
motopic to {0} × int(S), such that the sequence exits the end; see [C2] for
the precise definition. It is known that M is geometrically tame, meaning
that every end of M0(ε) is either geometrically finite or simply degener-
ate [Bo],[C2]. A simply degenerate end E comes equipped with a certain
geodesic lamination on the surface int(S), known as its end invariant . Let
E denote the collection of all end invariants of M . Thurston conjectured
that M is determined up to isometry by the topology of (X,P ), along with
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E [T2]. We remark that if the triple (X,P, E) satisfies certain topological
conditions then it does arise from some hyperbolic 3-manifold [O1].

Canary showed that if M is geometrically infinite then C(M), an infi-
nite volume submanifold of M , can be exhausted by compact submanifolds
whose boundary areas are uniformly bounded above [C2]. As he pointed out
in [C1], it then follows from Buser’s theorem that zero lies in the spectrum
of the Laplacian acting on L2-functions on M .

Suppose that there is a constant c > 0 such that for all m ∈M , inj(m) >
c. Then P = ∅ and any simply degenerate end of M is contained in an open
set of the form (0,∞) × S for some closed oriented surface S. Suppose in
addition that the ends of M are incompressible, or equivalently, that Γ does
not decompose as a nontrivial free product. In this case, Minsky showed
that Thurston’s isometry conjecture is true [Mi2]. To do so, Minsky first
constructed a model Riemannian manifold M, based on the topology of
M and its end invariants, which approximates the geometry of M . More
precisely, he showed that there is a map f :M→M which is homotopic to
a homeomorphism, with the property that the lift f̃ : M̃ → H3 is a coarse
quasi-isometry. The Riemannian metric on M is constructed as follows.
It is enough to first specify the Riemannian metric on the ends of M and
then extend it arbitrarily to the rest of M. If U = (0,∞) × S contains
a geometrically finite end of M , let dρ2 be the hyperbolic metric on the
corresponding connected component of Ω/Γ. Then the model metric on
the associated end of M is dt2 + cosh2(t)dρ2.

To describe the model metric for a simply degenerate end of M , we
first need some notation. For a closed oriented surface S of genus g ≥ 2,
let HS denote the space of hyperbolic metrics on S, let DiffS denote the
orientation-preserving diffeomorphisms of S and let Diff0,S denote those
isotopic to the identity. The Teichmüller space TS can be identified with
HS/Diff0,S and the moduli space ModS can be identified with HS/DiffS .
Note that ModS is an orbifold. There is a quotient map π : TS → ModS .
The universal Teichmüller curve T̂S is HS ×Diff0,S S. It is the total space
of a fiber bundle pT : T̂S → TS with fiber S and inherits an obvious family
of hyperbolic metrics on its fibers. The universal curve over the moduli
space is M̂odS = HS ×DiffS S. It is the total space of an orbifold fiber
bundle pM : M̂odS → ModS with fiber S and again inherits a family
of hyperbolic metrics on its fibers. Let us choose an arbitrary smooth
horizontal distribution on the fiber bundle M̂odS , meaning a collection of
subspaces THM̂odS ⊂ TM̂odS such that TM̂odS = THM̂odS ⊕⊕⊕Ker(dpM ).
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(Everything here is interpreted in an orbifold sense.) There is a lifted
horizontal distribution TH T̂S on T̂S .

If U = (0,∞)× S contains a simply degenerate end of M , fix an initial
hyperbolic metric dρ2(0) on {0} × S and let S0 be the corresponding Rie-
mann surface. Let H0(S0;K2) denote the space of holomorphic quadratic
differentials on S0. It is a complex vector space of dimension −3

2χ(S).
The ending lamination L is equivalent to the vertical foliation of some
Φ ∈ H0(S0;K2). Then Φ generates a Teichmüller ray γ : [0,∞) → TS
starting from γ(0) = [S0]. The endpoint of γ corresponds to L, viewed as a
point in Thurston’s compactification of TS. As the injectivity radius of M
is bounded below by a positive number, [Mi2, Theorem 5.5] implies that
the projected ray π ◦ γ lies in a compact region of ModS .

Using the hyperbolic metrics on the fibers of T̂S, the horizontal distri-
bution TH T̂S and the metric dt2 on [0,∞), there is an induced Riemannian
metric on p−1

T (γ). In terms of the trivialization p−1
T (γ) ∼= [0,∞) × S com-

ing from TH T̂S , we can write this metric as dt2 + dρ2(t), where for each
t ∈ [0,∞), dρ2(t) ∈ HS projects to γ(t) ∈ TS . This is the model met-
ric on the associated end of M. Because of the precompactness of π ◦ γ,
the biLipschitz class of the model metric is independent of the choice of
THM̂odS .

We will need to know thatM approximates M in a slightly better way
than that given in [Mi2]. Curt McMullen explained to me how the next
statement follows from the results of [Mi2].

Proposition 8. There is a biLipschitz homeomorphism between M
and M .

Proof. It is enough to just construct biLipschitz homeomorphisms between
open sets containing the ends ofM and M . For a geometrically finite end,
this follows from [Mi2, Theorem 5.2]. Let E be a simply degenerate end of
M contained in a neighborhood U = (0,∞)×S. Let U = (0,∞)×S contain
the corresponding end inM. Let γ be the Teichmüller ray described above.
Minsky constructed a sequence {gn : S → U}n∈N of pleated surfaces in U
with the properties [Mi2, Theorem 5.5] that

1. for each n ∈ N, gn(S) is homotopic in U to {0} × S;
2. the sequence {gn(S)}n∈N exits the end;
3. there is a constant T > 0 such that for each n ∈ N, the Teichmüller

class of the induced hyperbolic metric ρn ∈ HS lies within a Te-
ichmüller distance T from γ(n).
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After precomposing the gn’s with appropriate elements of Diff0,S , we
may assume that neighboring ρn’s are uniformly close in the sense that there
is a K > 0 such that for all n ∈ N, the identity map Id : (S, ρn)→ (S, ρn+1)
is a K-biLipschitz homeomorphism.

For each n ∈ N, we can find an embedded surface hn : S → U such that
hn(S) lies within some distance D from gn(S) and the induced hyperbolic
metric ρ′n is K ′-biLipschitz to ρn for some K ′ > 0. As the injectivity radius
of M is bounded below by a positive constant, we can use compactness
in the geometric topology [BP, Chapter E], [Mi1, Section 4] to argue that
the surfaces can be chosen so that D and K ′ are uniform with respect to
n. Next, we can find constants 0 < a < A and a uniformly spaced subse-
quence {nk}k∈N of N so that the consecutive surfaces {hnk(S), hnk+1(S)}
are spaced at least distance a apart and no more than distance A. Using
property 2 above, we can assume that the surfaces {hnk(S)} are topologi-
cally consecutive in the sense that hnk(S) separates hnk−1(S) from hnk+1(S).
Let Uk be the part of U enclosed by hnk(S) and hnk+1(S). Let Uk be the
submanifold [nk, nk+1] × S in U . For each k ∈ N, there is a diffeomor-
phism φk : Uk → Uk which restricts to {hnk , hnk+1} on ∂Uk. Again using
compactness in the geometric topology, we can choose the diffeomorphisms
{φk}k∈N so that there is a constant K ′′ > 0 such that for all k ∈ N, φk is a
K ′′-biLipschitz homeomorphism. The desired biLipschitz homeomorphism
f : U → U is given by stacking together the φk’s. �

Remark. Minsky used singular Euclidean metrics on S instead of hyper-
bolic metrics, but the difference is minor. We use the horizontal distribution
on M̂odS to give a lifting of γ to HS such that the lifts of nearby points on
γ are uniformly close in HS. This is similar to [Mi2, p. 562-563].

