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Abstract

We present an extension of the Melnikov method which can be used for ascer-
taining the existence of homoclinic and heteroclinic orbits with many pulses in a
class of near-integrable systems. The Melnikov function in this situation is the sum
of the usual Melnikov functions evaluated with some appropriate phase delays.
We show that a nonfolding condition which involves the logarithmic derivative
of the Melnikov function must be satisfied in addition to the usual transversality
conditions in order for homoclinic orbits with more than one pulse to exist.
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1. Introduction

The intricate properties of homoclinic tangles were first knowfPtOINCARE
[52]. Later works of BIRKHOFF [5], CARTWRIGHT and LITTLEWOOD I8,

43, 44, 9], LEVINSON [42], SMALE [66], and MoOSER [50] culminated in the
discovery that homoclinic tangles are associated with a Smale horseshoe map,
whereby the presence of infinitely many different periodic and aperiodic motions
in a small neighborhood of the tangle can be established. In many applications, the
existence of a homoclinic tangle can be ascertained by a simple regular perturba-
tion method named afteMELNIKOV [47]. Versions of this method [3, 10, 18, 19,
24-26,41,51,57,58, 74] can also be used to prove the existence of other types of
homoclinic and heteroclinic orbits in the context of near-integrable systems, i.e.,
systems that are small perturbations of completely integrable Hamiltonian systems.
In each case under investigation, the Melnikov method selects the survivors under
perturbation from a surface of homoclinic or heteroclinic orbits. All these orbits
make one excursion away from some hyperbolic equilibrium point, periodic orbit,
or invariant torus, and then return to it in infinite time.

A closer inspection of a homoclinic tangle reveals that it also contains other types
of homoclinic orbits, namely, those that make more than one excursion away from
their target. Such orbits are said to consist of many pulses. For most of the usual tan-
gles associated with periodically forced planar systems, the existence of multi-pulse
orbits follows almost immediately from the topology of the tangle [50]. For cer-
tain orbits homoclinic to equilibria, this existence follows from simple return-map
considerations [63-65, 73, 17] However, until recently, no systematic perturbation
theory in the spirit of the Melnikov method was available that would establish the
existence of homoclinic and heteroclinic orbits with many pulses in large classes of
near-integrable systems. In this paper, we make a step in the direction of establishing
just such a theory.

We present a general method for finding homoclinic and heteroclinic orbits that
make several consecutif@stexcursions away from a set of hyperbolic manifolds
by constructing an extension of the Melnikov method. At the origin of our method
are the ideas introduced in [6] to describe a slow manifold in an atmospheric model.
We have developed these ideas into a systematic theory applicable to a large class
of systems with several nonhyperbolic degrees of freedom. In particular, this the-
ory applies to near-integrable dissipative as well as conservative systems, and to
normally hyperbolic manifolds which support fast or slow dynamics. We reduce
the search for multi-pulse homoclinic excursions to that of finding nondegenerate
zeros of a functionM (¢, 1, 6o, ), of certain parametets 7, 6g, i, which we call
thek-pulse Melnikov functionThis function is computed by a recursion procedure
fromthe ordinary 1-pulse Melnikov function, and depends on the small perturbation
parametee, which is at variance with the usual Melnikov method and is peculiar
to the general case of fast dynamics on the hyperbolic manifold. Moreover, the
dependence aofis through a logarithmic function, which makes the calculation of
the asymptotics in the smalllimit particularly delicate.

Our approach consists in tracking the evolution of the global unstable manifold
of the hyperbolic manifold. After setting up a fixed neighborhood of the hyper-
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bolic manifold, this is done by alternately following the unstable manifold outside
and inside this neighborhood. We call these two alternate stages global and local
tracking, respectively. In essence, our construction amounts to a rigorous matching
technique, and consists mainly of careful estimates. The global tracking is similar to
the well-known technique of Melnikov, but even here we can detect complications
as the global unstable manifold has passed near the hyperbolic manifold several
times and deformed significantly. Closeness estimates presented in Sections 4 and 5
must be used to guarantee the integrity of the leading term of the distance measure-
ment. The local tracking is performed under a special coordinate system adapted to
the hyperbolic structure. Such a normal form is implicitly contained in [13-16] and
used extensively in [28-30, 32, 31, 72, 70, 71]. Our version of this normal form is a
special adaptation to the Hamiltonian setting of the unperturbed vector field. The
local tracking gives distance estimates for trajectories near the hyperbolic mani-
fold. Furthermore, under the action of the center vector field, a trajectory passing
near the hyperbolic manifold switches “allegiance” from one unperturbed trajec-
tory to another. The new unperturbed orbit is selected by an estimate of the phase
difference between these two unperturbed trajectories, which is one of the main ob-
jectives of the local tracking. Finally, thepulse Melnikov function is constructed

by collecting these global and local estimates.

The local tracking is the most delicate part of the estimating process, and we
had to develop a special technique for this tracking, which we present in Section 5.
This technique was first introduced in [71], and its differential-geometric tools are
similar to those used in the derivation of the “Exchange Lemma”in [28-31, 70, 72].
Nevertheless, there are significant differences in the geometry of the manifolds de-
scribed by the Exchange Lemma and by our tracking technique, which is stated
in Lemma 1. In particular, the Exchange Lemma describes the evolution of orbits
that lie on a manifold which intersects transversely either the stable or the unsta-
ble manifold of a hyperbolic manifold. On the other hand, our tracking technique
describes the complementary situation in which orbits evolve on a manifold that
is not allowed to intersect either the stable or the unstable manifold of a hyper-
bolic manifold, yet these orbits enter a very small neighborhood of this hyperbolic
manifold. We thus find that, if the dynamics on the hyperbolic manifold is fast, the
tracked manifold can develop sharp folds as it flies by the hyperbolic manifold in
this small neighborhood. We show that the position of these folds can be located
by thek-pulse Melnikov function. However, once a fold develops along an orbit,
it becomes an obstacle to the further tracking of the manifold nearby and hence to
the calculation of the subsequent multi-pulse Melnikov functions along this orbit.
This is a new development, previously unknown either in the theory of the Mel-
nikov method or the theory of multi-pulse orbits, and leads to a new “nonfolding
condition,” expressed in terms of the multi-pulse Melnikov function, which the
multi-pulse homoclinic orbits must satisfy.

Prior to this paper, multi-pulse homoclinic and heteroclinic orbits, not neces-
sarily associated with homoclinic tangles or perturbation theory, have been found
in various applications by very different methods, of which we mention here only
a small sample. Multi-pulse homoclinic orbits and the associated chaotic dynam-
ics in a singularly perturbed three-dimensional model of excitable membranes are
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described in [69]. In [53-56], variational methods are used to find single-pulse
and multi-pulse homoclinic and heteroclinic orbits in periodically time-dependent
Hamiltonian systems defined on multi-dimensional tori. In [1, 2], traveling-wave
solutions to certain semi-parabolic systems are constructed whose wave profiles
are represented by 2-pulse and 3-pulse homoclinic orbits.

Multi-pulse homoclinic and heteroclinic orbits have also recently been found
with methods closely resembling the Melnikov method. In particular, a method to
find 2-pulse orbits based on the so called “whisker map” was developed for planar
nonautonomous systems [59], and gives a result similar to our 2-pulse Melnikov
function. In systems with two degrees of freedom, homoclinic and heteroclinic
orbits that make several consecutive fast excursions away from normally hyperbolic
manifolds were discovered in [6, 23, 48]. The dynamics on these manifolds is fast
in [6, 48], while in [23] the flow on the hyperbolic manifold is perturbed away from
a manifold of equilibrium points, and thereby sustains only slow dynamics.

In adifferentdirection, a procedure that uses the Melnikov method in the process
of finding homoclinic and heteroclinic orbits with a different kind of pulses, which
we henceforth call “bumps,” was developed in [32] for a special class of singularly
perturbed near-integrable problems with internal resonances. These multi-bump
homoclinic and heteroclinic orbits make several fast excursions away from the
slow hyperbolic manifolds, which are interspersed with slow segments that are
close to the hyperbolic manifolds themselves.

We briefly mention applications of our extended Melnikov method to two spe-
cific problems: multi-pulse orbits in a model of the atmospheric slow manifold and
orbits homoclinic to resonance bands. These problems are chosen to illustrate the
different regimes in which our method can be applied, namely, the case in which the
dynamics on the hyperbolic manifold is fast, as in the former, or slow, as in the latter.
As mentioned above, the investigation [6] of the atmospheric slow manifold model
provided the main ideas and impetus for the development of the present paper. Itis
within the setup of this problem that the full power of our new method is needed.
In particular, the dynamics on the hyperbolic manifold in this case is fast, and the
equations describing the slow manifold model can only be cast in the most general
form discussed in Section 10. Moreoviespulse homaoclinic orbits in this example
exhibit another characteristic trait predicted for a large subclass of systems by our
general theory, which is that cascadegiof 1)-pulse homoclinic orbits, and there-
fore of (k + [)-pulse homoclinic orbits for any positive integeaccumulate on a
k-pulse homoclinic orbit. As opposed to [6], where the construction oftpelse
homoclinic orbits depends very crucially on the symmetry of the slow manifold
model and on the zeros of a very specific bifurcation function, the treatment in the
present paper highlights this construction as almost automatic within a much more
general and conceptually simpler framework of our new method.

In the problem of orbits homoclinic to resonance bands, we use the new Mel-
nikov method for extending the results of [37] and [36] to cover homoclinic and
heteroclinic orbits with several consecutive fast pulses rather than just one. This is
atypical singular perturbation problem in which there are two different time scales,
and the dynamics on the hyperbolic manifold is slow. Homoclinic and heteroclinic
orbits are constructed by concatenating pieces of slow-time orbits on the hyperbolic
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manifold and fast-time heteroclinic orbits off of this manifold. Since the motion
along the hyperbolic manifold is slow in this problem, our theory simplifies con-
siderably due to the facts that thepulse Melnikov function does not depend on
the small parameter, and that the nonfolding condition is automatically satisfied
and thus not needed. Thepulse Melnikov function in this case becomes identical

to the energy-phase function of [23], which, however, was derived in an entirely
different fashion. Moreover, there is a conceptual difference between our approach
and that of [23], which is similar to the one between the Melnikov and the P@ncar
Arnold methods in that the geometric interpretation of a signed distance measured
along the normal to a homoclinic manifold replaces the estimate of the change of
energy computed along unperturbed homoclinic orbits. On a more technical level,
the construction of the energy-phase function developed in [23] crucially employs
the details of the geometry that depends on the dynamics along the hyperbolic
manifold being slow, while our derivation of tltepulse Melnikov function avoids
these details entirely at the price of the more delicate local estimates near the hy-
perbolic manifold. Finally, we proceed in this particular case of orbits homoclinic
to resonance bands to combine our results orktpalse Melnikov function with
those of [32], and produce criteria for ascertaining the existence of homoclinic and
heteroclinic orbits with several groups of consecutive pulses, interspersed with long
segments that are close to the slow hyperbolic manifolds.

This paper is organized as follows. In Section 2 we discuss the setup of the
problem. In Section 3 we state our main result. In Section 4 we put the system near
the hyperbolic manifold in a normal form. In Section 5 we present the nonfold-
ing condition and the resulting closeness estimates between the tangent spaces of
the local unstable manifold of the normally hyperbolic manifold and the tangent
spaces of manifolds of appropriate dimensions that fly near the normally hyperbolic
manifold. In Section 6, we compute the distance between a manifold that exits a
small neighborhood of the hyperbolic manifold and the unstable manifold of the
hyperbolic manifold in terms of their distance at the exit time. In Section 7 we
compute the distance between a manifold that flies through a small neighborhood
of the hyperbolic manifold and the unstable manifold of the hyperbolic manifold
in terms of the distance between the first manifold and the stable manifold of the
hyperbolic manifold. In Section 8 we compute estimates for the phase differences
experienced by trajectories flying close to the hyperbolic manifold and coming
back to it after a pulse. In Section 9 we prove our main result. In Section 10 we
discuss some important extensions of this result to the case of multiple normally
hyperbolic manifolds connected by heteroclinic manifolds, and to the case of more
that one nonhyperbolic degree of freedom. In Sections 11 through 13, we discuss
the applications to multi-pulse orbits in a model of an atmospheric slow manifold
and orbits homoclinic to resonance bands. Finally, conclusions are presented in
Section 14.
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2. The Setup

The systems we study have the form

X=JDH(x,I)+¢eg"(x,1,0, u,c¢), (2.1a)
I =eg'(x,1,6,u,¢), (2.1b)
0=, I)+eg’(x,1,0,u,8), (2.1c)

wherex = (x1, x0) € R2, I € R, andd e S1. Furthermore, denotes the partial
derivatives with respect to, D; is the partial derivative with respect fo u € R
2 é . We let(-, -)
denote the usual Euclidean inner producify wheren is the dimension of the
vectors in the arguments, and denote|by| the induced Euclidean norm, as well
as the corresponding matrix norm.

In the special case of a purely Hamiltonian perturbation, which arises when the
entire system is derived from the Hamiltonian

is a real parametet, <« 1 is a small parameter, antd =

H(x, 1,0, ) =H(x,I)+ecHi(x, 1,0, 1, ¢), (2.2)

the system (2.1) has the form

x=JDyH(x,I)+¢eJD H1(x, 1,0, u,¢), (2.33a)
I = —eDyHy(x, 1,0, 11, ¢), (2.3b)
6 =D;H(x,I)+eD;Hy(x, 1,0, 1, ¢). (2.3¢)

The unperturbed system is obtained by settirg 0 in the equations (2.1):

x=JDH(x,I), (2.4a)
I =0, (2.4b)
0=, I). (2.4c)

Equation (2.4a) is a one-parameter family of Hamiltonian systems in the variable
and can be analyzed independentlypofOnce equation (2.4a) has been solved,
equation (2.4c) can be solved by quadrature.

We now make two assumptions about the unperturbed equations (2.4). The first
assumption concerns their smoothness.

Assumption 1. The unperturbed HamiltoniaH (x, I) is a real-analytic function
of its arguments.
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This assumption is purely technical. In particular, it allows us to make the
normal form estimates in the rest of the paper a bit less cumbersome. In fact, with
appropriate changes in our estimates, we could use the results of [4, 11,61, 67, 68] to
getrid of this assumption altogether, and replace it by the requiremerH that/ )
has a finite numbek of partial derivativesk > 2.

The second assumption introduces the presence of homoclinic orbits in the
phase space of equations (2.4):

Assumption 2. For everyl with I1 < I < I, equation(2.4a)possesses a hyper-
bolic equilibriumx = X (1), which varies continuously with, and whose stable
and unstable manifolddy* (X (1)) and W*(X (1)), intersect along a homoclinic
orbit W(X (1)) connecting the equilibrium at = X (1) to itself.

Because of the hyperbolicity of the equilibrium = X (7), the Jacobian
JDfH(X(I), I) must have a pair of nonzero real eigenvalues,&sayl). More-
over, the implicit function theorem for analytic functions immediately implies that
the vectorX (1) depends on the variableanalytically. Since the system (2.4a) is
autonomous, all the solutions on the homoclinic oWitX (7)) have a representa-
tion of the formx” (r — 1o, I), and a consistent parametrization of individual orbits
in the manifoldW (X (1)) is obtained by settingy = 0 and varying.

In the full four-dimensionakx, 1, #)-phase space of the system (2.4), each
equilibrium X (1) corresponds to a periodic orhiit! parametrized by the solution

x=XI), I=160=XU),Dt+6. (2.5)

Each of these periodic orbits possesses two-dimensional stable and unstable man-
ifolds, W*(0') and W“(0"), that are the Cartesian products of the stable and
unstable manifold®v* (X (1)) andW* (X (I)) of the equilibriumX (7) and the an-
gled. The existence of the homoclinic manifoldds(X (7)) implies that the mani-
foldsw*(0')andw*(0") coincide along a two-dimensional homoclinic manifold
w(o".

Taking the union of the orbit®’ over allI; < I < I, we obtain a two-
dimensional invariant annulus, which we denote l#¥; see Figure 2.1. The an-
nulus. Z2 possesses three-dimensional stable and unstable manifgtds#2)
and W*(_#¢), which intersect along the three-dimensional homoclinic manifold
W (.2¢). All these manifolds are the unions of the manifoli§(0’), w*(0"),
andW(0') along the interval; < I < I». The homoclinic manifoldV (_Z4) is
parametrized by, I, andég in the solutions

x =x", 1), (2.6a)

I1=1, (2.6b)
t

6 =06"1,1)+6p= / Q" (s, 1), Ids + 6p. (2.6c)
0

The homoclinic manifoldV (_#2) can also be represented implicitly by the equation

H(x,I)— HXI),I) =0, (2.7)
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A X

W(.22)

Fig. 2.1. Theinvariant annulug’Z and its three-dimensional homoclinic maniféit(. 72)
are the Cartesian product of a circle with a curve segment filled with equilibria, and its
two-dimensional homoclinic manifold.

which holds on the annulus#Z at x = X (/) and, hence, also on the homoclinic
manifold W (.22).

As mentioned above, orbits (2.6) are homoclinic to the periodic orbits (2.5). In
the course of the flight along such a homoclinic orbit, the asymptotic phase changes
by the amount

oo

AO(I) = / [.Q(xh(s, D. 1) — X, 1)] ds. (2.8)
—00

This integral converges becausl(z, I) converges toX (I) exponentially fast as

t — +oo0.

3. The Main Result

A substantial part of the hyperbolic structure introduced in the previous section
persists for small positive. In particular, persistence results from [13—-15] show
that the unperturbed annulu& persists together with itecal stable and unstable
manifolds Wi .(.7£) and Wi .(.7¢), that is, the connected pieces of the stable
and unstable manifold®¥* (_#2) and W“(.#¢) that are contained in some small
enough neighborhood o2 and intersect alongZz. This ensures the existence
of an @ (¢) close, non-unique, locally invariant annulug’, and its local stable
and unstable manifold#/{.(.#2.) and W,.(.#2.), which arec (¢) close to the
local manifoldsW,;.(.#2) and W .(.#2). The tangent spaces of the respective
manifolds are als@” (s)-close. Local invariance of the annulugZ, reflects the
fact that_#ZZ, may leak phase points through its boundary, and is also responsible
for the nonuniqueness o#Z.. This nonuniqueness does not present any major
difficulties, since all the copies of the annulu&, must contain all the invariant
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sets that are contained in any one of them, thus rendering unique the objects of our
interest, homoclinic and heteroclinic orbits; see [37]. In the case of equations (2.3),
when the perturbation is also derived from a Hamiltonian, the annufjsand its
stable and unstable manifol®s’ (.72, ) andW" (.#/.) can be made invariant, and
therefore also unique; see [36].

