L^2 -COHOMOLOGY OF GEOMETRICALLY INFINITE HYPERBOLIC 3-MANIFOLDS

J. Lott

Abstract

We give results on the following questions about a topologically tame hyperbolic 3-manifold ${\cal M}$:

1. Does M have nonzero square-integrable harmonic 1-forms?

2. Does zero lie in the spectrum of the Laplacian acting on $\Lambda^1(M)/\operatorname{Ker}(d)$?

1 Introduction

Let M be a complete oriented Riemannian manifold. A basic problem is to understand the spectrum of the Laplacian \triangle_p acting on the square-integrable p-forms $\Lambda^p(M)$. In this paper we are concerned with the bottom of the spectrum. We address the following questions:

- 1. Does M have nonzero square-integrable harmonic p-forms?
- 2. Does zero lie in the spectrum of \triangle_p ?

If M is compact then Hodge theory tells us that questions 1 and 2 are equivalent and that the answer is "yes" if and only if $H^p(M;\mathbb{C}) \neq 0$. In particular, the answer only depends on the topology of M.

If M is noncompact then things are different. First, questions 1 and 2 are no longer equivalent - think of $M = \mathbb{R}$. Second, the answers to these questions no longer only depend on the topology of M. They depend on both the topology of M and its asymptotic geometry in a subtle way which is not understood.

In this paper we look at the above questions for a class of Riemannian manifolds with interesting asymptotic geometry, namely connected hyperbolic 3-manifolds M which are topologically tame, i.e. diffeomorphic to the interior of a compact 3-manifold with boundary. We review the relevant geometry of such manifolds in section 3. Their ends can be characterized as cusps, flares and tubes. Roughly speaking, a cusp is contracting at infinity, a flare is expanding and a tube is asymptotically cylindrical. M is

called *geometrically finite* if its ends are all cusps or flares and *geometrically infinite* otherwise.

Using the Hodge decomposition, the square-integrable differential forms on M can be split into $\operatorname{Ker}(\triangle_0)$, $\Lambda^0(M)/\operatorname{Ker}(d)$, $\operatorname{Ker}(\triangle_1)$ and $\Lambda^1(M)/\operatorname{Ker}(d)$. Hereafter we assume that M is noncompact. The only possible elements of $\operatorname{Ker}(\triangle_0)$ are constant functions and so if $\operatorname{vol}(M) < \infty$ then $\operatorname{Ker}(\triangle_0) = \mathbb{C}$, while if $\operatorname{vol}(M) = \infty$ then $\operatorname{Ker}(\triangle_0) = 0$. The next result of Canary tells what happens on $\Lambda^0(M)/\operatorname{Ker}(d)$ [C1].

Theorem 1. Zero lies in the spectrum of the Laplacian acting on $\Lambda^0(M)/\operatorname{Ker}(d)$ if and only if M is geometrically infinite.

Thus the spectrum of the Laplacian, acting on functions, is sensitive to whether M has any tubular ends, but is not sensitive to the geometry of those ends. If M is geometrically finite, Mazzeo and Phillips computed dim (Ker(Δ_1)) and the essential spectrum of the Laplacian on $\Lambda^1(M)/\text{Ker}(d)$ [MPh]. In particular, if M is geometrically finite then zero always lies in the spectrum of the Laplacian acting on $\Lambda^1(M)/\text{Ker}(d)$. One could ask whether there is a direct analogue of Canary's theorem for $\Lambda^1(M)/\text{Ker}(d)$. However, the following example shows that this cannot be the case.

Let S be a closed oriented surface of genus $g \geq 2$ and let $\phi \in \text{Diff}(S)$ be an orientation-preserving pseudo-Anosov diffeomorphism of S. Thurston showed that the mapping torus MT of ϕ has a hyperbolic metric [Ot],[T3]. The corresponding cyclic cover M of MT is a geometrically infinite hyperbolic 3-manifold. In section 4 we prove

Theorem 2. Zero lies in the spectrum of the Laplacian acting on $\Lambda^1(M)/\operatorname{Ker}(d)$ if and only if $\phi^* \in \operatorname{Aut}(\operatorname{H}^1(S;\mathbb{R}))$ has an eigenvalue of norm one.

It is known that any element of $\operatorname{Sp}(2g,\mathbb{Z})$ can occur as ϕ^* for some pseudo-Anosov diffeomorphism of S [Pa]. Thus the result of Theorem 2 is not vacuous. It shows that the spectrum of the Laplacian, acting on 1-forms, is sensitive to the geometry of the tubular ends.

The manifolds considered in Theorem 2 are very special. The question arises how to extend Theorem 2 to general hyperbolic 3-manifolds M of finite topological type. First, we dispose of the case when M has zero injectivity radius. In section 5 we prove

Theorem 3. If $\inf_{m \in M} \inf(m) = 0$ then the essential spectrum of the Laplacian acting on $\Lambda^1(M)/\operatorname{Ker}(d)$ is $[0,\infty)$.

We are left with the case of positive injectivity radius. There is an obvious problem in studying the spectrum of the Laplacian on M in that we do not have an explicit description of the Riemannian metric of M. For example, even in the above case of a mapping torus, the hyperbolic metric on MT is constructed by a limiting process. Our way of getting around this problem is to translate questions about the bottom of the spectrum into questions about the reduced and unreduced L^2 -cohomology of M. It is much easier to compute the L^2 -cohomologies of M than to compute the spectral resolution of its Laplacian. Furthermore, the L^2 -cohomologies of M only depend on the biLipschitz diffeomorphism class of M. In our case we do know what M looks like up to a biLipschitz diffeomorphism, thanks to the work of Minsky [Mi2].

Let M be a topologically tame hyperbolic 3-manifold with positive injectivity radius. We make the technical assumption that the ends of M are incompressible. For brevity, we call such a hyperbolic 3-manifold nice. Minsky gave a length space which models the large-scale geometry of M. By a slight variation of his work, we construct a model manifold M which is biLipschitz diffeomorphic to M. The geometry of a tubular end $[0, \infty) \times S$ of M is given by a ray γ in the Teichmüller space T_S of the surface S. The endpoint of γ , a point in Thurston's compactification of T_S , is the end invariant of the tubular end. It is known that M is determined up to isometry by its topology and its end invariants [Mi2]. Hence the question is how exactly these determine the spectrum of the Laplacian.

Each point $\gamma(t)$ along the ray gives an inner product $\langle \cdot, \cdot \rangle_t$ on $\mathrm{H}^1(S; \mathbb{R})$. Let $\Gamma(\mathrm{H}^1)$ be the Hilbert space of measurable maps $f: [0, \infty) \to \mathrm{H}^1(S; \mathbb{R})$ such that $\int_0^\infty \langle f(t), f(t) \rangle_t dt < \infty$. Put

$$\Gamma'({\bf H}^1)=\{f\in\Gamma({\bf H}^1): f \text{ is absolutely continuous and } \partial_t f\in\Gamma({\bf H}^1)\}$$
 .

In section 6 we prove

Theorem 4. Let M be a nice hyperbolic 3-manifold. Then zero is not in the spectrum of the Laplacian acting on $\Lambda^1(M)/\operatorname{Ker}(d)$ if and only if each end of M is tubular and the corresponding operator $\partial_t: \Gamma'(H^1) \to \Gamma(H^1)$ is onto.

The next result gives a sufficient condition for ∂_t to be onto. In section 7 we prove

Theorem 5. Suppose that there is a decomposition $H^1(S; \mathbb{R}) = E_+ \oplus E_-$ and constants $a, c_+, c_- > 0$ such that for all $v_+ \in E_+$, $v_- \in E_-$ and $s_1 \ge s_2 \ge 0$,

$$||v_+||_{s_1} \ge c_+ e^{a(s_1 - s_2)} ||v_+||_{s_2}$$

and

$$||v_-||_{s_1} \le c_- e^{-a(s_1-s_2)} ||v_-||_{s_2}$$

Then ∂_t is onto.

We also give a conjectural algorithm to determine directly from the end invariants whether or not zero lies in the spectrum of the Laplacian acting on $\Lambda^1(M)/\operatorname{Ker}(d)$, at least for most end invariants.

Finally, we give results on $Ker(\Delta_1)$. In section 6 we prove

Theorem 6. If M is a nice hyperbolic 3-manifold then $\dim(\operatorname{Ker}(\triangle_1))$ < ∞ .

Let K be a compact submanifold of M onto which M retracts. Put

$$L_1 = \operatorname{Im}(H^1(K; \mathbb{R}) \to H^1(\partial K; \mathbb{R}))$$
.

It is a Lagrangian subspace of $H^1(\partial K; \mathbb{R})$. In section 8 we prove

Theorem 7. Let M be a nice hyperbolic 3-manifold. Suppose that zero is not in the spectrum of the Laplacian acting on $\Lambda^1(M)/\operatorname{Ker}(d)$. For each end of M, consider the vector space $\operatorname{Ker}(\partial_t : \Gamma'(H^1) \to \Gamma(H^1))$. Together, these give a Lagrangian subspace L_2 of $H^1(\partial K; \mathbb{R})$. There is a short exact sequence

$$0 \longrightarrow \operatorname{Im}(\operatorname{H}^{1}(K, \partial K; \mathbb{R}) \to \operatorname{H}^{1}(K; \mathbb{R})) \longrightarrow \operatorname{Ker}(\Delta_{1}) \longrightarrow L_{1} \cap L_{2} \to 0$$
.

The organization of this paper is as follows. In section 2 we define the reduced and unreduced L^2 -cohomology groups and give their basic properties, along with their relation to the spectrum of the Laplacian. Some of these results are scattered throughout the literature, but we have tried to give a coherent presentation. In section 3 we review the geometry of hyperbolic 3-manifolds and results of Minsky. In section 4 we compute the reduced and unreduced L^2 -cohomology groups of cyclic covers of general mapping tori. In section 5 we consider hyperbolic 3-manifolds with vanishing injectivity radius. In section 6 we describe the L^2 -cohomology groups of tubular ends in terms of the operators $\partial_t : \Gamma'(\mathrm{H}^1) \to \Gamma(\mathrm{H}^1)$. In section 7 we give sufficient conditions for the vanishing or nonvanishing of the unreduced L^2 -cohomology groups of tubular ends. We also describe results of Zorich and their relation to spectral questions. In section 8 we consider reduced L^2 -cohomology groups of hyperbolic 3-manifolds.

For notation, we will refer to statement 3 of Proposition 7 as Proposition 7.3, etc.

I thank Josef Dodziuk and Rafe Mazzeo for discussions. I thank Kenneth Palmer, Yair Minsky and Anton Zorich for explanations of their work and the latter two for comments on parts of this paper. I especially thank

Curt McMullen for many helpful conversations. I thank the IHES, the Max-Planck-Institut-Bonn and the Bonner Kaffeehaus for their hospitality.

2 L^2 -cohomology

Let M be an oriented Riemannian manifold which is geodesically complete except for a possible compact boundary. Consider the Hilbert space

(2.1) $\Lambda^p(M) = \{ \text{square-integrable measurable p-forms on M} \}$ and the subspace

(2.2)

$$\Omega^p(M) = \{ \omega \in \Lambda^p(M) : d\omega \text{ is square-integrable on } \operatorname{int}(M) \}$$
,

where $d\omega$ is initially interpreted in a distributional sense. There is a cochain complex

(2.3)
$$\ldots \xrightarrow{d_{p-1}} \Omega^p(M) \xrightarrow{d_p} \Omega^{p+1}(M) \xrightarrow{d_{p+1}} \ldots$$

One can check that $Ker(d_p)$ is a closed subspace of $\Lambda^p(M)$.

DEFINITION 1. The p-th L^2 -cohomology group of M is $H^p_{(2)}(M) = \operatorname{Ker}(d_p)/\operatorname{Im}(d_{p-1})$. The p-th reduced L^2 -cohomology group of M is $\overline{H}^p_{(2)}(M) = \operatorname{Ker}(d_p)/\overline{\operatorname{Im}(d_{p-1})}$, a Hilbert space.

We will sometimes call $H_{(2)}^p(M)$ the *p*-th unreduced L^2 -cohomology group. Let M' be another manifold like M. Let $\Omega^*(M')$ be its cochain complex, with differential d'.

Lemma 1. Suppose that there are linear maps

$$(2.4) \hspace{1cm} \begin{array}{c} i: \Omega^*(M) \to \Omega^*(M') \ , \qquad K: \Omega^*(M) \to \Omega^{*-1}(M) \ , \\ j: \Omega^*(M') \to \Omega^*(M) \ , \qquad K': \Omega^*(M') \to \Omega^{*-1}(M') \end{array}$$

such that

$$(2.5) \qquad \begin{array}{c} i\circ d=d'\circ i \ , \qquad \qquad j\circ d'=d\circ j \ , \\ I-j\circ i=dK+Kd \ , \qquad I-i\circ j=d'K'+K'd' \ . \end{array}$$

Then j induces an isomorphism between $H_{(2)}^*(M')$ and $H_{(2)}^*(M)$. If i and j are continuous then j also induces an isomorphism between $\overline{H}_{(2)}^*(M')$ and $\overline{H}_{(2)}^*(M)$.

Proof. We leave the proof to the reader.

The natural geometric invariance of L^2 -cohomology turns out to be Lipschitz homotopy equivalence. We will only consider maps $f: M \to M'$ such that $f(\partial M) \subset \partial M'$.

S6 J. LOTT GAFA

DEFINITION 2. 1. A map $f: M \to M'$ is said to be Lipschitz if f is almost everywhere differentiable and there is a constant C > 0 such that for almost all $m \in M$ and all $v \in T_m M$, $|(df)_m v| \leq C|v|$.

- 2. Two Lipschitz maps $f_0: M \to M'$ and $f_1: M \to M'$ are Lipschitz-homotopic if there is a Lipschitz map $F: [0,1] \times M \to M'$ which restricts to f_0 and f_1 on the boundary.
- 3. Two Lipschitz maps $f: M \to M'$ and $g: M' \to M$ define a Lipschitz-homotopy equivalence between M and M' if $f \circ g$ and $g \circ f$ are Lipschitz-homotopic to the identity.

A Lipschitz map $f: M \to M'$ induces maps $f^*: \mathrm{H}^*_{(2)}(M') \to \mathrm{H}^*_{(2)}(M)$ and $f^*: \overline{\mathrm{H}}^*_{(2)}(M') \to \overline{\mathrm{H}}^*_{(2)}(M)$.

PROPOSITION 1. If $f: M \to M'$ and $g: M' \to M$ define a Lipschitz-homotopy equivalence between M and M' then f^* induces an isomorphism between $\mathrm{H}^*_{(2)}(M')$ and $\mathrm{H}^*_{(2)}(M)$, and between $\overline{\mathrm{H}}^*_{(2)}(M')$ and $\overline{\mathrm{H}}^*_{(2)}(M)$.

Proof. The homotopy-equivalence gives continuous linear maps $i = g^*$, $j = f^*$, K and K' satisfying the hypotheses of Lemma 1.

Let δ denote the formal L^2 -adjoint of d. Let * denote the Hodge duality operator. Let $b:\partial M\to M$ be the boundary inclusion. Let $\Lambda^*_\infty(M)$ denote the smooth compactly-supported forms on M. Note if $\omega\in\Lambda^*_\infty(M)$ then $b^*(\omega)$ may be nonzero. Define a sequence of inner products $\langle\cdot,\cdot\rangle_s$ on $\Lambda^*_\infty(M)$ for $s\in\mathbb{N}$ inductively by $\langle\cdot,\cdot\rangle_0=\langle\cdot,\cdot\rangle_{L^2}$ and

(2.6)
$$\langle \omega_1, \omega_2 \rangle_{s+1} = \langle \omega_1, \omega_2 \rangle_s + \langle d\omega_1, d\omega_2 \rangle_s + \langle \delta\omega_1, \delta\omega_2 \rangle_s.$$

Define the Sobolev space $\mathcal{H}_s^*(M)$ to be the completion of $\Lambda_\infty^*(M)$ under $\langle \cdot, \cdot \rangle_s$.