4 Mapping Tori

Let F be a smooth closed oriented manifold. Let φ ∈ Diff(F ) be an orienta-
tion-preserving diffeomorphism of F . The mapping torus of φ is the mani-
fold

MT = ([0, 1]× F ) / ∼(4.1)
where the equivalence relation is (0, s) ∼ (1, φ(s)).

Projection on the first factor gives a fibering π : MT → S1. Let M be
the associated cyclic cover of MT . Choose an arbitrary Riemannian metric
on MT and give M the pullback metric. Let φ∗p ∈ Aut(Hp(F,R)) be the
map on cohomology coming from φ.
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Proposition 9. 1. H∗(2)(M) = 0.
2. 0 ∈ σ (δd on Λp(M)/Ker(d)) ⇐⇒ φ∗p has an eigenvalue of norm one.

Proof. Let γ denote a generator of the group of covering transformations
on M , the one which maps to t→ t+ 1 on R. For λ ∈ U(1), put

Λpλ(M) = {measurable p-forms ω onM : γ∗ω = λω} .(4.2)
Let Vλ be the flat complex line bundle on S1 with holonomy λ and put
Eλ = π∗Vλ. Then

Λpλ(M) ∼= Λp(MT ;Eλ) ,(4.3)
the p-forms on MT with value in the flat vector bundle Eλ. It follows from
Fourier analysis that there is a direct integral decomposition

Λp(M) =
∫
U(1)

Λp(MT ;Eλ) dλ .(4.4)

Furthermore, the decomposition (4.4) commutes with the Laplacians. It
follows from Floquet theory that Hp

(2)(M) 6= 0 if and only if Hp(MT ;Eλ) 6=
0 for all λ ∈ U(1) and 0 ∈ σ(4p(M)) if and only if Hp(MT ;Eλ) 6= 0 for
some λ ∈ U(1); see [Lo] for details.

There is a Wang exact sequence

. . .→ Hp−1(F )
I−λ−1φ∗p−1−→ Hp−1(F )→ Hp(MT ;Eλ)

→ Hp(F )
I−λ−1φ∗p−→ Hp(F )→ . . .

(4.5)

This gives the short exact sequence

0→ Coker(I − λ−1φ∗p−1)→ Hp(MT ;Eλ)→ Ker(I − λ−1φ∗p)→ 0 .
(4.6)

As there is only a finite number of λ ∈ U(1) such that Coker(I−λ−1φ∗p−1) 6=
0 or Ker(I − λ−1φ∗p) 6= 0, part 1 of the proposition follows.

The Hodge decomposition of Λp(M) now gives
Λp(M) = Im(d on Λp−1(M)/Ker(d))⊕⊕⊕ Λp(M)/Ker(d).(4.7)

Correspondingly, we have

0 ∈ σ(4p on Im(d on Λp−1(M)/Ker(d))) ⇐⇒ Coker(I − λ−1φ∗p−1) 6= 0 ,
(4.8)

0 ∈ σ (4p on Λp(M)/Ker(d)) ⇐⇒ Ker(I − λ−1φ∗p) 6= 0
for some λ ∈ U(1). The proposition follows. �

Remark. A different proof of Proposition 9 follows from Appendix A of
the preprint version of [LoLü]. This material was left out in the printed
version.
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Now let F be a closed oriented surface S of genus g ≥ 2. Let φ be
an orientation-preserving pseudo-Anosov diffeomorphism of S. Thurston
showed that the mapping torus MT has a hyperbolic structure [Ot],[T3].
Furthermore, the hyperbolic structure on MT is unique up to isometry.
The cyclic cover M has the pullback hyperbolic structure.

Corollary 2. 0 ∈ σ
(
δd on Λ1(M)/Ker(d)

)
⇐⇒ φ∗1 has an eigenvalue

of norm one.

5 Zero Injectivity Radius

Proposition 10. Let M be a complete hyperbolic 3-manifold with
infm∈M inj(m) = 0. Then σess(δd on Λ1(M)/Ker(d)) = [0,∞).

Proof. If Mthin(ε) contains cusps then the proposition follows from the
characterization of the essential spectrum of cusps in [MPh]. Otherwise,
Mthin(ε) must contain a sequence of tubular neighborhoods {Tn}n∈N of
short geodesic loops {γn}n∈N whose lengths {l(γn)}n∈N tend towards zero.
It is known that the radius Rn of Tn goes like Rn ∼ 1

2 log( 1
l(γn)) [DMc]. As

n increases, the geometry of Tn approaches that of a rank-two cusp and so
the claim of the proposition is not surprising.

Fix n for a moment. We use Fermi coordinates (r, t, θ) for Tn as in
[DMc], where 0 ≤ r ≤ Rn is the distance to γn, t is the arc-length along γn
and θ is the angular coordinate in the normal disk bundle to γn. Consider
a 1-form ω on Tn given in coordinates by ω = g(r)dt, where g ∈ C∞0 (0, Rn).
One can check [DMc] that δω = 0,

〈ω, ω〉 = 2πl(γn)
∫ Rn

0
|g(r)|2 tanh(r)dr(5.1)

and

δdω = − 1
tanh(r)

(
tanh(r) g′

)′
dt .(5.2)

Furthermore, ω ∈ Im(δ) if∫ Rn

0
g(r) tanh(r)dr = 0 ,(5.3)

or equivalently, if 〈ω, dt〉 = 0.
Let φ ∈ C∞0 ((0, 1)) be a positive function satisfying

∫ 1
0 φ

2(r)dr = 1. For
k ∈ R, define

gn,k(r) = 1√
2πl(γn)Rn

eikrφ(r/Rn)(5.4)
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and ωn,k = gn,k(r)dt. We now fix k 6= 0. Put

cn,k = 〈ωn,k,dt〉〈ωn,0,dt〉 =
∫ Rn

0
gn,k(r) tanh(r)dr∫ Rn

0
gn,0 tanh(r)dr

(5.5)

=
∫ Rn

0
eikrφ(r/Rn) tanh(r)dr∫ Rn

0
φ(r/Rn) tanh(r)dr

=
∫ 1

0
eikRnsφ(s) tanh(Rns)ds∫ 1

0
φ(s) tanh(Rns)ds

.

By the Riemann-Lebesgue theorem, limn→∞ cn,k = 0. Put ω′n,k = ωn,k −
cn,kωn,0. By construction, ω′n,k ∈ Im(δ). We have

‖ω′n,k‖2 = 2πl(γn)
∫ Rn

0
|gn,k(r)− cn,kgn,0(r)|2 tanh(r)dr

(5.6)

= 1
Rn

∫ Rn

0
|eikr − cn,k|2φ2(r/Rn) tanh(r)dr

=
∫ 1

0
|eikRns − cn,k|2φ2(s) tanh(Rns)ds

=
∫ 1

0
(1 + c2n,k − 2cn,k cos(kRns))φ2(s) tanh(Rns)ds .

Thus limn→∞ ‖ω′n,k‖ = 1.
Similarly, one can check that limn→∞ ‖(δd − k2)ωn,k‖ = 0. It follows

that

lim
n→∞

‖(δd− k2)ω′n,k‖ = lim
n→∞

‖(δd− k2)ωn,k + k2cn.kωn,0‖ = 0 .
(5.7)

Since the ω′n,k’s are supported in the disjoint tubes {Tn}n∈N, they are mu-
tually orthogonal. Applying Proposition 7.3 to the operator δd − k2, it
follows that k2 ∈ σess

(
δd on Ker(δ) ⊂ Λ1(M)

)
. As σess is a closed subset

of R, the proposition follows. �

Remark. There are hyperbolic 3-manifolds diffeomorphic to R×S, where
S is a closed oriented surface of genus g ≥ 2, having zero injectivity radius
[BoOt].