We obtain the global stable and unstable manifé¥ds. 72.) andW* (.72, ) of
the annulus 7. by evolving initial conditions in the local manifold&; (. 7.)
andW.(.72.) in backward and forward time, respectively; see, for instance, [19]
or [74]. The manifold* (.Z.) andW" (_#¢.) are also only locally invariant. The
annulus #, and the manifold$V* (_#Z,) andW" (_#¢.) vary smoothly withe, and
collapse onto their unperturbed counterparts as 0. In particular, the perturbed
annulus ZZ, can be written as a graph over thandé variables in the form

x=X(I1,6, u,¢e) (3.2)

for some smooth functioX . (7, 9, i, &) with Xo(Z, 0, u, 0) = X (I).
For what is to follow, we need several definitions. First, we define the Melnikov
function, M (1, 6, 11), which is given by the integral

o0

M(Lb0.10 = [ (n(" ). g7 0). . O)ar, (3.2)

—00

where
n=(D.H(x,I),D;H(x,I) — DH(X(I), I),0),
g=(8"01,0,1,0),8" (x, 1,6, 1,0, 8"(x, 1,6, 11,0),  (3.3)
Mty = (", D), 1,0" 1, I) + o),

is any unperturbed homoclinic orbit given by equation (2.6) along which the in-
tegrand is evaluated; see, for instance, [74]. The veett the normal to the
homoclinic manifoldW (.#%), and is computed from equation (2.7) as the gradient
of its left-hand side.

Second, we define the signaturef the normak by

(n(" (1)), 7" (—1))
o= |lim
t>+00 || Dy H(x"(t, ), D] || Dy H(x" (=1, 1), )]

B (DxHGM (@, 1), 1), IDyH(x" (=1, 1), 1))
= 2T 1Dy H@H (1, 1), DI Dy HG (1, D, D]

(3.4)

Thereforeo is positive if the normak to the unperturbed homoclinic manifold
W (.#¢) points in the direction of the unperturbed flow on the unstable manifold
WH"(#6) at apoint(X (1), 1, 0) in.Z¢, and negative otherwise. Notice that: 0
due to the transversality of the intersection between the manifgldx (1)) and
WH"(X (I)) at the equilibriaX (I).

We also define the-pulse Melnikov functiomy (e, I, 60, u), k = 1,2, ..., as
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k-1
My (e, I, 0o, 1) = Z M(I, jAO(I) + F(e, 1,00, 1) + G0, p), (3.5)
j=0

where

s()

J
_Q(X(I)’I)Zlo e
r LR O’H’

Te, 1,600, p) = 0 : (3.6)

r=1

forj=1,...,k—1and%e, I, 6o, u) = 0. Thus, the 1-pulse Melnikov function
Mai(e, I, 6p, u) coincides with the standard Melnikov functid#i(Z, 6g, 1) given
by equation (3.2). The functioa(/) is defined by the Jacobian of the vector field
(2.4a) at the equilibrium point = X (1) as

202 A2 f+ (D) f-(D)

S() = ,
\/ [(A21))? + (1) = A0(D)?][ (42(D)? + (D) + Ao(D)?]
(3.7)
with
Ao(l) = Dy D HX(), 1), As() = DA H(X(), D,
Ax(l) = DLH(X (D), I),
_ i It h
foh) = lim s DA D, DI
T i —(D)t h
o= im e O G D, DL (3.8)

We remark that if for somé the frequency» (1) = 2(X (1), I) vanishes, that
is, if the periodic orbit corresponding to thatlegenerates into a circle of equilibria,
the contribution from the functiongf (e, 1, 6o, 1) vanishes identically.

We are now ready to state our main result:

Theorem 1. For some integek, some constanB > 0 independent of, some
I = I, someun = fi, and all sufficiently smalk > O let there exist a function
6o = 6p(e), such that the following conditions are satisfied:

1. Thek-pulse Melnikov function has a simple zer@gni.e., My (e, I, 6o(e), it) =
0, and|Dgy My (e, I, fo(e), 1)| > B.

2. Mi(e,1,00(e), 1) = Oforalli =1,...,k— 1,k > 1, and is positive if the
signatures of the normale is positive, and negative dif is negative.

3. Foralli=1,...,k—1,k>1,

QXx), T o )
1- %Deo log|M1M; ... M;|(e, I, 6o(e). i)
d)_ ~ B, (3.9
XU, D oo
1-— TDQO |Og }Mle . Mi71|(8, I, 90(8), M)

where the denominator i(8.9)is defined to b& wheni = 1.
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Then for allI close tol, all i close tojz, and all sufficiently smak, there exists a
two-dimensional intersection surfacg (dp) along which the stable and unstable
manifoldsW* (_#4,) and W"(_#¢,) of the annulus 7, intersect transversely at
an angle of siz&”'(¢). Moreover, outside of a small neighborhood of the annulus
s, the surfaceX} (6p) is ' (¢)-close to the surface spanned by the union of
orbits (2.6) selected by the phase angles

6o = bo(e, 1, W) + jAOD) + F(e, 1, 00(e, 1, 1), 1)

for j =0,...,k — 1, where the triple(/, Bo(e, I, 1), 1) identically satisfies the
equation
My (e, I,00(e, I, 1), n) =0

in some neighborhood df= I andx = i, andfo(e, I, 1) = o(e).

The next five sections will be devoted to proving this theorem. Its extensions
are presented in Section 10.

We make four remarks concerning the usage of the theorem. First, if the region
enclosed by the unperturbed homoclinic manifdld #2) is convex, the sign choice
dictated byo in the second condition of Theorem 1 is equivalent to requiring that
the sign ofM;(e, I,60(e), 1) £ 0,i = 1,...,k — 1,k > 1, be positive if the
normaln to the unperturbed homoclinic manifoldf (.#2) points into the region
enclosed by this manifold, and negative if the normal points out of this region.

Second, in the general cas&(X (1), I) + 0 thek-pulse Melnikov function
My (e, I, 60(¢), 1) does not have a limit as — 0, and likewise the intersection
surfaceX} (6p) does not collapse onto a limiting surface spanned by unperturbed
orbits. This is in contrast to the special case of resonance, naety /), I) = 0,
where the&-pulse Melnikov function is independentodénd, as discussed in Section
12, the surface& (9p) do collapse onto well-defined limiting surfaces. The limit
process from the general case to the case of resonance is somewhat delicate, and
the details are given in Section 12.

Our third remark concerns the calculation of the zeros oktpalse Melnikov
function for the specific case of a single angle S and a homoclinic orbit when
(X (I), I £ 0. Namely, although the-pulse Melnikov function constitutes the
leading term of the distance between the stable and unstable manifolds/Z; )
and W*(.7¢,) only for ¢ sufficiently small, it should be clear from its definition
that it can bedefined for larges, says = ¢@(1). Because of its periodicity in the
argumenty for this single-angle case, thkepulse Melnikov function enjoys the
property that

A(I)

M nvlvey =M 91595 ) n — ex _Zn—
k(e 0. 1) k(e 1,00, 1), en=¢ p( ToXD. D)

) (3.10)

for any I, 6o, u, and any integer. This property is easily proved by induction
together with the formula

Ti(en, 1, 60, ) = Ti(e, 1,60, ) + 2knm. (3.11)
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From (3.10), it follows that we have full knowledge of thgulse Melnikov function

for anye > 0 after we have analyzed it for adlinside some compact interval,
say from exd—271(1)/2(X(I), 1)) to 1. In particular, if the assumptions of
Theorem 1 are satisfied on this interval, they are satisfied for-alD. Furthermore,

we can see that the simple-zero requirement in the first condition of Theorem 1 and
the nonfolding condition (3.9) can be replaced by the simpler conditions

DGOMk(gs I_s 0_0(8)’ /:L) :': Os

X W), I
()
respectively, for alk in this compact interval.

Our fourth remark concerns some further interesting consequences of Theo-
rem 1. Suppose the Melnikov functidfi(7, 6o, ) given by equation (3.2) changes
sign astg varies over a period i?, and assume that a zefig(e, I, 1) = éék) of
the k-pulse Melnikov function given by (3.5) has been determined. Then, for the
(k + 1)-pulse Melnikov function thé&-argument diverges a& — 9_(()") owing
to the vanishing ofVy (¢, I, 6g, ) in the definition (3.6) of the anglér (where
My (e, 1, 6p, u) appears as the argument of a logarithm). Sincektpealse Mel-
nikov function is periodic in th@-argument for alk, My+1(¢, I, 6, ) oscillates

wildly for 6p in a neighborhood oéé"). Hence, there exists an infinite sequence

of zeroséé”l) of My41(e, I, 60, 1), which accumulate oé(()k) from both sides.

This argument can of course be iterated for any of the z@¥‘6§), leading to an
analogous conclusion fa¥y2(¢, I, 6g, ) and so on. This suggests that when-
ever the existence of a certathpulse homoclinic orbit has been established, an
entire (infinite) cascade of higher pulse homoclinic orbits in a neighborhood of
this k-pulse homoclinic should also exist. However, our estimates in the proof of
Theorem 1 do not allow us to treat the Iirﬁé"“) — éék) and conclude that an
infinite number of(k + 1)-pulse homoclinic orbits exist. A version of the estimates
probably can be established so that this limit can be treated, but we leave this to
future work. Notice that by reducing the sizesgfTheorem 1 can be applied to an
increasingly large number of the zer@%’q), and the existence of corresponding

(k + 1)-pulse homoclinic orbits can be established. Itis also interesting to note that
once ak-pulse homoclinic orbit has been detected, orbits with higher numbers of
pulses can be constructed by using the Exchange Lemma [31]. The analysis of the
relation between these orbits and thet [)-pulse orbits{ > 0) determined by the

(k + I)-pulse Melnikov function will be relegated to future work.

Dy, log | M1M> ... M;|(e, I, 6o(e), i2) # 1,

4. The Normal Form

Inthis section we describe a coordinate change that brings equations (2.1) locally
near the annulus#z, into a normal form, closely related to Fenichel normal form
[16]. We use this normal form to derive estimates that allow us to track orbits as
they enter and leave a small neighborhood of the annuttis. These estimates
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are derived in Proposition 4.2, and further refined in Sections 5 to 10. Our normal
form is a more restrictive case of the Fenichel normal form, and is needed in order
to successfully carry out the proof of Proposition 7.1. This proposition is crucial
for connecting a certain distance estimate at the entrance of an orbit into the small
neighborhood of the annulugZ,, with a similar distance estimate at the exit of
the neighborhood.

The coordinate change leading to our normal form is described in

Proposition 4.1. In a neighborhood of the perturbed annulug’,, there exist
smooth local coordinates, = a.(x, 1,0, u,¢), by = be(x,1,0,u,¢), I, =

I(x, 1,0, n,8), and v, = ¥(x, 1,0, u, &), withae, be, I, € Randy, € S,

such that,at = 0,a0 =a = a(x, I), bo = b = b(x, I), and equation$2.1) can

be written in the normal form

ds = [)"(aEbS’ 18) + Sfa(aé" b&‘a 187 1//6’ /’La 8)] aé‘a (41a)
be = [—Macbe, Ie) + efp (e, be, Ie, Ve, 1, €)] be, (4.1b)
is =¢e[fie, Ve, 1, &) + g1(ag, be, I, Ye, 1, &)aghe] , (4.1c)

1,.08 = w(le) + ¥ (ae, be, Ic)achbe + 8[f1//(18v Ve, I, €)
+g1//(a57b8’167 w57 M’S)ab‘bﬁ]a (41d)

wherei(agbg, I.) = Dg,p, K (asbe, 1) for some analytic functio (a.b,, I.), and
w(l) = 2(X (), I). The numbersA (0, I) are, with a slight abuse of notation,
the two eigenvalues of the linearization of syst@ma)about the equilibrium
x = X)), i.e.,A(0,I) = A(I). In these local coordinates, the annulu#’, is
defined byz. = b, = 0, and its local stable and unstable manifoldg (. 7. )
and Wy .(.7¢.) are defined by, = 0 andb, = O, respectively.

Proof. We begin by recalling the structure of the unperturbed system (2.4), in
particular the fact that the equation for theoordinate is decoupled from the rest
of the system, and that th# coordinate can be obtained by a quadrature. This
structure suggests that we first transformattmordinate in a small neighborhood
of the annulus#, that is, in a small neighborhood of the equilibriumxat X (1)
of the equation (2.4a). We translate this equilibrium to the origin by using the
analytic (canonical) transformation= x — X (1), ¢ = 0 — (u, J 222

Using the results of [49] and [60] (see also [62, Secs. 16, 17]), we can then make
another analytic canonical coordinate change which replatgshe two coordi-
natesa(u, I) andb(u, I) such that the Hamiltonia®/ (x, I) = H(u + X(I), I)
becomesk (ab, I) = F(I) + A0, Iab + ' ((ab)?) for F(I) = H(X(I), I)
and some analytic functiok of two real variables. Thus, equations (2.4) may be
rewritten as

a = Alab, Da, (4.2a)

b = —i(ab, b, (4.2b)
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=0, (4.2¢c)

¢ = w() + Ou(a, b, Na + Op(a, b, b, (4.2d)

whereA(ab, I) = Dy K (ab, I), andw(I) = 2(X (), I). The form of equation
(4.2d) follows from the fact that = w(I) fora = b = 0. Clearlyab is a conserved
quantity for equations (4.2).

We replace the angl¢ by another angles such thaty — w(I)t is constant
along orbits in the hyperplanes= 0 andb = 0, which implies that system (4.2)
becomes

a = Aab, Ia, (4.3a)
b = —(ab, I)b, (4.3b)
I =0, (4.3c)
v =w()+¥(a,b, ab. (4.3d)

This is done in a smooth fashion in the following way. On the hyperplaae),
equations (4.2a) and (4.2d) combine into the equation
d(¢@ —w(l)t)  Oua,0,1)
da EY(W))

’

so that
1

A0, 1)
Likewise, on the hyperplane = 0, we obtain the equation

¢ =w()t+ ¢o+

a
f ®,(s,0,1)ds.
0

1

¢ =w(t +¢o— 70.1)

b
/ ©p(0, s, Ids.
0

If we take

a b
V=¢— [/ Ou(s,0, I)ds —/ (0, s, I)ds} =S, 1), (4.4)
0 0

20, 1)

the angley satisfies equation (4.3d).
For small nonzera, the results of [14] and [15] imply that we can choose in a
smooth fashion new coordinates

ag =ag(a,b,I,V, n,e) =a+ (&),
be = be(a,b, I, Yy, u,6) =b+ (),
I =1I.(a,b,h, Y, u,e) =1+ C(e),
Ve =Ve(a,b, 1, Y, n,e) =y + O e),
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such that the annulus#; is ata, = b, = 0, that the local stable and unstable
manifolds Wi .(.7Z.) and W .(.#,) are ata. = 0 andb, = O, respectively,
and that the equations describing the dynamics ofithend v/, variables in the
hyperplanesi, = 0 andb, = 0 are still independent of the. andb, variables.
These requirements imply equations (4.1). O

Equations (4.1) are a special case of the Fenichel normal form; see [14-16] and
also [23, 32, 70].
We now define the neighborhodg (.72, ) of the annulus Z, to be

Us(Als) = {(ae. be, Io, V) | lae| < 8, |be| < 8,11 < I < I2},

and proceed to prove some important estimates that will be used throughout this
paper:

Proposition 4.2. Let the trajectoryg. (t) = (a.(¢), b:(t), I(t), Y. (t)) enter the
neighborhood/s(.#%,) att = O at a distance:c® from the stable manifold, = 0

of the annulus 7., wherea and ¢ are some positive numbers. Then there exist
positive constant§’, D, E, P, Q, and R, which only depend o@ andc such that
while this trajectory stays in the neighborhodtj(.#2.) the following estimates
hold:

1. For small enougtz, the time of fligh" through the neighborhood’s (. 7 ) of
the trajectoryg. (¢) satisfies the double inequality

logi —log¢
M[l—C(s“_Ds+elog})i| <T
€

7(0, 1,(0))
alogl —logs v De 1
<m[”c<s “"’gz)]'

2. Let0 < s <t < T. Then thez, and b, coordinates of the trajectory, () at
timest ands satisfy the double inequalities

lac ()] exp([A(0, Ie(0)) — E(e%~ "¢ + elog(1/e))](t — 5)) < lac ()]

< lae(s)| exp([A(0, I.(0)) + E(s*~P¢ + elog(1/e))](t — 5)), (4.6a)

(4.5)

|be (5)] exp([ — A(0, 1.(0)) + E(e*7P¢ + elog(1/e))](r —5)) < |bs(1)]

< |be(s)] exp([— (0, I:(0)) — E(¢*~P¢ + elog(1/e))](t —s)). (4.6b)

3. For0 <t < T, the coordinate of the trajectory, (¢) satisfies the inequality
1

|I:(t) — I.(0)| < Pelog—. 4.7)
&

4. For0 <t < T, theyr coordinate of the trajectory,. (¢) satisfies the inequality

2
| e (1) — ¥e(0) — w(l)t] < Q¢ (Iog :EL) + Re*De log ;—L (4.8)
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We remark thab, (0) = § anda,(T) = § in this proposition.

Proof of Proposition 4.2.Let k be any number that satisfies the inequality
k <min{iab, 1) | lal <8,|bl <8, 11 <1 < I}

Thenthe expressiot(ab;, 1) +ef,(ae, be, I, ¥e, u, €) inequation (4.1a) can be
bounded from below by for small enougla, so thaja, (¢)| satisfies the exponential
estimate|ag ()| > |as(0)|e!. Since|a,(0)|] = ce*, we must have the estimate
T = @ (log(1/¢)). After taking the supremum on the right-hand side of equation
(4.1c), we immediately conclude that the inequality (4.7) holds, which proves part
3 of the proposition.

Multiplying equation (4.1a) by., equation (4.1b) by, and adding, we con-
clude that

(agbe) = ef (ag, be, I, e, 11, €)aghe,

for some smooth functiorf (ae, b;, I¢, ¢c, i1, €). Taking the supremum over this
function, using the fact thaf = ¢ (log(1/¢)), and integrating, we obtain the
inequality

lac (0] 16 (0)[eP* < lae ()] |be (1)] < lag(0)] be (0)]s~P* (4.9)

for 0 <t < T. Using equation$u, (0)| = ce* and|b.(0)| = §, we conclude from
(4.9) that
lag ()] |be ()| < 8%~ P, (4.10)

Refining our first estimate using inequalities (4.7) and (4.10), we conclude that

1
A0, 1.(0) — E <8a_D8 +¢log g) < Maghbe, Ic) + efalae, be, I, Ye, 11, €)

1
< (0, I,(0)) + E <e“—08 +e Iog—) ,
&

1
—-A0,1:(0) — E (Sa_Ds +¢log g) < —Magbe, 1) + efplae, be, I, Ye, 1, &)

1
< -0, I,(0) + E <8°‘D8 +e Iog—)
£

along the entire piece of trajectogy(z) that is inside the neighborhoddg; (.#Z,).