The Laplace operator is $\triangle = \delta d + d\delta$. It is a self-adjoint operator on $\Lambda^*(M)$ with domain

(2.7)
$$\operatorname{Dom}(\triangle) = \{ \omega \in \mathcal{H}_2^*(M) : b^*(*\omega) = b^*(*d\omega) = 0 \}$$

and if $\dim(M) > 0$ then it is unbounded. If $\rho \in L^{\infty}([0,\infty))$ then $\rho(\triangle)$ is a bounded operator on $\Lambda^*(M)$. Let \triangle_p be the restriction of \triangle to $\Lambda^p(M)$. We have

(2.8)

$$\overline{\mathrm{H}}_{(2)}^p(M) \cong \mathrm{Ker}(d_p) \cap (\mathrm{Im}(d_{p-1}))^{\perp}$$
$$= \{ \omega \in \Omega^p(M) : d\omega = \delta\omega = b^*(*\omega) = 0 \} = \mathrm{Ker}(\triangle_p) .$$

By elliptic theory, $\operatorname{Ker}(\triangle_p)$ consists of smooth forms and so $\overline{\operatorname{H}}_{(2)}^*(M)$ can be computed using only smooth forms. We now show that the same is true

Vol. 7, 1997 L^2 -COHOMOLOGY 87

for $H_{(2)}^*(M)$. Put

(2.9)
$$\Omega^{p,\infty}(M) = \{ \omega \in \Omega^p(M) : \omega \text{ is smooth} \}.$$

There is a complex

$$(2.10) \qquad \dots \xrightarrow{d_{p-1}} \Omega^{p,\infty}(M) \xrightarrow{d_p} \Omega^{p+1,\infty}(M) \xrightarrow{d_{p+1}} \dots$$

PROPOSITION 2. The cohomology of the complex (2.10) is isomorphic to $\mathrm{H}^*_{(2)}(M)$.

Proof. There is an obvious cochain map $i: \Omega^{*,\infty}(M) \to \Omega^*(M)$. Let $\eta \in C^{\infty}([0,\infty))$ be identically 1 on [0,1] and identically 0 on $[2,\infty)$. Then $\eta(\Delta)$ is a smoothing operator and gives a cochain map $j: \Omega^*(M) \to \Omega^{*,\infty}(M)$. Define $\rho \in C^{\infty}([0,\infty))$ by $\rho(x) = \frac{1-\eta(x)}{x}$ and define $K: \Omega^*(M) \to \Omega^{*-1}(M)$ by $K = \delta \rho(\Delta)$. Then I - ij = dK + Kd and similarly for I - ji. The proposition follows.

We now show that the L^2 -cohomology groups can be computed by means of standard elliptic complexes for manifolds with boundary.

For $s \in \mathbb{Z}$, there is a Hilbert cochain complex $\mathcal{D}_s(M)$ given by

(2.11)
$$0 \to \mathcal{H}^{0}_{s+\dim(M)}(M) \to \mathcal{H}^{1}_{s+\dim(M)-1}(M) \to \dots$$
$$\to \mathcal{H}^{\dim(M)-1}_{s+1}(M) \to \mathcal{H}^{\dim(M)}_{s}(M) \to 0 ,$$

where we implicitly truncate the complex when the Sobolev index becomes negative.

For fixed p, consider the Hilbert cochain complex $\mathcal{D}_{abs}(M)$, concentrated in degrees p-1, p and p+1, given by

(2.12)

$$\begin{split} \mathcal{D}^{p-1}_{abs}(M) &= \{\omega \in \mathcal{H}^{p-1}_2(M) : b^*(*d\omega) = b^*(*\omega) = 0\} \ , \\ \mathcal{D}^{p}_{abs}(M) &= \{\omega \in \mathcal{H}^{p}_1(M) : b^*(*\omega) = 0\} \ , \\ \mathcal{D}^{p+1}_{abs}(M) &= \mathcal{H}^{p+1}_0(M) \ . \end{split}$$

PROPOSITION 3. If $s \geq p + 1 - \dim(M)$ then the part of $\mathcal{D}_s(M)$ from degrees p - 1 to p + 1 is homotopy equivalent to $\mathcal{D}_{abs}(M)$.

Proof. Let $\epsilon > 0$ be small enough that there is a coordinate function $t \in [0, 2\epsilon]$ near ∂M such that ∂_t is a unit length vector field whose flow generates unit speed geodesics which are normal to ∂M , and ∂M corresponds to t = 0. Using these coordinates, a tubular neighborhood of ∂M is diffeomorphic to $[0, 2\epsilon] \times \partial M$. Let Y denote a copy of M but with the product metric on $[0, 2\epsilon] \times \partial M$. The identity map gives a homotopy equivalence between $\mathcal{D}_s(M)$ and $\mathcal{D}_s(Y)$. Let DY denote the double of Y and let $\mathcal{D}_s^{even}(DY)$ be

the complex of forms on DY which are invariant under the \mathbb{Z}_2 -involution on DY. There is an obvious inclusion $f: \mathcal{D}_s^{even}(DY) \to \mathcal{D}_s(Y)$. We now show that $\mathcal{D}_s(Y)$ and $\mathcal{D}_s^{even}(DY)$ are homotopy equivalent.

A differential form ω on Y can be decomposed near the boundary as

(2.13)
$$\omega = \omega_1(t) + dt \wedge \omega_2(t) ,$$

where $\omega_1(t)$ and $\omega_2(t)$ are forms on ∂M . Let $\rho:[0,2\epsilon]\to\mathbb{R}$ be a smooth bump function which is identically one near t=0 and identically zero for $t\geq\epsilon$. Let $\widehat{\triangle}$ denote the Laplacian on ∂M . For u>0, define the operator

$$(2.14) R(u) = I - e^{-\frac{I + \widehat{\triangle}}{u^2}}$$

by the spectral theorem. For ω a form on Y, restrict ω to $[0, 2\epsilon] \times \partial M$ and put

$$(2.15) (K\omega)(t) = \rho(t) \int_0^t R(u) \,\omega_2(u) du .$$

Then one can check that K acts as a degree -1 map on both $\mathcal{D}_s(Y)$ and $\mathcal{D}_s^{even}(DY)$. If ω is a form on Y then near ∂M ,

$$\dot{\omega} - (dK + Kd)\omega = \omega_1(0) + (I - R(t))\omega_1(t) + dt \wedge (I - R(t))\omega_2(t) + \int_0^t R'(u)\omega_1(u)du.$$

One can check that $\omega - (dK + Kd)\omega$ extends by reflection to an element of $\mathcal{D}_s^{even}(DY)$. Thus we obtain a homotopy equivalence $f: \mathcal{D}_s^{even}(DY) \to \mathcal{D}_s(Y)$ and $g: \mathcal{D}_s(Y) \to \mathcal{D}_s^{even}(DY)$, where f is the inclusion map and g = I - (dK + Kd).

Next, as s varies the complexes $\mathcal{D}_s^{even}(DY)$ are all isomorphic to each other by powers of $I + \triangle_{DY}$, at least in their common terms of definition. Thus we may consider the case $s = p + 1 - \dim(M)$. In this case, the part of $\mathcal{D}_s^{even}(DY)$ from p - 1 to p + 1 is the same as $\mathcal{D}_{abs}(Y)$.

Finally, we show that $\mathcal{D}_{abs}(M)$ is the same as $\mathcal{D}_{abs}(Y)$. Let us decompose a form ω on M as in (2.13). Then the boundary condition for ω to belong to $\mathcal{D}_{abs}^p(M)$ is $\omega_2(0) = 0$ and the additional boundary condition for ω to belong to $\mathcal{D}_{abs}^{p-1}(M)$ is $\partial_t \omega_1(0) = 0$. These conditions determine the same spaces of forms whether one is on M or Y.

PROPOSITION 4. The reduced and unreduced p-th L^2 -cohomology groups of M are isomorphic to the reduced and unreduced p-th cohomology groups of the complex $\mathcal{D}_{abs}(M)$.

Proof. For the reduced L^2 -cohomology, the claim follows from (2.8). As the operator $(I + \triangle)^{-1/2}$ is an isomorphism from $\Lambda^p(M)$ to $\mathcal{D}^p_{abs}(M)$, it follows from Definition 1 that

(2.17)
$$\operatorname{H}_{(2)}^{p}(M) \cong \frac{\operatorname{Ker}(d) \operatorname{on} \mathcal{D}_{abs}^{p}(M)}{\operatorname{Im}(d) \operatorname{on} \{\omega \in \mathcal{H}_{1}^{p-1}(M) : b^{*}(*\omega) = 0, d\omega \in \mathcal{D}_{abs}^{p}(M)\}}.$$

The Hodge decomposition on M is

(2.18)

$$\Lambda^*(M) = \operatorname{Ker}(\triangle_*) \oplus \overline{\operatorname{Im}(d) \text{ on } \mathcal{H}_1^{*-1}(M)}$$
$$\oplus \overline{\operatorname{Im}(\delta) \text{ on } \{\omega \in \mathcal{H}_1^{*+1}(M) : b^*(*\omega) = 0\}} .$$

Projecting ω from (2.17) onto the last factor in (2.18), we may as well assume that $\delta\omega = 0$, showing that $\omega \in \mathcal{D}^{p-1}_{abs}(M)$.

Let i_p be the obvious surjection from $\mathrm{H}^p_{(2)}(M)$ to $\overline{\mathrm{H}}^p_{(2)}(M)$. We have $\mathrm{Ker}(i_{p+1}) = \overline{\mathrm{Im}(d_p)}/\mathrm{Im}(d_p)$. Thus i_{p+1} is an isomorphism if and only if $\mathrm{Im}(d_p)$ is closed.

DEFINITION 3. Define the relative reduced L^2 -cohomology groups of M by (2.19)

$$\overline{\mathrm{H}}_{(2)}^{p}(M,\partial M) = \{\omega \in \Omega^{p}(M) : d\omega = \delta\omega = b^{*}(\omega) = 0\}.$$

The Hodge * operator gives an isomorphism * : $\overline{\mathrm{H}}^p_{(2)}(M) \longrightarrow \overline{\mathrm{H}}^{\dim(M)-p}_{(2)}(M,\partial M)$. There is a nondegenerate pairing

$$(2.20) \qquad \int_{M} : \overline{\mathrm{H}}^{p}_{(2)}(M, \partial M) \times \overline{\mathrm{H}}^{\dim(M)-p}_{(2)}(M) \longrightarrow \mathbb{R} .$$

For the rest of this section, we assume that $\partial M = \emptyset$.

Let K be a compact submanifold of M with smooth boundary ∂K . Put $N = \overline{M - K}$.

PROPOSITION 5. We have that

- 1. $\overline{\mathrm{H}}_{(2)}^p(M)$ is finite-dimensional if and only if $\overline{\mathrm{H}}_{(2)}^p(N,\partial N)$ is finite-dimensional.
- 2. The reduced L^2 -cohomology at p of $\mathcal{D}_{abs}(M)$ equals the unreduced L^2 -cohomology if and only if the reduced L^2 -cohomology at p of $\mathcal{D}_{abs}(N)$ equals the unreduced L^2 -cohomology.

Proof. 1. As in ordinary cohomology, there are sequences [ChG] (2.21)

$$\ldots \to \overline{\mathrm{H}}_{(2)}^{p-1}(K) \to \overline{\mathrm{H}}_{(2)}^{p}(N, \partial N) \to \overline{\mathrm{H}}_{(2)}^{p}(M) \to \overline{\mathrm{H}}_{(2)}^{p}(K) \to \ldots$$

and (2.22)

$$\ldots \to \overline{\mathrm{H}}_{(2)}^p(K, \partial K) \to \overline{\mathrm{H}}_{(2)}^p(M) \to \overline{\mathrm{H}}_{(2)}^p(N) \to \overline{\mathrm{H}}_{(2)}^{p+1}(K, \partial K) \to \ldots$$

These sequences are not exact in general. Recall that weak exactness at a term in a sequence of Hilbert spaces means that the kernel is equal to the closure of the image. The compactness of K along with [LoLü, Theorem 2.2], applied to the von Neumann algebra $\mathcal{A} = \mathbb{C}$, implies that (2.21) is weakly exact at $\overline{\mathrm{H}}_{(2)}^p(M)$ and (2.22) is weakly exact at $\overline{\mathrm{H}}_{(2)}^p(N)$. (The sequences are exact at these terms, but we will not need this fact.) Then we have the implications

(2.23)

$$\begin{split} \dim\left(\overline{\mathrm{H}}_{(2)}^{p}(M)\right) &= \infty \Rightarrow \dim\left(\overline{\mathrm{H}}_{(2)}^{p}(N,\partial N)\right) = \infty \\ &\Rightarrow \dim(\overline{\mathrm{H}}_{(2)}^{\dim(M)-p}(N)) = \infty \Rightarrow \dim(\overline{\mathrm{H}}_{(2)}^{\dim(M)-p}(M)) = \infty \\ &\Rightarrow \dim(\overline{\mathrm{H}}_{(2)}^{p}(M)) = \infty \ . \end{split}$$

This proves part 1 of the proposition.

2. Let Z be a small collaring of ∂K in M, diffeomorphic to $[-1,1] \times \partial K$. Put $K' = K \cup Z$ and $N' = N \cup Z$. Then K' is diffeomorphic to K and N' is diffeomorphic to N, with $K' \cap N' = Z$. Let $i_1 : K' \to M$, $i_2 : N' \to M$, $i_3 : Z \to K'$ and $i_4 : Z \to N'$ be the obvious embeddings. There is a short exact sequence

(2.24)

$$0 \to \mathcal{D}_s(M) \stackrel{i_1^* \oplus i_2^*}{\longrightarrow} \mathcal{D}_s(K') \oplus \mathcal{D}_s(N') \stackrel{i_3^* - i_4^*}{\longrightarrow} \mathcal{D}_s(Z) \to 0 \ .$$

Using the fact that K' and Z are compact, [LoLü, Theorem 2.3] implies that the complex $\mathcal{D}_s(M)$ is Fredholm at p if and only if $\mathcal{D}_s(N')$ if Fredholm at p. However, in our case $\mathcal{D}_s(M)$ is Fredholm at p if and only if its differential at p has closed image, and similarly for $\mathcal{D}_s(N')$. As N' and N are diffeomorphic by a diffeomorphism which is an isometry outside of a compact region, their L^2 -cohomologies are isomorphic. Part 2 of the proposition now follows from Proposition 3.

Proposition 6.

$$0\not\in\sigma(\delta d\ on\ \Lambda^p(M)/\operatorname{Ker}(d))\iff i_{p+1}\ \text{is an isomorphism}\ .$$

Proof. Suppose first that δd has a bounded inverse on $\Lambda^p(M)/\operatorname{Ker}(d)$. Given $\mu \in \Lambda^p(M)$, let $\overline{\mu}$ denote its class in $\Lambda^p(M)/\operatorname{Ker}(d)$. Define an operator S on smooth compactly-supported (p+1)-forms by $S(\omega) = d(\delta d)^{-1} \overline{\delta \omega}$. Then S extends to a bounded operator on $\Lambda^{p+1}(M)$. Let $\{\eta_n\}_{n\in\mathbb{N}}$ be a sequence in $\Omega^p(M)$ such that $\lim_{n\to\infty} d\eta_n = \omega$ for some $\omega \in \Lambda^{p+1}(M)$. Then for each $n \in \mathbb{N}$, we have $d\eta_n = S(d\eta_n)$ and so $\omega = S(\omega)$. Thus $\omega \in \operatorname{Im}(d)$ and so $\operatorname{Im}(d)$ is closed.