6 Reduction to an ODE

Let M be a topologically tame complete connected oriented hyperbolic 3-
manifold. In this section, we are interested in whether zero lies in the
spectrum of δd acting on Λ1(M)/Ker(d). If M has zero injectivity radius
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then by section 5, the essential spectrum of δd acting on Λ1(M)/Ker(d) is
[0,∞). Therefore, we assume that M has positive injectivity radius c.

We can take the constant ε in section 3 less than c, so that Mthin(ε) = ∅
and M0(ε) = M . By section 2, it is enough to study the spectrum of the
Laplacian on the ends of M . If M has a geometrically finite end then it
follows from [MPh] that σess

(
δd on Λ1(M)/Ker(d)

)
= [0,∞). Therefore,

we assume that M does not have any geometrically finite ends. By section
3, all of the ends of M are simply degenerate.

In order to apply Minsky’s results, we make the further assumption
that the ends of M are incompressible. Recall from section 3 that M is a
certain Riemannian manifold which models M . By Propositions 1 and 8,
H2

(2)(M) ∼= H2
(2)(M). Consider a single end of M which is contained in an

open set U = (0,∞)×S, where S is a closed oriented surface. Our strategy
will be to compute H2

(2)(U). At the same time, we compute H1
(2)(U), H1

(2)(U)

and H2
(2)(U). Recall that U has the metric dt2 + dρ2(t), where dρ2(t) is a

hyperbolic metric on S which projects to γ(t) ∈ TS .
For each t ∈ [0,∞), ∂t(dρ2(t)) is a covariant 2-tensor on S. For k ∈ N,

let ‖∂t(dρ2(t))‖k denote its Sobolev k-norm with respect to dρ2(t).

Proposition 11. For each k ∈ N, ‖∂t(dρ2(t))‖k is uniformly bounded
in t.

Proof. As dρ2(t) is a hyperbolic metric for all t ∈ [0,∞), it follows that

∂t(dρ2(t)) = LV (t)dρ
2(t) +H(t)(6.1)

where V (t) is a vector field on S, L is the Lie derivative and H(t) is a
covariant 2-tensor on S satisfying∑

µ

Hµ
µ(t) = 0 ,

∑
µ

∇µHµν(t) = 0 .(6.2)

Equivalently, H(t) = Re(Q(t)) where Q(t) ∈ H0(S;K2), S having the com-
plex structure induced from dρ2(t). Let z be a local holomorphic coordinate
on S, write dρ2(t) locally as gzz dzdz and write Q(t) locally as Qzzdz2. The
Beltrami differential corresponding to Q(t) is

µ = gzzQzz
dz
dz .(6.3)

Given Φ = Φzzdz
2 ∈ H0(S;K2), put

‖Φ‖1 = i
2

∫
S
|Φzz| dz ∧ dz ,(6.4)

‖Φ‖2 = i
2

∫
S
gzzΦzzΦzz dz ∧ dz .
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As γ is a Teichmüller ray, the infinitesimal Teichmüller norm of γ′(t) is

1 = sup
{Φ:‖Φ‖1=1}

∣∣∣Re
(
i
2

∫
S

Φzzµ
z
z dz ∧ dz

)∣∣∣(6.5)

= sup
{Φ:‖Φ‖1=1}

|〈Φ, Q〉2| .

We now use that fact that π ◦ γ is precompact in ModS . From the
construction of dρ2(t) using the horizontal distribution THM̂odS, it follows
that ‖LV (t)dρ

2(t)‖k is uniformly bounded in t. From (6.5), it follows that
for fixed t ∈ [0,∞), Q(t) lies in a compact subset of H0(S;K2) and hence
one has a bound on ‖Re(Q(t))‖k. Again using the precompactness of π ◦γ,
it follows that ‖Re(Q(t))‖k is uniformly bounded in t. The proposition
follows. �

For each t ∈ [0,∞), the vector space H1(S;R) inherits a inner product
〈·, ·〉t which can be described in two equivalent ways:

1. Given h ∈ H1(S;R), let ω ∈ Λ1(S) be its harmonic representative on
(S, dρ2(t)). Then

〈h, h〉t = 〈ω, ω〉dρ2(t) =
∫
S
ω ∧ ∗tω .(6.6)

2. Using the complex structure on S coming from γ(t), we can write
H1(S;R)⊗⊗⊗ C = H1,0(S)⊕⊕⊕ H0,1(S). Given h ∈ H1(S;R), write h =
1
2(ρ+ ρ) with ρ ∈ H1,0(S). Then

〈h, h〉t = i
2

∫
S
ρ ∧ ρ .(6.7)

Let H1(t) be the vector space of harmonic 1-forms on S, with re-
spect to the metric dρ2(t). It inherits an L2-inner product. Let Π(t) :
Λ1(S;R) → H1(t) be the harmonic projection operator. Fix a set {Ci}
of closed L2 1-currents on S whose homology representatives {[Ci]} form
a basis of H1(S;R). Let {τ i} be the dual basis of H1(S;R). Define∫
C : Ω1(S)→ H1(S;R) by ∫

C
ω =

∑
i

〈Ci, ω〉 τ i .(6.8)

Then
∫
C restricts to an isometric isomorphism

∫
C : H1(t)→ H1(S;R).

Let H1 be the vector bundle on [0,∞) whose fiber over t ∈ [0,∞) is
isomorphic to H1(S;R), with the inner product 〈·, ·〉t. Let H1 be the vector
bundle on [0,∞) whose fiber over t ∈ [0,∞) is isomorphic to H1(t).
Definition 4. We define the following spaces.

1. Let Γ(H1) be the vector space of L2-sections of H1.
2. Let Γ(H1) be the vector space of L2-sections of H1.
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3. Put Γ′(H1) = {h∈Γ(H1) : h is absolutely continuous and ∂th∈Γ(H1)}.
4. Put Γ′(H1) = {h ∈ Γ(H1) : h is absolutely continuous and (Π(t)∂t)h ∈

Γ(H1)}.
There is an operator ∂t acting on Γ′(H1). Similarly, there is an operator

Π(t)∂t acting on Γ′(H1).

Lemma 2. There is a commutative diagram

Γ′(H1)
Π(t)∂t−→ Γ(H1)∫

C

y ∫
C

y
Γ′(H1) ∂t−→ Γ(H1) .

(6.9)

Proof. Given h ∈ Γ′(H1), ∂th is closed on S. Then

∂t

∫
C
h = ∂t

∑
i

〈Ci, h〉τ i =
∑
i

〈Ci, ∂th〉τ i(6.10)

=
∑
i

〈Ci,Π(t)∂th〉τ i =
∫
C

Π(t)∂th .

The lemma follows. �

Thus ∂t, acting on Γ′(H1), is essentially the same as Π(t)∂t, acting on
Γ′(H1).