These two inequalities prove the estimates (4.6), and thus part 2 of the proposition.
We now lets = 0 ands = T in the first inequality in formula (4.6a), together

with the equationsa, (0)| = ce* for some positive constantand|a.(T)| = §, to

show that

alog? —log

A0, 1.(0)) — E (ea*Dg +elog %)

alog? —logs b 1
PR E——— a—De | _
<oy e (o))

T <
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which holds ife is small enough. Similarly, we Iat= 0 ands = T in the second
inequality in formula (4.6a) to show that

alog? —log b 1
— =2 11— e log-]|.
- Sy 1 (el

This proves part 1 of the proposition.
To prove part 4 of the proposition, we set up the inequality

We (1) — Y (0) — (L (0))t |
< [y loUe(t) — 0(I:(0))] dr
+ fo 19 (@e(0). be(0), Ls(D)] las (1] [be (1) d (4.12)
+e fy 1fy (), Ye(0), . £)
gy (@ (1), be (D), Ls (1), Ys (), 11, £)ae (Db (1)] d1,

which follows from equation (4.1d). The first term on the right-hand side of this
inequality can be estimated to be of stz&s(log(1/¢))?) by using the inequality
(4.7) and the second inequality in formula (4.5) without the terlog(c/8). Taking
suprema over the functions involved in the integrand of the last term, we likewise
conclude that this term is of siz€'(¢ log(1/¢)). The first and the last term together
can therefore be bounded above by the expresgisiog(1/¢))2.

The middle term on the right-hand side of the inequality (4.11) is estimated by
using formula (4.10), taking the supremum of the functiou, (¢), b, (¢), I.(t))
over the neighborhood/s(.#2.), integrating in time, and omitting the term
—log(c/d) in the second inequality (4.5). We conclude that

T
/ W (ac (1), be(0), I ()| las ()] [be (1) | dt < Re*~P* |09§-
0

Combined with the upper bour@e (log(1/¢))? for the first and third terms in the
inequality (4.11), this estimate yields formula (4.8), and thus proves part 4 of the
proposition. O

5. The Closeness of Tangent Spaces

In the following sections we will compute the distance between the stable and
unstable manifold®* (_72,) andW* (_#¢,) of the annulus#Z, by an extension of
the Melnikov method. In particular, we will follow the unstable manifétd (.22, )
as it winds in and out of a small neighborhood of the annuifs, and measure its
distance from the stable manifold®(_#2.). In order not to confuse this winding
piece of the unstable manifold with a local piece of this manifold, we denote it by
£ . In this section, we derive a closeness estimate between the tangent spaces of
the manifolds’Z and W} .(.#Z,) and the tangent spaces of the manifoldsand
Wi (#¢.) at the points where the manifold” enters and exits the neighborhood
Us(.#¢,) of the annulus 2., respectively (see Figure 5.1).
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g
loc (///és) /%Ué (/Zg)
< |
b// > ~a
( S at exit
intersection
witha=29

ey
Vvloc (//63)
intersection

withb=190

Fig. 5.1. A portion of the manifoldZ as it enters and leaves the neighborhogd 72, ).

We begin by deriving the equations of variation along a trajecgety) from
the equations (4.1). Here the traject@ry(z) is as in Proposition 4.2. Throughout
this section, we omit arguments of functions to prevent formulas from becoming
unwieldy. In particular, we writé (a. b, I.) Simply ash. The equations of variation
are

dd, = (A + efy)dag + ag (De, AdE + DiAd1; + €(V fy, dX)), (5.1a)
dbs = (=\ + efp)dbs + bs (—D¢,2d¢s — Dy Ad1s + &(V f,dX)), (5.1b)
dl; = & (Dy, f1dls + Dy, fid Ve + g1dt: +¢:(Vgr. dX)), (5.10)
dyre = Dj,wdl, +Wdgs + ¢ (Do, Wdae + Dy, Wdb, + D, Wdl,)
+ e (Dy, fydl + Dy, fydys + gpdte + ¢(Vgy, dX)), (5.1d)
where¢, = agb, anddX = (dag, db,,dI,,dy,)". Instead of working directly
with these equations, we utilize certain structures possessed by these equations. A

similar strategy was used in [71] to study an atmospheric system which we will
describe in Section 11.
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Proposition 5.1. LetU = da,, V = db,, andW = (W1, Wo)T = (dI,, dy,)T.
Then equationgs.1) assume the form

U= (0, 1:(0) + 90U + g3V + A" W, (5.2a)

V = (=0, I:(0) + 92)V + ¢aU + B W, (5.2b)

W = (09 + ©1)W +UH; + V Hp, (5.2c)

wherep1(t, €), ..., @4(t, &) are scalar functionsa (¢, ), B(t, ), Hi(t, €), Ha(t, &)
are vectors ifR2, @g(¢e), @1(1, ) are 2 x 2 matrices, and there exist positive con-

stantsCy, ..., Co, each independent éfande, satisfying

11 = Ca (o4 lac 115001 + elog ) (5.30)

lp2] = C2 (8 + las ()||be (1)| + € log %) ; (5.3b)

lpa| = Cslac (1), (5.3¢)

lpal = Calbe(1)], (5.3d)

Al = Cslac ()], (5.3e)

| B|l = Celbe(1)], (5.3f)

| Hyll = C7lbe (1)1, (5.3g)

| Hz|| < Cgla:(1)], (5.3h)

%= (ngw?uon 8) | (530

19115 Co (& +elog? + a0 1.0 ). (5.3)

Proof. We identify the terms in equations (5.2) with those in equations (5.1). First,
we have
p1=A— A0, I(0) + efs + agb: D¢, A+ eaz Dy, fo.

Using the estimate (4.7) in Proposition 4.2, we see that
, 1
A — A0, I,(0) = @ (|a8||bg| +e Iogg> )
The rest of the terms are clearly of the siz&s + |a.||b.|). The bound foligs| is

similar. The bounds fakes|, [eal, l|All, B, | H1ll, || H2|| are also straightforward.
Finally, we identify
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) € (Dlg Jr+ ZeDIEgl) 3 (Dwg fr+ {eDwggz)

G = .
Do) = D1, oI (0) + & D1, + & (Di, fy + ¢ Digy) & (Dye fy + %Dy gy)

The same kind of consideration as fei| gives the desired bound fg®,|. O

We now prove a technical result. Leg = (Uo, Vo, W)T be a tangent vector
of the manifold %" at the pointg. (0) where the trajectory. (r) on.% enters the
neighborhood/s(.74.). Assume that the inequalities

|Uol < M1€”, Vol < Mae”, |Woll < M3 (5.4)

hold, whereM1, M andM3 are positive constants independent aﬁd% <a < 1.
Then we can show

Proposition 5.2. Under the assumptior($.4) on the initial conditions, foB > 0
sufficiently small an® < « < BA(0, I,(0)) /2, the estimates

U@ < 801*3ﬂe[k(0,15(0))+1<]17 (5.5a)
V()| < e, (5.5b)
W) <e? (5.5¢)

hold, whered < ¢ < T ande is sufficiently small.

Proof. By the initial conditions (5.4), the bounds (5.5) are satisfied far 0< Ty,
whereTy < T is some small time, and far sufficiently small. Our technique
consists of assuming the inequalities (5.5) fat @ < Ty and derivingnewbounds
forthe functiongU (¢)|, |V (z)| and||W (¢) || in the interval 0< ¢ < Ty. Furthermore,
these bounds show that the inequalities (5.5) are strict. It follows that we can extend
the validity of (5.5) beyond the interval € ¢ < Ty, say to an interval & ¢ < Ty,
whereTy < Ty £ T. The same argument applies to the new interval D < Ty,
however, and we can use an elementary connectedness argument to show that (5.5)
holds on the whole interval € ¢t < T'.

Accordingly, we now assume that the estimates (5.5) hold f&r0< Tp. For
¢ sufficiently small, we have the estimates

1 1 1
E<8"‘D8+slog—> < Kk, C(e"‘De—i—elog—) < =,
3 e 2
whereC, D, E are constants in Proposition 4.2. We shrérflarther as we go along.

Under these conditions, we obtain from the estimates (4.5), (4.6a), (4.6b) the further
estimates

1 1
16 *(0,7:(0) 16 *(0,7: (0)
<_£) <el < (— eﬁ) , (5.6)
e¥ ¢ e¥ ¢
8¢ HOLOHAT=D _ 14 ()| < ¢ HOLO)=I(T 1) (5.7a)

5 HOLONFe]t _p (1)] < s~ HOL(O) =]t (5.7b)
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By further shrinkinge if necessary, we may also assume that
2 —[M0,1:(0)—«]T 1
k>C1|e+d8% ¢ +8|Ogg )
so thati (0, I, (0)) + ¢1 < A(0, I.(0)) + «. Applying the Gronwall inequality and

the estimate (5.7a) to equation (5.2a), we have, far0< T,

|U@)| < |Ug|el*©-1eOD+«lt

t
n / PHOLOV D) (1005 | CpeP)solHOLO)~CIT—0) 4
0

< Mye®  HOL )]t

t
+(C3+CS)S—ﬂae[Mo,le<o>>+xlte—[x<o,ls<0>>—K]T/ X4 (5.8)
0

Applying the estimate (5.6) gives

2(0,1¢ (0))—«
|U(t)| < Mlg“e[)”(o’lﬁ(o))""(]l 4 C3 + CSE_/SSe[)\(OsIS(O))-‘rK]I ( g% ) (0,15 (0))
= 2k

8/e

A0.1¢ (0)—k

g |:M18313 +#8 (#) 2(0,1¢ (0) 8’3]8(1—3/3@[),(0,15(0))-‘1-/(][’ (59)
K e

where we have used the assumption that 2ax /A (0, I.(0)), so that

o[2(0.1¢ (0))—«]

PV - | S B
g MOLEO0) = g"TI0LE0) < %772

< g2 h,

By choosinge sufficiently small, we have the estimate

A(0,7g(0)—k

C C 1(0,1¢(0))

My B85 (¢ A1
2 S./e

The estimate (5.9) now becomes

|U1)] < 623 elMOL:(O)++]r

Next, we derive a new estimate fidr (¢)|. Again by takings sufficiently small,
we can assume that

e <s + 82¢ PHOLON=AT 4 ¢ |og }> :
&

so that—A(0, I, (0)) + g2 < —A(0, I.(0)) + «. Applying the Gronwall inequality
and the estimate (5.7b) to equation (5.2b), we obtain
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V@) < [VolePOLON=

t
+ f ¢TI O)=k1(1—) (=3B M Q.1 O+ ]
0

+ ngfﬁ)ge*[l(osls(0))*K]Td.c

< a ,—[A(0,1:(0))—«]t
= e (5.10)
MO 1 (0)+4]t

§Ce? 3B~ MOLO)—k]r &~
Folae™ Te 20, I.(0)) + «

+ (Scegfﬁte*[l(o»[s(o))*/(]t

< Mzgaef[x(o, I:(0)—«]t

2«T
e
+s(c 8(:(—3/3 +C S—ﬂTe_[A(O,Is(O))_K]T> .
(4 20, 1.0) +x  °

Using the estimate (5.6) and 2< (0, I.(0))/«, we have inequalities

A0,7(0)—k

B
S~ OLO) T < <L> HOROY op T < <ﬂz>“8ﬂ T < ob
s\/e ’ c ’ =

if ¢ is sufficiently small. It follows that

B
C 8 o«
V1 < (M2 + 8y (55) e

c

(5.11)

S
+8Ce (ﬁg) Ol 82/3)805—5;3 < %56

if e is sufficiently small.
Finally, we derive the estimate for the compongWt(¢)|. First, we define the
new variableZ = ¢~'®W. Then equation (5.2c) takes the form

Z=e1901'Z + Ue'9H, + Ve '9H,. (5.12)

It is easy to verify that

00 _ 1 0
~\tDro:0) 1)

and so||e™ | < 14 C1ot, wherer > 0 andC1q is some constant independent of
¢. By the estimates (5.7), we see that(t)||b, (1)| < §2e[+O-LO)—<IT Now fix
n > 0 so that

. B
< "‘(mz")
Then

1
le™"®°@1¢'®|| < (14 C10T)*Cy (a +elog = + aze—“("»’s(o”—K]T) <n

if ¢ is sufficiently small. We apply the Gronwall inequality and estimates (5.7) to
equation (5.12), and obtain
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IZOI = [IWolle™ + fé e""=9) (14 C10T)
(ngef[MO, 1. (0) —«] ga—3B ,[1(0,1: (0)+«]T
+ Cgde1MO10)—](T—1) 801755) dt (5.13)
< Mze" + 8(1+ C1oT)e™ (C7e* 3Ky

+ CSSQ_S/S@_[)‘(OJS(O))—K]TKZ)’

whereKy = [y e Mdr andk, = [y e*OLO)=k=nTqz |tis easy to check
that
e&e—mT eMO. 1) —k—mT
K1 < <

, K2 = .
= 2%—g 2= X0, 1.(0) -k — 1

It then follows that
IZ@)|l < M3e™ + 8(1+ C1oT)e™

e T

y C78a—3ﬁe(2K—_n)T 4 Cae®5F
2k —n A0, 1:(0) —k — 7

) (5.14)
< (M3 +1e™,

providede is sufficiently small. Finally,
IWOI £ A+C1o0 I Z@)]| £ (Ma+1)(1+CroT)e" < (Ma+1)e~ 3 < e7F,

if ¢ is sufficiently small.

We now complete the argument: L&t be the set of all timedy satisfying
0 £ Ty £ T such that the inequalities (5.5) hold for® ¢ < Ty. Since the
inequalities (5.5) are not strict, the set is closed in the interval & r < T. The
above calculation shows that is non-empty and open in the intervakOr < T.
Since the interval € ¢ < T is connected, the s&¥” must be this whole inter-
val. O

We now improve our knowledge of the componetfs(r) andd v, (¢).

Proposition 5.3. For 8 > 0 sufficiently small,

dI.(t) 1 0\ [ dI:(0) w6
= + (% 5P), (5.15)
dre (1) tD1,0(I:(0) 1/ \ dy:(0)

where0 < ¢ < T andzs is sufficiently small.

Proof. Let Wo = (d1,(0), dv.(0))”, and define the functio®(s) in R? by the
equations

P = &P, (5.16a)

P(0) = Wo. (5.16b)
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Subtracting equation (5.16a) from equation (5.2c), we obtain the equation
W —P=0gW—P)+OW+UH, +VH,. (5.17)

Applying the Gronwall inequality to equation (5.17) and using Proposition 5.2 and
estimates in Proposition 5.1, we have

W) — P()]

t
= H fo e~ (91 (1)W(r) + U(t)Hy(t) + V(1) Ha(1)) dt

t 1
< / [14 Cio(r — 1)] |:C9 (a +elog= + 52e—W°”s<°>>—K1T) P
0 &

6238 QL) T 0 5, (M0, (0) —] (5.18)
4 62758 Cgse 110 18(0))—K1<T—r>} dt

- 8C7 8Cg _
< (14 CyoT) | Coe® 2T + Lg% 4 ——° o5
=1+ 10)[98 +2Ke +)»(0,15(0))—K8

if ¢ is sufficiently small. The proofis now completed by noting tRat) = ¢'®° Wy

and
; 1 0
10y _
¢ _<tD1€w(I€(O)) 1)' H

Recall that we are interested in the evolution of the tangent space of the manifold
% along the trajectory, (¢) as this trajectory passes through the small neighbor-
hoodUs; (.74, ) of the hyperbolic annulus#, . The tangent space at the pajat0),
whereg, (t) entersUs (_#¢.), is spanned by three tangent vectors, one of which can
always be chosen to be the vector field itself. For the other two vectors, we can
make use of the fact that the tangent space of the maniffli 7' (¢%)-close to
the local stable manifold near the point0). This gives two other tangent vectors
atq. (0), which are of the form

(%) (%)
(&%) (&%)

vy (O) = 14 (’/7\'(8“) s Uy (O) = ﬂ(&‘a) . (5.198,b)
(&%) 1+ @Y

We also writev; (0) for the vector field ag, (0), and writev, (1), v; (¢), andvy, (¢) for
the solutions of the variational equations (5.1) with initial conditiof(®), v;(0),
andwy, (0) respectively.

Atthe pointg.(T), where the trajectory, (¢) exits the neighborhooll; (_#Z;),
the vectorv,(T) is simply the vector field af.(T). Using equatioru,(T) =
(signa, (T)) 8 and the estimati, (T)| < e~ [+01O)—IT e obtain
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(signae (T)) A(0, I,(0))8 + 7' (¢*F)
T) = SN 5.20
v (T) = o) . (5.20)

o (I(0) + O (s*F)
Using Propositions 5.2 and 5.3, we also obtain
(e=%)
O (e%75P)
14 (2~ 5P)
Dlgw(lg(o)) T + ﬁ\(ga_sﬂ)

v (T) = . (5.21a)

O (e74)

G

G
1+ O (%75

vy (T) = (5.21b)

In order to conclude that the tangent space of the maniféldat the point
q:(T) is close to that of the local unstable manifdif,.(.#.), we need to know
the leading term of théa.-component of the vectar, (T'). Write

as(0) = A (I, ¥s, ). (5.22)

The Fenichel coordinate (0) of the initial pointg, (0) depends on the variablés

andy, through some functiod, (I, ¥, ¢) for the following reason. Near the point

q:(0), we assume that the manifold’ is ' (¢*)-close to the manifoldV;} .(.7Z;),
andthatthe corresponding tangent spaces are also close. In the Fenichel coordinates,
the manifoldWj; (7. ) is given by the equation, = 0 and parametrized by the
coordinates,, I, andy.. Since the poiny,(0) is chosen among points with

|bs| = &, the coordinatei.(0) depends on the remaining variablgsand ..