Now suppose that δd does not have a bounded inverse on $\Lambda^p(M)/\operatorname{Ker}(d)$. Then there is a sequence of positive numbers $r_1 > s_1 > r_2 > s_2 > \ldots$ tending towards zero and an orthonormal sequence $\{\eta_n\}_{n \in \mathbb{N}}$ in $\Lambda^p(M)/\operatorname{Ker}(d)$ such that with respect to the spectral projection P of δd , $\eta_n \in \operatorname{Im}(P([r_n, s_n]))$. Put $\lambda_n = \|d\eta_n\|$. Then $\lim_{n \to \infty} \lambda_n = 0$. Let $\{c_n\}_{n \in \mathbb{N}}$ be a sequence in \mathbb{R}^+ such that $\sum_{n=1}^{\infty} c_n^2 = \infty$ and $\sum_{n=1}^{\infty} c_n \lambda_n < \infty$. Put $\omega = \sum_{n=1}^{\infty} c_n d\eta_n$. Then $\omega \in \operatorname{Im}(d)$. Suppose that $\omega = d\mu$ for some $\mu \in \Omega^p(M)$. By the spectral theorem, we must have $\overline{\mu} = \sum_{n=1}^{\infty} c_n \eta_n$. However, this is not square-integrable. Thus $\operatorname{Im}(d)$ is not closed.

We recall the notion of the essential spectrum of an operator. Let T be a densely-defined self-adjoint operator on a Hilbert space H. Then $\sigma_{\rm ess}(T)$ is a closed subset of the spectrum $\sigma(T)$ with the property that $\lambda \in \sigma_{\rm ess}(T) \iff 0 \in \sigma_{\rm ess}(T-\lambda I)$. Let P be the spectral projection of T. Then $\sigma_{\rm ess}(T)$ has the following equivalent characterizations [K].

PROPOSITION 7. $0 \in \sigma_{ess}(T)$ if and only if any of the following conditions hold:

- 1. $\dim(\operatorname{Ker}(T)) = \infty$ or $\operatorname{Im}(T)$ is not closed.
- 2. There is a bounded sequence $\{u_n\}_{n\in\mathbb{N}}$ in $\mathrm{Dom}(T)$ such that $\lim_{n\to\infty} ||Tu_n||$ = 0, but $\{u_n\}_{n\in\mathbb{N}}$ does not have a convergent subsequence.
- 3. There is an orthonormal sequence $\{u_n\}_{n\in\mathbb{N}}$ in Dom(T) such that $\lim_{n\to\infty} ||Tu_n|| = 0$.
- 4. For all $\epsilon > 0$, dim $(\text{Im}(P([-\epsilon, \epsilon]))) = \infty$.
- 5. $\dim(\operatorname{Ker}(T)) = \infty$ or 0 is not isolated in $\sigma(T)$.

In particular, if Ker(T) = 0 then $0 \in \sigma_{ess}(T) \iff 0 \in \sigma(T)$.

COROLLARY 1. Let M and M' be complete oriented Riemannian manifolds. Suppose that there are compact submanifolds $K \subset M$ and $K' \subset M'$ such that M - K is isometric to M' - K'. Then

- 1. $0 \in \sigma_{\text{ess}}(\Delta_p \text{ on } \text{Ker}(\Delta_p(M))) \Leftrightarrow 0 \in \sigma_{\text{ess}}(\Delta_p \text{ on } \text{Ker}(\Delta_p(M'))).$
- 2. $0 \in \sigma_{\text{ess}}(\Delta_p \text{ on } \Lambda^p(M) / \text{Ker}(d)) \Leftrightarrow 0 \in \sigma_{\text{ess}}(\Delta_p \text{ on } \Lambda^p(M') / \text{Ker}(d)).$
- 3. $0 \in \sigma_{\text{ess}}(\triangle_p \text{ on } \Lambda^p(M)) \Leftrightarrow 0 \in \sigma_{\text{ess}}(\triangle_p \text{ on } \Lambda^p(M')).$

Proof. 1. As \triangle_p acts on $\operatorname{Ker}(\triangle_p(M))$ as the zero operator, Proposition 7.1 says that 0 lies in $\sigma_{\operatorname{ess}}(\triangle_p \operatorname{on} \operatorname{Ker}(\triangle_p(M)))$ if and only if $\operatorname{dim}(\operatorname{Ker}(\triangle_p(M))) = \infty$. The claim follows from (2.8) and Proposition 5.1.

- 2. As \triangle_p acts on $\Lambda^p(M)/\operatorname{Ker}(d)$ as δd , the claim follows from Propositions 5.2 and 6.
 - 3. This is now a consequence of the Hodge decomposition.

REMARK. Corollary 1.3 is well-known. It is a consequence of [DoL, Prop. 2.1], the proof of which is for functions but extends to differential forms. We will need the more refined statements of Corollary 1.1, 1.2, which take into account the Hodge decomposition of forms on M and M'. The proof of [DoL, Prop. 2.1], which involves multiplication by a compactly supported function, does not extend to this case. Consequently, we have given an independent proof. I thank Jozef Dodziuk for correspondence on these questions.

3 Hyperbolic 3-Manifolds

For background on hyperbolic 3-manifolds, we refer to [BP],[T1,2]. Let $M=H^3/\Gamma$ be a complete connected oriented hyperbolic 3-manifold with finitely generated fundamental group Γ . We assume that Γ is nonabelian, as the abelian case can be easily handled separately. The sphere at infinity of H^3 breaks up as the union $S^2=\Lambda\cup\Omega$ of the limit set and the domain of discontinuity, on which Γ acts freely. The convex core of M is $C(M)=\operatorname{hull}(\Lambda)/\Gamma$. The quotient Ω/Γ is a finite union of connected Riemann surfaces, each of which is diffeomorphic to the complement of a finite number of points in a closed connected Riemann surface. Put $\overline{M}=(H^3\cup\Omega)/\Gamma$.

There is a constant μ , the Margulis constant, such that if $\epsilon < \mu$ and

$$M_{thin}(\epsilon) = \{ m \in M : \operatorname{inj}(m) < \epsilon \}$$

then each connected component of $M_{thin}(\epsilon)$ is either

- 1. A rank-two cusp, diffeomorphic to $(0, \infty) \times T^2$,
- 2. A rank-one cusp, diffeomorphic to $(0, \infty) \times (-1, 1) \times S^1$, or
- 3. A tubular neighborhood of a short geodesic loop in M, diffeomorphic to $S^1 \times D^2$.

Let $M^0(\epsilon)$ be M with the cusps in $M_{thin}(\epsilon)$ removed. There is a notion of an end E of $M^0(\epsilon)$ and of E being contained in an open set $U \subset M^0(\epsilon)$ [Bo]. An end E is said to be geometrically finite if it is contained in an open set U such that $U \cap C(M) = \emptyset$. If E is geometrically finite then it is associated to a connected component of Ω/Γ . The complex structure on that component is called the end invariant of E. M is said to be geometrically finite if all of the ends of $M^0(\epsilon)$ are geometrically finite and geometrically infinite otherwise.

If M is geometrically finite then there is a pair (X, P), where X is a compact 3-manifold and P is a compact submanifold of ∂X , with the

property that M is diffeomorphic to $\operatorname{int}(X)$ and \overline{M} is diffeomorphic to X-P. The parabolic locus P is a disjoint union $T \cup A$ of surfaces, where T is a disjoint union of 2-tori, one for each rank-two cusp of M, and A is a disjoint union of annuli, one for each rank-one cusp of M.

The reduced L^2 -cohomology and essential spectrum of geometrically finite hyperbolic manifolds were studied in [MPh]. When specialized to three dimensions, the results are as follows. If M has finite volume then $\overline{\mathrm{H}}_{(2)}^0(M) \cong \mathbb{C}$ and if M has infinite volume then $\overline{\mathrm{H}}_{(2)}^0(M) = 0$. The first reduced L^2 -cohomology group of M is given by

 $\overline{\mathrm{H}}_{(2)}^1(M) \cong \mathrm{Im}\left(\mathrm{H}^1(X,\partial X - \mathrm{int}(A)) \to \mathrm{H}^1(X,\partial X - (T \cup \mathrm{int}(A)))\right)$. The essential spectrum of \triangle is

$$(3.2) \hspace{1cm} \begin{array}{c|c} M \hspace{0.1cm} \operatorname{compact} & \frac{\Lambda^0 / \operatorname{Ker}(d)}{\emptyset} & \frac{\Lambda^1 / \operatorname{Ker}(d)}{\emptyset} \\ M \hspace{0.1cm} \operatorname{noncompact} & [1, \infty) & [0, \infty) \end{array}$$

We no longer assume that M is geometrically finite. The fact that Γ is finitely-generated implies that M is homotopy-equivalent to a compact 3-manifold [S]. It is an open conjecture, which has been proved in many cases, that M must be topologically tame, i.e. diffeomorphic to the interior of a compact 3-manifold. We assume hereafter that M is topologically tame. There is again a pair (X, P), where X is a compact 3-manifold and P is a compact submanifold of ∂X , with the properties that

- 1. M is diffeomorphic to int(X).
- 2. P is a union of tori and annuli, one for each cuspidal component of $M_{thin}(\epsilon)$.
- 3. The ends of $M^0(\epsilon)$ are in one-to-one correspondence with the connected components of $\partial X P$.

An end E of $M^0(\epsilon)$ is called simply degenerate if it is contained in an open set $U \subset M^0(\epsilon)$ homeomorphic to $(0,\infty) \times S$ for some compact surface S, and there is a sequence of finite-area hyperbolic surfaces in U, each homotopic to $\{0\} \times \operatorname{int}(S)$, such that the sequence exits the end; see [C2] for the precise definition. It is known that M is geometrically tame, meaning that every end of $M^0(\epsilon)$ is either geometrically finite or simply degenerate [Bo],[C2]. A simply degenerate end E comes equipped with a certain geodesic lamination on the surface $\operatorname{int}(S)$, known as its end invariant. Let E denote the collection of all end invariants of E. Thurston conjectured that E is determined up to isometry by the topology of E, along with

 \mathcal{E} [T2]. We remark that if the triple (X, P, \mathcal{E}) satisfies certain topological conditions then it does arise from some hyperbolic 3-manifold [O1].

Canary showed that if M is geometrically infinite then C(M), an infinite volume submanifold of M, can be exhausted by compact submanifolds whose boundary areas are uniformly bounded above [C2]. As he pointed out in [C1], it then follows from Buser's theorem that zero lies in the spectrum of the Laplacian acting on L^2 -functions on M.

Suppose that there is a constant c>0 such that for all $m\in M$, $\operatorname{inj}(m)>$ c. Then $P = \emptyset$ and any simply degenerate end of M is contained in an open set of the form $(0,\infty)\times S$ for some closed oriented surface S. Suppose in addition that the ends of M are incompressible, or equivalently, that Γ does not decompose as a nontrivial free product. In this case, Minsky showed that Thurston's isometry conjecture is true [Mi2]. To do so, Minsky first constructed a model Riemannian manifold \mathcal{M} , based on the topology of M and its end invariants, which approximates the geometry of M. More precisely, he showed that there is a map $f: \mathcal{M} \to M$ which is homotopic to a homeomorphism, with the property that the lift $f: \mathcal{M} \to H^3$ is a coarse quasi-isometry. The Riemannian metric on \mathcal{M} is constructed as follows. It is enough to first specify the Riemannian metric on the ends of \mathcal{M} and then extend it arbitrarily to the rest of \mathcal{M} . If $U=(0,\infty)\times S$ contains a geometrically finite end of M, let $d\rho^2$ be the hyperbolic metric on the corresponding connected component of Ω/Γ . Then the model metric on the associated end of \mathcal{M} is $dt^2 + \cosh^2(t)d\rho^2$.

To describe the model metric for a simply degenerate end of M, we first need some notation. For a closed oriented surface S of genus $g \geq 2$, let \mathcal{H}_S denote the space of hyperbolic metrics on S, let Diff_S denote the orientation-preserving diffeomorphisms of S and let $\mathrm{Diff}_{0,S}$ denote those isotopic to the identity. The Teichmüller space \mathcal{T}_S can be identified with $\mathcal{H}_S/\mathrm{Diff}_{0,S}$ and the moduli space Mod_S can be identified with $\mathcal{H}_S/\mathrm{Diff}_S$. Note that Mod_S is an orbifold. There is a quotient map $\pi:\mathcal{T}_S\to\mathrm{Mod}_S$. The universal Teichmüller curve $\widehat{\mathcal{T}}_S$ is $\mathcal{H}_S\times_{Diff_{0,S}}S$. It is the total space of a fiber bundle $p_T:\widehat{\mathcal{T}}_S\to\mathcal{T}_S$ with fiber S and inherits an obvious family of hyperbolic metrics on its fibers. The universal curve over the moduli space is $\widehat{\mathrm{Mod}}_S=\mathcal{H}_S\times_{Diff_S}S$. It is the total space of an orbifold fiber bundle $p_M:\widehat{\mathrm{Mod}}_S\to\mathrm{Mod}_S$ with fiber S and again inherits a family of hyperbolic metrics on its fibers. Let us choose an arbitrary smooth horizontal distribution on the fiber bundle $\widehat{\mathrm{Mod}}_S$, meaning a collection of subspaces $T^H\widehat{\mathrm{Mod}}_S\subset T\widehat{\mathrm{Mod}}_S$ such that $T\widehat{\mathrm{Mod}}_S=T^H\widehat{\mathrm{Mod}}_S\oplus\mathrm{Ker}(dp_M)$.

(Everything here is interpreted in an orbifold sense.) There is a lifted horizontal distribution $T^H \widehat{\mathcal{T}}_S$ on $\widehat{\mathcal{T}}_S$.

If $U = (0, \infty) \times S$ contains a simply degenerate end of M, fix an initial hyperbolic metric $d\rho^2(0)$ on $\{0\} \times S$ and let S_0 be the corresponding Riemann surface. Let $H^0(S_0; K^2)$ denote the space of holomorphic quadratic differentials on S_0 . It is a complex vector space of dimension $-\frac{3}{2}\chi(S)$. The ending lamination L is equivalent to the vertical foliation of some $\Phi \in H^0(S_0; K^2)$. Then Φ generates a Teichmüller ray $\gamma : [0, \infty) \to \mathcal{T}_S$ starting from $\gamma(0) = [S_0]$. The endpoint of γ corresponds to L, viewed as a point in Thurston's compactification of \mathcal{T}_S . As the injectivity radius of M is bounded below by a positive number, [Mi2, Theorem 5.5] implies that the projected ray $\pi \circ \gamma$ lies in a compact region of Mod_S .

Using the hyperbolic metrics on the fibers of \widehat{T}_S , the horizontal distribution $T^H \widehat{T}_S$ and the metric dt^2 on $[0, \infty)$, there is an induced Riemannian metric on $p_T^{-1}(\gamma)$. In terms of the trivialization $p_T^{-1}(\gamma) \cong [0, \infty) \times S$ coming from $T^H \widehat{T}_S$, we can write this metric as $dt^2 + d\rho^2(t)$, where for each $t \in [0, \infty)$, $d\rho^2(t) \in \mathcal{H}_S$ projects to $\gamma(t) \in \mathcal{T}_S$. This is the model metric on the associated end of \mathcal{M} . Because of the precompactness of $\pi \circ \gamma$, the biLipschitz class of the model metric is independent of the choice of $T^H \widehat{\text{Mod}}_S$.

We will need to know that \mathcal{M} approximates M in a slightly better way than that given in [Mi2]. Curt McMullen explained to me how the next statement follows from the results of [Mi2].

PROPOSITION 8. There is a biLipschitz homeomorphism between \mathcal{M} and M.

Proof. It is enough to just construct biLipschitz homeomorphisms between open sets containing the ends of \mathcal{M} and M. For a geometrically finite end, this follows from [Mi2, Theorem 5.2]. Let E be a simply degenerate end of M contained in a neighborhood $U = (0, \infty) \times S$. Let $\mathcal{U} = (0, \infty) \times S$ contain the corresponding end in \mathcal{M} . Let γ be the Teichmüller ray described above. Minsky constructed a sequence $\{g_n : S \to U\}_{n \in \mathbb{N}}$ of pleated surfaces in U with the properties [Mi2, Theorem 5.5] that

- 1. for each $n \in \mathbb{N}$, $g_n(S)$ is homotopic in U to $\{0\} \times S$;
- 2. the sequence $\{g_n(S)\}_{n\in\mathbb{N}}$ exits the end;
- 3. there is a constant T > 0 such that for each $n \in \mathbb{N}$, the Teichmüller class of the induced hyperbolic metric $\rho_n \in \mathcal{H}_S$ lies within a Teichmüller distance T from $\gamma(n)$.