Given t ∈ [0,∞), let δ(t) denote the adjoint to exterior differentiation
d on Λ∗(S), with respect to the metric dρ2(t). Let 4(t) be the Laplacian
on Λ∗(S) and let G(t) be its Green’s operator. They satisfy

4(t)G(t) = G(t)4(t) = I −Π(t) , Π(t)G(t) = G(t)Π(t) = 0 .
(6.11)

For reference, we remark that differentiating (6.11) with respect to t gives

∂tG = −(∂tΠ)G−G(∂tΠ)−G(∂t4)G .(6.12)

Furthermore, differentiating

Π(t)4(t) = 4(t)Π(t) = 0(6.13)

with respect to t gives

∂tΠ = −G(t)(∂t4)Π(t)−Π(t)(∂t4)G(t) .(6.14)

Our strategy now is to come up with a subcomplex of Ω∗(U) which in
some sense contains all of the low-energy information in Ω∗(U). The map
j1 in the next definition may seem arbitrary at first sight, but it is cooked
up to make Proposition 13 hold.

Definition 5. Define j0 : Ω0([0,∞))→ Ω0(U) by

j0(c) = c(t) .(6.15)
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Define j1 : Ω1([0,∞))⊕⊕⊕ Γ′(H1)→ Ω1(U) by

j1(c(t)dt, h) = h(t) + dt ∧ [c(t) + δ(t)G(t)∂th] .(6.16)

Define j2 : Γ(H1)→ Ker(d2 : Ω2(U)→ Ω3(U)) by

j2(h) = dt ∧ h(t) .(6.17)

Proposition 12. The maps j0, j1 and j2 are well-defined, in that their
images are square-integrable.

Proof. As the area of (S, dρ2(t)) is constant in t, it follows that j0 is well-
defined. Clearly j2 is an isometry. It remains to show that j1 is well-defined.
The only thing to show is that δ(t)G(t)∂th is square-integrable on U .

For each t, δ(t)G(t) is an L2-bounded operator. As π ◦ γ is precompact
in ModS , there is a bound on δ(t)G(t) which is uniform in t.

We must now show that ∂th is square-integrable on U . Differentiating
4(t)h(t) = 0 with respect to t gives

(∂t4)h(t) +4(t)∂th = 0(6.18)

and hence

(I −Π(t))∂th = G(t)4(t)∂th = −G(t)(∂t4)h(t) .(6.19)

As Π(t)∂th is square-integrable by definition, it suffices to show that
G(t)(∂t4)h(t) is square-integrable on U . Now

G(t)(∂t4)h(t) = G(t)(d(∂tδ) + (∂tδ)d)h(t) = G(t)d(∂tδ)h(t) .
(6.20)

Acting on Λ∗(S),

∂tδ = [δ(t), ∗−1(∂t∗)] .(6.21)

Thus

G(t)(∂t4)h(t) = G(t)d[δ(t), ∗−1(∂t∗)]h(t) = G(t)dδ(t) · ∗−1(∂t∗)h(t) .
(6.22)

By definition, h is square-integrable. From Proposition 11, the operator
norm of ∗−1(∂t∗) is uniformly bounded in t. This gives that G(t)dδ(t) ·
∗−1(∂t∗)h(t) is square-integrable on U . Thus ∂th is square-integrable on U . �

Proposition 13. There is a commutative diagram

Ω0([0,∞)) ∂t⊕⊕⊕0−→ Ω1([0,∞))⊕⊕⊕ Γ′(H1)
0+Π(t)∂t−→ Γ(H1)

j0
y j1

y j2
y

Ω0(U) d0−→ Ω1(U) d1−→ Ker(d2) .

(6.23)
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Proof. The only nontrivial point to check is that d1 ◦ j1 = j2 ◦ Π(t)∂t on
Γ′(H1). Let d̂ denote exterior differentiation on U and let d denote exterior
differentiation on S. Then

d̂ = d+ dt ∧ ∂t .(6.24)
Given h ∈ Γ′(H1),

d1(j1(h)) = d̂[h(t) + dt ∧ δ(t)G(t)∂th] = dt ∧ [∂th− dδ(t)G(t)∂th] .
(6.25)

As dh(t) = 0,

∂th− dδ(t)G(t)∂th = ∂th− dδ(t)G(t)∂th− δ(t)dG(t)∂th
(6.26)

= [I −4(t)G(t)]∂th = Π(t)∂th .
On the other hand,

j2(Π(t)∂th) = dt ∧Π(t)∂th .(6.27)
The proposition follows. �

It follows from Proposition 13 that j1 and j2 induce maps
J1 : [Ω1([0,∞))/ Im(∂t)]⊕⊕⊕Ker(Π(t)∂t)→ H1

(2)(U)(6.28)
and

J2 : Γ(H1)/ Im(Π(t)∂t)→ H2
(2)(U) .(6.29)

Note that
Ω1([0,∞))/Im(∂t) = 0 .(6.30)

Proposition 14. The maps j1 and j2 also induce maps

J1 : Ker(Π(t)∂t)→ H1
(2)(U)(6.31)

and
J2 : Γ(H1)/Im(Π(t)∂t)→ H2

(2)(U) .(6.32)

Proof. This is automatic for J1 and follows for J2 from the continuity
of j2. �

Proposition 15. J1 and J1 are isomorphisms.

Proof. Let d̂ denote exterior differentiation on U and let d denote exterior
differentiation on S. As in Proposition 2, we may assume that all differential
forms involved are smooth. We first show that J1 is onto. Given η ∈
Ker(d1 : Ω1(U)→ Ω2(U)), we want to show that we can write η as

η = h(t) + dt ∧ [c(t) + δ(t)G(t)∂th] + d̂f(6.33)
with dt ∧ c(t) ∈ Ω1([0,∞)), h ∈ Ker(Π(t)∂t) and f ∈ Ω0(U).
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Write η as

η = η1(t) + dt ∧ η0(t) ,(6.34)

where η0(t) ∈ Λ0(S) and η1(t) ∈ Λ1(S). The condition for η to be closed is

dη1(t) = ∂tη1 − dη0(t) = 0 .(6.35)

Let [η1(t)] ∈ H1(S;R) be the de Rham cohomology class of η1(t). By
equation (6.35), it is independent of t. Put h(t) = Π(t)η1(t). Then by
Lemma 2, Π(t)∂th = 0. As in the proof of Proposition 12, ∂th is square-
integrable on U .

Put f(t) = δ(t)G(t)η1(t). By the precompactness of π ◦ γ, f is square-
integrable on U . By construction,

df(t) = (I −Π(t))η1(t) = η1(t)− h(t) .(6.36)

Lemma 3. ∂tf is square-integrable on U .

Proof. We abbreviate δ(t)G(t)η1(t) by δGη1. Then

∂tf = ∂t(δG)η1 + δG∂tη1 = ∂t(δG)η1 + δGdη0 .(6.37)

Using equations (6.12) and (6.14), along with the precompactness of π ◦ γ,
and arguing as in the proof of Proposition 12, the lemma follows. �

Put

c(t) = η0(t)− ∂tf − δ(t)G(t)∂th .(6.38)

By Lemma 3 and the precompactness of π ◦ γ, c is square-integrable on U .
We have

dc(t) = dη0(t)− ∂tdf − dδ(t)G(t)∂th(6.39)
= ∂t[η1(t)− df(t)]− dδ(t)G(t)∂th
= [I − dδ(t)G(t)]∂th = Π(t)∂th = 0 .

Thus c ∈ Ω0(U) is constant along copies of S and so gives an element
dt ∧ c(t) ∈ Ω1([0,∞)). We have shown that

η1(t) = h(t) + df(t) ,(6.40)
η0(t) = c(t) + δ(t)G(t)∂th+ ∂tf .

These are equivalent to (6.33), showing that J1 is onto.
It follows that the map

[Ω1([0,∞))/Im (∂t)]⊕⊕⊕Ker(Π(t)∂t)→ H1
(2)(U)(6.41)

is also onto. Equation (6.30) implies that J1 is onto.
We now show that J1 is injective. Given c(t)dt ∈ Ω1([0,∞)), h ∈

Ker(Π(t)∂t) and f ∈ Ω0(U) such that j1(c(t)dt, h) = d̂f , we want to show
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that h = 0 and c(t)dt ∈ Im(∂t). We have
h(t) = df(t) ,(6.42)

c(t) + δ(t)G(t)∂th = ∂tf .