From equations (4.5) and (5.22), we have the following leading term expansion for
ML O)T

é 1) 1
HOLOT — <1+ 4 (Io (8‘“’8 +elo —>>> . (5.23
a.(0)] 9120 9, (5-23)

Now for the vectomwy, (0), we haved I, (0) = @' (¢*). Also, from equation (5.22),
we obtain the equation

dag(0) = Dy, a:(0) = Dy, A (1:(0), ¥¢(0), &). (5.24)

We have to obtain the leading term of the differential (7') for the vector
vy (T). To do so, we go back to equation (5.1a). For the present purpose, write this
equation as

dae = rdag + (efs + aghs D, A) dag + a? De, rdb,

(5.25)
+ag Dy dls + eag(V £, dX).
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Using Proposition 5.2 and equation (5.1c), we easily showdalt)| = @' (¢*) +
' (e1788) = ' (¢*~6F). We apply this fact and Proposition 5.2 to equation (5.25)
to see that equation (5.25) takes the form

dae = [M0, I:(0) + x1(0)]dae + x2(1), (5.26)

where|x1(1)| = @' Py and|x2(t)| = @' (¢*~58|a,(r)|). Directintegration gives

das (T) — dag (O)efOT 10,1 (0)+x1(v)dz

O ABYCYAL d (5:27)
+/ oJi HOLO s oy g
0

The second term above can be estimated in the usual way. Chaasfciently
small sothak.(0, I, (0))+x1(z) < A(0, I.(0))+«. Thenthe second termis bounded
above by the expression

2T
e (8%6/3 I e[)»(ovls(0))+K](T*T)5e*[)»(0,’s(o))*K](T*T)d-L—) — @‘(8046/5 92 )
K
= O 7Py,

The firsttermin equation (5.27) . (0)e* @7 (1 + ¢ (¢*=2F)) . Using equa-
tions (5.23) and (5.24), we finally obtain

D‘/fsAs(Is(o)a Y:(0), &)
|Ae(1:(0), ¥ (0), &)|

We can now show our closeness result in

dao(T) = § (1 n ﬁ‘(e“*zﬂ)) +O@E* ). (5.28)

Lemma 1. Let the manifold% be ' (¢%)-close to the local stable manifold
Wit (74;) atthe pointg. (0) = (a¢(0), 8, I:(0), ¢ (0)), wherea (0) = A (I, (0),

¥ (0), &) = @ (¢%), and letthe corresponding tangent spaces als6'lje” )-close.
Letg. () = (a. (1), b: (1), I (t), Y. (t)) be the trajectory passing through the point
¢:(0), and letT be the time when this trajectory exits the neighborhtpd 72, )

of the annulus #Z.. Let there exist a constat > 0, independent of, such that
the inequality

Dy, Ac(1:(0), ¥(0), &)

MO 1 0) = o U:O0D = =775 =06 )

> B (5.29)

holds. Then the tangent space of the manifaldat the pointg, (T) is 7' (e*~#)-
close to the tangent space of the local unstable manifgifi(.7Z.), where the
numberg can be made arbitrarily small.

Proof. We consider the linear subspaceRifi formed by the vectors, (T), v;(T),
vy (T). By equations (5.20), (5.21) and (5.28), we see that the matrix formed by
these vectors has the form
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(signae (T)A(0, 1 (0)3+ (%) € (e=%) gy Dy e (O) (140 (24 2) )+ (4 7F)
=P O (e*~5P) O (e*~5F)
(e) 149 (%5 )
@I (0)+ (e*7F) Dy, (1:(0)- T+ (=) 14+ (e*~%)
(5.30)

The quantitylb, Ad I, Ad. is defined as the subdeterminant obtained by removing
the firstrow. Geometricallylb, Ad I, Ad . is the (sighed) volume of the projection

of the parallelepiped formed by, (T), v;(T) and vy (T) onto the (b, I, ¥,)-
plane. The other projection&. A dI. A dV., das. A dbe A dl, andda, A dbe A

dyr. are defined similarly. (These projections are known to differential geometers
as Plicker coordinates on the Grassmannian; see [31].) To show that the linear
subspace spanned by the vectqd), v;(7) andv, (T) is close to the subspace

b. = 0, it suffices to prove thatla, A dI. A dy.| dominates

2 2 2|12
{|dbg AdI AdYe|? + |dag A dbe AdI)? + |dae A dbe A de] } (5.31)
for e sufficiently small. It is clear from the matrix (5.30) that the expression (5.31)

is of order” (¢2~%). On the other hand, the projectida, A dI, A dy, is the
determinant

(signas (T)A(O.L: Q)3+ (%) € (=) Teon Dueae O (L4 (& 2)) 40 (7P
O(¢) 140 (%~ 6F) ' (s%~6P) ,
@I (0)+7 (2~F) Dy, (I (0)-T+( (e*~%) 1+ (2 7%F)

which, upon expansion, is

. Dy a. (0 _ N
s ((Slgnae(T)))\(O, 1:(0) — w(ls(o))%gg')(l + O Zﬂ)) +O(e 10/3)’
(5.32)
Sincea, (t) does not change sign during the passage, we must have
as(0)

signa, (T) = signa,(0) = @O

(5.33)

Expression (5.32) now becomes

as(0) ( Dy, ae (V) o aa—2p ) . a—10

1(0, I (0)) — 0 (I, (0) === (1 + @' (*= %)) | + O (¢2710P),
las(0)] las(0)] ( )

Condition (5.29) guarantees that this coordinate is of ordét), and the desired

conclusion on closeness follows. O

8

Condition (5.29) reflects the geometric fact that the manifgldnay emerge
from the neighborhood/s(.#4.) having folds due to the nearly linear motion of
the angley,., which can be immediately verified for simple linear examples (see
Figure 5.2). Ifw(1;(0)) = 0, condition (5.29) is automatically satisfied, that is,
no folds can develop in the case of slow dynamics on the normally hyperbolic
manifold. 7,
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Fig. 5.2. An example of the folds that the manifdld can develop as it flies byZZ, in
a—1vy —b coordinates. The surface is actually generated by integration of a linear equation,
given by the vector field = Aa, b = —Ab, y = o+ ¥y, WithA = 1,0 = /3, b(0) = 1,
a(0) =€e(1— % sechyy), ande = 0.2. This demonstrates how the creation of sharp folds
in % is governed by the linearized dynamics in the neighborhtigd #2.).

The method of proof used in Lemma 1 can be adapted easily to the case of
a multi-dimensional action and angle variable. In general, & R™, § € R",
the manifold % we are tracking is of dimension + n + 1. In exactly the same
manner as above, we can follow tangent vectors complementary to the vector field,
of which m vectors are along thé directions, and: are along the directions.
All the estimates go through verbatim to give the following higher-dimensional
generalization of condition (5.29):

Dnga(la(O),iﬁa(O),E)M ~ B
|Ae(1c(0), ¥¢(0), €)| '

‘x(o, 1.(0)) — <w<18<0>>, (5.34)

6. Distance Estimates Along the Pulses

Recall the manifold#” defined at the beginning of the previous section as the
winding piece of the unstable manifold” (_#7,). As stated there, the manifold”
returns several times to the neighborhdgd. #Z.) and then leaves it again. Upon
leavingU; (.74, ), the manifoldZ follows the local piece of the unstable manifold
Wh(.#¢). In this section, we compute the distance between these two manifolds
in terms of their distance upon exiting the neighborhdgd 72.). For simplicity,
we carry out the calculation only for the case when system (2.4) is Hamiltonian.
The ideas involved in the general case are the same.
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We introduce streamlined notatigriz) = (x(¢), 1(¢), 6(¢)), and rewrite equa-
tion (2.1) as
G=JVH(g) +eg(g) + O (), (6.1)

whereV = (Dy, Dy, Dy), g(q) = g(q, 0) andJ now stands for the 4 4 matrix

0 -1 0 0
1 00 0
=10 0o o0-1
0 0 1 0

Consider some poing” (0) on the unperturbed homoclinic manifold(.#2),
where this manifold leaves the neighborhd@gd. 7, ). Attach the normat (p” (0)),
given by formula (3.3), at this point. This normal intersects the maniféldn at
least one point and the local unstable manifdif§ .(.#Z.) in precisely one point,
sayq¢"“(0). From among the intersection points of the normgp” (0)) with the
manifold ~ we choose the point! (0) to be the point whose backwards-time tra-
jectory takes the least amount of time flying alof§j to reach some portion of
the local unstable manifold/¢ .(.#;). We assume that the poing&0) andg® (0)
are at a distances® away from each other for some positveando > % We
consider now the trajectorigs’ (1), ¢’ () andq"(¢) passing through the points
p"(0), ¢'(0), andg*(0). We require that the poing” (0) be chosen in such a way
that the trajectory’(s) does not lie near a fold of the manifold’. This can be
verified a posteriori by requiring that the nonfolding condition (3.9) is satisfied
for the unperturbed trajectories approximatifi¢y). Note that the trajectorp” (1)
evolves under the unperturbed dynamics, and is therefore of the form (2.6), i.e.,
ph(t) = ("t —10, 1), I, 0" (t — 1o, I') + 6p), while the trajectorieg’ (r) andg“ (¢)
evolve under the perturbed dynamics. By Gronwall-type estimates, the trajectories
q' (1) andq"(r) are a distance” (¢*) apart for all finite times.

Any perturbed trajectory () can be Taylor expanded as

qg(t) = p(t) + er(t) + O, (6.2)

wherep(¢) is some unperturbed trajectory. This expansion is valid for finite values
of time¢. The first correction () satisfies the first variational equation

F= JVZH(p)r—I-g(p). (6.3)
In particular, for the trajectorieg (r) andg*(r), expansion (6.2) yields
g () = pl(t) +er(t) + O(e?), (6.4a)

q (1) = ph(t) +er'(t) + O(e%) = p"(t) + er" (1) + O (£?), (6.4b)

since we can st (r) = p"(¢), and therefore renamé (1) = r”(¢). The distance
between the unperturbed trajectorpgsr) and p” (1) is of order” (e + &%).

The validity of the Taylor expansions (6.4a) and (6.4b), and Lemma 1 show that
the signed distance between the points at which the nowitel (1)) pierces the
manifolds %~ andW"(.#2,) is equal to
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(q'®) — ¢ @), n(p" 1))
ln(p" @)

whereg can be taken as small as we please, providedgtiat stays away from

any folds of the manifold#’ (see Figure 6.1). Using expansions (6.4a) and (6.4b),

we obtain the formula

(' —p" O, n@"®) 'O —r"0), n(p" @)

[ (ph ()] [ (p" ()] (6.5)

+ (% 4 £)>7F).

d" (p"(1) = + O +£)%7P),

d"(ph@) =

n(p"(0)

q'(0)

Fig. 6.1. The signed distance between the points at which the naripélkr)) pierces the
manifold % andW"(.#4). is equal to the component of the distance between the points
q'(t) andg*(¢) along the normak(p" (1)), plus higher order terms, away from folds of
the manifold% .

We now show

Proposition 6.1. The signed distanc#* (p”" (1)) between the points at which the
normaln(p” (1)) pierces the manifold&s and W (_#4,) is equal to

(¢'(0) — ¢“(0), n(p" (0)))
n(ph ()

whereg can be taken as small as desired.

+ O + )% P, (6.6)

d™(p"(1)) =
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Proof. The firsttermin formula (6.5) can be evaluated as follows FBgt (1), 1) =
F(I); then
n(p" (1)) = V[H(p" () = FU(p"1))]. (6.7)

Then
(p'@0) = p" @), n(p" @)
= (p'() — p" ), VIH(p" (1) — FU(p" )]
=[HP'®) = FUP' o) = [HE"©) — FU(p" )]
+p' 0 - p" I
=[H(p' 1) — FU(p' ON] = [H(p"®) = FU(p" O] + O (e + £)?).

SinceH(p(t)) — F(I(p(t))) is a conserved quantity for system (2.4), we must
have

[H(p' 1) — FU(p' O] = [H (") = FU(p" (1)))]
=[H(p'(0) — FU(p' O] - [H(p" () — FU(p"(O)))].
Therefore,
(') — p" (), n(p" (1))
=[H(p'(0) — FU(p' O] — [H(p" () — FU (p" O] + O (e + £)?)
= (p'(0) — p"(0), n(p"(0))) + O (e + £)?). (6.8)

To estimate the second term in formula (6.5), we set up a differential equation
for the expression

A@) = A1) — A" @) = (' (1), n(p" (1)) — (P (1), n(p" (1)) (6.9)
This differential equation consists of two parts:
Al = (7 @), n(p" () + (' @), 1(p" (1)),
Aty = (7 (1), n(p" ) + (" ), 2 (p" (1))
From equation (6.7) we obtain
a(p" (1)) = V[H(p" (1)) — FU (p" )] p" (1)
= V2[H(p" (1)) — FU(P"ONIVH(p"(1)).

Together with equation (6.3), this implies that
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Al(ty = (JVZH(p' ) (1) + g(p' (1)), n(p" (1))
+(r' @), VA[H (p" (1) — FU(P" ONIVH(p" (1))
= (JVZH(p'O)r' (t) + g(p' (1)), VIH (p" (1)) — FU (p" ))])
+(r' ), VA[H (p" (1) — FU(P" NI VH(p" (1))
= (g(p' (), n(p"(0))) — (' (1), VZH (p' ) IV[H (p" (1)) — F(I (p"(1)))])

+(rl (1), VH(p" (1)) — FU(p" )N VH(p" (1)), (6.10a)

Aty = (JVPH(p" ()r" (1) + g(p" (1)), n(p" (1))
+(r" (1), VA[H (p" (1)) — FU (p" ON]IVH (p" (1))
= (JVZH(p"(t)r" (1) + g(p" 1)), VIH (p" (1) — FU (p" )]
+(r" (1), VA[H (p" (1)) — FU (p" ON]IVH (p" (1))
= (g(p" ). n(p" 1)) — (P (1), VPH(p" () IV[H (p" (1)) — F(I (p"(1)))])
+(r" (1), VA[H (p" (1)) — FU (p" ONIIVH (p" (1))
= (g(p" ), n(p" 1))

(1), VEH (p" () IVF (L (p" (1)) — VZF(I (p"(1)))JVH (p" (1))).
(6.10b)

However, in the last term of equation (6.10b), we have
VZH(p" (1)) JVFI(p" (1) — VPFU (p" 1)) IVH(p" (1)) =0  (6.11)
because
VZH(p"(1))JVFI(p" (1)) — VPF(I (p"(0)))IVH (p" 1))
= V(VH(p" (). IVF (I (p" (1))

v [dF(I(phm))

h h
T (VH(p" (1)), JVI(p (ﬂ))],

and the expressiofV H (p" (1)), JVI(p"(1))) vanishes identically since only the
first three components of the vectiH (p” (1)) are nonzero, and VI (p" (1)) =
(0,0,0,1). Therefore, equation (6.10b) simplifies to

Aty = (g(p" (1)), n(p" (1))). (6.12)
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Furthermore, using equation (6.11), we can collect the terms in equation (6.10a)
to become

Al(t) = (g(p' (1)), n(p" (1))
+(rl(t), VZ[H(p" (1)) — H(p' t)))IVIH (p" (1)) — FU(p" (1))])

= (g(p' 1)), n(p" (1) + (r' (1), VIH(p" (1)) — H(p' t)]In(p"(1))).
(6.13)

By using equations (6.12) and (6.13), the differential equation for the expression
(6.9) becomes

Aw) = ([g(p' (1) — g(p" )] + IVAH(p' 1)) — H(p " ()]r (1), n(p" (1)),
which implies that

t
A1) = AO) + /0 ([g(p' () — g(p"(5))]

+IV2[H(p' () — H(p" ()] (5), n(p" (5))) ds.
The integrand on the right-hand side of this equation is of the ofdef* + ¢),
therefore we obtain the estimate
At) = AQ) + O (g% + ¢). (6.14)
Combining equation (6.8), the definition (6.9) and equation (6.14) with equation
(6.5), we finally obtain the estimate (6.6). O

For future purposes, it will be more convenient to estimate the distance between
the manifoldsZ and W*(.#%,) at a pointp” (1), defined as the point oW (.#2)
at which the normal taV (_#4) passing througl’ (r) intersectsV (_#%) itself. For
this we need a little corollary to Proposition 6.1 to modify the result (6.6).

Proposition 6.2. The signed distana#* (3" (1)) between the points at which the
normaln(p" (1)) pierces the manifold& and W(_#2,) is equal to

{g'(0) — ¢"(0), n(p"(0)))
(Pt ()]l
wherep can be taken as small as desired.

b (ph (1) = + O(e% + £)%7P), (6.15)
Proof. This follows simply by the triangle inequality
18" @) — p" DIl = 15" () — ' (1) +4' 1) — p" )|
<1p"®) —q' Ol + llg' @) — p" @)
S O@EY +¢),

where Gronwall-type estimates are used in the last inequality. This implies that
n(p" (1)) = n(p"@t)) + O'(c* + &), which together with equation (6.6) yields
equation (6.15). O
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7. Distance Estimates Near the Hyperbolic Annulus

In this section, we examine how the distance between the maniféidand
W*(#¢,) transforms into the distance betweéh and W (.#2,) as.# flies by
the annulus ZZ.. (We recall here that the manifol@ is defined as the winding
piece of the unstable manifolt*(.#Z.).) The result is given by

Proposition 7.1. In the perturbed probleni2.1), let some trajectory’ () enter
the neighborhood/s(.#Z.) a distancecs® away from the local stable manifold
Wi .(#¢) of the annulus 7, at the timer = 0, and let this trajectory leave
the neighborhoodUs (.#4,) at the timer = T. Letn,(0) be the normal to the
unperturbed local stable manifol?{ .(.#2) that passes through the poigt(0),
and let this normal intersect the local stable maniféig] (. #Z; ) in the pointg* (0).
Also, letn, (T) be the normal to the unperturbed local unstable manifgjl. (. 72)
that passes through the poigft(7'), and let this normal intersect the local unstable
manifoldW,g.(.#;) in the pointg" (7). Then

(n40.4'© — 4" @)
l u [ .200—De¢ 1 14 1 2
:<nq(T),q (T)— ¢ (T)>+ﬁ ¢ log =+ (log=) ). (7.1)

<z Us(- 72¢)

a5(T)

Fig. 7.1. The definition of the exit poingg (T) andg“(T). The unperturbed stable and
unstable manifolds are represented by dashed lines.

Figure 7.1 gives a sketch of the geometry to which this proposition applies. The
proof of Proposition (7.1) is given below in two steps, the first step of which is

Proposition 7.2. In the unperturbed probler2.4), let some trajectory’ (1) en-
ter some small neighborhood of the annulu& at the timer = 0, and leave
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Woel #2)
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pY(m I Wouc(//z)

A, 4’ — Woel#4)

Fig. 7.2. An illustration of Propositions 7.2 and 7.3.

this neighborhood at the time = T. Letn,(0) = n(p*(0)) be the normal to
the local stable manifoldvj; .(.#2) that passes through the poipt (0), and let
ny(T) = n(p"(T)) be the normal to the local unstable manifdl, .(.72) that

passes through the poipt (7). Then
(np(0), p'(0) — p* () + @ (Ip'(0) — p*(0)]?)
= (n,(T), p'(T) — p"(D)) + @ (I1p(T) — p"(D)I|?).

Proof. The proof of this proposition is almost identical to the first part of the
proof of Proposition 6.1, except that the value of the functidéx, 1) — F(I),
whereF (1) = H(X (I), I), must be the same on the stable and unstable manifolds
WS(At) andW" (_#) (see Figure 7.2). O

(7.2)

The second step and main technical result used in proving Proposition 7.1 is
contained in

Proposition 7.3. In the perturbed problem (2.1), let some trajectqtyr) enter
the neighborhood/;s (_#Z.) at a distancece* away from the local stable manifold
Wi o(-#¢¢) of the annulus 7. at the timer = 0O, and let this trajectory leave
the neighborhoodJs(.74,) at the timer = T. Letn,(0) be the normal to the
unperturbed local stable manifold;; .(.#2) that passes through the poigt(0),
and let this normal intersect the local stable manifdiif .(.#;) in the point
¢°(0). Also, letny (T) be the normal to the unperturbed local unstable manifold
Wo.(-7¢) that passes through the poifi(T), and let this normal intersect the local
unstable manifoldW ] (.7Z;) at the pointq“(T). Let p(t) be an unperturbed
trajectory whose initial pointp’(0) has the(a, b, I, ¥) coordinates identical to
the (ac, be, I, ¥) coordinates of the poing’(0), that is, (ce®, 8, I1(0), ¥ (0)).
Letn,(0) = n(p*(0)) be the normal to the unperturbed local stable manifold
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Wi .(-#¢) that passes through the poipt (0). Let ny(T) = n(p"(T)) be the
normal to the unperturbed local unstable manifoif .(.#2) that passes through
the pointp! (7). Then

(ng(0).4'0) - ¢°(0))
2 (7.3a)
= (1900 $'© = @)+ (2P log ; + e (log ) ).