After precomposing the g_n 's with appropriate elements of $\mathrm{Diff}_{0,S}$, we may assume that neighboring ρ_n 's are uniformly close in the sense that there is a K>0 such that for all $n\in\mathbb{N}$, the identity map $\mathrm{Id}:(S,\rho_n)\to(S,\rho_{n+1})$ is a K-biLipschitz homeomorphism.

For each $n \in \mathbb{N}$, we can find an embedded surface $h_n : S \to U$ such that $h_n(S)$ lies within some distance D from $g_n(S)$ and the induced hyperbolic metric ρ'_n is K'-biLipschitz to ρ_n for some K' > 0. As the injectivity radius of M is bounded below by a positive constant, we can use compactness in the geometric topology [BP, Chapter E], [Mi1, Section 4] to argue that the surfaces can be chosen so that D and K' are uniform with respect to n. Next, we can find constants 0 < a < A and a uniformly spaced subsequence $\{n_k\}_{k\in\mathbb{N}}$ of \mathbb{N} so that the consecutive surfaces $\{h_{n_k}(S), h_{n_k+1}(S)\}$ are spaced at least distance a apart and no more than distance A. Using property 2 above, we can assume that the surfaces $\{h_{n_k}(S)\}$ are topologically consecutive in the sense that $h_{n_k}(S)$ separates $h_{n_{k-1}}(S)$ from $h_{n_{k+1}}(S)$. Let U_k be the part of U enclosed by $h_{n_k}(S)$ and $h_{n_k+1}(S)$. Let \mathcal{U}_k be the submanifold $[n_k, n_{k+1}] \times S$ in \mathcal{U} . For each $k \in \mathbb{N}$, there is a diffeomorphism $\phi_k: \mathcal{U}_k \to \mathcal{U}_k$ which restricts to $\{h_{n_k}, h_{n_k+1}\}$ on $\partial \mathcal{U}_k$. Again using compactness in the geometric topology, we can choose the diffeomorphisms $\{\phi_k\}_{k\in\mathbb{N}}$ so that there is a constant K''>0 such that for all $k\in\mathbb{N}$, ϕ_k is a K''-biLipschitz homeomorphism. The desired biLipschitz homeomorphism $f: \mathcal{U} \to U$ is given by stacking together the ϕ_k 's.

REMARK. Minsky used singular Euclidean metrics on S instead of hyperbolic metrics, but the difference is minor. We use the horizontal distribution on $\widehat{\text{Mod}}_S$ to give a lifting of γ to \mathcal{H}_S such that the lifts of nearby points on γ are uniformly close in \mathcal{H}_S . This is similar to [Mi2, p. 562-563].

4 Mapping Tori

Let F be a smooth closed oriented manifold. Let $\phi \in \text{Diff}(F)$ be an orientation-preserving diffeomorphism of F. The mapping torus of ϕ is the manifold

$$(4.1) MT = ([0,1] \times F) / \sim$$

where the equivalence relation is $(0, s) \sim (1, \phi(s))$.

Projection on the first factor gives a fibering $\pi: MT \to S^1$. Let M be the associated cyclic cover of MT. Choose an arbitrary Riemannian metric on MT and give M the pullback metric. Let $\phi_p^* \in \operatorname{Aut}(H^p(F,\mathbb{R}))$ be the map on cohomology coming from ϕ .

Vol. 7, 1997 L^2 -COHOMOLOGY 97

Proposition 9. 1. $\overline{H}_{(2)}^*(M) = 0$.

2. $0 \in \sigma(\delta d \text{ on } \Lambda^p(M))/\text{Ker}(d)) \iff \phi_n^* \text{ has an eigenvalue of norm one.}$

Proof. Let γ denote a generator of the group of covering transformations on M, the one which maps to $t \to t+1$ on \mathbb{R} . For $\lambda \in U(1)$, put

(4.2)
$$\Lambda_{\lambda}^{p}(M) = \{\text{measurable } p\text{-forms } \omega \text{ on } M : \gamma^{*}\omega = \lambda\omega\}.$$

Let V_{λ} be the flat complex line bundle on S^1 with holonomy λ and put $E_{\lambda} = \pi^* V_{\lambda}$. Then

(4.3)
$$\Lambda_{\lambda}^{p}(M) \cong \Lambda^{p}(MT; E_{\lambda}) ,$$

the p-forms on MT with value in the flat vector bundle E_{λ} . It follows from Fourier analysis that there is a direct integral decomposition

(4.4)
$$\Lambda^p(M) = \int_{U(1)} \Lambda^p(MT; E_{\lambda}) d\lambda .$$

Furthermore, the decomposition (4.4) commutes with the Laplacians. It follows from Floquet theory that $\overline{H}_{(2)}^p(M) \neq 0$ if and only if $H^p(MT; E_{\lambda}) \neq 0$ for all $\lambda \in U(1)$ and $0 \in \sigma(\Delta_p(M))$ if and only if $H^p(MT; E_{\lambda}) \neq 0$ for some $\lambda \in U(1)$; see [Lo] for details.

There is a Wang exact sequence

$$(4.5) \qquad \dots \to H^{p-1}(F) \xrightarrow{I-\lambda^{-1}\phi_{p-1}^*} H^{p-1}(F) \to H^p(MT; E_{\lambda})$$
$$\to H^p(F) \xrightarrow{I-\lambda^{-1}\phi_p^*} H^p(F) \to \dots$$

This gives the short exact sequence

(4.6)

$$0 \to \operatorname{Coker}(I - \lambda^{-1} \phi_{p-1}^*) \to H^p(MT; E_{\lambda}) \to \operatorname{Ker}(I - \lambda^{-1} \phi_p^*) \to 0.$$

As there is only a finite number of $\lambda \in U(1)$ such that $\operatorname{Coker}(I - \lambda^{-1}\phi_{p-1}^*) \neq 0$ or $\operatorname{Ker}(I - \lambda^{-1}\phi_p^*) \neq 0$, part 1 of the proposition follows.

The Hodge decomposition of $\Lambda^p(M)$ now gives

(4.7)
$$\Lambda^p(M) = \overline{\operatorname{Im}(d \text{ on } \Lambda^{p-1}(M) / \operatorname{Ker}(d))} \oplus \Lambda^p(M) / \operatorname{Ker}(d).$$

Correspondingly, we have

(4.8)

$$0 \in \sigma(\triangle_p \text{ on } \overline{\text{Im}(d \text{ on } \Lambda^{p-1}(M)/\text{Ker}(d))}) \iff \text{Coker}(I - \lambda^{-1}\phi_{p-1}^*) \neq 0 ,$$
$$0 \in \sigma(\triangle_p \text{ on } \Lambda^p(M)/\text{Ker}(d)) \iff \text{Ker}(I - \lambda^{-1}\phi_p^*) \neq 0$$

for some $\lambda \in U(1)$. The proposition follows.

REMARK. A different proof of Proposition 9 follows from Appendix A of the preprint version of [LoLü]. This material was left out in the printed version.

Now let F be a closed oriented surface S of genus $g \geq 2$. Let ϕ be an orientation-preserving pseudo-Anosov diffeomorphism of S. Thurston showed that the mapping torus MT has a hyperbolic structure [Ot],[T3]. Furthermore, the hyperbolic structure on MT is unique up to isometry. The cyclic cover M has the pullback hyperbolic structure.

COROLLARY 2. $0 \in \sigma(\delta d \text{ on } \Lambda^1(M)/\operatorname{Ker}(d)) \iff \phi_1^* \text{ has an eigenvalue of norm one.}$

5 Zero Injectivity Radius

PROPOSITION 10. Let M be a complete hyperbolic 3-manifold with $\inf_{m \in M} \operatorname{inj}(m) = 0$. Then $\sigma_{\operatorname{ess}}(\delta d \operatorname{on} \Lambda^1(M) / \operatorname{Ker}(d)) = [0, \infty)$.

Proof. If $M_{thin}(\epsilon)$ contains cusps then the proposition follows from the characterization of the essential spectrum of cusps in [MPh]. Otherwise, $M_{thin}(\epsilon)$ must contain a sequence of tubular neighborhoods $\{T_n\}_{n\in\mathbb{N}}$ of short geodesic loops $\{\gamma_n\}_{n\in\mathbb{N}}$ whose lengths $\{l(\gamma_n)\}_{n\in\mathbb{N}}$ tend towards zero. It is known that the radius R_n of T_n goes like $R_n \sim \frac{1}{2}\log(\frac{1}{l(\gamma_n)})$ [DMc]. As n increases, the geometry of T_n approaches that of a rank-two cusp and so the claim of the proposition is not surprising.

Fix n for a moment. We use Fermi coordinates (r, t, θ) for T_n as in [DMc], where $0 \le r \le R_n$ is the distance to γ_n , t is the arc-length along γ_n and θ is the angular coordinate in the normal disk bundle to γ_n . Consider a 1-form ω on T_n given in coordinates by $\omega = g(r)dt$, where $g \in C_0^{\infty}(0, R_n)$. One can check [DMc] that $\delta \omega = 0$,

(5.1)
$$\langle \omega, \omega \rangle = 2\pi l(\gamma_n) \int_0^{R_n} |g(r)|^2 \tanh(r) dr$$

and

(5.2)
$$\delta d\omega = -\frac{1}{\tanh(r)} \left(\tanh(r) g' \right)' dt .$$

Furthermore, $\omega \in \operatorname{Im}(\delta)$ if

(5.3)
$$\int_0^{R_n} g(r) \tanh(r) dr = 0 ,$$

or equivalently, if $\langle \omega, dt \rangle = 0$.

Let $\phi \in C_0^{\infty}((0,1))$ be a positive function satisfying $\int_0^1 \phi^2(r) dr = 1$. For $k \in \mathbb{R}$, define

(5.4)
$$g_{n,k}(r) = \frac{1}{\sqrt{2\pi l(\gamma_n)R_n}} e^{ikr} \phi(r/R_n)$$

Vol. 7, 1997 L^2 -COHOMOLOGY 99

and $\omega_{n,k} = g_{n,k}(r)dt$. We now fix $k \neq 0$. Put

(5.5)
$$c_{n,k} = \frac{\langle \omega_{n,k}, dt \rangle}{\langle \omega_{n,0}, dt \rangle} = \frac{\int_0^{R_n} g_{n,k}(r) \tanh(r) dr}{\int_0^{R_n} g_{n,0} \tanh(r) dr}$$
$$= \frac{\int_0^{R_n} e^{ikr} \phi(r/R_n) \tanh(r) dr}{\int_0^{R_n} \phi(r/R_n) \tanh(r) dr}$$
$$= \frac{\int_0^1 e^{ikR_n s} \phi(s) \tanh(R_n s) ds}{\int_0^1 \phi(s) \tanh(R_n s) ds}.$$

By the Riemann-Lebesgue theorem, $\lim_{n\to\infty} c_{n,k} = 0$. Put $\omega'_{n,k} = \omega_{n,k} - c_{n,k}\omega_{n,0}$. By construction, $\omega'_{n,k} \in \text{Im}(\delta)$. We have

(5.6)

$$\|\omega'_{n,k}\|^2 = 2\pi l(\gamma_n) \int_0^{R_n} |g_{n,k}(r) - c_{n,k}g_{n,0}(r)|^2 \tanh(r) dr$$

$$= \frac{1}{R_n} \int_0^{R_n} |e^{ikr} - c_{n,k}|^2 \phi^2(r/R_n) \tanh(r) dr$$

$$= \int_0^1 |e^{ikR_n s} - c_{n,k}|^2 \phi^2(s) \tanh(R_n s) ds$$

$$= \int_0^1 (1 + c_{n,k}^2 - 2c_{n,k} \cos(kR_n s)) \phi^2(s) \tanh(R_n s) ds.$$

Thus $\lim_{n\to\infty} \|\omega'_{n,k}\| = 1$.

Similarly, one can check that $\lim_{n\to\infty} \|(\delta d - k^2)\omega_{n,k}\| = 0$. It follows that

(5.7)

$$\lim_{n \to \infty} \|(\delta d - k^2)\omega'_{n,k}\| = \lim_{n \to \infty} \|(\delta d - k^2)\omega_{n,k} + k^2 c_{n,k}\omega_{n,0}\| = 0.$$

Since the $\omega'_{n,k}$'s are supported in the disjoint tubes $\{T_n\}_{n\in\mathbb{N}}$, they are mutually orthogonal. Applying Proposition 7.3 to the operator $\delta d - k^2$, it follows that $k^2 \in \sigma_{\text{ess}}$ (δd on $\text{Ker}(\delta) \subset \Lambda^1(M)$). As σ_{ess} is a closed subset of \mathbb{R} , the proposition follows.

REMARK. There are hyperbolic 3-manifolds diffeomorphic to $\mathbb{R} \times S$, where S is a closed oriented surface of genus $g \geq 2$, having zero injectivity radius [BoOt].

6 Reduction to an ODE

Let M be a topologically tame complete connected oriented hyperbolic 3-manifold. In this section, we are interested in whether zero lies in the spectrum of δd acting on $\Lambda^1(M)/\operatorname{Ker}(d)$. If M has zero injectivity radius

then by section 5, the essential spectrum of δd acting on $\Lambda^1(M)/\operatorname{Ker}(d)$ is $[0,\infty)$. Therefore, we assume that M has positive injectivity radius c.

We can take the constant ϵ in section 3 less than c, so that $M_{thin}(\epsilon) = \emptyset$ and $M^0(\epsilon) = M$. By section 2, it is enough to study the spectrum of the Laplacian on the ends of M. If M has a geometrically finite end then it follows from [MPh] that $\sigma_{\rm ess}\left(\delta d \text{ on } \Lambda^1(M)/\operatorname{Ker}(d)\right) = [0,\infty)$. Therefore, we assume that M does not have any geometrically finite ends. By section 3, all of the ends of M are simply degenerate.

In order to apply Minsky's results, we make the further assumption that the ends of M are incompressible. Recall from section 3 that \mathcal{M} is a certain Riemannian manifold which models M. By Propositions 1 and 8, $\mathrm{H}^2_{(2)}(M) \cong \mathrm{H}^2_{(2)}(\mathcal{M})$. Consider a single end of \mathcal{M} which is contained in an open set $\mathcal{U} = (0, \infty) \times S$, where S is a closed oriented surface. Our strategy will be to compute $\mathrm{H}^2_{(2)}(\overline{\mathcal{U}})$. At the same time, we compute $\mathrm{H}^1_{(2)}(\overline{\mathcal{U}})$, $\overline{\mathrm{H}}^1_{(2)}(\overline{\mathcal{U}})$ and $\overline{\mathrm{H}}^2_{(2)}(\overline{\mathcal{U}})$. Recall that \mathcal{U} has the metric $dt^2 + d\rho^2(t)$, where $d\rho^2(t)$ is a hyperbolic metric on S which projects to $\gamma(t) \in \mathcal{T}_S$.

For each $t \in [0, \infty)$, $\partial_t(d\rho^2(t))$ is a covariant 2-tensor on S. For $k \in \mathbb{N}$, let $\|\partial_t(d\rho^2(t))\|_k$ denote its Sobolev k-norm with respect to $d\rho^2(t)$.

PROPOSITION 11. For each $k \in \mathbb{N}$, $\|\partial_t(d\rho^2(t))\|_k$ is uniformly bounded in t.