As h(t) is harmonic on S and exact by (6.42), it follows that it must vanish.
Then df(t) = 0 and c(t) = ∂tf . Thus f is constant on copies of S. As f is
square-integrable on U , it follows that c(t)dt ∈ Im(∂t).

Finally, we show that J1 is injective. Given h ∈ Ker(Π(t)∂t) such that
j1(0, h) ∈ Im(d0), we want to show that h = 0. Write j1(0, h) = limi→∞ d̂fi,
with fi ∈ Ω0(U). Then

h(t) + dt ∧ δ(t)G(t)∂th = lim
i→∞

(dfi(t) + dt ∧ ∂tfi) ,(6.43)

where the convergence is in L2 on U . By Lemma 2 and the fact that
Π(t)∂th = 0,

∫
C h(t) ∈ H1(S;R) is constant in t. Then for all t ∈ [0,∞),

∫
C
h(t) =

∫ 1

0
ds

∫
C
h(s) = lim

i→∞

∫ 1

0
ds

∫
C
dfi(s) = 0 .

(6.44)

As h(t) is harmonic, it must vanish. �

Remark. Lemma 2 and Proposition 15 imply that H1
(2)(U) is also iso-

morphic to Ker(∂t : Γ′(H1) → Γ(H1)). In particular, it is isomorphic to a
subspace of H1(S;R).

Proposition 16. J2 and J2 are isomorphisms.

Proof. Let d̂ denote exterior differentiation on U and let d denote exterior
differentiation on S. Again, we can assume that all of the differential
forms involved are smooth. We first show that J2 and J2 are onto. Given
ω ∈ Ker(d2 : Ω2(U)→ Ω3(U)), write

ω = ω2(t) + dt ∧ ω1(t) ,(6.45)
where ω1(t) ∈ Λ1(S) and ω2(t) ∈ Λ2(S). The condition for ω to be closed
is

∂tω2(t) = dω1(t) .(6.46)
We must show that there exist h ∈ Γ(H1) and η ∈ Ω1(U) such that

ω = dt ∧ h(t) + d̂η .(6.47)
For any t ∈ [0,∞), let [ω2(t)] ∈ H2(S;R) ∼= R denote the de Rham

cohomology class of ω2(t). By (6.46), it is constant in t. By the Hodge
decomposition, we have

‖ω2(t)‖2 ≥ [ω2(t)]2 Area(S, dρ2(t)) = −2π[ω2(t)]2χ(S) .
(6.48)
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As ω2 is square-integrable on U , we must have [ω2(t)] = 0.
Put η1(t) = δ(t)G(t)ω2(t). We abbreviate this by δGω2. Using the

precompactness of π ◦ γ, it follows that η1 ∈ Λ1(U). By construction,
dη1(t) = ω2(t) .(6.49)

Lemma 4. ∂tη1 is square-integrable on U .

Proof. We have
∂tη1 = ∂t(δG)ω2 + δG∂tω2(6.50)

= ∂t(δG)ω2 + δGdω1 .

As ω1 is square-integrable on U , it follows that δGdω1 is square-integrable
on U . It remains to show that ∂t(δG)ω2 is square-integrable on U . This
follows from arguments similar to those previously used in this section. �

From (6.46) and (6.49),
d(ω1(t)− ∂tη1) = 0 .(6.51)

From Lemma 4, ω1 − ∂tη1 is square-integrable on U . Put
h(t) = Π(t)(ω1(t)− ∂tη1)(6.52)

and
η0(t) = −δ(t)G(t)(ω1(t)− ∂tη1) .(6.53)

Then
h(t)− dη0(t) = ω1(t)− ∂tη1 .(6.54)

Put
η = η1(t) + dt ∧ η0(t) .(6.55)

Then h ∈ Γ(H1) and η ∈ Ω1(U). Equations (6.49) and (6.54) imply that
(6.47) is satisfied. Thus J2 and J2 are onto.

We now show that J2 is injective. Suppose that h ∈ Γ(H1) and η ∈
Ω1(U) satisfy

j2(h) = d̂η .(6.56)
We must show that h ∈ Im (Π(t)∂t). Writing η as in (6.34), we have

h(t) = ∂tη1 − dη0(t) ,(6.57)
0 = dη1(t) .

Applying Π(t) gives
h(t) = Π(t)∂tη1(6.58)

= Π(t)∂t[Π(t)η1(t)] + Π(t)∂t[(I −Π(t))η1(t)] .
Now

Π(t)∂t[(I −Π(t))η1(t)] = −Π(t)(∂tΠ)η1(t) .(6.59)
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Using (6.14),

Π(t)(∂tΠ)η1(t) = −Π(t)(∂t4)G(t)η1(t) = −Π(t)[d(∂tδ) + (∂tδ)d]G(t)η1(t)
(6.60)

= −Π(t)(∂tδ)dG(t)η1(t) = −Π(t)[δ(t), ∗−1(∂t∗)]G(t)dη1(t)
= 0 .

Therefore,
h(t) = Π(t)∂t[Π(t)η1(t)] ,(6.61)

showing that h ∈ Im(Π(t)∂t).
Finally, we show that J2 is injective. Suppose that h ∈ Γ(H1) and

j2(h) ∈ Im(d1). We must show that h ∈ Im(Π(t)∂t). Let us write j2(h) =
limi→∞ d̂ηi with ηi ∈ Ω1(U). Decomposing ηi as

ηi = ηi1(t) + dt ∧ ηi0(t) ,(6.62)
we have

h(t) = lim
i→∞

[∂tηi1 − dηi0(t)] ,(6.63)

0 = lim
i→∞

dηi1(t) ,

where the convergence is in L2 on U . Applying Π(t) gives
h(t) = lim

i→∞
Π(t)∂tηi1 .(6.64)

Equations (6.58)-(6.60) give

h(t) = lim
i→∞

{
Π(t)∂t[Π(t)ηi1] + Π(t)[δ(t), ∗−1(∂t∗)]G(t)dηi1

}
.

(6.65)

As π ◦ γ is precompact, the operator Π(t)[δ(t), ∗−1(∂t∗)]G(t) is uniformly
bounded in t. Thus

h(t) = lim
i→∞

Π(t)∂t[Π(t)ηi1](6.66)

in Γ(H1). The proposition follows. �

Proposition 17. H2
(2)(U) = 0.

Proof. From Lemma 2 and Proposition 16, H2
(2)(U) ∼= Im(∂t)⊥ ⊂ Γ(H1).

Using the inner product on Γ(H1), we can identify it with its dual space
Γ(H1). Given k ∈ Im(∂t)⊥, let k̃ be the corresponding element of Γ(H1).
Let h ∈ Γ′(H1) be smooth with compact support in (0,∞). As

0 = 〈k, ∂th〉 =
∫ ∞

0
(k̃(t), ∂th(t))dt(6.67)

holds for all such h, k̃(t) must be constant in t. Letting h now have compact
support in [0,∞), (6.67) gives that k̃ = 0. Hence k = 0. �
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Corollary 3. Let N be a connected oriented Riemannian 3-manifold
with positive injectivity radius. Suppose that there is a compact submani-
fold K of N such that each connected component Ci of N −K is isometric
to a geometrically finite or simply degenerate end Ei of a topologically tame
hyperbolic 3-manifold Mi. Suppose that each simply degenerate end Ei is
incompressible in Mi. Then

1. dim(Ker(41(N))) <∞
2. 0 /∈ σ(δd on Λ1(N)/Ker(d)) if and only if each end of N is geometri-

cally infinite and the corresponding operator ∂t : Γ′(H1) → Γ(H1) is
onto.