(ng(T). ¢'(T) — q*(T))
‘ 1 1\2y (7.3b)
= <np(T), pl(T) — p”(T)) + 07'<82“_D8 log - + glte <|Og E) >
Proof. From equations (4.1) we compute that
Cll(T) — al (O)ek(cée"‘,lg(O))T’ bl(T) — bl (O)ef)»(cée“,lg(O))T.

Sincei(cse®, I.(0)) = A(0, I.(0)) + @' (%), we conclude from inequalities (4.5)
and (4.6a) that

1 1 ol a—Deg 1 1 2
a,(T)y=a'(T) |1+ 0O |¢ Iogg +¢|log - . (7.4a)

Likewise, we conclude from inequalities (4.5) and (4.6b) that

2
bL(T) = b(T) {1 +0 (8“_D8 |og;-L +e <Iog ;) )] ) (7.4b)

By inequality (4.7), we have

1
[e(T) = I(D)| = |I(T) — I,(0)| = @ (8'09 g) ; (7.5)

a—Deg 1 1 2
Ve(T) =Y (T) = | & log St <Iog g) . (7.6)

Since the difference between tag, b,, I., ¥.) and(a, b, I, y) coordinates is
(&), we have the estimate

! ! | a—pey o 1 1\?
¢ (T =p T+ |¢ Iogg+s Iogg ,
and therefore
% a—De 1 1 2
ng(T)=np(T)+ O | e Iogg +¢ IOgE

in any of the three coordinate systems.
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Now, the vectorgy!(T) — ¢*(T) and p!(T') — p*(T) are proportional to the
normalsn, (T) andn,(T), respectively, so that all their components must be pro-
portional to 1. The easiest component to compute ishtkemponent, which is
just equal tab’ (T') for the vectorg' (T) — ¢*(T) and equal ta' (T') for the vec-
tor p'(T) — p*(T). By the estimate (7.4b), and sinb§T) = ce*, we have the
estimate

1 1\2
bL(T) =b(T)+ O (52“—’38 log = + ¢t (Iog -) ) .
&€ &

It is in order to establish this estimate that we need our stronger version of the
Fenichel normal form and the subsequent Proposition 4.2. This proposition, in turn,
implies the crucial estimate (7.4b). The usual Fenichel normal form is not refined
enough to provide this estimate, since then the expression in square brackets in
(7.4b) would be replaced by the teri?"S%  wheres is the size of the neighborhood

in which the Fenichel normal form is valid and the constant can be either positive
or negative.

In what follows, we let the lower case lettepsandg denote the positions of
unperturbed and perturbed trajectories in thel, 6) coordinates, and the upper
case letters? and Q the positions of these same trajectories in theb, I, )
and (a., b,, I, ¥.) coordinates, respectively. By the discussion in the previous
paragraph, we thus have

2
Q'(T) — Q“(T) = P/(T) — P“(T) + O <52“—D8 Iog:gL +elte <Iog %) ) :
(7.7)

and so
Q'(T) — Q“(T) = O (e%), PNT)— P*(T) = C(e%). (7.8)

Consider the functionV(a, b, I) = Ng(ag, be, I, ¥e) = H(x,I) — F(I),
whereF (I) = H(X (1), I). Then, by slight abuse of notation,

(VNe(@U), @11y = @“(D) + ¢ (1" T) - @“(T)I?)

= (mg(1).4'(1) = g"(D) +  (lg' 1) = g"D)I?).

since both expressions are the differentials of the same function in different coor-
dinate systems. By equation (7.8), we obtain

(VM@ (1), @'(T) = @"(T)) = (ng(T), 4'(T) = g"(D)) + £ (™). (7.9)

Now
u u a—De 1 1 2
VN(Q"(T) = VN(P'(T) + ¢ (7P log~ +& (log >

in any coordinate system, and because of equation (7.7) we obtain
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(VN:(@"(T)), @/(T) — @“(T))
= (VN(P(T)), P!(T) — P*(T) (7.10)

+ 0O <82"“D8 Iog% + glte (Iog %)2) .
By equation (7.8), we also have
<VN(P“(T)), PL(T) — P”(T)> - <n1,(T), PLT) — p“(T)> +O@E®). (7.10)

Combining equations (7.9)—(7.11) finally yields equation (7.3b).
The proof of equation (7.3a) is similar to the last part of this proof.o

8. Estimate of the Phase Change Along a Pulse

Recall the definition of the manifol&’ as the winding piece of the unstable
manifold W (_#¢,). As discussed in Section 6, away from a small neighborhood
Us(#) of the annulus #,, a perturbed orbit on the manifoléf” can be ap-
proximated by unperturbed orbits that lie on the homoclinic manit@lelZ7).

Each of these unperturbed orbits is parametrized by one of the solutions (2.6), i.e.,
x = x"@t, 1), 0 = 6"(t, I) + 6p, but they all have different values of the phase

o, in general. In this section, we compute how this phase changes between two
consecutive approximating unperturbed homoclinic orbits. This is straightforward
in the “slow” case when the frequene€y(X (1), I) of the underlying unperturbed
periodic orbit on the annulus# vanishes, but for the general “fast” case consid-
erable care is required for the estimate of the phase change. This estimate is the
result of Proposition 8.1.

In order to compute the phase change described in the previous paragraph, we
consider an orbiD! that lies on the manifold#. In particular, let us concentrate
on the segment of the orb?’ along itsj-th and(j + 1)-st excursions away from
the small neighborhootis(_#2,) of the annulus #Z,. Let the orbitO’! enter the
neighborhoodUs(.#,) through the poing’ from its j-th excursion away from
;. Let p* be the point such that the normalp?®) to the unperturbed homoclinic
manifold W (.#%) at the pointp® pierces the manifoldZ at the pointg’, see
Figure 8.1. Moreover, let® be the point where the norma({ p*) intersects the local
stable manifoldV,{ .(.#Z.) of the annulus 7. For the time being, we assume that
the pointsg® andg’ arec” (¢*) close, which we will justify in Section 9. From this
assumption it follows that the poings andg’ are (¢ +¢*)-close. Note that from
their definitions, the pointg® andgq’ are connected by the relation

(¢' —¢*,n(p*)) n(p*)
In(p$)I Iln(pH)I’

Let the unperturbed homoclinic orbit through the pgiitbe parametrized by
the unperturbed trajectory

9 =q + 8.1)

) = (xh(t, D, 16", 1)+ 9/'_1(8)) : (8.2)
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Fig. 8.1. The geometry of Proposition 8.1.

and let this trajectory pass through the pgimtat the timer = ¢, that is,
P =p (8.3)

Moreover, letg!(r) be the trajectory on the orb@’ that passes through the point
q' at the same time = 17, S0 thatql(ti) = ¢'. As in Section 6, Gronwall-type
estimates ensure that the trajectogég) and p” (1) remain (¢ + £%)-close to
each other during their whole flight away from the neighborhogdll the way
back to the boundary df/;.

The estimate (4.8) can be used to determine the phase increment of the trajectory
q' (1) during its flight through the neighborhodg. Upon exitingUs again, at the
pointg! and after a tim@ say, the normal to the unperturbed homoclinic manifold
W (.#2) that passes through the poijit defines a new poing” on W () (see
Figure 8.1), which ig” (¢ 4 ¢*)-close tog by the estimates of Section 7. The point
p" inturn defines a new unperturbed trajectory,

') = (¥ D). 1@, 0" 1) +6,(6) ).

for someg; (¢). Letr = —tZ be the time at which the new unperturbed trajectory
passes througp”, i.e.,
P (—12) = p". (8.4)

Once again, Gronwall-type estimates ensure that the trajeptary follows the
trajectoryg’ (t) on to its whole flight outside the neighborhadglalong its(j +1)-st
excursion. Sincel (s) — I| = /(e log(1/¢)) by formula (4.7), we then see that the
segment of the orbi©’ along this excursion can be approximated by the solution
(x"@t, 1), 1,6"t, 1) + 6;(¢)), and the relation betweef)(¢) and6;_1(¢) is all

we need to compute in order to select the new unperturbed trajegtery. The
explicit expression for the phase increméy) — 6;_1(¢) is provided by
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Proposition 8.1. The exit pointp" belongs to the orbi{x"(z, /(¢)), 6" (¢, I (¢))
+0;(¢)), where

1
0j(e) = Oj—1(e) + AO(I) + EQ(X(I)’ 1)log

i 1
+ @ (s“_Dg + ¢log —> ,
€

s(I) ‘

Tal — o5 1 (ns))
(q' — q*,n(p*)) (8.5)

¢(I) is a function that depends on the entries of the Jacoh)éﬂ(X(I), D),

20| A2(D (D) f-(I)

c) =
JI(A2(D)? + (1(1) = Ao(D)?][(A2(1))? + (-(D) + Ao(1))?]
(8.6)
with
Ao(I) = Dy Dy H(X (D). 1), Ar(I) = D2 H(X (). 1),
Aa(I) = DL H(X (D), ),
— i i (D)t h
folh = lim s DUDH G D, D]

(8.7)

T 1 o h
f-) —tﬂ@wme "D HX"(t, 1), D] .

Recall thatr(7) is the positive eigenvalue of the matrbDfH(X(I), I), and that
the phase differencaé (1) is given by formula (2.8).

A large part of the difficulty in proving this proposition stems from the fact that
we must work in two coordinate systems: the 7, 6) coordinates away from the
annulus 7, and the(a,, b, I, V) coordinates nearZ,. Thus, before the actual
proof of Proposition 8.1, we prove two results that address this issue. The firstis a
technical proposition:

Proposition 8.2. Let ¢° and p° be points on the manifold$V;{ .(.#2;) and
Wi (-72) respectively, such that the normal to the unperturbed local stable mani-
fold Wi .(.#2) at p® pierces the perturbed local stable manifdig (. 7Z;) at ¢°.
Then
(Vag(q );n(zp ) _ 1 O,
In(p*)ll A(D)b(p*)

Proof. First of all, we haveVa.(¢*) = Va(p®) + ' (¢). From the expression for
n(p®), viz., expression (3.3), and the fact th#tis a point on the unperturbed local
stable manifold¥;;.(.#2), i.e.,a(p*) = 0, we have
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n(p®) =V(H(p') — H(X(I),I))

= V(K (a(p*) b(p*), ) — K(0, 1))

= DapK (0, D[b(p*)Va(p®) + a(p*)Vb(p*)] (8.8)
+ DK (a(p*)b(p®), 1)VI — D;K(0,1)VI
= ADb(p*)Va(p®),

where we have used the shorthand notafiea 7 (p*). It follows that

SN 1 s
Va(p’) = —A(I)b(ps)n(p ), (8.9)
so that
(Vas(¢°),n(p®)) (Va(p®),n(p*)) 1
()2 ez O e TC@

asdesired. O

We remark that had we chosen a pajrit contained in the unperturbed local
unstable manifoldV,; .(.#2), then the above argumentwould have yieldep") =
A(Da(p")Vb(p").

Proposition 8.2 allows us to find an expression for the coordinatg) of
the pointg’ at which the orbitO! enters the neighborhodds (. #,). As defined
in the second paragraph of this section, let the nonaiaf) to the unperturbed
homoclinic manifoldW (.#%) that passes through the poirdtalso pass through the
point p* on W (.#2), and let this normal pierce the local stable manifigif). (. 7. )
of the annulus 7, at the poinig®. Recall that we have assumed the poyitand
¢° to be at most a distane@ (%) apart, and so the poinigg and p* are at most a
distance” (¢ + &%) apart. By using the result of Proposition 8.2, we obtain

Proposition 8.3. Thea, coordinate of the poing’ is given by the expression
"— ¢, n(p")

IN o s <q
as(q") = signb(p*) A5

+ @ <(8 + s“)z) .

Proof. At the pointg*, the coordinate. (¢*) vanishes. Therefore, since we assumed
that the pointg’ andg® are at most a distance (¢*) apart,

ac(q') = a:(q) — a:(q’) = (Vac(g*), ¢' — ¢°) + O (™).
Using equation (8.1) and Proposition 8.2, we obtain

(q' —q*.n(p*)
A()b(p*)

If we use|b(p®)| = 8, the conclusion follows. 0O

as(ql) = 4+ O ((8 + 8a)2> .

We are now in the position to give the
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Proof of Proposition 8.1.Recall the parametrization of the unperturbed homoclinic
orbit p” (1), given by equation (8.2), which approximategites +*) the trajectory
q'(t) during its j-th excursion away from the annulugz,. Recall also that the
timest{ and:?, introduced by formulas (8.3) and (8.4), are defined in terms of the
perturbed Fenichel coordinates by the equations

5 = lag(§")] = |a (ﬁh(—ti) YO+ ga))‘
= la(x"(—t£, D), D) + O (e + &%),
8 = |be(g)) =

= b (415, 1), D] + O'(e + &%)

be (p”(+ti) + O+ s“))’

These equations in turn define two tim&sandt? which are (s + ¢*)-close to
1§ andr® by

la(x"(—°, D), DI =86, |b&"(2, D), D] =86. (8.10)

At the timer = ¢, the angle component of the trajectg(r) is

&

.
0" (%) = 0;_1(e) + 2(X (), Dit + f ’ (26" .0 - 20!, D),
0
(8.11)

and similarly the angle component of the trajectptyr) at the timer = —¢% is

oM (—12) = 0;(e) — Q(X(f(s)), f(s))zi - /(: (Q(xh(t, i), i(e))

(8.12)
—Q (X(I(s)), I(s)))dt.

In order to use the estimate (4.8), we need to find the angle compgmﬁeﬁ
Yh(s) = ¢ (p" (%)) for the pointp” (5) in the Fenichel coordinates. Recall that
the Fenichel transformation for the angle component takes the form

V=0+%C(x,I)
for some function (x, I), given by equation (4.4), which satisfies the identity
X, I)=0 (8.13)

for all 7. By the condition (8.13), we have
o0 . .
Yl — 0" ) = —/ (w”o) - Gh(t)) dt.
r

Since the trajectory” (¢) lies on the local stable manifold; .(.72) for ¢ suffi-
ciently large, we have(p" (1), I) = 0 andy" = 22 (X (I), I). It follows that
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yh o) = — /oo <SZ(X(I), I —QG"e. D, 1)) dr. (8.14)
5

By combining this with equation (8.11), we find
Yl = 6j-1(e) + LX), DI5 + A6.(D),
where we have defined

+00
A9+(I)=/ (.Q(xh(t, I),I)—Q(X(I),I))dt. (8.15)
0

The result of the previous paragraph, estimate (4.8), and the qfa}i@e} =gq
show that at the time when the trajectaty(r) leaves the neighborhools again,
thatis, att = T + ¢, the phase angle @f (1) in the Fenichel coordinates is

Y+ XU, DT + O <e°‘D€ + ¢ log ;—L)
= 0j_1(e) + LX), DS+ T) + AL (1) + O (5“—08 + ¢log %) (8.16)

whereT is estimated by formula (4.5). Now, by the definjtion of the exit pint
this phase angle can also be approximated by the formilila- 6" (—¢¢) where
Yt =gh(—1%) = ¢ (p"(—1%)). By analogy with formula (8.14), we have

Y —oh(—1f) = f

—00

—t€

(Q(X(f(s)), 1)) — 2(x" @, I(e)), f(g))) dt, (8.17)

which combined with equation (8.12) and the approximatidte) — 1| =
'(glog(1l/e)) by (4.7) yields

U =0;(e) — X U), DIt — AO_(I) + (s log %) , (8.18)
where 0
AO_(I) = / (.Q(x”(s, 0. 1) — X, 1)) ds. (8.19)

Sinceq! (T + th) = &, the two phases (8.16) and (8.18) must be equal, so that

vt =y ), DT+ (s“DE + ¢ log 1) .
&

This equation, together with equations (8.16) and (8.18), finally gives the total phase
difference as

0(e) —0j-1() = AO) + (1) (15 +15 +T)+ (e“DE + ¢log %) , (8.20)

whereAd (1) = AO,(I) + AO_(I) is the same as that given by formula (2.8), and,
asusualp(l) = (X)), I).
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From the estimate (4.5) we easily compute that the fihaé flight through the
neighborhoodJ;s of the annulusZZ, equals

1

T=——|
A(l)

aa(ql)

1
og +0 (s“‘DS + ¢log —) ,
I

and Proposition 8.3 implies that

1 820(I) ‘ ( b 1)
T = lo + 0O P +¢log=).
%) g‘<ql—qs,n(pf)> 9%

The timest? and:? defined by equation (8.10), which approximateand:®
with an error of order? (e + %), can be expressed in terms of the sizef the
neighborhoodUs (.#2;). Thinking of$ as a function of® vias = |b(p” (12)), we
have

dé . .
5 = (Signb(p" 1)) b(p" 1) = =2, DIbE" (| = =313,
dt}

where we have used equation (4.2bygh" (:2)) = 0. Integrating yields

1 o Ci ()

9=
A s

whereC (1) is the constant of integration which is given by

C(D) = lim_ [b(p" (0)|e™"". (8.21)

An analogous argument fof yields

o_ 1,6

== A(D) 975

’

where
C_() = lim la(p"(1))|e ", (8.22)
——00

so that the total phase difference evaluates to

0j(e) — 0j-1(¢)

o) |MDCDC-(D)| (
50 O e | T

The expressions (8.21) and (8.22) for the functiong /) andC_ (1) still in-
volve the Fenichel coordinatésnda respectively, and s6, (1) andC_ (1) cannot
be computed explicitly without knowing the explicit form of the functiars, I)
andb(x, I). We therefore need to determine an expressio@_of/) andC_ (1)
which does not refer to the Fenichel coordinates. This can be done in terms of the
linearization of the vector field (2.4a) at= X (/), as follows. By the L'Hospital
rule,

1> (8.23)

e D¢ 4 ¢log =
&
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Co(1) = lim. 711) (Dyb(p" (1)), ID H(x"(t, 1), 1)>\ P

= i i h At
_zILrgo X0 (Dyb(X(I), 1), JD H(x"(t, I),I))‘e

I 1 h M)t
_tmomupxmx @, 1), Dle (8.24)

JD H" (1), 1)
x )(D"b(X(I)’ D, 15, mar 0.0l H

’

 JD HE"t, D), I
=S+l KD"I’(X(”’ n. I, ||DxH(S1(E, 1)), 1>)||>

where we have defined, as in equation (8.7),
— i 1 M)t h
fo(l) = t_llToo Yl I DxH(x"(z, I), Dl

Similarly we have (cf. equation (8.7))

_ H i h —X(I)t
)= lim o ‘(Dxa(X(I),I),JDxH(x @, I),I))‘e

t——00
. (8.25)
_ . JDHE"@, ), 1)
= /=D KD"Z’(X(”’ D A DG D, 1)||>‘ ’
with 1
i = At h
f~(h = 1lim XN I1DxH ", ), DIl
The unit vectors ,
er, =5 lim JxHCWD. 1) (8.26)

t—o0 | Dy H (x"(t, 1), |

span the tangent spaces of the unstable and stable manioidX (7)) and
WS (X (1)) of the equilibrium pointX(I), respectively. Sincé(x, 1) = 0 de-
fines the unstable manifol?“ (X (1)) in the neighborhoodUs(.#%), the vector
D b(X(I), I) is normal toW"(X (1)) atx = X(I), and so

_ o DiHGMe, DD
D.b(X(D), 1) =«kp ,_llrfoo D HGGC D DI (8.27)

for some proportionality constant,. Likewise, the vectoD,a(X (1), I) normal
toWs(X(I)) atx = X({) is

h
Dea(X(1). 1) = Ky lim DyHG(, D). D (8.28)

=00 | Dy H(x"(t, 1), D

for some other proportionality constant (see Figure 8.2 for a sketch of the ge-
ometry).
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A
a(X, | ): 0 J

=0
Dia(X(1).1)
A

EN WYX(1))

e

Dxb(X(1).1)

-~

Fig. 8.2. Sketch of the geometry of the vectors normal and tangent to the stable manifold
W#(X (1)) and unstable manifoltV“ (X (1)) at X (I).