Proof. As $d\rho^2(t)$ is a hyperbolic metric for all $t \in [0, \infty)$, it follows that

(6.1)
$$\partial_t(d\rho^2(t)) = \mathcal{L}_{V(t)}d\rho^2(t) + H(t)$$

where V(t) is a vector field on S, \mathcal{L} is the Lie derivative and H(t) is a covariant 2-tensor on S satisfying

(6.2)
$$\sum_{\mu} H^{\mu}{}_{\mu}(t) = 0 , \qquad \sum_{\mu} \nabla^{\mu} H_{\mu\nu}(t) = 0 .$$

Equivalently, H(t) = Re(Q(t)) where $Q(t) \in H^0(S; K^2)$, S having the complex structure induced from $d\rho^2(t)$. Let z be a local holomorphic coordinate on S, write $d\rho^2(t)$ locally as $g_{z\overline{z}}dz\overline{dz}$ and write Q(t) locally as $Q_{zz}dz^2$. The Beltrami differential corresponding to Q(t) is

(6.3)
$$\mu = g^{z\overline{z}}Q_{zz}\frac{dz}{d\overline{z}}.$$

Given $\Phi = \Phi_{zz}dz^2 \in \mathrm{H}^0(S; K^2)$, put

(6.4)
$$\|\Phi\|_{1} = \frac{i}{2} \int_{S} |\Phi_{zz}| \, dz \wedge d\overline{z} ,$$

$$\|\Phi\|_{2} = \frac{i}{2} \int_{S} g^{z\overline{z}} \Phi_{zz} \overline{\Phi_{zz}} \, dz \wedge d\overline{z} .$$

As γ is a Teichmüller ray, the infinitesimal Teichmüller norm of $\gamma'(t)$ is

(6.5)
$$1 = \sup_{\{\Phi: \|\Phi\|_1 = 1\}} \left| \operatorname{Re} \left(\frac{i}{2} \int_S \Phi_{zz} \mu^z_{\overline{z}} dz \wedge d\overline{z} \right) \right|$$
$$= \sup_{\{\Phi: \|\Phi\|_1 = 1\}} \left| \langle \Phi, Q \rangle_2 \right|.$$

We now use that fact that $\pi \circ \gamma$ is precompact in Mod_S . From the construction of $d\rho^2(t)$ using the horizontal distribution $T^H \operatorname{Mod}_S$, it follows that $\|\mathcal{L}_{V(t)} d\rho^2(t)\|_k$ is uniformly bounded in t. From (6.5), it follows that for fixed $t \in [0, \infty)$, Q(t) lies in a compact subset of $\operatorname{H}^0(S; K^2)$ and hence one has a bound on $\|\operatorname{Re}(Q(t))\|_k$. Again using the precompactness of $\pi \circ \gamma$, it follows that $\|\operatorname{Re}(Q(t))\|_k$ is uniformly bounded in t. The proposition follows.

For each $t \in [0, \infty)$, the vector space $H^1(S; \mathbb{R})$ inherits a inner product $\langle \cdot, \cdot \rangle_t$ which can be described in two equivalent ways:

1. Given $h \in H^1(S; \mathbb{R})$, let $\omega \in \Lambda^1(S)$ be its harmonic representative on $(S, d\rho^2(t))$. Then

$$\langle h,h\rangle_t = \langle \omega,\omega\rangle_{d\rho^2(t)} = \int_S \omega \wedge *_t \omega \ .$$

2. Using the complex structure on S coming from $\gamma(t)$, we can write $\mathrm{H}^1(S;\mathbb{R}) \otimes \mathbb{C} = \mathrm{H}^{1,0}(S) \oplus \mathrm{H}^{0,1}(S)$. Given $h \in \mathrm{H}^1(S;\mathbb{R})$, write $h = \frac{1}{2}(\rho + \overline{\rho})$ with $\rho \in \mathrm{H}^{1,0}(S)$. Then

(6.7)
$$\langle h, h \rangle_t = \frac{i}{2} \int_{\mathcal{S}} \rho \wedge \overline{\rho} .$$

Let $\mathcal{H}^1(t)$ be the vector space of harmonic 1-forms on S, with respect to the metric $d\rho^2(t)$. It inherits an L^2 -inner product. Let $\Pi(t)$: $\Lambda^1(S;\mathbb{R}) \to \mathcal{H}^1(t)$ be the harmonic projection operator. Fix a set $\{C_i\}$ of closed L^2 1-currents on S whose homology representatives $\{[C_i]\}$ form a basis of $H_1(S;\mathbb{R})$. Let $\{\tau^i\}$ be the dual basis of $H^1(S;\mathbb{R})$. Define $\int_C: \Omega^1(S) \to H^1(S;\mathbb{R})$ by

(6.8)
$$\int_{C} \omega = \sum_{i} \langle C_{i}, \omega \rangle \tau^{i} .$$

Then \int_C restricts to an isometric isomorphism $\int_C : \mathcal{H}^1(t) \to H^1(S; \mathbb{R})$.

Let H^1 be the vector bundle on $[0,\infty)$ whose fiber over $t\in[0,\infty)$ is isomorphic to $\mathrm{H}^1(S;\mathbb{R})$, with the inner product $\langle\cdot,\cdot\rangle_t$. Let \mathcal{H}^1 be the vector bundle on $[0,\infty)$ whose fiber over $t\in[0,\infty)$ is isomorphic to $\mathcal{H}^1(t)$.

DEFINITION 4. We define the following spaces.

- 1. Let $\Gamma(H^1)$ be the vector space of L^2 -sections of H^1 .
- 2. Let $\Gamma(\mathcal{H}^1)$ be the vector space of L^2 -sections of \mathcal{H}^1 .

3. Put $\Gamma'(H^1) = \{h \in \Gamma(H^1) : h \text{ is absolutely continuous and } \partial_t h \in \Gamma(H^1)\}.$

4. Put
$$\Gamma'(\mathcal{H}^1) = \{h \in \Gamma(\mathcal{H}^1) : h \text{ is absolutely continuous and } (\Pi(t)\partial_t)h \in \Gamma(\mathcal{H}^1)\}.$$

There is an operator ∂_t acting on $\Gamma'(H^1)$. Similarly, there is an operator $\Pi(t)\partial_t$ acting on $\Gamma'(\mathcal{H}^1)$.

Lemma 2. There is a commutative diagram

(6.9)
$$\Gamma'(\mathcal{H}^1) \xrightarrow{\Pi(t)\partial_t} \Gamma(\mathcal{H}^1)
\int_C \downarrow \qquad \qquad \int_C \downarrow
\Gamma'(\mathcal{H}^1) \xrightarrow{\partial_t} \Gamma(\mathcal{H}^1).$$

Proof. Given $h \in \Gamma'(\mathcal{H}^1)$, $\partial_t h$ is closed on S. Then

(6.10)
$$\partial_t \int_C h = \partial_t \sum_i \langle C_i, h \rangle \tau^i = \sum_i \langle C_i, \partial_t h \rangle \tau^i$$
$$= \sum_i \langle C_i, \Pi(t) \partial_t h \rangle \tau^i = \int_C \Pi(t) \partial_t h .$$

The lemma follows.

Thus ∂_t , acting on $\Gamma'(H^1)$, is essentially the same as $\Pi(t)\partial_t$, acting on $\Gamma'(\mathcal{H}^1)$.

Given $t \in [0, \infty)$, let $\delta(t)$ denote the adjoint to exterior differentiation d on $\Lambda^*(S)$, with respect to the metric $d\rho^2(t)$. Let $\Delta(t)$ be the Laplacian on $\Lambda^*(S)$ and let G(t) be its Green's operator. They satisfy

$$\triangle(t)G(t) = G(t)\triangle(t) = I - \Pi(t)$$
, $\Pi(t)G(t) = G(t)\Pi(t) = 0$.

For reference, we remark that differentiating (6.11) with respect to t gives

$$(6.12) \partial_t G = -(\partial_t \Pi) G - G(\partial_t \Pi) - G(\partial_t \triangle) G .$$

Furthermore, differentiating

(6.13)
$$\Pi(t)\triangle(t) = \triangle(t)\Pi(t) = 0$$

with respect to t gives

$$(6.14) \partial_t \Pi = -G(t)(\partial_t \triangle)\Pi(t) - \Pi(t)(\partial_t \triangle)G(t) .$$

Our strategy now is to come up with a subcomplex of $\Omega^*(\overline{\mathcal{U}})$ which in some sense contains all of the low-energy information in $\Omega^*(\overline{\mathcal{U}})$. The map j_1 in the next definition may seem arbitrary at first sight, but it is cooked up to make Proposition 13 hold.

Definition 5. Define
$$j_0: \Omega^0([0,\infty)) \to \Omega^0(\overline{\mathcal{U}})$$
 by

$$(6.15) j_0(c) = c(t) .$$

Vol. 7, 1997 L^2 -COHOMOLOGY 103

Define $j_1: \Omega^1([0,\infty)) \oplus \Gamma'(\mathcal{H}^1) \to \Omega^1(\overline{\mathcal{U}})$ by

$$(6.16) j_1(c(t)dt,h) = h(t) + dt \wedge [c(t) + \delta(t)G(t)\partial_t h].$$

Define $j_2: \Gamma(\mathcal{H}^1) \to \operatorname{Ker}(d_2: \Omega^2(\overline{\mathcal{U}}) \to \Omega^3(\overline{\mathcal{U}}))$ by

$$(6.17) j_2(h) = dt \wedge h(t) .$$

PROPOSITION 12. The maps j_0 , j_1 and j_2 are well-defined, in that their images are square-integrable.

Proof. As the area of $(S, d\rho^2(t))$ is constant in t, it follows that j_0 is well-defined. Clearly j_2 is an isometry. It remains to show that j_1 is well-defined. The only thing to show is that $\delta(t)G(t)\partial_t h$ is square-integrable on $\overline{\mathcal{U}}$.

For each t, $\delta(t)G(t)$ is an L^2 -bounded operator. As $\pi \circ \gamma$ is precompact in Mod_S , there is a bound on $\delta(t)G(t)$ which is uniform in t.

We must now show that $\partial_t h$ is square-integrable on $\overline{\mathcal{U}}$. Differentiating $\triangle(t)h(t) = 0$ with respect to t gives

$$(\partial_t \triangle)h(t) + \triangle(t)\partial_t h = 0$$

and hence

$$(6.19) (I - \Pi(t))\partial_t h = G(t)\Delta(t)\partial_t h = -G(t)(\partial_t \Delta)h(t).$$

As $\Pi(t)\partial_t h$ is square-integrable by definition, it suffices to show that $G(t)(\partial_t \triangle)h(t)$ is square-integrable on $\overline{\mathcal{U}}$. Now

(6.20)

$$G(t)(\partial_t \triangle)h(t) = G(t)(d(\partial_t \delta) + (\partial_t \delta)d)h(t) = G(t)d(\partial_t \delta)h(t) .$$

Acting on $\Lambda^*(S)$,

(6.21)
$$\partial_t \delta = [\delta(t), *^{-1}(\partial_t *)].$$

Thus

(6.22)

$$G(t)(\partial_t \triangle)h(t) = G(t)d[\delta(t), *^{-1}(\partial_t *)]h(t) = G(t)d\delta(t) \cdot *^{-1}(\partial_t *)h(t) .$$

By definition, h is square-integrable. From Proposition 11, the operator norm of $*^{-1}(\partial_t *)$ is uniformly bounded in t. This gives that $G(t)d\delta(t) \cdot *^{-1}(\partial_t *)h(t)$ is square-integrable on $\overline{\mathcal{U}}$. Thus $\partial_t h$ is square-integrable on $\overline{\mathcal{U}}$.

Proposition 13. There is a commutative diagram

(6.23)

$$\Omega^{0}([0,\infty)) \xrightarrow{\partial_{t} \oplus 0} \Omega^{1}([0,\infty)) \oplus \Gamma'(\mathcal{H}^{1}) \xrightarrow{0+\Pi(t)\partial_{t}} \Gamma(\mathcal{H}^{1})
\downarrow_{j_{0}} \downarrow \qquad \qquad \downarrow_{j_{2}} \downarrow
\Omega^{0}(\overline{\mathcal{U}}) \xrightarrow{d_{0}} \Omega^{1}(\overline{\mathcal{U}}) \xrightarrow{d_{1}} \operatorname{Ker}(d_{2}).$$

Proof. The only nontrivial point to check is that $d_1 \circ j_1 = j_2 \circ \Pi(t)\partial_t$ on $\Gamma'(\mathcal{H}^1)$. Let \hat{d} denote exterior differentiation on $\overline{\mathcal{U}}$ and let d denote exterior differentiation on S. Then

$$(6.24) \hat{d} = d + dt \wedge \partial_t .$$

Given $h \in \Gamma'(\mathcal{H}^1)$,

(6.25)

$$d_1(j_1(h)) = \widehat{d}[h(t) + dt \wedge \delta(t)G(t)\partial_t h] = dt \wedge [\partial_t h - d\delta(t)G(t)\partial_t h].$$

As $dh(t) = 0$,

(6.26)

$$\partial_t h - d\delta(t)G(t)\partial_t h = \partial_t h - d\delta(t)G(t)\partial_t h - \delta(t)dG(t)\partial_t h$$
$$= [I - \triangle(t)G(t)]\partial_t h = \Pi(t)\partial_t h.$$

On the other hand,

$$(6.27) j_2(\Pi(t)\partial_t h) = dt \wedge \Pi(t)\partial_t h.$$

The proposition follows

It follows from Proposition 13 that j_1 and j_2 induce maps

$$(6.28) J_1: [\Omega^1([0,\infty))/\operatorname{Im}(\partial_t)] \oplus \operatorname{Ker}(\Pi(t)\partial_t) \to \operatorname{H}^1_{(2)}(\overline{\mathcal{U}})$$

and

(6.29)
$$J_2: \Gamma(\mathcal{H}^1)/\operatorname{Im}(\Pi(t)\partial_t) \to \operatorname{H}^2_{(2)}(\overline{\mathcal{U}}) .$$

Note that

(6.30)
$$\Omega^{1}([0,\infty))/\overline{\operatorname{Im}(\partial_{t})} = 0.$$

PROPOSITION 14. The maps j_1 and j_2 also induce maps

(6.31)
$$\overline{J}_1 : \operatorname{Ker}(\Pi(t)\partial_t) \to \overline{H}^1_{(2)}(\overline{\mathcal{U}})$$

and

(6.32)
$$\overline{J}_2: \Gamma(\mathcal{H}^1)/\overline{\mathrm{Im}(\Pi(t)\partial_t)} \to \overline{\mathrm{H}}^2_{(2)}(\overline{\mathcal{U}}) \ .$$

Proof. This is automatic for \overline{J}_1 and follows for \overline{J}_2 from the continuity of j_2 .

PROPOSITION 15. J_1 and \overline{J}_1 are isomorphisms.

Proof. Let \widehat{d} denote exterior differentiation on $\overline{\mathcal{U}}$ and let d denote exterior differentiation on S. As in Proposition 2, we may assume that all differential forms involved are smooth. We first show that J_1 is onto. Given $\eta \in \operatorname{Ker}(d_1:\Omega^1(\overline{\mathcal{U}}) \to \Omega^2(\overline{\mathcal{U}}))$, we want to show that we can write η as

(6.33)
$$\eta = h(t) + dt \wedge [c(t) + \delta(t)G(t)\partial_t h] + \hat{d}f$$

with $dt \wedge c(t) \in \Omega^1([0,\infty)), h \in \text{Ker}(\Pi(t)\partial_t) \text{ and } f \in \Omega^0(\overline{\mathcal{U}}).$

Vol. 7, 1997 L^2 -COHOMOLOGY 105

Write η as

(6.34)
$$\eta = \eta_1(t) + dt \wedge \eta_0(t) ,$$

where $\eta_0(t) \in \Lambda^0(S)$ and $\eta_1(t) \in \Lambda^1(S)$. The condition for η to be closed is

(6.35)
$$d\eta_1(t) = \partial_t \eta_1 - d\eta_0(t) = 0.$$

Let $[\eta_1(t)] \in H^1(S; \mathbb{R})$ be the de Rham cohomology class of $\eta_1(t)$. By equation (6.35), it is independent of t. Put $h(t) = \Pi(t)\eta_1(t)$. Then by Lemma 2, $\Pi(t)\partial_t h = 0$. As in the proof of Proposition 12, $\partial_t h$ is square-integrable on $\overline{\mathcal{U}}$.