Proof. Equation (2.8) and Propositions 1, 5, 6 and 8 imply that it is enough
to verify the claims for the corresponding ends of the model manifolds Mi.

1. If an end is geometrically finite, the claim follows from (3.1). If an
end is geometrically infinite, the claim follows from Proposition 15
and the remark following it.

2. If an end is geometrically finite, the claim follows from (3.2). If an
end is geometrically infinite, the claim follows from Lemma 2, Propo-
sition 16 and Proposition 17. �

Remark. Corollary 3.1 is not an immediate consequence of the fact that
N has finite topological type. For example, the analogous statement for
hyperbolic surfaces would be false.

7 Unreduced L2L2L2-Cohomology

In section 6 we reduced the problem of computing the L2-cohomologies of
an end of M to that of computing the kernel and the image of the operator
∂t on Γ′(H1). The inner product 〈·, ·〉t defining Γ′(H1) is determined by the
Teichmüller geodesic γ. The question now arises as to how 〈·, ·〉t depends
on t.

Example 1. Consider the mapping torus MT discussed at the end of
section 4, whose fiber is a closed oriented surface S of genus g ≥ 2 and whose
monodromy is an orientation-preserving pseudo-Anosov diffeomorphism φ
of S. Let {dρ2(t)}t∈R be a smooth curve in HS such that for all t ∈ R,
dρ2(t) = φ∗(dρ2(t + 1)). Such a curve can be constructed by choosing
an arbitrary dρ2(0) ∈ HS, choosing an arbitrary path {dρ2(t)}t∈[0,1] from
dρ2(0) to (φ−1)∗(dρ2(0)) and then perturbing the path near the ends if
necessary so that it extends to give {dρ2(t)}t∈R. The metric dt2 + dρ2(t)
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on R×S descends to a metric on MT . Thus dt2 +dρ2(t) serves as a model
metric for the hyperbolic metric on the cyclic cover M .

As φ∗ acts symplectically on H1(S;R), there is a decomposition

H1(S;R) = E0⊕⊕⊕
k⊕
i=1

(Ei⊕⊕⊕ E−i)(7.1)

and positive numbers
λ−k < . . . < λ−1 < 1 < λ1 < . . . < λk(7.2)

such that φ∗ acts orthogonally on E0 and if 1 ≤ |j| ≤ k then
1. dim(E−j) = dim(Ej)
2. λjλ−j = 1
3. φ∗ acts by multiplication by λj on Ej .
By construction, for all v∈H1(S;R) and all t∈R, 〈v, v〉t+1=〈φ∗v, φ∗v〉t.

Then given v0 ∈ E0 and vj ∈ Ej , we have that for all t ∈ [0, 1] and n ∈ Z,
〈v0, v0〉t+n = 〈v0, v0〉t ,(7.3)

〈vj , vj〉t+n = λ2n
j 〈vi, vi〉t ,

Thus there is a constant C > 0 such that for t ≥ 0,
C−1‖v0‖0 ≤ ‖v0‖t ≤ C‖v0‖0 ,(7.4)

C−1et log(λj)‖vj‖0 ≤ ‖vj‖t ≤ Cet log(λj)‖vj‖0 .
From Corollary 2, 0 /∈ σ(δd on Λ1(M)/Ker(d)) if and only if E0 = 0.
End of Example 1

Example 1 shows the nicest possible behavior for ‖·‖t. We expect that in
some sense, a simply degenerate end of a manifold N as in Corollary 3 will
generally have a similar Lyapunov-type decomposition for the cohomology
group H1(S;R). We discuss the evidence for this at the end of the section.
For now, we just give some consequences of having such a decomposition.

First, we give a sufficient condition for zero to not be in σ(δd on
Λ1(N)/Ker(d)).
Lemma 5. Let V be a finite-dimensional real vector space with a smooth
family of inner products {〈·, ·〉t}t∈[0,∞). Let L2([0,∞);V ) be the space of
measurable maps f : [0,∞)→ V such that

‖f‖2 =
∫ ∞

0
〈f(t), f(t)〉t dt <∞ .(7.5)

Suppose that there are constants a, c > 0 such that if s1 ≥ s2 ≥ 0 and
v ∈ V then

‖v‖s1 ≥ c ea(s1−s2)‖v‖s2 .(7.6)
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Let O be the operator

(Of)(t) =
∫ ∞
t

f(s)ds .(7.7)

Then O is a bounded operator on L2([0,∞);V ).

Proof. If f ∈ C∞0 ([0,∞);V ) then the L2-norm of Of is given by

‖Of‖2 =
∫ ∞

0

〈 ∫ ∞
t

f(s1)ds1,

∫ ∞
t

f(s2)ds2

〉
t
dt

(7.8)

=
∫ ∞

0

∫ ∞
0

∫ min(s1,s2)

0
〈f(s1), f(s2)〉tdt ds1 ds2

≤
∫ ∞

0

∫ ∞
0

∫ min(s1,s2)

0
‖f(s1)‖t · ‖f(s2)‖tdt ds1 ds2 .

Suppose that s1 ≥ s2 ≥ s3 ≥ 0. Then from (7.6),

‖f(s1)‖s3 · ‖f(s2)‖s3 ≤ c−1e−a(s1−s3)‖f(s1)‖s1 · c−1e−a(s2−s3)‖f(s2)‖s2
(7.9)

= c−2 e−a(s1−s2) e−2a(s2−s3) ‖f(s1)‖s1 · ‖f(s2)‖s2 .
Thus if s1 ≥ s2 then

∫ min(s1,s2)

0
‖f(s1)‖t · ‖f(s2)‖t dt =

∫ s2

0
‖f(s1)‖t · ‖f(s2)‖t dt

(7.10)

≤
∫ s2

0
c−2e−a(s1−s2)e−2a(s2−t)‖f(s1)‖s1 · ‖f(s2)‖s2 dt

≤ 1
2ac2 e

−a(s1−s2)‖f(s1)‖s1 · ‖f(s2)‖s2 .
In any case,

∫ min(s1,s2)

0
‖f(s1)‖t · ‖f(s2)‖tdt ≤ 1

2ac2 e
−a|s1−s2|‖f(s1)‖s1 · ‖f(s2)‖s2 .

(7.11)

Then

‖Of‖2 ≤
∫ ∞

0

∫ ∞
0

1
2ac2 e

−a|s1−s2|‖f(s1)‖s1 · ‖f(s2)‖s2ds1ds2 .

(7.12)

For s ≥ 0, put g(s) = ‖f(s)‖s. Extend g by zero to become an L2-function
on R. Then∫ ∞

−∞

∫ ∞
−∞

e−a|s1−s2|

2a g(s1)g(s2)ds1ds2 = 〈g, (−∂2
s + a2)−1g〉

(7.13)

≤ a−2
∫ ∞
−∞

g2(s)ds .
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The proposition follows. �

Lemma 6. Let V be a finite-dimensional real vector space with a smooth
family of inner products {〈·, ·〉t}t∈[0,∞). Let L2([0,∞);V ) be the space of
measurable maps f : [0,∞)→ V such that

‖f‖2 =
∫ ∞

0
〈f(t), f(t)〉tdt <∞.(7.14)

Suppose that there are constants a, c > 0 such that if s1 ≥ s2 ≥ 0 and
v ∈ V then

‖v‖s1 ≤ c e−a(s1−s2)‖v‖s2 .(7.15)

Let O′ be the operator

(O′f)(t) =
∫ t

0
f(s)ds .(7.16)

Then O′ is a bounded operator on L2([0,∞);V ).