The condition that the — (a, b) part of the Fenichel transformation be canon-
ical is easily seento bgD,a(X (1), I), JD:b(X(I), I))| = 1. Inserting expres-
sions (8.28) and (8.27) into this condition yields an equation for the congtants
andxy,

K D H(x"(=t, 1), 1) JD.H(x", 1),1)>‘

lkakp| lim ,
S0 \ D H(xh (=1, 1), )| " | DxHx (2, 1), D]

o0 (8.29)
= |K11Kb| |(Je+)w e—)»)' = |KaKb0| = 1a

where we have used the definitions (8.26) for the second equality and the definition
(3.4) of the signature for the last equality. Combining equations (8.24), (8.25)
with the expressions (8.27), (8.28) and the definitions (8.26) finally yields

C(1C—(I) = lakp| f1+-(D) f~(1) [T €45, e-3) 1
= f+(Df-(D) [(Jeqps, e = lo| f+-(I) f-(I),

(8.30)

where we have used condition (8.29) in the last equality.
Let us introduce the following notation for the entries of the Hessian of the
HamiltonianH (x, I) atx = X (1),

Ao(l) = Dy Dy, H(X(I), 1), A1(I) = DZ H(X(I), D),

Az(I) = D2 H(X(I), D),

so thati(l) = \/A%(I) — A1(I)A2(I). When A(I) + 0, a simple calculation
shows that the vectoes., are the eigenvectors of the HessiBD)%H(X(I), D),
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1 < Aa(D) )
€1y = )
\/(Az(l))z (A1) £ Ag(1))2 \ ~(AoD) =A(D))
Using this expression in (8.30) to compue = |(Jey;, e_,)| then gives

Co(He-_(I) =

20 (D]A2(DIf+ ) f-U) (8.31)

\/ [(420)” + (30) = 400) [ (420D + (10) + 201)) ]

WhenAo(I) = 0, a similar calculation shows that
20(1) f+ (1) f— (1)
VA% + (A1(D)?

which coincides with the limit of (8.31) wheAx (/) — 0, and hence we can take
(8.31) as the representative of the general case. Setting

Co(HC-(I) =

s() =rDC(DHC_I)

proves the proposition. O

9. Proof of the Main Result

In this section we finally tie the results of the previous sections into a proof of
Theorem 1. We will obtain this proof in three steps by following an ofBithat is
contained in the manifold”’, the piece of the unstable manifolid” (_#,) whose
properties we have discussed in the previous four sections. In the first of the three
steps, we compute the distance between any point on the®@ftsind the stable
manifold W9 (_#Z,) of the annulus#, in terms of thej-pulse Melnikov function,
provided that the orbi©’ does not lie on any of the folds of the manifald. The
second step is Proposition 9.2, which expresses the nonfolding condition of Lemma
1 in terms of the logarithmic derivative of thiepulse Melnikov function. The third
step is the actual proof of Theorem 1.

We remark that at every step the exponenive have used in all previous
estimates turns out to he= 1.

The first step is given by

Proposition 9.1. Let 0! be an orbit on the manifold and let no part of this orbit
lie on a fold of the manifoldZ. Letg; be any point on thg-th pulse of the orbit
0!, and letp; be the point on the unperturbed homoclinic manifdld.#2) such

that the normak(p;) to W(_#2) at the pointp; passes through the poigj. Then
the signed distanc#-* (pj) between the point; and the manifoldV* (.#,) along

the normalr(p;) equals

M L2010 4 o (e20), 9.1)

dl,s ) —
P == ol
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whereg can be taken arbitrarily small by decreasingHere thej-pulse Melnikov
functionM; (e, I, 6o, 11) is defined recursively as

j—1
Mj(e, 1,00, 1) = Y M, 00 +iA0 +.7(e, 1, 60, 1), 1),
i=0
with .
X, 1) ¢
(XD, )Z'O
(1)

s()

Te, 1,00, n) = eM.(e. 1. 00 )|’
q 0, 1) eM, (e, 1,60, 1)

r=1

and.%(e, 1, 0o, 1) = 0. The functions (1) is defined in terms of the entries of the
HessianJ D2H (X (I), I) by equation(8.6).

Proof. The first excursion or pulse of the ortg¥ away from the annulus#, can
be approximated to orde? (¢) by the solution

Pl = 2() = (xh(t, D, 16"t 1) + 90) .

Let g1 be any point on this pulse, and lpt be the” (¢)-close point on the unper-
turbed homoclinic manifoldV (_#2) such that the normal(p1) to W (.#%) at the
point p1 passes through the poigt. The standard Melnikov method shows that
the signed distance along the normap) between the poing; and the stable
manifold W* (_#2,) equals

M(I, 6o, 1)

O (£2). 9.2
o ) ®-2)

d"(p1) =e¢
Let us now consider the second pulse of the oé¥it Lemma 1 and Proposi-
tions 7.1 and 6.2 withk = 1 show that after its exiting the neighborhoggl. 7. ),
the distance between the orisit and the unstable manifold (. #2) at any point
g2 along the second pulse of’ equals

2
dl,u(pz) — 8% + (82/3 4 82 (Iog%) ) , (93)

where the poinp; is related to the poingz in the same way ag; is related tags,
andg can be taken as small as we please when we dectease

From equation (9.3) and estimate (4.7) in Proposition 4.2, it follows that the
second pulse of the orbi?’ is approximated t@” (¢) by the solution

P = (x"t, e, 1,60, W), 1a(e, 1, 6o, o),

0" (1, 1a(e, 1,60, ) + Ou(e. .60, ) ).

where|l1(e, I, 6p, u) — I| = CO'(elog(1/e)), and the new phasa (e, I, 6o, 1) is
given by formula (8.5)91(¢, I, 6o, i) = H1(¢), with ¢’ = g1 andp® = p1, so that
n(p*) = n(p1). We thus conclude that the signed distance between the manifolds
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Wit (#6:) andW* (.7.) along the normak(p>) to the unperturbed homoclinic
manifold W (_#2) at the pointp, equals

4h (pg) = e ML O1E L b0 ). 1) <82 log 1) . (9.4)
Ir(p2)| P

From equations (9.3) and (9.4), it thus follows that the signed distance between
the pointg, on the orbitO! and the manifoldW*(_#%,) along the normak(p>)
equals

M(I, 6o, M(I, 61(¢, 1, 60, ), o, 1\?
5 (pg) = ¢ MU 00 1) + MU, 0268, 1 00,10, 10) (82 B g2 (Iog—) )
£

n(p2)|

(9.5)

Now, from equation (9.2) it follows that if; is the point where the normal(p1)
intersects the local stable manifdig .(. 7. ), we must have

(q1— g3, n(pD) = d"* (pDlln(p)|| = eM (I, bo, ) + O (7).

Therefore, equation (8.5), wigl = ¢1, p* = p1, andg® = q;, implies that the
phased1 (1, 6o, 1, €) is given by the expression

7 [ 1-8 1
01(1, 0o, 1, ) = 0o + AO(I) + . Ale, 1,00, 1) + O | & +slog; ;

where
'%(85 I’ 907 l’(’) =

20D ( c(I) )
A Y YA

We conclude that the distangé® (p») is given by the quantity

Mo(e, I, 6o, ‘ 1\?

Here the 2-pulse Melnikov functioM>(s, I, 6p, 1) is defined as
Ma(e, I, 60, u) = M(I, 00, u) + M(I, 60 + A + .Z(e, 1, 00, 1), 1b).

We can get rid of the term?”’ (82 (Iog(l/e))z) in equation (9.6) by decreasing
while keepingg fixed.

We proceed by using finite induction along the subsequent pulses of the orbit
O'. Let g;_1 be a point along théj — 1)-st pulse of the orbi0!, with j > 1,
and assume that its distance from the stable manifid_22.) is given by an
expression analogous to equation (9.5),

Mj-1e.1.60.11) | (82—(/'—2»6)

d"(pj-1) =¢
! In(p;—D)ll

where the poinp;_1 on the unperturbed homoclinic manifdid(.#2) is such that
the normalk(p;) to W(_#4) passes through the poigt_;.
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For the j-th pulse, we use = 1 — (j — 2)8 in Lemma 1, to ensure that the
tangent space of the winding manifold exits the neighborhood’s (.72, ) at least
as close as ordef (¢1~~D#) to the tangent space of the local unstable manifold
Wii.(-72:). We then refine the estimate of the distance between the@ttiit &~
and the local unstable manifoldt, .(.#Z.) by using Proposition 7.1 withr = 1,
to ensure that when exiting the neighborhobgl(_#.) the leading order of this
distance is again”'(¢). Using Proposition 6.2 witlk = 1 again shows that the
distance between the orlait' and the unstable manifold(..Z,) at any poinig;
along thej-th pulse of0! equals

M'— ) Ia 9 ’ j 1 ?
dl,u(pj) — EM + 1< 827(171);3 —+ 82 |Og — s
In(pj)ll &

where the poinp; is again related to the poig} by the fact that the normal(p;)
to W(.#¢) at p; passes through the poigf, andg can be taken as small as we
please when we decreaselust as forj = 2, we then compute that the signed
distance’* (pj) between the point; and the manifoldV*(.#4,) along the normal
n(p;) is equal to
gMj—l(S» 1,60, ) +M(I,0;_1(¢, 1,60, ), 1)

ln(p))

2
Lo (82—0—1)5 L2 (|og }> )
&

2
_Mie L0 | o (oo g2 <Iog }> ,
()l €

d"(p) =

whereg can again be taken arbitrarily small, and the phase ahgles, I, 6o, 1)
can be computed recursively by using formula (8.5) and the disw(n‘c{gwj,l).
Renamingj —1)8 = g and reducing so that we getrid of the (¢2 (log(1/¢))?)
term concludes the proof. 0O

Before we finally prove our main result, Theorem 1, we need to rephrase the
nonfolding condition (5.29) in terms of the origin@l, 7, 6) coordinates, in partic-
ular, in terms of the derivatives of thyepulse Melnikov functionsV; (e, 1, 6o, ).

This is expressed by

Proposition 9.2. Let the manifold”#” be approaching the local stable manifold
Wit (-#¢) for the k-th time,k > 0, and let the trajectory’ (1) on 4 enter the
neighborhoodUs (. #4,) at the poing’. Then, ay’, the nonfolding conditio(6.29)

is equivalent to the inequality

XU), 1)
)
L 2XM). D
Al

Dg,ylog|M1M> - - - M|(e, I, 6o, 1)

> B, (9.7)
Dyylog|M1M> - - - Mi—1l(e, I, 6o, 1)
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holding for some constarm® > 0 independent of and all ¢ sufficiently small.
Whenk = 1, the denominator of the left-hand side of the inequdbty)is taken
to bel.

We remark that for the case of only one an@leand a homoclinic orbit for
the unperturbed-system, it is possible to obtain a simplified condition by using
the fact that the Melnikov function is periodic @iy, as in the third remark made
after Theorem 1. In particular, the inequality (9.7) can be replaced by the simpler
inequalities

LX), I

) Do109IMLM2 - Mi-al(e. .60, 1) + 1, (9-8)
(X)), 1

where we assume th&x(X (1), I) £ 0.

Proof of Proposition 9.2. After the k-th pulse, Proposition 9.1 shows that the
manifold.# returns to the neighborhooll; (.77, ) at a distance” (¢) close to the
local stable manifoldV;; (. 7Z.) at the pointg!, whoseq,, b,, I,, ¥, coordinates
are(As(Ig, ¥e, ¢), 8, I, ¥e). Furthermore, a repeated use of Lemma 1 shows that
the corresponding tangent spacesd@rel—#)-close for any smalp > 0, just as
long as we take small enough, and the orhjt () that passes through the point
¢’ does not lie on a fold of the manifolé’. As the orbitg! (¢) flies through the
neighborhoodJs (.72 ), the conclusion of Lemma 1 holds if the inequality (5.29),
ie.
)DtpgAe(lsv Ve, €)

|Ae(Ig, Ve, &)

holds for some constar® > 0 independent of. Herei (0, I,) = A(l;) is the
positive eigenvalue of the matrikDfH(X(I,s), I,), andw(l;) = 2(X 1), I,).

In order to prove Proposition 9.2, we need to express all the quantities in in-
equality (5.29) in terms of the argumeritandég of thek-pulse Melnikov function
My (e, 1, 6p, 0). This is easy fon.(0, I,) andw(l;) = 2(X (1), I.), because they
do not depend on the angle.. Also, for the pointg’, the Fenichel coordinatg,
introduced in Proposition 4.1, §'(¢)-close to itsl-coordinate, and furthermore,
I, is @(elog(1/e))-close to the argument of the k-pulse Melnikov function
My (e, 1, 6p, 1) by the inequality (4.7). Computing the logarithmic derivative of the
function A, (I, ¥, &) with respect toy, is therefore the main task of this proof.

First, by Proposition 8.3 and the inequality (4.7), we find that

A0, 1) — (1

] I _ s7 n(p® ) 1
Aclle, Ve, 0) = aslgh) = signb(p) TP 4 o (21097 )
()8 €
wherel is now the argument of thepulse Melnikov functionMy (e, I, 6g, ). We
recall here thap* andg® are the points where the normalp*) to the unperturbed
homoclinic manifoldW (.#%) that passes through the poiitintersectsw (_#4)
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and the local stable manifold/,; .(.#2), respectively. Furthermore, Proposition 9.1
implies that

(@' — ¢°, n(p*)) = eMy(e, 1,60, p) + O (27P),

and so

. My (e, 1, O, _ _ 1
Ao, Yo £) = signb(pt) EMKE L0 1) o 2p 21001
A(1)8 &
where the neglected terms must vary smoothly with all of their arguments including
¢ by the results of Sections 4 and 5. Sieg, I = ' (¢log(1/¢)), we must have

Dl//g Iog|AF(I€’ 1//‘85 8)' = D@O |Og|Mk(8, I’ 007 M)' Dilléeo

9.10

+O (82_2;3 +¢%Plog ;—L> , 010
where the additiong$ appears in the exponent of the remainder estimate because
the differentiation ony,. involves the tangent space of the manif&dat the point
¢', at which the manifoldZ reenters the neighborho@t (. 7, ) for thek-th time,
and there this tangent space is orfly(e1~#)-close to the corresponding tangent
space of local unstable manifolél.(.#Z.). Equation (9.10) shows that in order
to complete this proof, we must now compute the derivaiiyeoo.

This can be done as follows. From the proof of Proposition 4.1, we see that

Ve = 0(g) + C(x(g), 1(g)) + Oe),

for some function’s (x, I'), whose exact form is unimportant here. Helped by
repeated applications of Propositions 8.1 and 9.1, we configgte as

0(g") = 6o+ (k — DAO) + F1(e, I, 60, 1) + 6" (:2(1), I)
o ( 1-8 1
+0O | ¢ +elog- ),
&

where the time? (1) is defined bylb(x" (12 (1), I), I)| = & (see equation (8.10) at
the beginning of the proof of Proposition 8.1), ahds the value of the argument
of the k-pulse Melnikov functionMy (e, 1, 6p, ). Thus, the angleg, and6p are
connected by the relation

Ve = 60+ (k — DAO) + Fi-1(e, 1, 60, 1) + 0" ¢2(1), 1)

1 (9.11)
+2(x(¢), 1@+ (elﬁ + ¢log g) ,

where the neglected terms again vary smoothly with both angleandép, as
well as withe, by the results of Sections 4 and 5. Siriﬁggx(ql) = (?(¢) and
D,,,El(q’) = (?(¢) by the construction of théqa,, b,, I, ¥) coordinates in the
proof of Proposition 4.1, we obtain by implicit differentiation in the equation (9.11)
that
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1 1
Dy, 0o = + <81_2’3 +ePlog —) .
(1+ Doy Zi-1(e. 1, 60, 11)) €

Directly from the definition (3.6) of the angl&; (e, I, 6p, 1), we can compute its
derivative with respect téo:

pu ()
DoyTi-1(e, 1,00, n) = D ——Dg,log|M1M> . .. My _1l(e, I, 6o, 1),
and therefore we finally find
Dy 60 = !
T e

1— ——=Dg,log|M1M> ... Mi_1l(e, I, 00, )

A(I) (9.12)
+ <81_2’3 + P log }) .
&

We now combine equation (9.12), equation (9.10), and a calculation of the
derivativeDg, My (¢, I, 0, ) directly from the definition by formula (3.5), to obtain

Dl//eAE(IéEa Wa, 8)
|Ae (e, Ve, €)]

o)
A
o)
A(I)

Ale) — (1)

——Dg,log|M1M> ... Mi|(e, I, 6o, 1)
— ()

——Dy,log|M1M> ... Mi_1|(e, I, 60, 1)

1
+C (81—2;3 + ¢ P log —) ,
&

where the numbes > 0 can be taken as small as we please if we keep decreasing
¢. This proves Proposition 9.2. 0O

Finally, we are ready to carry out the

Proof of Theorem 1. Consider again an orbi®’ on the manifold%. For j =

., k—1, we show recursively using Proposition 9.1 that if the second condition
of Theorem 1 is met, then, after completing th¢h pulse, the orbiD! exits the
neighborhood/s (.#2,) of the annulus ZZ, along the correct branch of the local
unstable manifoldV,] .(.7Z), so thatitg j +1)-st pulse can again follow an orbit on
the unperturbed homoclinic manifoldf (_#2). Furthermore, we show recursively
at the same time by using Proposition 9.2 and Lemma 1 that if the nonfolding
condition of Theorem 1 is met, then the orbit does not lie on any of the folds of
the manifold#’. Combined with Proposition 9.1, this shows that the ofithas
at leastk pulses that follow the unperturbed homoclinic manifé#d. #2) along
excursions away from the annulugz,, and that the distanc#* (py) from any
pointg; along thek-th pulse of the orbi! to the stable manifoldV* (_#4,) of the
annulus #z; is given by formula (9.1) witly = k. In this formula, as alwaygy
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is the point on the unperturbed homoclinic maniféid.#2) such that the normal
n(py) to W(_#¢) atthe pointp, passes through the poipt. By continuity, the same
statements are also true for all nearby orbits on the manif6|dvhich correspond
to values of the variablesandéy close to those that correspond to the orit
Now, let us fix! = I, u = j1, and divide the distana#* (p;) by ¢, so that

d"(p) My, 1,60, 1)

— + O, (9.13)
e In(pol

By the first condition of our main theorem (Theorem 1), there exists a ég(ee
such that

My (e, I, 60(e), 1) = 0.