Put $f(t) = \delta(t)G(t)\eta_1(t)$. By the precompactness of $\pi \circ \gamma$, f is square-integrable on $\overline{\mathcal{U}}$. By construction,

(6.36)
$$df(t) = (I - \Pi(t))\eta_1(t) = \eta_1(t) - h(t) .$$

LEMMA 3. $\partial_t f$ is square-integrable on $\overline{\mathcal{U}}$.

Proof. We abbreviate $\delta(t)G(t)\eta_1(t)$ by $\delta G\eta_1$. Then

$$(6.37) \partial_t f = \partial_t (\delta G) \eta_1 + \delta G \partial_t \eta_1 = \partial_t (\delta G) \eta_1 + \delta G d \eta_0.$$

Using equations (6.12) and (6.14), along with the precompactness of $\pi \circ \gamma$, and arguing as in the proof of Proposition 12, the lemma follows.

Put

(6.38)
$$c(t) = \eta_0(t) - \partial_t f - \delta(t) G(t) \partial_t h .$$

By Lemma 3 and the precompactness of $\pi \circ \gamma$, c is square-integrable on $\overline{\mathcal{U}}$. We have

(6.39)
$$dc(t) = d\eta_0(t) - \partial_t df - d\delta(t)G(t)\partial_t h$$
$$= \partial_t [\eta_1(t) - df(t)] - d\delta(t)G(t)\partial_t h$$
$$= [I - d\delta(t)G(t)]\partial_t h = \Pi(t)\partial_t h = 0.$$

Thus $c \in \Omega^0(\overline{\mathcal{U}})$ is constant along copies of S and so gives an element $dt \wedge c(t) \in \Omega^1([0,\infty))$. We have shown that

(6.40)
$$\eta_1(t) = h(t) + df(t) ,$$
$$\eta_0(t) = c(t) + \delta(t)G(t)\partial_t h + \partial_t f .$$

These are equivalent to (6.33), showing that J_1 is onto.

It follows that the map

$$(6.41) \qquad \qquad [\Omega^{1}([0,\infty))/\overline{\operatorname{Im}(\partial_{t})}] \oplus \operatorname{Ker}(\Pi(t)\partial_{t}) \to \overline{\operatorname{H}}_{(2)}^{1}(\overline{\mathcal{U}})$$

is also onto. Equation (6.30) implies that \overline{J}_1 is onto.

We now show that J_1 is injective. Given $c(t)dt \in \Omega^1([0,\infty))$, $h \in \text{Ker}(\Pi(t)\partial_t)$ and $f \in \Omega^0(\overline{\mathcal{U}})$ such that $j_1(c(t)dt,h) = \widehat{d}f$, we want to show

that h = 0 and $c(t)dt \in \text{Im}(\partial_t)$. We have

(6.42)
$$h(t) = df(t) ,$$

$$c(t) + \delta(t)G(t)\partial_t h = \partial_t f .$$

As h(t) is harmonic on S and exact by (6.42), it follows that it must vanish. Then df(t) = 0 and $c(t) = \partial_t f$. Thus f is constant on copies of S. As f is square-integrable on $\overline{\mathcal{U}}$, it follows that $c(t)dt \in \text{Im}(\partial_t)$.

Finally, we show that \overline{J}_1 is injective. Given $h \in \text{Ker}(\Pi(t)\partial_t)$ such that $j_1(0,h) \in \overline{\text{Im}(d_0)}$, we want to show that h = 0. Write $j_1(0,h) = \lim_{i \to \infty} \widehat{d}f_i$, with $f_i \in \Omega^0(\overline{\mathcal{U}})$. Then

(6.43)
$$h(t) + dt \wedge \delta(t)G(t)\partial_t h = \lim_{i \to \infty} (df_i(t) + dt \wedge \partial_t f_i) ,$$

where the convergence is in L^2 on $\overline{\mathcal{U}}$. By Lemma 2 and the fact that $\Pi(t)\partial_t h = 0$, $\int_C h(t) \in H^1(S;\mathbb{R})$ is constant in t. Then for all $t \in [0,\infty)$, (6.44)

$$\int_{C} h(t) = \int_{0}^{1} ds \int_{C} h(s) = \lim_{i \to \infty} \int_{0}^{1} ds \int_{C} df_{i}(s) = 0.$$

As h(t) is harmonic, it must vanish.

REMARK. Lemma 2 and Proposition 15 imply that $\overline{\mathrm{H}}_{(2)}^1(\overline{\mathcal{U}})$ is also isomorphic to $\mathrm{Ker}(\partial_t:\Gamma'(\mathrm{H}^1)\to\Gamma(\mathrm{H}^1))$. In particular, it is isomorphic to a subspace of $\mathrm{H}^1(S;\mathbb{R})$.

Proposition 16. J_2 and \overline{J}_2 are isomorphisms.

Proof. Let \widehat{d} denote exterior differentiation on $\overline{\mathcal{U}}$ and let d denote exterior differentiation on S. Again, we can assume that all of the differential forms involved are smooth. We first show that J_2 and \overline{J}_2 are onto. Given $\omega \in \operatorname{Ker}(d_2:\Omega^2(\overline{\mathcal{U}}) \to \Omega^3(\overline{\mathcal{U}}))$, write

(6.45)
$$\omega = \omega_2(t) + dt \wedge \omega_1(t) ,$$

where $\omega_1(t) \in \Lambda^1(S)$ and $\omega_2(t) \in \Lambda^2(S)$. The condition for ω to be closed is

(6.46)
$$\partial_t \omega_2(t) = d\omega_1(t) .$$

We must show that there exist $h \in \Gamma(\mathcal{H}^1)$ and $\eta \in \Omega^1(\overline{\mathcal{U}})$ such that

(6.47)
$$\omega = dt \wedge h(t) + \widehat{d}\eta.$$

For any $t \in [0, \infty)$, let $[\omega_2(t)] \in H^2(S; \mathbb{R}) \cong \mathbb{R}$ denote the de Rham cohomology class of $\omega_2(t)$. By (6.46), it is constant in t. By the Hodge decomposition, we have

(6.48)

$$\|\omega_2(t)\|^2 \ge [\omega_2(t)]^2 \operatorname{Area}(S, d\rho^2(t)) = -2\pi [\omega_2(t)]^2 \chi(S)$$
.

As ω_2 is square-integrable on $\overline{\mathcal{U}}$, we must have $[\omega_2(t)] = 0$.

Put $\eta_1(t) = \delta(t)G(t)\omega_2(t)$. We abbreviate this by $\delta G\omega_2$. Using the precompactness of $\pi \circ \gamma$, it follows that $\eta_1 \in \Lambda^1(\overline{\mathcal{U}})$. By construction,

$$(6.49) d\eta_1(t) = \omega_2(t) .$$

LEMMA 4. $\partial_t \eta_1$ is square-integrable on $\overline{\mathcal{U}}$.

Proof. We have

(6.50)
$$\partial_t \eta_1 = \partial_t (\delta G) \omega_2 + \delta G \partial_t \omega_2 = \partial_t (\delta G) \omega_2 + \delta G d\omega_1.$$

As ω_1 is square-integrable on $\overline{\mathcal{U}}$, it follows that $\delta G d\omega_1$ is square-integrable on $\overline{\mathcal{U}}$. It remains to show that $\partial_t(\delta G)\omega_2$ is square-integrable on $\overline{\mathcal{U}}$. This follows from arguments similar to those previously used in this section. \square

From (6.46) and (6.49),

$$(6.51) d(\omega_1(t) - \partial_t \eta_1) = 0.$$

From Lemma 4, $\omega_1 - \partial_t \eta_1$ is square-integrable on $\overline{\mathcal{U}}$. Put

(6.52)
$$h(t) = \Pi(t)(\omega_1(t) - \partial_t \eta_1)$$

and

(6.53)
$$\eta_0(t) = -\delta(t)G(t)(\omega_1(t) - \partial_t \eta_1) .$$

Then

(6.54)
$$h(t) - d\eta_0(t) = \omega_1(t) - \partial_t \eta_1.$$

Put

(6.55)
$$\eta = \eta_1(t) + dt \wedge \eta_0(t) .$$

Then $h \in \Gamma(\mathcal{H}^1)$ and $\eta \in \Omega^1(\overline{\mathcal{U}})$. Equations (6.49) and (6.54) imply that (6.47) is satisfied. Thus J_2 and \overline{J}_2 are onto.

We now show that J_2 is injective. Suppose that $h \in \Gamma(\mathcal{H}^1)$ and $\eta \in \Omega^1(\overline{\mathcal{U}})$ satisfy

$$(6.56) j_2(h) = \widehat{d}\eta.$$

We must show that $h \in \text{Im}(\Pi(t)\partial_t)$. Writing η as in (6.34), we have

(6.57)
$$h(t) = \partial_t \eta_1 - d\eta_0(t) ,$$

$$0 = d\eta_1(t) .$$

Applying $\Pi(t)$ gives

(6.58)
$$h(t) = \Pi(t)\partial_t \eta_1$$
$$= \Pi(t)\partial_t [\Pi(t)\eta_1(t)] + \Pi(t)\partial_t [(I - \Pi(t))\eta_1(t)].$$

Now

(6.59)
$$\Pi(t)\partial_t[(I-\Pi(t))\eta_1(t)] = -\Pi(t)(\partial_t\Pi)\eta_1(t) .$$

Using (6.14),

(6.60)

$$\Pi(t)(\partial_t \Pi)\eta_1(t) = -\Pi(t)(\partial_t \triangle)G(t)\eta_1(t) = -\Pi(t)[d(\partial_t \delta) + (\partial_t \delta)d]G(t)\eta_1(t)$$

$$= -\Pi(t)(\partial_t \delta)dG(t)\eta_1(t) = -\Pi(t)[\delta(t), *^{-1}(\partial_t *)]G(t)d\eta_1(t)$$

$$= 0.$$

Therefore,

(6.61)
$$h(t) = \Pi(t)\partial_t[\Pi(t)\eta_1(t)],$$

showing that $h \in \text{Im}(\Pi(t)\partial_t)$.

Finally, we show that \overline{J}_2 is injective. Suppose that $h \in \Gamma(\mathcal{H}^1)$ and $j_2(h) \in \overline{\mathrm{Im}(d_1)}$. We must show that $h \in \overline{\mathrm{Im}(\Pi(t)\partial_t)}$. Let us write $j_2(h) = \lim_{i \to \infty} \widehat{d}\eta^i$ with $\eta^i \in \Omega^1(\overline{\mathcal{U}})$. Decomposing η^i as

(6.62)
$$\eta^{i} = \eta_{1}^{i}(t) + dt \wedge \eta_{0}^{i}(t) ,$$

we have

(6.63)
$$h(t) = \lim_{i \to \infty} [\partial_t \eta_1^i - d\eta_0^i(t)] ,$$

$$0 = \lim_{i \to \infty} d\eta_1^i(t) ,$$

where the convergence is in L^2 on $\overline{\mathcal{U}}$. Applying $\Pi(t)$ gives

(6.64)
$$h(t) = \lim_{i \to \infty} \Pi(t) \partial_t \eta_1^i.$$

Equations (6.58)-(6.60) give

(6.65)

$$h(t) = \lim_{i \to \infty} \left\{ \Pi(t) \partial_t [\Pi(t) \eta_1^i] + \Pi(t) [\delta(t), *^{-1}(\partial_t *)] G(t) d\eta_1^i \right\}.$$

As $\pi \circ \gamma$ is precompact, the operator $\Pi(t)[\delta(t), *^{-1}(\partial_t *)]G(t)$ is uniformly bounded in t. Thus

(6.66)
$$h(t) = \lim_{i \to \infty} \Pi(t) \partial_t [\Pi(t) \eta_1^i]$$

in $\Gamma(\mathcal{H}^1)$. The proposition follows.

Proposition 17. $\overline{H}_{(2)}^2(\overline{\mathcal{U}}) = 0$.

Proof. From Lemma 2 and Proposition 16, $\overline{H}_{(2)}^2(\overline{\mathcal{U}}) \cong \operatorname{Im}(\partial_t)^{\perp} \subset \Gamma(H^1)$. Using the inner product on $\Gamma(H^1)$, we can identify it with its dual space $\Gamma(H_1)$. Given $k \in \operatorname{Im}(\partial_t)^{\perp}$, let \widetilde{k} be the corresponding element of $\Gamma(H_1)$. Let $h \in \Gamma'(H^1)$ be smooth with compact support in $(0, \infty)$. As

(6.67)
$$0 = \langle k, \partial_t h \rangle = \int_0^\infty (\widetilde{k}(t), \partial_t h(t)) dt$$

holds for all such h, $\tilde{k}(t)$ must be constant in t. Letting h now have compact support in $[0, \infty)$, (6.67) gives that $\tilde{k} = 0$. Hence k = 0.

COROLLARY 3. Let N be a connected oriented Riemannian 3-manifold with positive injectivity radius. Suppose that there is a compact submanifold K of N such that each connected component C_i of N-K is isometric to a geometrically finite or simply degenerate end E_i of a topologically tame hyperbolic 3-manifold M_i . Suppose that each simply degenerate end E_i is incompressible in M_i . Then

- 1. $\dim(\operatorname{Ker}(\triangle_1(N))) < \infty$
- 2. $0 \notin \sigma(\delta d \text{ on } \Lambda^1(N)/\operatorname{Ker}(d))$ if and only if each end of N is geometrically infinite and the corresponding operator $\partial_t : \Gamma'(H^1) \to \Gamma(H^1)$ is onto

Proof. Equation (2.8) and Propositions 1, 5, 6 and 8 imply that it is enough to verify the claims for the corresponding ends of the model manifolds \mathcal{M}_i .

- 1. If an end is geometrically finite, the claim follows from (3.1). If an end is geometrically infinite, the claim follows from Proposition 15 and the remark following it.
- 2. If an end is geometrically finite, the claim follows from (3.2). If an end is geometrically infinite, the claim follows from Lemma 2, Proposition 16 and Proposition 17.

REMARK. Corollary 3.1 is not an immediate consequence of the fact that N has finite topological type. For example, the analogous statement for hyperbolic surfaces would be false.

7 Unreduced L^2 -Cohomology

In section 6 we reduced the problem of computing the L^2 -cohomologies of an end of M to that of computing the kernel and the image of the operator ∂_t on $\Gamma'(H^1)$. The inner product $\langle \cdot, \cdot \rangle_t$ defining $\Gamma'(H^1)$ is determined by the Teichmüller geodesic γ . The question now arises as to how $\langle \cdot, \cdot \rangle_t$ depends on t.

EXAMPLE 1. Consider the mapping torus MT discussed at the end of section 4, whose fiber is a closed oriented surface S of genus $g \geq 2$ and whose monodromy is an orientation-preserving pseudo-Anosov diffeomorphism ϕ of S. Let $\{d\rho^2(t)\}_{t\in\mathbb{R}}$ be a smooth curve in \mathcal{H}_S such that for all $t\in\mathbb{R}$, $d\rho^2(t) = \phi^*(d\rho^2(t+1))$. Such a curve can be constructed by choosing an arbitrary $d\rho^2(0) \in \mathcal{H}_S$, choosing an arbitrary path $\{d\rho^2(t)\}_{t\in[0,1]}$ from $d\rho^2(0)$ to $(\phi^{-1})^*(d\rho^2(0))$ and then perturbing the path near the ends if necessary so that it extends to give $\{d\rho^2(t)\}_{t\in\mathbb{R}}$. The metric $dt^2 + d\rho^2(t)$

on $\mathbb{R} \times S$ descends to a metric on MT. Thus $dt^2 + d\rho^2(t)$ serves as a model metric for the hyperbolic metric on the cyclic cover M.