Proof. The proof is similar to that of Lemma 5. We omit the details. �

Proposition 18. Let U contain an end of M as in section 6. Let
γ : [0,∞) → TS be the corresponding Teichmüller ray. Let 〈·, ·〉t be the
inner product on H1(S;R) coming from γ(t). Suppose that there is a de-
composition H1(S;R) = E+⊕⊕⊕E− and constants a, c+, c− > 0 such that for
all v+ ∈ E+, v− ∈ E− and s1 ≥ s2 ≥ 0,

‖v+‖s1 ≥ c+ea(s1−s2)‖v+‖s2(7.17)
and

‖v−‖s1 ≤ c− e−a(s1−s2)‖v−‖s2 .(7.18)
Then H2

(2)(U) = 0.

Proof. From Proposition 16, we must show that ∂t : Γ′(H1) → Γ(H1) is
onto. Given v ∈ Γ(H1), write v(t) = v+(t) + v−(t) with v+(t) ∈ E+ and
v−(t) ∈ E−. Put

w(t) =
∫ t

0
v+(s)ds−

∫ ∞
t

v−(s)ds .(7.19)

Clearly ∂tw = v. By Lemmas 5 and 6, w ∈ Γ′(H1). �

Corollary 4. Let N be as in Corollary 3. Suppose that each end of
N is geometrically infinite and there is a decomposition of the correspond-
ing H1(S;R) as in the statement of Proposition 18. Then 0 /∈ σ(δd on
Λ1(N)/Ker(d)).

Proof. This follows from Corollary 3.2 and Proposition 18. �
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We now give a sufficient condition for zero to be in σ(δd on
Λ1(N)/Ker(d)).

Lemma 7. Let h be a positive smooth function on [0,∞). Suppose that
there is a constant C > 0 such that for all t ≥ 0,

1
C(1+t) ≤ h(t) ≤ C(1 + t) .(7.20)

Put Γ = L2(h(t)dt) and

Γ′ = {f ∈ Γ : f is absolutely continuous and ∂tf ∈ Γ} .
Then ∂t : Γ′ → Γ is not onto.

Proof. Put

g(t) = (1 + t)−
1
2 (log(1 + t))−

3
4h−

1
2 (t) .(7.21)

Then g ∈ Γ. However,

∫ t

0
g(s)ds ≥ C− 1

2

∫ t

0
(1 + s)−1(log(1 + s))−

3
4 ds = 4C−

1
2 (log(1 + t))

1
4 .

(7.22)

For any T ≥ 0,

∫ ∞
T

(log(1 + t))
1
2h(t)dt ≥ 1

C

∫ ∞
T

(log(1 + t))
1
2 dt

1+t =∞ .

(7.23)

It follows that for all c ∈ R, c+
∫ t
0 g(s)ds does not lie in L2(h(t)dt) and so

g cannot be in the image of ∂t : Γ′ → Γ. �

Proposition 19. Let U contain an end of M as in section 6. Let
γ : [0,∞) → TS be the corresponding Teichmüller ray. Let 〈·, ·〉t be the
inner product on H1(S;R) coming from γ(t). Suppose that there is a v ∈
H1(S;R) and a C > 0 such that for all t ≥ 0,

1
C
√

1+t ≤ ‖v‖t ≤ C
√

1 + t .(7.24)

Then H2
(2)(U) 6= 0.

Proof. By Proposition 16, we must show that ∂t : Γ′(H1) → Γ(H1) is not
onto. Putting h(t) = ‖v(t)‖2, this follows from Lemma 7. �

Corollary 5. Let N be as in Corollary 3. Suppose that some end of N is
geometrically finite or there is an element v of the corresponding H1(S;R)
satisfying (7.24). Then 0 ∈ σ(δd on Λ1(N)/Ker(d)).

Proof. This follows from Corollary 3.2 and Proposition 19. �
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Remark. Using the results of Example 1, Corollary 2 is a special case of
Corollaries 4 and 5. Other examples in which the hypotheses of Corollaries
4 and 5 are satisfied are given by hyperbolic 3-manifolds with geometrically
infinite ends having the same ending laminations as periodic ends.

The question arises as to how often the assumptions of Corollaries 4 and
5 hold. The qualitative behavior of the norms ‖ · ‖t, as a function of t, is
determined by the dynamics of the projected Teichmüller geodesic π ◦ γ on
ModS. Example 1 comes from the case of a closed loop on ModS. Recall
that as M has positive injectivity radius, π ◦γ lies within a compact region
of ModS. It seems that the dynamics of geodesics on ModS is similar to
that of Riemannian geodesics on finite volume hyperbolic manifolds with
cusps, in that exceptional geodesics can be constructed which have almost
any desired behavior. However, one may ask if most geodesics have some
uniform behavior.

The recent work of Anton Zorich is relevant here [Z]. Let S be a closed
oriented surface of genus g ≥ 2. Instead of talking about measured geodesic
laminations on S, we will use the equivalent language of singular foliations
F of S with an invariant transverse measure µ. Zorich considers the sub-
set OMF of orientable measured foliations, or equivalently, the measured
foliations arising from a closed 1-form on S. For generic F , the measure µ
will be a unique ergodic invariant transverse measure on F up to scaling.
Given generic (F , µ) ∈ OMF , using Oseledec’s theorem, Zorich constructs
a certain filtration

0 ⊂ F−k ⊂ . . . ⊂ F−1 ⊆ F0 ⊂ F1 ⊂ . . . ⊂ Fk = H1(S;R)
(7.25)

and positive numbers
λ−k < . . . < λ−1 < 1 < λ1 < . . . < λk(7.26)

with λjλ−j = 1, having the following property: Pick a generic point p ∈ S.
Let l be a half-leaf through p. Take a small transverse interval I at p. Let
{ln}n∈N be the segments of l from p to I, in increasing order. That is, the
first return of l to I gives l1, the second gives l2, etc. For each n ∈ N, close
the segment ln by a short arc along I joining the endpoints of ln. This
gives a closed loop which represents some hn ∈ H1(S;R). Pick an arbitrary
Euclidean metric ‖ · ‖ on H1(S;R). Then if i > 0 and fi ∈ Fi\Fi−1,

lim sup
n→∞

log |fi(hn)|
log ‖hn‖ = log(λi)

log(λk) .(7.27)

Also, if f0 ∈ F0\F−1 then

lim sup
n→∞

log |f0(hn)|
log ‖hn‖ = 0 .(7.28)
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Example 2. Consider a pseudo-Anosov diffeomorphism as in Example 1.
Let (F , µ) be the corresponding stable measured foliation. Note that (F , µ)
may not be oriented or generic. Regardless, one can see that there is a
filtration (7.25) satisfying (7.27) and (7.28). In fact, it is equivalent to the
decomposition (7.1), in that Fi = Fi−1⊕⊕⊕ Ei.
End of Example 2

Zorich’s results are not directly applicable to our problem as we are
interested in the Teichmüller rays γ such that π◦γ is precompact, but these
are not generic. Nevertheless, one can speculate on an algorithm which in
“most” cases would input the end invariants of N and output whether or
not zero lies in the spectrum of σ(δd on Λ1(N)/Ker(d)). Namely, let N be
as in Corollary 3 and assume that all of the ends of N are geometrically
infinite. For each end, describe the end invariant as a measured foliation
(F , µ). Apply the above procedure of following a generic leaf of F to obtain
an increasing sequence

F0 ⊂ F1 ⊂ . . . ⊂ Fk = H1(S;R)(7.29)

and numbers 1 < λ1 < . . . < λk satisfying (7.27) and (7.28). Then zero
should not be in the spectrum of σ

(
δd on Λ1(N)/Ker(d)

)
if and only if for

each end of N , dim(F0) = genus(S).