By the third condition of the same theorem, the graph ofitfpmilse Melnikov
function My (e, I, 6o, i1) as a function obg intersects th&p-axis transversely at
6o(¢). Because the graph of the left-hand side of (9.13) is, together with the respec-
tive tangent spaces; (¢1~#)-close to the graph ol (s, I, 6o, it)/||n(px) || by the
results of Sections 4 and 5, the distanéé(p;) vanishes on a nearby curfg(c)

which is?'(¢1-#)-close todg(e).

Now for ¢ considered as fixed, a straightforward application of the Implicit
Function Theorem ensures the existence of the fundtigs, 7, 1) in a neigh-
borhood of/ = 7 andp = f such thatMy(e, I, 6o(e, I, ), ) = 0. This,
in turn, implies the existence of the two-dimensional surfag&do) which is
© (e1=#)-close to the surfaces spanned by the union of unperturbed homoclinic
orbits 7! (t) = (x"(t, 1), 1,6"(t, I) + 6p) determined by the sequence of phase
angleso = fo(e, I, ) + jAOI) + T (e, I,00(e, I, p), ) for j = 0,1,...,
k—1. o

Notice a curious fact about this proof. Since the angle incremgiits I, 6o, 1)
grow like @' (2(X (1), I log(1/¢)) whene decreases, thiepulse Melnikov func-
tion My(s, I, 0o, u) does not have a limit as — 0 unless2(X(),I) = 0.
Nevertheless, the-pulse intersection orbit between the manifoldd§(. #2.) and
WH(_#¢,), which is determined by a simple zeradgof this function, is better and
better approximated by the corresponding segments of the unperturbed homoclinic
orbits ase becomes smaller and smaller.

10. Extensions

In this section, we present some simple but important extensions of Theorem 1.
The first extension concerns substituting heteroclinic orbits for homoclinic orbits
in Assumption 2. This extension also covers the case when the unperturbed annulus
¢ is connected to itself by a pair of homoclinic manifolds. The second extension
is to higher dimensional and6.

First, we consider the extension to heteroclinic manifolds connecting several
normally hyperbolic annuli. In this case, we replace Assumption 2 by
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Assumption 3. For everyl with I1 < I < I», and some integét, equation(2.4a)
possesseis+- 1 hyperbolic equilibriax = X;(I), j =0, ..., k, which vary contin-
uously with/. The unstable and stable manifold®;*(X; (7)) and W*(X;1(1)),

intersectalong a heteroclinic orbi; (1), connecting the equilibrium at= X; (1)

to the equilibrium atc = X;1(/),for j =0, ... k.

In the full four-dimensionalx, I, #)-phase space of the system (2.4), the equi-
libria x = X;(I) correspond to annuliZ; filled with periodic orbitsojl, which
are parametrized by the solutions

x=X;(I), I=1 6=X;(I),Dt+6=wj)i+6.  (10.1)

The heteroclinic orbit$¥; (1) correspond to three-dimensional heteroclinic mani-
folds W;, parametrized by, I, andfg in the solutions

x=xl. 1), (10.2a)

=1, (10.2b)
t

0 =0/t 1)+ 6 = / Q(x] (s, 1), Dds + o. (10.2¢)
) o

The heteroclinic manifold#; can be represented implicitly by the equations
H(x,)—-HX; 1(I),)=H(x,I)—-H(X;(),I)=0. (10.3)

Notice that the two expressions in this formula are the same because, by continuity,
all the expression#/ (X;(I), I), with j = 0O, ..., k, must be equal. The case of
one or more homoclinic or heteroclinic cycles is easily included in this notation
by letting some of the equilibria coincide, i.e., by lettikg(/) = X; (/) for some
i%j.

We define the Melnikov functions? ) (1, 6p, i), with j = 0, ...,k in the
usual way by

o0

MY, 6o, p) = / (n A ). 8" 0. 0. 0)dr,  (104)

—00

where
M) = (@, 1), 1,0] (1, 1) + 60),
(1)
= (DxH(x,’?(r, D, D), DiH G} @, 1), ) = DrH(Xj-1(I), 1), 0) (10.5)
= (DxH(x]}-l(t, D, 1), DrH (] (t, 1), 1) — DrH(X;(I), D), 0) :

By analogy with (3.4), we define the signaturgsof the normalsn to the
unperturbed heteroclinic manifoldg; by
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|' (n @), Ay =)
= 1im
t=4o0 [[DyH (x (1, 1), DI 1Dy H(x] 4 (=1, D), D

oj
(10.6)
(DeH @D, D, IDH 3 (1D, D)

= lim ,
t=+00 |[Dy H(x) (1, 1), DI Dy H (] (=1, D), D]

so thalo; is positive if the normak to W; points in the direction of the unperturbed
flow on the heteroclinic manifold¥; 1 (1) at a point(X;(I), I, 6) in the annulus
A; .

The main difference introduced by the heteroclinic case in the form of the
k-pulse Melnikov functionVy (e, I, 6p, ) lies in the phase jump&é, which now
depend on the heteroclinic orbit along which they are computed. Specifically, we
define thek-pulse Melnikov function as

k—1 J
Mi(e, 1,60, 1) = Y MY (1, bo+ Y A6 + (&, 1, 60, ), u) . (10.7)
j=0 i=1

where

+00
26, = [ (@I, - 2061, D) ar
0

. (10.8)
+ [ (ewto.n-ewm.n)a,
—0Q
and the sum of the phase jumps is abseljt# 0. Here
J

— wr (1) sr(I)

VACN = 10.

75 1, B, 1) ; (D) | eMy(e. 1,60, )| (10:9)

e, 1,00, 1) =0,0,(I) = 2(X,(I), I), and the functionsg, (1) are defined in
the same way as equation (8.6) at each equilibrium pojrf ).
Theorem 1 now becomes

Theorem 2. For some integek, some constan8 > 0 independent of, some
I = I, somep = @, and all sufficiently smald < ¢ let there exist a function
0o = 6p(e) such that the following conditions are satisfied:

1. Thek-pulse Melnikov function has asimple zeréinthatis, My (¢, 1, Op(e), it) =
0, and|Dgy My (e, I, Oo(e), 1)| > B.

2. Mi(e,1,00(e), 1) = Oforalli = 1,...,k—1, k > 1, and is positive if
the signatures; for the unperturbed heteroclinic manifold; is positive, and
negative ifo; is negative.
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3.Foralli=1,...,k—1,k>1,

i 2 d.D
1—2(DDglog[ T1M;1 57 (e, 1, bo(e), 1)
j=1
! _ > B, (10.10)
i—-1 -Q(Xj({),l) o
1— (D Dalog [ T1a;1 57 (e, 1.0oe). i)
j=1

where+2,; (1) are the two eigenvalues of the linearization of sys{em) at the
equilibriumx = X; (1), and the denominator i(i.0.10)is defined to b& when
i=1

Then for allI close tol, all i close toji, and all sufficiently smak, there exists a
two-dimensional intersection surfagg (6p) along which the stable and unstable
manifoldsW* (_#, .) and W"(_#¢ ) of the perturbed annuliZ; . and .70 .
intersect transversely at an angle of sizgs). Moreover, outside of some small
neighborhoods of the perturbed annui; ., i =0, ..., k, the surfacez}’ (Bp) is

' (¢)-close to the union of surfaces spanned by the oiliifs2) selected by the
phase angles

J
6o = fo(e, I, W)+ Y A6 (1) + T (e, 1, bole, I, ), ),
i=0

j=0,..., k—1, wherethe triple, 6o(e, I, n), ) identically satisfies the equa-
tion
Mi(e, 1, 60(e, I, u), 0) =0

in some neighborhood df= I andu = 1, andéo(e, I, 1) = Go(e).

Proof. The proof of this theorem is almost identical to the proof of Theo-
rem 1. O

Notice that the case of multiple homoclinic orbits for a single equilibrium point
X (I) can be treated by this extension of Theorem 1 with an obvious adaptation of
the notation.

We now briefly discuss an extension of our results to higher-dimensicenad
6 variables. Extending Theorems 1 and 2 to the case wherR™ andf € T",
whereT" is then-dimensional torus, is immediate for all positive integerand
n, includingm = 0. We remark, however, that when system (2.1) is Hamiltonian,
the annulus#, is almost everywhere filled with Kolmogorov-Arnold-Moser tori.
In this case, a question that arises is whether the stable and unstable manifolds of
these tori, as opposed to those of the whole annulus, intersect. In the case of a single
action-angle pait/, 6) our Theorems 1 and 2, combined with the observation that
the Hamiltonian surfaces intersect the surfag#s6p) transversely, provide an
affirmative answer. In the case whérandé are multi-dimensional one needs to
compute additional Melnikov functions. We suspect that results similar to the ones
presented here can be obtained in this case of multi-dimensional action-angle pairs;
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however, the details are beyond the scope of the present paper and are left to future
work.

A more interesting case occurs when we can wtite (61, 62), with 6, € T?
andé, € R? for some nonnegative integepsandg with p + g = n. We can then
replace the unperturbed equations (2.4cyfby

6 = 21(x, ) + £21(x, 1, 0), (10.11a)
02 = 22(x,1,0). (10.11b)

To extend the previous results to this situation we must assume that the equations
(10.11a) and (10.11b) can be integrated by quadratures, so that a s6latiés)

of system (10.11) corresponding to some initial conditfgncan be computed
explicitly. We must also assume the inequality

H/ Qs(xih(t, I),@(t,@o),1>dt <0 (10.12)

fors = 1,2 and allj = 1,...,k. This inequality of course implies that
fzs(Xj(I), 0,1) =0fors =1,2andallj =0,..., k. Notice that the solutions
of equations (10.11) define a mapping more generaldéhan 6p + Z{zl AB; (1)

in thed-argument of th&-pulse Melnikov function (10.7); the analog of the incre-
mentsAf; (1) of the “angles’d do not simply depend ohonly, since the values at
the previous mapping, = 09V (e, I, 6p, ) say, determine the initial conditions
for (10.11) in computing these increments. Tpulse Melnikov function is now
defined recursively by

k=1

Mi(e, 1,60, 0) = Y M (1,69, 1. 60, 1), 1), (10.13)
Jj=0

where the vecto# /) (¢, I, 6p, 1) is defined implicitly by

. i—1 —
0 (e, 1,600, 1) = 69V (e, 1,60, w) + AG; (1) + T (e, 1, 60, 1)
+o0 5 .
+/ Ql(x;’(t, 1),9(t,9<-/—1>))dt
0

O .
+ / 21(xls0. 1), 06,09 )dr, (10.14)
—00

+00

05" (e, 1,60, 11) = 05V (e, 1, 60, 1) + fo @o( e D, 0, 097Y) ) ar

O ~ .
+ / D401, 06,09 )dr,
—0o0

forj=1,...,k with A6;(1) andZ (e, I, 6o, ) computed as in (10.8) and (10.9),
with .Q(xj’?(t, ), I) andw; (1) replaced ble(xj’?(t, 1), 1) by 2:(X;(I), I), re-
spectively, and witt9©@ (e, I, 6p, u) = 6o. Notice that we have suppressed the
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arguments of the function) (e, I, 6, ) on the right-hand side of equations
(10.14) for ease of notation.

After these modifications and additional assumptions we can proceed as be-
fore and obtain the same results. However, notice that the propertiesieptiise
Melnikov functions expressed by formulas (3.10) and (3.11) in the third remark
following Theorem 1 depend crucially on the fact that the ordinary Melnikov func-
tion M (1, 6p, ) is periodic indg, i.e.,0p lives onst. Properties (3.10) and (3.11)
do not apply, in general, when the angle varialsldive on a torusT™, m > 1.

An exception is offered by equation (10.11) because of the condition (10.12). As a
consequence of this condition, we haife= 21(X (1), I), 8, = 0 on the unper-
turbed annulusZZ. In this case, it is easy to see that the properties (3.10) and (3.11)
apply withe, = eexp(—2nmA(1)/21.(X (1), I)). An example for this particular
extension of Theorem 1 is discussed in the next section.

11. Application to an Atmospheric Model

The following example was introduced 8. LorENZ to describe the coupling
between wave motions in the atmosphere occurring on fast and slow time scales.
After a reduction and rescaling (see [6]), the original five-equation model [46]
assumes the form

g=p-—ez, (11.1a)
p = —R?sing, (11.1b)
y=-z (11.1c)
z=y+ R?sing, (11.1d)

with (¢, p, v, z) € R* HereR is a reduction parameter which is bounded away
from zero. This system has an integral of motion

E = 1p? - R%cosq + 3e(y? + 29). (11.2)

The unperturbed systemat= 0,

q=p, (11.3a)
p = —R?sing, (11.3b)
y=-z (11.3c)
z=y+ R?sing, (11.3d)

represents a pendulum acting as external forcing on a harmonic oscillator. The pa-
rameterr gives the eigenvalue of the hyperbolic equilibrium point of the pendulum
at(q, p) = (£m, 0). System (11.3) has the integral of motion

2

Eg = 1p? — R%cosq. (11.4)
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The flow generated by (11.3) does not take place on intersections of the level sets of
two integrals of motion, although it is still solvable, i.e., integrable by quadratures.
In particular, the plane of the harmonic oscillate¥ = {¢, p, v,z |qg = +m, p =

0} is a normally hyperbolic manifold, connected to itself by three-dimensional
homoclinic manifoldsW.., defined implicitly by fixing the value of the constant

Eg to be that of the hyperbolic equilibrium point of the pendulum,

Eo = R (11.5)

As usual, for the unperturbed system (11.3) the stable and unstable manifolds
Wi(.#¢) and WY (_#¢) coincide along the homoclinic manifold®.. However,
system (11.3) has the peculiarity that level surfaces of the constant of nitidm
not intersect the planeZZ transversely in the four-dimensional phase space. Thus,
the periodic orbit®D” = {y, z| y? + z2 = pZ} are not normally hyperbolic in the
lower-dimensional space of a constant of motion level set. As a consequence, peri-
odic orbits with differenjpg’s on.Z can be connected via heteroclinic excursions.

A parametrization of the manifold®¥. can be obtained by integrating the
unperturbed system (11.3) using the homoclinic solution for the separatrix of the
pendulum component. We have

Wi ={(g.p.y.29lg =q"@®). p=p"@),
(11.6)

y = y"(t; po, 90), z = 2"(t; po, Yo)},
where

q" (1) = £2 arcsintanh(R1)], p" (1) = £2R sechRr), (11.7)

Y (t; po, 90) = poCOSt + ¥o) & S(7, R) cost + A(t, R) sint,
2" (t3 po, B0) = poSin(t + 9o) F 2R sechRr) (11.8)
+ S(t, R)sint = A(z, R) cost,

with t € R, po € RT and®g € (—m, 7] being three parameters. The functions
S(t, R), A(t, R) are

t
S, R) = ZR/ secl{Rt’) cost’ dt’,
—00
(11.9)

t
A(t,R) = 2R/ sech{Rt) sint’ dt’.

—00

Alternatively, for a givenpg, equations (11.7) and (11.8) can be viewed as a
parametrization of the two-dimensional stable and unstable manifiéig) ~°)
andW*(0*), of the periodic orbitD0,

The expression (11.8) shows that a given periodic @ithas a one-parameter
(v0) family of heteroclinic connections to other periodic orbits,
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y = p=(po, Do) COS[t + 0+ (po, 190)] ,

(11.10)
z = p+(po, Vo) SiN [t + 0+ (po, 190)]
in an annulus
1P0 — Sool < p <[P0+ Socl.
Here we denote by, the value ofS(z, R) fort — +o0, i.e.,
+00 T
Seo = ZR/ sechRr) cost dr = 21 sech(—) , (11.11)
50 2R
the phasé.. is determined by
6+ (po, 9o) = arctan| —2 sinvo (11.12)
+(p0, Do) = 0costo £ 5 ) .
and the asymptotic radius is
_ 5w 1/2
p+(po, Do) = (,00 + S5 £ 2008 COSZ‘/‘O) . (11.13)

Among the heteroclinic connections there are four homoclinic ones, corresponding
to the two solution®g of

cosdg = ;S;'O. (11.14)

2p0

We see that for the periodic orbits within the di&%(R) = {0olpo < %Soo} no
homoclinic connection can existy = %SOO being the limiting case when only
two homoclinic connections are possible. Since the minimum radius of the annulus
is 5%(po, m) = (po — Seo)?, periodic orbitsinsidethe disk % (R) can only have
heteroclinic excursions, which connect to periodic orbittsideZy(R).

The geometric interpretation of the above parametrization of the homoclinic
manifoldsW. is particularly simple when viewed in a rotating frame for the
space; see Figure 11.1. In this frame (when the frequency of rotation is the same
as that of the harmonic oscillator) the center manifold is foliated by circles
of equilibrium pointsO#°, whose two-dimensional stable and unstable manifolds
Wi(0r0), Wi (0®) are cylinders. The orbits homoclinic (in forward and backward
time) to O° trace the cylinders, and project the circles of equilibrium pois
back onto the planeZ as a displaced circle of the same radngscentered at
x = S, z = 0. Thus, the stable manifol@{ (O*°) and the unstable manifold
Wi (0*) intersectransverselyin the homoclinic manifoldV,., and do so along
a pair of orbits connecting the equilibrium cirof® to itself provided thapg >
$So. Only atpg = 3 S, the intersection between the stable manifaiel(0#0)
and the unstable manifol/’{ (O°) is nontransverse (a tangency occurs here). For
po < %Soo, the stable manifoldV{ (O°) and the unstable manifolé’} (0*°)
miss each other.
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Fig. 11.1. The heteroclinic connections for the rescaled unperturbed problem (11.3) in a
rotating frame, for a periodic orbit with, > %Soo.

When the perturbation is switched on, the manifo#d deforms into a nearby
manifold. Z.. It can be shown that level surfaces®fiow intersect . trans-
versely in the four-dimensional phase space and the intersection curves are periodic
orhits 0O° close toO*°.