As ϕ^* acts symplectically on $H^1(S;\mathbb{R})$, there is a decomposition

(7.1)
$$H^{1}(S; \mathbb{R}) = E_{0} \oplus \bigoplus_{i=1}^{k} (E_{i} \oplus E_{-i})$$

and positive numbers

$$(7.2) \lambda_{-k} < \ldots < \lambda_{-1} < 1 < \lambda_1 < \ldots < \lambda_k$$

such that ϕ^* acts orthogonally on E_0 and if $1 \leq |j| \leq k$ then

- 1. $\dim(E_{-i}) = \dim(E_i)$
- 2. $\lambda_i \lambda_{-i} = 1$
- 3. ϕ^* acts by multiplication by λ_i on E_i .

By construction, for all $v \in H^1(S; \mathbb{R})$ and all $t \in \mathbb{R}$, $\langle v, v \rangle_{t+1} = \langle \phi^* v, \phi^* v \rangle_t$. Then given $v_0 \in E_0$ and $v_j \in E_j$, we have that for all $t \in [0, 1]$ and $n \in \mathbb{Z}$,

(7.3)
$$\langle v_0, v_0 \rangle_{t+n} = \langle v_0, v_0 \rangle_t ,$$
$$\langle v_j, v_j \rangle_{t+n} = \lambda_j^{2n} \langle v_i, v_i \rangle_t ,$$

Thus there is a constant C > 0 such that for $t \ge 0$,

(7.4)
$$C^{-1} \|v_0\|_0 \le \|v_0\|_t \le C \|v_0\|_0 ,$$

$$C^{-1} e^{t \log(\lambda_j)} \|v_j\|_0 \le \|v_j\|_t \le C e^{t \log(\lambda_j)} \|v_j\|_0 .$$

From Corollary 2, $0 \notin \sigma(\delta d \text{ on } \Lambda^1(M)/\operatorname{Ker}(d))$ if and only if $E_0 = 0$. End of Example 1

Example 1 shows the nicest possible behavior for $\|\cdot\|_t$. We expect that in some sense, a simply degenerate end of a manifold N as in Corollary 3 will generally have a similar Lyapunov-type decomposition for the cohomology group $H^1(S;\mathbb{R})$. We discuss the evidence for this at the end of the section. For now, we just give some consequences of having such a decomposition.

First, we give a sufficient condition for zero to not be in $\sigma(\delta d)$ on $\Lambda^1(N)/\operatorname{Ker}(d)$.

LEMMA 5. Let V be a finite-dimensional real vector space with a smooth family of inner products $\{\langle \cdot, \cdot \rangle_t\}_{t \in [0,\infty)}$. Let $L^2([0,\infty);V)$ be the space of measurable maps $f:[0,\infty) \to V$ such that

(7.5)
$$||f||^2 = \int_0^\infty \langle f(t), f(t) \rangle_t \, dt < \infty .$$

Suppose that there are constants a, c > 0 such that if $s_1 \ge s_2 \ge 0$ and $v \in V$ then

(7.6)
$$||v||_{s_1} \ge c e^{a(s_1 - s_2)} ||v||_{s_2} .$$

Let \mathcal{O} be the operator

(7.7)
$$(\mathcal{O}f)(t) = \int_{t}^{\infty} f(s)ds .$$

Then \mathcal{O} is a bounded operator on $L^2([0,\infty);V)$.

Proof. If $f \in C_0^{\infty}([0,\infty); V)$ then the L^2 -norm of $\mathcal{O}f$ is given by (7.8)

$$\|\mathcal{O}f\|^{2} = \int_{0}^{\infty} \left\langle \int_{t}^{\infty} f(s_{1})ds_{1}, \int_{t}^{\infty} f(s_{2})ds_{2} \right\rangle_{t} dt$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\min(s_{1}, s_{2})} \left\langle f(s_{1}), f(s_{2}) \right\rangle_{t} dt ds_{1} ds_{2}$$

$$\leq \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\min(s_{1}, s_{2})} \|f(s_{1})\|_{t} \cdot \|f(s_{2})\|_{t} dt ds_{1} ds_{2}.$$

Suppose that $s_1 \geq s_2 \geq s_3 \geq 0$. Then from (7.6), (7.9)

$$||f(s_1)||_{s_3} \cdot ||f(s_2)||_{s_3} \le c^{-1} e^{-a(s_1 - s_3)} ||f(s_1)||_{s_1} \cdot c^{-1} e^{-a(s_2 - s_3)} ||f(s_2)||_{s_2}$$

$$= c^{-2} e^{-a(s_1 - s_2)} e^{-2a(s_2 - s_3)} ||f(s_1)||_{s_1} \cdot ||f(s_2)||_{s_2}.$$

Thus if $s_1 \geq s_2$ then

(7.10)

$$\int_{0}^{\min(s_{1},s_{2})} \|f(s_{1})\|_{t} \cdot \|f(s_{2})\|_{t} dt = \int_{0}^{s_{2}} \|f(s_{1})\|_{t} \cdot \|f(s_{2})\|_{t} dt
\leq \int_{0}^{s_{2}} c^{-2} e^{-a(s_{1}-s_{2})} e^{-2a(s_{2}-t)} \|f(s_{1})\|_{s_{1}} \cdot \|f(s_{2})\|_{s_{2}} dt
\leq \frac{1}{2ac^{2}} e^{-a(s_{1}-s_{2})} \|f(s_{1})\|_{s_{1}} \cdot \|f(s_{2})\|_{s_{2}} .$$

In any case,

(7.11)

$$\int_0^{\min(s_1, s_2)} \|f(s_1)\|_t \cdot \|f(s_2)\|_t dt \le \frac{1}{2ac^2} e^{-a|s_1 - s_2|} \|f(s_1)\|_{s_1} \cdot \|f(s_2)\|_{s_2}.$$

Then

(7.12)

$$\|\mathcal{O}f\|^2 \le \int_0^\infty \int_0^\infty \frac{1}{2ac^2} e^{-a|s_1-s_2|} \|f(s_1)\|_{s_1} \cdot \|f(s_2)\|_{s_2} ds_1 ds_2$$
.

For $s \ge 0$, put $g(s) = ||f(s)||_s$. Extend g by zero to become an L^2 -function on \mathbb{R} . Then

(7.13)

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{e^{-a|s_1 - s_2|}}{2a} g(s_1) g(s_2) ds_1 ds_2 = \langle g, (-\partial_s^2 + a^2)^{-1} g \rangle$$

$$\leq a^{-2} \int_{-\infty}^{\infty} g^2(s) ds .$$

The proposition follows.

112

LEMMA 6. Let V be a finite-dimensional real vector space with a smooth family of inner products $\{\langle \cdot, \cdot \rangle_t\}_{t \in [0,\infty)}$. Let $L^2([0,\infty);V)$ be the space of measurable maps $f:[0,\infty) \to V$ such that

(7.14)
$$||f||^2 = \int_0^\infty \langle f(t), f(t) \rangle_t dt < \infty.$$

Suppose that there are constants a, c > 0 such that if $s_1 \ge s_2 \ge 0$ and $v \in V$ then

(7.15)
$$||v||_{s_1} \le c e^{-a(s_1 - s_2)} ||v||_{s_2}.$$

Let \mathcal{O}' be the operator

(7.16)
$$(\mathcal{O}'f)(t) = \int_0^t f(s)ds .$$

Then \mathcal{O}' is a bounded operator on $L^2([0,\infty);V)$.

Proof. The proof is similar to that of Lemma 5. We omit the details. \Box

PROPOSITION 18. Let \mathcal{U} contain an end of \mathcal{M} as in section 6. Let $\gamma:[0,\infty)\to \mathcal{T}_S$ be the corresponding Teichmüller ray. Let $\langle\cdot,\cdot\rangle_t$ be the inner product on $\mathrm{H}^1(S;\mathbb{R})$ coming from $\gamma(t)$. Suppose that there is a decomposition $\mathrm{H}^1(S;\mathbb{R})=E_+\oplus E_-$ and constants $a,c_+,c_->0$ such that for all $v_+\in E_+, v_-\in E_-$ and $s_1\geq s_2\geq 0$,

(7.17)
$$||v_+||_{s_1} \ge c_+ e^{a(s_1 - s_2)} ||v_+||_{s_2}$$

and

(7.18)
$$||v_-||_{s_1} \le c_- e^{-a(s_1 - s_2)} ||v_-||_{s_2} .$$

Then $H_{(2)}^2(\overline{\mathcal{U}}) = 0$.

Proof. From Proposition 16, we must show that $\partial_t : \Gamma'(H^1) \to \Gamma(H^1)$ is onto. Given $v \in \Gamma(H^1)$, write $v(t) = v_+(t) + v_-(t)$ with $v_+(t) \in E_+$ and $v_-(t) \in E_-$. Put

(7.19)
$$w(t) = \int_0^t v_+(s)ds - \int_t^\infty v_-(s)ds .$$

Clearly $\partial_t w = v$. By Lemmas 5 and 6, $w \in \Gamma'(H^1)$.

COROLLARY 4. Let N be as in Corollary 3. Suppose that each end of N is geometrically infinite and there is a decomposition of the corresponding $H^1(S;\mathbb{R})$ as in the statement of Proposition 18. Then $0 \notin \sigma(\delta d)$ on $\Lambda^1(N)/\operatorname{Ker}(d)$.

Proof. This follows from Corollary 3.2 and Proposition 18.

We now give a sufficient condition for zero to be in $\sigma(\delta d)$ on $\Lambda^1(N)/\operatorname{Ker}(d)$.

LEMMA 7. Let h be a positive smooth function on $[0, \infty)$. Suppose that there is a constant C > 0 such that for all t > 0,

(7.20)
$$\frac{1}{C(1+t)} \le h(t) \le C(1+t) .$$

Put $\Gamma = L^2(h(t)dt)$ and

$$\Gamma' = \{f \in \Gamma : f \text{ is absolutely continuous and } \partial_t f \in \Gamma \}$$
 .

Then $\partial_t : \Gamma' \to \Gamma$ is not onto.

Proof. Put

(7.21)
$$g(t) = (1+t)^{-\frac{1}{2}} (\log(1+t))^{-\frac{3}{4}} h^{-\frac{1}{2}}(t) .$$

Then $g \in \Gamma$. However,

(7.22)

$$\int_0^t g(s)ds \ge C^{-\frac{1}{2}} \int_0^t (1+s)^{-1} (\log(1+s))^{-\frac{3}{4}} ds = 4C^{-\frac{1}{2}} (\log(1+t))^{\frac{1}{4}}.$$

For any $T \geq 0$,

(7.23)

$$\int_{T}^{\infty} (\log(1+t))^{\frac{1}{2}} h(t) dt \ge \frac{1}{C} \int_{T}^{\infty} (\log(1+t))^{\frac{1}{2}} \frac{dt}{1+t} = \infty.$$

It follows that for all $c \in \mathbb{R}$, $c + \int_0^t g(s)ds$ does not lie in $L^2(h(t)dt)$ and so g cannot be in the image of $\partial_t : \Gamma' \to \Gamma$.

PROPOSITION 19. Let \mathcal{U} contain an end of \mathcal{M} as in section 6. Let $\gamma:[0,\infty)\to\mathcal{T}_S$ be the corresponding Teichmüller ray. Let $\langle\cdot,\cdot\rangle_t$ be the inner product on $\mathrm{H}^1(S;\mathbb{R})$ coming from $\gamma(t)$. Suppose that there is a $v\in\mathrm{H}^1(S;\mathbb{R})$ and a C>0 such that for all $t\geq 0$,

$$\frac{1}{C\sqrt{1+t}} \le ||v||_t \le C\sqrt{1+t} \ .$$

Then $\mathrm{H}^2_{(2)}(\overline{\mathcal{U}}) \neq 0$.

Proof. By Proposition 16, we must show that $\partial_t : \Gamma'(H^1) \to \Gamma(H^1)$ is not onto. Putting $h(t) = ||v(t)||^2$, this follows from Lemma 7.

COROLLARY 5. Let N be as in Corollary 3. Suppose that some end of N is geometrically finite or there is an element v of the corresponding $H^1(S; \mathbb{R})$ satisfying (7.24). Then $0 \in \sigma(\delta d \text{ on } \Lambda^1(N)/\operatorname{Ker}(d))$.

Proof. This follows from Corollary 3.2 and Proposition 19.

REMARK. Using the results of Example 1, Corollary 2 is a special case of Corollaries 4 and 5. Other examples in which the hypotheses of Corollaries 4 and 5 are satisfied are given by hyperbolic 3-manifolds with geometrically infinite ends having the same ending laminations as periodic ends.

The question arises as to how often the assumptions of Corollaries 4 and 5 hold. The qualitative behavior of the norms $\|\cdot\|_t$, as a function of t, is determined by the dynamics of the projected Teichmüller geodesic $\pi \circ \gamma$ on Mod_S . Example 1 comes from the case of a closed loop on Mod_S . Recall that as M has positive injectivity radius, $\pi \circ \gamma$ lies within a compact region of Mod_S . It seems that the dynamics of geodesics on Mod_S is similar to that of Riemannian geodesics on finite volume hyperbolic manifolds with cusps, in that exceptional geodesics can be constructed which have almost any desired behavior. However, one may ask if most geodesics have some uniform behavior.

The recent work of Anton Zorich is relevant here [Z]. Let S be a closed oriented surface of genus $g \geq 2$. Instead of talking about measured geodesic laminations on S, we will use the equivalent language of singular foliations \mathcal{F} of S with an invariant transverse measure μ . Zorich considers the subset \mathcal{OMF} of orientable measured foliations, or equivalently, the measured foliations arising from a closed 1-form on S. For generic \mathcal{F} , the measure μ will be a unique ergodic invariant transverse measure on \mathcal{F} up to scaling. Given generic $(\mathcal{F}, \mu) \in \mathcal{OMF}$, using Oseledec's theorem, Zorich constructs a certain filtration (7.25)

$$0 \subset F_{-k} \subset \ldots \subset F_{-1} \subseteq F_0 \subset F_1 \subset \ldots \subset F_k = \mathrm{H}^1(S;\mathbb{R})$$

and positive numbers

$$(7.26) \lambda_{-k} < \ldots < \lambda_{-1} < 1 < \lambda_1 < \ldots < \lambda_k$$

with $\lambda_j \lambda_{-j} = 1$, having the following property: Pick a generic point $p \in S$. Let l be a half-leaf through p. Take a small transverse interval I at p. Let $\{l_n\}_{n\in\mathbb{N}}$ be the segments of l from p to I, in increasing order. That is, the first return of l to I gives l_1 , the second gives l_2 , etc. For each $n \in \mathbb{N}$, close the segment l_n by a short arc along I joining the endpoints of l_n . This gives a closed loop which represents some $h_n \in H_1(S; \mathbb{R})$. Pick an arbitrary Euclidean metric $\|\cdot\|$ on $H_1(S; \mathbb{R})$. Then if i > 0 and $f_i \in F_i \backslash F_{i-1}$,

(7.27)
$$\limsup_{n \to \infty} \frac{\log |f_i(h_n)|}{\log ||h_n||} = \frac{\log(\lambda_i)}{\log(\lambda_k)}.$$

Also, if $f_0 \in F_0 \backslash F_{-1}$ then

(7.28)
$$\limsup_{n \to \infty} \frac{\log |f_0(h_n)|}{\log |h_n|} = 0.$$

Vol. 7, 1997 L^2 -COHOMOLOGY 115

EXAMPLE 2. Consider a pseudo-Anosov diffeomorphism as in Example 1. Let (\mathcal{F}, μ) be the corresponding stable measured foliation. Note that (\mathcal{F}, μ) may not be oriented or generic. Regardless, one can see that there is a filtration (7.25) satisfying (7.27) and (7.28). In fact, it is equivalent to the decomposition (7.1), in that $F_i = F_{i-1} \oplus E_i$.