8 Reduced L2L2L2-cohomology

Proposition 20. Let U = (0,∞) × S contain a geometrically infinite
end of the model manifold M. Suppose that the corresponding operator
∂t : Γ′(H1) → Γ(H1) has closed image. Then H1

(2)(U) is isomorphic to a
Lagrangian subspace of H1(S;R).

Proof. From Proposition 15 and the remark following it, H1
(2)(U) is isomor-

phic to a subspace of H1(S;R). It remains to show that this subspace is
Lagrangian. The pair (U , S) gives a cohomology sequence

. . . −→ H1
(2)(U) α−→ H1(S;R)

β−→ H2
(2)(U , S) −→ . . .(8.1)

In general, this sequence will not be weakly exact without some Fredholm-
ness assumptions. In our case, from Proposition 16, the assumption that
∂t has closed image implies that d1 : Ω1(U) → Ω2(U) is Fredholm in the
sense of [LoLü, Definition 2.1]. Then [LoLü, Theorem 2.2] implies that
(8.1) is weakly exact at H1(S;R). As the vector spaces involved are finite-
dimensional, this is the same as exactness.
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Given x ∈ H1
(2)(U) and y ∈ H1(S;R), one can check that∫

S
y ∪ α(x) =

∫
U
β(y) ∪ x .(8.2)

It follows that the intersection form on H1(S;R) vanishes when restricted
to Im(α). Furthermore, if y is perpendicular to Im(α) with respect to the
intersection form then y ∈ Ker(β) = Im(α). The proposition follows. �

Proposition 21. Let N and K be as in Corollary 3. Assume that
zero does not lie in σ

(
δd on Λ1(N)/Ker(d)

)
. Let L1 ⊂ H1(∂K;R) be the

Lagrangian subspace

Im(H1(K;R) −→ H1(∂K;R)) .

Let L2 be the Lagrangian subspace of H1(∂K;R) coming from the ends of
N , as in Proposition 20. Then there is a short exact sequence

0→ Im(H1(K,∂K;R)→ H1(K;R))→ H1
(2)(N)→ L1 ∩ L2 → 0 .

(8.3)

Proof. By Corollary 3.2, each end of N is geometrically infinite and the
corresponding operator ∂t : Γ′(H1) → Γ(H1) has closed image. Let V be
the closure of a union of open sets (0,∞) × Si containing the ends of N .
Take K = N − V . There is a Mayer-Vietoris sequence

. . .→H1
(2)(N)→ H1(K;R)⊕⊕⊕H1

(2)(V )→ H1(∂K;R)→
(8.4)

H2
(2)(N)→ H2(K;R)⊕⊕⊕H2

(2)(V )→ H2(∂K;R)→ . . .

Again, this sequence will not be weakly exact in full generality. However,
in our case d1 : Ω1(V ) → Ω2(V ) is Fredholm. Along with the fact that
the differentials d : Ω∗(S) → Ω∗+1(S) are Fredholm, [LoLü, Theorem 2.2]
implies that (8.4) is weakly exact at the terms from H1(K;R)⊕⊕⊕ H1

(2)(V )

to H2(K;R)⊕⊕⊕H2
(2)(V ). Again, as the vector spaces are finite-dimensional,

the sequence will actually be exact at these terms. By Proposition 17,
H2

(2)(V ) = 0. Dualizing (8.4) gives a sequence

. . .→H0(∂K;R)→ H1(K,∂K;R)→ H1
(2)(N)→

(8.5)

H1(∂K;R)→ H2(K,∂K;R)⊕⊕⊕H2
(2)(V, ∂K)→ H2

(2)(N)→ . . .

which is exact at the terms from H1(K,∂K;R) to H2(K,∂K;R) ⊕⊕⊕
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H2
(2)(V, ∂K). This gives the short exact sequence

0→Coker(H0(∂K;R)→ H1(K,∂K;R))→ H1
(2)(N)→

(8.6)

Ker(H1(∂K;R)→ H2(K,∂K;R)⊕⊕⊕H2
(2)(V, ∂K))→ 0 .

From the exact cohomology sequence of the pair (K,∂K),

Coker(H0(∂K;R)→ H1(K,∂K;R)) ∼= Im(H1(K,∂K;R)→ H1(K;R))
(8.7)

and

Ker(H1(∂K;R)→ H2(K,∂K;R)) ∼= Im(H1(K;R)→ H1(∂K;R)) = L1 .

(8.8)

Thus

Ker(H1(∂K;R)→ H2(K,∂K;R)⊕⊕⊕H2
(2)(V, ∂K)) =(8.9)

L1 ∩Ker(H1(∂K;R)→ H2
(2)(V, ∂K)) .

Identifying H1
(2)(V ) with the subspace L2 of H1(∂K;R), the pairing (2.20)

gives

H2
(2)(V, ∂K) ∼= (H1

(2)(V ))∗ ∼= L∗2 .(8.10)

The map A : H1(∂K;R)→ H2
(2)(V, ∂K) ∼= L∗2 is given explicitly by

(A(h))(l) =
∫
S
h ∪ l(8.11)

for all h ∈ H1(∂K;R) and l ∈ L2. As L2 is Lagrangian,

Ker(H1(∂K;R)→ H2
(2)(V, ∂K)) = L2 .(8.12)

The proposition now follows from equations (8.6), (8.7), (8.9) and (8.12). �

Example 3. Let M be as in Example 1, with E0 = 0. With respect to
the diffeomorphism M = R× S, take K = [−1, 1] × S. Then M certainly
satisfies the hypotheses of Proposition 21. We have ∂K = S q S, with the
Lagrangian subspace L1 being the diagonal in H1(∂K;R) = H1(S;R) ⊕⊕⊕
H1(S;R). As L2 = (

⊕k
i=1Ei)

⊕
(
⊕k

i=1E−i), we have L1 ∩ L2 = 0. Then
Proposition 21 gives H1

(2)(M) = 0. Of course, this is consistent with Propo-
sition 9.1.

Now let Z be the subset [0,∞) × S of M . Perturb the metric on Z to
make it a product near {0} × S. Let N be the double of Z. Again, N is
diffeomorphic to R × S. Take K = [−1, 1] × S. Then N also satisfies the
hypotheses of Proposition 21. In this case, L2 = (

⊕k
i=1E−i)

⊕
(
⊕k
i=1E−i).
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Thus L1∩L2 = L2. Proposition 21 gives dim(H1
(2)(N)) = g, the genus of S.

This shows that in the setting of Proposition 21, H1
(2)(N) depends on the

end invariants of N and not just on the topological type of K.
End of Example 3

Note. After this paper was completed, I learned that Theorem 5 is well-
known in ODE theory [H, Theorem 6.4]. Furthermore, Professor Kenneth
Palmer informs me [P] that the converse to Theorem 5 holds under the
additional assumption that there exist constants L,M > 0 such that for all
t ≥ s ≥ 0 and v ∈ H1(S;R),

‖ v ‖t≤MeL(t−s) ‖ v ‖s .(8.13)
In addition, Ohshika recently extended Minsky’s results to handle the

case when the ends are not incompressible [O2]. Thus the incompressibility
assumption is no longer necessary in our results.
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