End of Example 2

Zorich's results are not directly applicable to our problem as we are interested in the Teichmüller rays γ such that $\pi \circ \gamma$ is precompact, but these are not generic. Nevertheless, one can speculate on an algorithm which in "most" cases would input the end invariants of N and output whether or not zero lies in the spectrum of $\sigma(\delta d \text{ on } \Lambda^1(N)/\operatorname{Ker}(d))$. Namely, let N be as in Corollary 3 and assume that all of the ends of N are geometrically infinite. For each end, describe the end invariant as a measured foliation (\mathcal{F}, μ) . Apply the above procedure of following a generic leaf of \mathcal{F} to obtain an increasing sequence

(7.29)
$$F_0 \subset F_1 \subset \ldots \subset F_k = \mathrm{H}^1(S; \mathbb{R})$$

and numbers $1 < \lambda_1 < \ldots < \lambda_k$ satisfying (7.27) and (7.28). Then zero should not be in the spectrum of σ (δd on $\Lambda^1(N)/\operatorname{Ker}(d)$) if and only if for each end of N, dim(F_0) = genus(S).

8 Reduced L^2 -cohomology

PROPOSITION 20. Let $\mathcal{U} = (0, \infty) \times S$ contain a geometrically infinite end of the model manifold \mathcal{M} . Suppose that the corresponding operator $\partial_t : \Gamma'(\mathrm{H}^1) \to \Gamma(\mathrm{H}^1)$ has closed image. Then $\overline{\mathrm{H}}^1_{(2)}(\overline{\mathcal{U}})$ is isomorphic to a Lagrangian subspace of $\mathrm{H}^1(S;\mathbb{R})$.

Proof. From Proposition 15 and the remark following it, $\overline{\mathrm{H}}_{(2)}^1(\overline{\mathcal{U}})$ is isomorphic to a subspace of $\mathrm{H}^1(S;\mathbb{R})$. It remains to show that this subspace is Lagrangian. The pair $(\overline{\mathcal{U}},S)$ gives a cohomology sequence

$$(8.1) \qquad \dots \longrightarrow \overline{\mathrm{H}}_{(2)}^{1}(\overline{\mathcal{U}}) \stackrel{\alpha}{\longrightarrow} \mathrm{H}^{1}(S; \mathbb{R}) \stackrel{\beta}{\longrightarrow} \overline{\mathrm{H}}_{(2)}^{2}(\overline{\mathcal{U}}, S) \longrightarrow \dots$$

In general, this sequence will not be weakly exact without some Fredholmness assumptions. In our case, from Proposition 16, the assumption that ∂_t has closed image implies that $d_1:\Omega^1(\overline{\mathcal{U}})\to\Omega^2(\overline{\mathcal{U}})$ is Fredholm in the sense of [LoLü, Definition 2.1]. Then [LoLü, Theorem 2.2] implies that (8.1) is weakly exact at $H^1(S;\mathbb{R})$. As the vector spaces involved are finitedimensional, this is the same as exactness.

Given $x \in \overline{\mathrm{H}}^1_{(2)}(\overline{\mathcal{U}})$ and $y \in \mathrm{H}^1(S;\mathbb{R})$, one can check that

(8.2)
$$\int_{S} y \cup \alpha(x) = \int_{\mathcal{U}} \beta(y) \cup x .$$

It follows that the intersection form on $\mathrm{H}^1(S;\mathbb{R})$ vanishes when restricted to $\mathrm{Im}(\alpha)$. Furthermore, if y is perpendicular to $\mathrm{Im}(\alpha)$ with respect to the intersection form then $y \in \mathrm{Ker}(\beta) = \mathrm{Im}(\alpha)$. The proposition follows. \square

PROPOSITION 21. Let N and K be as in Corollary 3. Assume that zero does not lie in σ (δd on $\Lambda^1(N)/\operatorname{Ker}(d)$). Let $L_1 \subset \operatorname{H}^1(\partial K; \mathbb{R})$ be the Lagrangian subspace

$$\operatorname{Im}(H^1(K;\mathbb{R}) \longrightarrow H^1(\partial K;\mathbb{R}))$$
.

Let L_2 be the Lagrangian subspace of $H^1(\partial K; \mathbb{R})$ coming from the ends of N, as in Proposition 20. Then there is a short exact sequence (8.3)

$$0 \to \operatorname{Im}(\operatorname{H}^1(K, \partial K; \mathbb{R}) \to \operatorname{H}^1(K; \mathbb{R})) \to \overline{\operatorname{H}}^1_{(2)}(N) \to L_1 \cap L_2 \to 0$$
.

Proof. By Corollary 3.2, each end of N is geometrically infinite and the corresponding operator $\partial_t: \Gamma'(\mathrm{H}^1) \to \Gamma(\mathrm{H}^1)$ has closed image. Let V be the closure of a union of open sets $(0,\infty) \times S_i$ containing the ends of N. Take $K = \overline{N-V}$. There is a Mayer-Vietoris sequence

(8.4)

$$\dots \to \overline{\mathrm{H}}^1_{(2)}(N) \to \mathrm{H}^1(K;\mathbb{R}) \oplus \overline{\mathrm{H}}^1_{(2)}(V) \to \mathrm{H}^1(\partial K;\mathbb{R}) \to$$

$$\overline{\mathrm{H}}^2_{(2)}(N) \to \mathrm{H}^2(K;\mathbb{R}) \oplus \overline{\mathrm{H}}^2_{(2)}(V) \to \mathrm{H}^2(\partial K;\mathbb{R}) \to \dots$$

Again, this sequence will not be weakly exact in full generality. However, in our case $d_1:\Omega^1(V)\to\Omega^2(V)$ is Fredholm. Along with the fact that the differentials $d:\Omega^*(S)\to\Omega^{*+1}(S)$ are Fredholm, [LoLü, Theorem 2.2] implies that (8.4) is weakly exact at the terms from $\mathrm{H}^1(K;\mathbb{R})\oplus\overline{\mathrm{H}}^1_{(2)}(V)$ to $\mathrm{H}^2(K;\mathbb{R})\oplus\overline{\mathrm{H}}^2_{(2)}(V)$. Again, as the vector spaces are finite-dimensional, the sequence will actually be exact at these terms. By Proposition 17, $\overline{\mathrm{H}}^2_{(2)}(V)=0$. Dualizing (8.4) gives a sequence

(8.5)

$$\dots \to H^0(\partial K; \mathbb{R}) \to H^1(K, \partial K; \mathbb{R}) \to \overline{H}^1_{(2)}(N) \to$$

$$H^1(\partial K; \mathbb{R}) \to H^2(K, \partial K; \mathbb{R}) \oplus \overline{H}^2_{(2)}(V, \partial K) \to \overline{H}^2_{(2)}(N) \to \dots$$

which is exact at the terms from $H^1(K, \partial K; \mathbb{R})$ to $H^2(K, \partial K; \mathbb{R}) \oplus$

Vol. 7, 1997 L^2 -COHOMOLOGY 117

 $\overline{\mathrm{H}}_{(2)}^2(V,\partial K).$ This gives the short exact sequence (8.6)

$$0 \to \operatorname{Coker}(\operatorname{H}^0(\partial K; \mathbb{R}) \to \operatorname{H}^1(K, \partial K; \mathbb{R})) \to \overline{\operatorname{H}}^1_{(2)}(N) \to \operatorname{Ker}(\operatorname{H}^1(\partial K; \mathbb{R}) \to \operatorname{H}^2(K, \partial K; \mathbb{R}) \oplus \overline{\operatorname{H}}^2_{(2)}(V, \partial K)) \to 0 \ .$$

From the exact cohomology sequence of the pair $(K, \partial K)$,

(8.7)

$$\operatorname{Coker}(\operatorname{H}^0(\partial K;\mathbb{R}) \to \operatorname{H}^1(K,\partial K;\mathbb{R})) \cong \operatorname{Im}(\operatorname{H}^1(K,\partial K;\mathbb{R}) \to \operatorname{H}^1(K;\mathbb{R}))$$
 and

(8.8)

$$\operatorname{Ker}(\operatorname{H}^1(\partial K;\mathbb{R}) \to \operatorname{H}^2(K,\partial K;\mathbb{R})) \cong \operatorname{Im}(\operatorname{H}^1(K;\mathbb{R}) \to \operatorname{H}^1(\partial K;\mathbb{R})) = L_1$$
. Thus

(8.9)
$$\operatorname{Ker}(\mathrm{H}^{1}(\partial K; \mathbb{R}) \to \mathrm{H}^{2}(K, \partial K; \mathbb{R}) \oplus \overline{\mathrm{H}}_{(2)}^{2}(V, \partial K)) = L_{1} \cap \operatorname{Ker}(\mathrm{H}^{1}(\partial K; \mathbb{R}) \to \overline{\mathrm{H}}_{(2)}^{2}(V, \partial K)).$$

Identifying $\overline{\mathrm{H}}_{(2)}^{1}(V)$ with the subspace L_{2} of $\mathrm{H}^{1}(\partial K;\mathbb{R})$, the pairing (2.20) gives

$$\overline{\mathrm{H}}_{(2)}^{2}(V,\partial K)\cong (\overline{\mathrm{H}}_{(2)}^{1}(V))^{*}\cong L_{2}^{*}\;.$$

The map $A: \mathrm{H}^1(\partial K; \mathbb{R}) \to \overline{\mathrm{H}}^2_{(2)}(V, \partial K) \cong L_2^*$ is given explicitly by

(8.11)
$$(A(h))(l) = \int_{S} h \cup l$$

for all $h \in H^1(\partial K; \mathbb{R})$ and $l \in L_2$. As L_2 is Lagrangian,

(8.12)
$$\operatorname{Ker}(H^{1}(\partial K; \mathbb{R}) \to \overline{H}^{2}_{(2)}(V, \partial K)) = L_{2}.$$

The proposition now follows from equations (8.6), (8.7), (8.9) and (8.12). \Box

EXAMPLE 3. Let M be as in Example 1, with $E_0 = 0$. With respect to the diffeomorphism $M = \mathbb{R} \times S$, take $K = [-1,1] \times S$. Then M certainly satisfies the hypotheses of Proposition 21. We have $\partial K = S \coprod S$, with the Lagrangian subspace L_1 being the diagonal in $H^1(\partial K; \mathbb{R}) = H^1(S; \mathbb{R}) \oplus H^1(S; \mathbb{R})$. As $L_2 = (\bigoplus_{i=1}^k E_i) \oplus (\bigoplus_{i=1}^k E_{-i})$, we have $L_1 \cap L_2 = 0$. Then Proposition 21 gives $\overline{H}^1_{(2)}(M) = 0$. Of course, this is consistent with Proposition 9.1.

Now let Z be the subset $[0, \infty) \times S$ of M. Perturb the metric on Z to make it a product near $\{0\} \times S$. Let N be the double of Z. Again, N is diffeomorphic to $\mathbb{R} \times S$. Take $K = [-1, 1] \times S$. Then N also satisfies the hypotheses of Proposition 21. In this case, $L_2 = (\bigoplus_{i=1}^k E_{-i}) \bigoplus (\bigoplus_{i=1}^k E_{-i})$.

Thus $L_1 \cap L_2 = L_2$. Proposition 21 gives $\dim(\overline{H}_{(2)}^1(N)) = g$, the genus of S. This shows that in the setting of Proposition 21, $\overline{H}_{(2)}^1(N)$ depends on the end invariants of N and not just on the topological type of K. End of Example 3

Note. After this paper was completed, I learned that Theorem 5 is well-known in ODE theory [H, Theorem 6.4]. Furthermore, Professor Kenneth Palmer informs me [P] that the converse to Theorem 5 holds under the additional assumption that there exist constants L, M > 0 such that for all $t \geq s \geq 0$ and $v \in H^1(S; \mathbb{R})$,

(8.13)
$$||v||_{t} \le Me^{L(t-s)} ||v||_{s}$$
.

In addition, Ohshika recently extended Minsky's results to handle the case when the ends are not incompressible [O2]. Thus the incompressibility assumption is no longer necessary in our results.

References

- [BP] R. Benedetti, C. Petronio, Lectures on Hyperbolic Geometry, Springer Universitext, Springer-Verlag, New York, 1992.
- [Bo] F. Bonahon, Bouts des variétés hyperboliques de dimension 3, Ann. of Math. 124 (1986), 71-158.
- [BoOt] F. Bonahon, J.-P. Otal, Variétés hyperboliques à géodésiques arbitrairement courtes, Bull. London Math. Soc. 20 (1988), 255-261.
- [C1] R. CANARY, On the Laplacian and the geometry of hyperbolic 3-manifolds, J. Diff. Geom. 36 (1992), 349-367.
- [C2] R. CANARY, Ends of hyperbolic 3-manifolds, J. Amer. Math. Soc. 6 (1993), 1-35.
- [ChG] J. Cheeger, M. Gromov, Bounds on the von Neumann dimension of L^2 -cohomology and the Gauss-Bonnet theorem for open manifolds, J. Diff. Geom. 21 (1985), 1-34.
- [D] J. Dodziuk, DeRham-Hodge theory for L^2 -cohomology of infinite coverings, Topology 16 (1977), 157-165.
- [DMc] J. Dodziuk, J. McGowan, The spectrum of the Hodge Laplacian for a degenerating family of hyperbolic three manifolds, Trans. Amer. Math. Soc. 347 (1995), 1981-1995.
- [DoL] H. Donnelly, P. Li, Pure point spectrum and negative curvature for noncompact manifolds, Duke Math. J. 46 (1979), 497-503.
- [H] P. HARTMAN, Ordinary Differential Equations, Birkhäuser, Boston, 1982.
- [K] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1980.
- [Lo] J. LOTT, Heat kernels on covering spaces and topological invariants, J. Diff. Geom. 35 (1992), 471-510.
- [LoLü] J. LOTT AND W. LÜCK, L^2 -topological invariants of 3-manifolds, Inv. Math. 120 (1995), 15-60.

- [MPh] R. MAZZEO, R. PHILLIPS, Hodge theory on hyperbolic manifolds, Duke Math. J. 60 (1990), 509-559.
- [Mi1] Y. Minsky, Teichmüller geodesics and ends of hyperbolic 3-manifolds, Topology 32 (1993), 625-647.
- [Mi2] Y. Minsky, On rigidity, limit sets and end invariants of hyperbolic 3-manifolds, J. Amer. Math. Soc. 7 (1994), 539-588.
- [O1] K. Ohshika, Ending laminations and boundaries for deformation spaces of Kleinian groups, J. London Math. Soc. 42 (1990), 111-121.
- [O2] K. Ohshika, Rigidity and topological conjugates of topologically tame Kleinian groups, preprint
- [Ot] J.-P. Otal, Le théorème d'hyperbolisation pour les variétés fibrées de dimension trois, Astérisque 235 (1996).
- [P] K. Palmer, private communication.
- [Pa] A. Papadopoulos, Pseudo-Anosov diffeomorphisms and symplectic automorphisms of homology, Annales Sci. de l'Ecole Normale Sup. 15 (1982), 543-546.
- [S] P. Scott, Compact submanifolds of 3-manifolds, J. London Math. Soc. 7 (1973), 246-250.
- [T1] W. Thurston, The Geometry and Topology of Three-Manifolds, Princeton University Lecture Notes, 1978-1979.
- [T2] W. Thurston, Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982), 357-381.
- [T3] W. Thurston, Hyperbolic structures on 3-manifolds II: Surface groups and manifolds which fiber over the circle, Version 2.0, preprint (1986).
- [W] H. Whitney, Geometric Integration Theory, Princeton University Press, Princeton, 1957.
- [Z] A. ZORICH, Mesure finie de Gauss sur l'espace des échanges d'intervalles. Exposants de Lyapunov, Annales de l'Institut Fourier 46 (1996), 325-370.

John Lott Department of Mathematics University of Michigan Ann Arbor, MI 48109 USA

e-mail: lott@math.lsa.umich.edu

Submitted: January, 1996 Improved version: June 1996