The distance along the normal to the unperturbed homoclinic manifélds
between the unstable manifoldl (_#Z,) and the stable manifol®: (.#,) is
measured by the Melnikov function, which can be computed explicitly,

M.(po, 90, R) = —Soc (poCOSP0 + 3555 (11.15)
for the distance between the manifolds (.#,) andW (.#,), and
M (po. 90, R) = =Sn (—poCoSo + 35w ) (11.16)

for the distance between the manifol§’ (.#2,) and W*(_#.), respectively.
Notice that we have simple zeros of the functidiis (oo, %o, R) at the parameter
values for homoclinic orbits, as determined by (11.14).

Of the two-parametelpp anddp) family of heteroclinic connections (11.7) and
(11.8) for the unperturbed problem only themoclinicconnections survive after
perturbation. This is in accord with the fact that, as soon &s0, E rather than
Eg is a constant of motion. In particular, the stable and unstable manifolds of the
disk Zp(R) miss each other, as the Melnikov functidfy. (oo, ¥, R) are bounded
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away from zero ifpg < %Soo. However, periodic orbits inside the disk can still be
connected by multi-pulse homoclinic orbits, as an application of Theorem 2 will
now show.

Let the variable® in Theorem 2 be two-dimensiond,= (01, 62) = (¢, p) €
st x R, and satisfy the equations

. R?
¥ =1+ — sing cosy, (11.17a)
Y

o = R?sing sinv, (11.17b)

as implied by the last two equations in (11.1) fo= p cos® andz = psing.

Let the variablel be absent. By using the asymptotic val@ég, po) of (¢, p) for

t — —o0, we can write theé-pulse Melnikov function (10.13) in the present case
as

k—1
Mi(e. po. 90, R) = Y _MD(p) 9D Ry, (11.18)
j=0
where
MDD, 9D, R) = =81 (=17 p cos9 ) + 35, (11.19)

P = [;(pu‘—l)’ 190—1)’;/,_1), o) — !Z.-Jrg(p(j—l)’ 190—1),;,_1),

(11.20)

1 32R
F=log| —5— ), (11.21)
/ J=1 )
8|Zi:OM |

forall j =1,...,k — 1, with @@, p©@) = (¥, po). (In these definitions and
some of the following formulas we suppress the argumentgg, do, R) of .7,
etc. for ease of notation.) Here we have defined the ingdéxbe 0 or 1 according
to whether the Melnikov function is computed for the upper or lower separatrix
of the pendulum, equations (11.15) and (11.16), respectively. Accordingly, the
mapping(d, 3) (-, -, s;) is defined agd, 5) (-, -, ;) = (64, 4+)(-, ) if s; = 0 and
0,0)C, - s)=(0-,p-)(, ) if sj = 1.

Theorem 2 now implies

Proposition 11.1. If for some integek, some constanB > 0 independent of,
someR = R, somep = p, all ¢ > 0 sufficiently small and some function= 9 (¢)
thek-pulse Melnikov functiolL 1. 18)satisfies the three conditions of Theorem 2 for
j=1,..., k—1, then the stable and unstable manifolds of the periodic apit

of (11.1)intersect transversely along a homoclinic orbit, which outside of a small
neighborhood of the normally hyperbolic invariant manifol&, is 7 (¢)-close

to the sequence of heteroclinic orbits selectedy’, p(’}, j =0,1...,k — 1.
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M,

identify identify

Fig. 11.2. Sketch of a 2-pulse homoclinic orbit as it leaves a periodic offiton the
perturbed manifold ZZ. inside the diskZ,(R), approaches a different periodic orbit
flying by the manifold ZZ., leaves the neighborhood .ofZ. and follows an unperturbed
homoclinic solution back t@?2°. The intersection with the manifoldZZ. is an artifact
caused by the suppression of theoordinate.

In particular, this proposition and expressions (11.18)—(11.21) fer2 show
that a periodic orbit inside the diskp(R) can be connected to itself by a 2-pulse
homoclinic orbit when the corresponding radmsapproache% Soo from below.
This is because the 1-pulse Melnikov function is negativepfox %Soo and the
2-pulse Melnikov function, witl(sg, s1) = (0, 1), can be written as

M3(e, po, Yo, R)

= M(po, 90, R) + M—(5+(p0, D0). 0+-(p0, 90) + TL. B). (11 o9y

q,

. (AN . = A
= —250 p+(po, Do) | sin{ = ) sin{ 6:+(po. Do) + = ) |-

Since the variation of the phase delag(e, po, %o, R) between its maximum at

Yo = 7 and its minimum a¥g = 0 becomes unbounded as 1 %SOO, a nonde-
generate zero of the right-hand side of equation (11.22) certainly occurs atgome
in [0, 2). Figure 11.2 provides a sketch of a 2-pulse orbit homoclinic to a periodic
orbit inside the diskZp(R).

We remark that Proposition 11.1 applies indifferently to periodic orbits inside or
outside the disk/p(R) (where the Melnikov function itself can have simple zeros).
System (11.1) is reversible, i.e., pf(t) = (¢(¢), p(¢), y(t), z(¢)) is a solution of
system (11.1), then both

(#21p) (1) = (q(=1), =p(=1), y(=1), —2(—1))

and
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Ml,g(s’po’eo ’R)
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-0.015 ¢

-0.02 ¢

-0.025 +

Fig. 11.3. Plot of the 1-pulse Melnikov functidd, (¢, pg, %9, R) = Mc(po, %9, R) (dot-

ted line) and of the 2-pulse Melnikov functia¥, (e, po, %9, R) (solid and dashed lines)
vs. % € [0, 27), with p = %Sm andR = 0.33. The zero crossings of the solid line deter-
mine 2-pulse homoclinic orbits whoéeg, p) coordinates make an excursion following first

the upper and then the lower separatrix of the pendulbamn(d— sign choice, respectively,

in equation (11.7)). The zero crossings of the dashed line determine 2-pulse homoclinic
orbits whos€dg, p) coordinates follow twice the upper separatrix of the pendulum.

(A22p) (1) = (—=q(=1), p(=1), =y(=1), 2(=1))

are solutions. Accordingly, some of the multi-pulse orbits whose existence is im-
plied by the proposition possess a reversibility symmetry. We can group these orbits
in two different classes with respect to their symmetry. For the first class of multi-
pulse orbits, there exists a time, which can always be taken to be zero since (11.1) is
autonomous, such that, jf(0) = 0 andz(0) = 0, thenp(¢) is a homoclinic orbit.
Orbits in this class are discussed in detail in [6]. Because the Melnikov function
M (po, B0, R) is negative-definite for periodic orbits inside the digl(R), this
type of symmetry is the only one possible for the 2-pulse homoclinic orbits, 2 being
the minimum number of pulses required for the existence of orbits homoclinic to
periodic orbits insideZp(R).

The second class of multi-pulse orbits is in the fixed set of the second re-
versibility symmetry, that isp(¢) is such thaly(0) = 0 modr and y(0) = 0.
The ordinary 1-pulse homoclinic orbits are of this type. Zerosfets, po, %o, R)
with M (oo, %0, R) > 0 and(sg, s1) = (0, 0) determine 2-pulse homoclinic
orbits of the second symmetry type outsidg(R). These occur along with 2-
pulse homaoclinic orbits of the first symmetry type, when (oo, 0, R) < 0 and
(s0, s1) = (0, 1). Figure 11.3 shows plots of the 1- and 2-pulse Melnikov functions
Mi(g, po, %o, R) = M (po, %o, R) andM>(e, po, %o, R), astg varies in the period
[0, 27), when the periodic orbit determined Iy is outside of the disk/y(R),
so that the Melnikov functioM (oo, 99, R) defined by equation (11.15) has two
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zeros in [Q 2). The accumulation of zeros @f2(¢, po, %o, R) onto the zeros of
Mai(e, po, ¥o, R) mentioned in the fourth remark after Theorem 1 can be clearly
seen.

Looking for solutionsk = R, p = p, 9 = ¥(¢) as in Proposition 11.1 shows
that a phenomenon similar to that of the disappearance of 1-pulse homoclinic orbits
when moving from periodic orbits outside the digk(R) to orbits within this disk
is repeated, with higher-pulse homoclinic orbits of a certain symmetry type, for
a sequence of nested diskg (R, ¢), Z2(R, ¢), etc., whose radii depend an
and R. Notice that unlike the radius which definé$(R), po = %SOO, the radii
of Di(R,¢), k > 0, depend orz and may all vanishat particular values of,
e=¢,(R),n=1,2,...,withg, — 0asn — oo. At these values of the fixed
point(q, p, y, z) = (£, 0, 0, 0) is connected to itself by a multipulse homoclinic
orbit; see [6].

12. Application to Orbits Homoclinic to Resonance Bands

In this section, we apply Theorem 1 and its extension Theorem 2 to the phe-
nomenon of orbits homoclinic to resonance bands. Various aspects of this phe-
nomenon were discovered in [22,23,32,34-37, 39, 75]. This phenomenon con-
tains a bounty of homoclinic and heteroclinic orbits, and occurs if, in addition to
Assumptions 1 and 2, we also make

Assumption 4. For somel = Ip with I1 < Iy < I, the frequencyw(I) =
2(X (), I passes through a simple zero, that is,

dw
w(lp) =0, E(IO) *0.

This phenomenon also occurs if we make Assumption 4 in conjunction with setting
k=2andXo(l) = X1(I) = X2(I) in Assumption 3. In this second case, we have
two not necessarily symmetric manifolds of orbits homoclinic to the annuits
In what is to follow, for the sake of definiteness we only consider the first of these
two situations, with the understanding that the results for the second are almost
identical.

Assumption 4 implies that one of the periodic orbits on the annuttiss really
not a periodic orbit but a circle of equilibria. One can easily see from equation (2.8)
that pairs of equilibria on this circle that are a distance

A6 (Ip) = f ” Q" (s, Io), Io) ds (12.1)

apart, are connected to each other by heteroclinic orbits parametrized by equations
(2.6) withI = Iy (see Figure 12.1).

The circle of equilibria that exists on the unperturbed annul#sbreaks up
under perturbation into a resonance band that lies on the perturbed anAtlus
This resonance band is described as follows. We first restrict the dynamics of equa-
tions (2.1) to the annulusZ, using formula (3.1). Following a standard procedure,
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o)

XX 1l
h

JAC)

<~ identify
6=0 0=2m

Fig. 12.1. Geometry of manifolds homoclinic to periodic orbits and the circle of equilibria
atl = I,. Only one orbit is shown from each such manifold. All the other orbits on the
same homoclinic manifold are obtained by translating those shown in the picture along
the 6-axis. Orbits on the manifold homoclinic to the circle of equilibrialat I, are
heteroclinic orbits connecting pairs of points on that circle thaterepart.

described for instance in [19], we “blow up” the region néat Iy using the trans-
formation! = Iy + /¢ h, rescale time using = ./¢t, and Taylor expand the
restricted equations (2.1) ijfe, to obtain the equations

' ds? ‘
W =g'(X(o), Io, 0, W)+ (Ve), 6 = W(X(Io), Io) h+ (Ve), (12.2)

with ' = j—r. Higher-order terms in these equations can be computed from the
Taylor expansion of formula (3.1) in powers gk, which can be obtained in terms
of algebraic operations and differentiations alone, as shown in [37].

In the limit ase — 0, we obtain theuter system

) ds2
h =g (X(Io), Io.0. 1), 0 = —+ (X(o), Io) h, (12.3)
which can be derived from theuter Hamiltonian
1d$2
T h, 0, 1) = 5 —=(X(To), Io) h2+ V9, p, (12.4)

with the potential

0
VO, = —/0 ¢ (X (o), Io, s, w)ds,

via the canonical formulas

W =—DgF0(h,0, 1), 0 =DnIh,0, 0.
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Fig. 12.2. Typical phase portraits of the outer systems (12.2) and (12.3)$00 and
e > 0, respectively. Figures 12.2a (foe= 0) and 12.2b (for = 0) display the dissipative
case, and Figure 12.2c displays the Hamiltonian case (fordetl® ands > 0). All the
points whose coordinates differ by a multiple of2must be identified.

In the case when the perturbed vector field (2.1) is derived from the Hamiltonian
(2.2), thatis, when equations (2.1) are replaced by equations (2.3), the outer Hamil-
tonian becomes

1dD;H

<%”(h,9,u)=§ a1 (X (o), Io) h* + H1(X (Io), o, 6, 11, 0),

and the expression

H|_y, (Io + +/5h, 0, i, £) — H(X (Io), Io)
£

Fu(h, 0, 11, 8) =

= (h, 0, 1) + O (Ve), (12.5)

WhereI-AI|.//5£(Io + J/¢h, 0, u, ¢) is the restriction of the Hamiltonian (2.2) to the
annulus 7z, via the formula (3.1), is a conserved quantity which reduces smoothly
to the outer Hamiltonian as— 0. System (12.2) can be investigated with the help
of system (12.3) by a combination of phase-plane and perturbation techniques, as
described for instance in [37] and [36] (see Figure 12.2).

In order to investigate the phase-space structure off of the annéfiisn the
full (x, 1, 6) phase space, in particular, orbits homoclinic or heteroclinic to possible
equilibria and periodic orbits of equations (12.2), welset Ip+ +/ch in equations
(2.1) and let — 0. In this way, we obtain theaner system
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x = JDH(x, Ip), (12.6a)
h =0, (12.6b)
6 = 2 (x, Ip). (12.6¢)

In this system, the structure of every slice- constant is the same as the structure of
the slicel = Ipinthe unperturbed system (2.4). In particular, the circle of equilibria
in the phase space of the unperturbed equations (2.4)-at Iy, x = X (lp),
0 < 0 < 27 has been “blown up” to cover a whole cylinde#/ of equilibria, with
x = X(Ip), 0 £ 6 £ 27 and arbitrary in the phase space of the inner equations
(12.6). Moreover, pairs of points on this cylinder with equaatoordinates and
coordinates a distana®0 (Ip) apart are connected by heteroclinic orbits given by
equations (2.6) withh = Ip. The cylinder.#4y of equilibria is thus connected
to itself by a three-dimensional manifold of heteroclinic orbits. As in [22, 23, 32,
34-37, 39], we combine the information obtained from systems (12.6) and (12.3) to
obtain information about orbits homoclinic to the resonance band on the perturbed
annulus 7, atI = Iy in the phase space of system (2.1).

We can use Theorem 1 in the origin@l, 7, 8) coordinates to ascertain the
existence of a possible survivirkgpulse homoclinic intersection surfagg (6p).
Note that in this case, for any integkr the k-pulse Melnikov function at the
resonancd = Iy is equal to

k=1

My (lo, 6o, 1) = ) M(lo, 6o + j A6 (Io), ), (12.7)
j=0

where the Melnikov functio (1o, 6p, ) is given by formula (3.2) with = Iy,

and the angle differencaé (lp) is given by formula (12.1). Moreover, one can
show along the same lines as in [36] or [22] that in the case when the perturbed
vector field (2.1) is derived from the Hamiltonian (2.2), we have

My (Io, 6o, ) = H1(X (lo), I, 00 — AO_(lo), 11, 0) (12.8)
—H1(X (o), 1,600+ (k — 1)A6(lp) + Ab+(lp), i, 0). .

Notice that the&-pulse Melnikov function (12.7) in the particular case of orbits
homoclinic to resonance bands does not depengl. dihis is because, at most a
distance” (/) away fromI = Ip, the angle incremen¥; (s, I, 6, i), given by
formula (3.6), is of the size” (/zlog(1/¢), and.Z (e, Io, 6o, ) = 0. It is also
clear that the nonfolding condition (3.9) is always fulfilled/at= Iy and also for
I-valuesthat ar€¢” (,/¢) distance away because of Assumption 4, and can therefore
be dropped from the hypotheses of Theorem 1. Theorem 1 thus becomes

Proposition 12.1. For some integek, 6p = 6, and u = i let the following
conditions be satisfied:

1. Thek-pulse Melnikov function has a simple zer@in that is,

Mi(Io, 0o, i) = 0,  DgyMy(Io, 6o, 1) = O.
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2. M;(Ip, 0, j1) + Oforalli =1,...,k—1,k > 1, andis positive if the signature
o, defined by equatio(B.4), of the normaln is positive, and negative ¥ is
negative.

Then for alll close tolp, and all . close toj, there exists a two-dimensional inter-
section surfaceZ (Ap) along which the stable and unstable manifolt$(._#,)
and W“(.7¢,) of the annulus 7, intersect transversely at an angle of size
(). In the outer(x, k, ) variables, outside of a small neighborhood of the
annulus. 7., the surfaceX!'(fp) collapses smoothly onto the uniafi (o)

of surfaces spanned by the orbits parametrized by form{#@a) with I = Iy,

0o = Oo(n) + jAO(lp), j =0,...,k— 1, and with arbitraryh. Here () is
the corresponding simple zero of thepulse Melnikov functioMy (1o, 6g, ). The
surfaceXy (Ao) takes off from the cylinder/g along the line = 0o(11) — A6_ (1)
and eventually lands back on it along the lthe= 0g(11)+ (k—1) A0 (Io)+ A6 (Ip),
where the phase differencé®_ (/o) and A6 (Ip) are defined as

o) 0
A6, (Ip) = / Q" (s, Io), Io)ds, A6_(Ip) = / Q" (s, Io), Io) ds.
° - (12.9)

Recall that the signatuke need not be computed if the region enclosed by the un-
perturbed homoclinic manifol®# (_#Z,) is convex, as explained in the first remark
after Theorem 1. Recall also that the definition of the angle differenégs$lp) and
A6_(Ip) is consistent with the analogous definitions in Section 8 given by formu-
las (8.15) and (8.19). We call the limiting (honsmooth) surfz%‘e(éo) asingular
homoclinic intersection surfaceee Figure 12.3. We remark that Proposition 12.1

is equivalent to the result obtained in [23]. We combine Proposition 12.1 with the
results of [32] to further enlarge the class of orbits homoclinic to resonance bands
that can be constructed with thepulse Melnikov method.

[ X-X() 11
h

Fig. 12.3. The singular intersection surface with two pulsg§d,) connects equilibria that
lie on the line® = 6, — A6_ (1) to those that lie on the ling = 8, + 2A0 (1) + Abc (1)

on the annulus .. Gray curves on/4. represent the orbit structure on this annulus
under the outer system (12.3).
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Gronwall-type estimates, arescaled version of the estimates given in Proposition
4.2, and KAPLUN's extension theorem [40] now imply

Proposition 12.2. Let ¢(¢) be an orbit on the homoclinic intersection surface
> (6p). LetI" be the union of the orbit®.6)with I = Iy, 6 = (1) + j AO(Ip),
forj =0,...,k— 1, andh = ho, theh coordinate of the poing (0). Then there
exists a functiors(¢) such thats(¢) — 0 ase — 0 and that, in the(x, &, 6)
coordinates, the orbig (¢) staysc”(§(¢))-close to the union” from the time the
orbit ¢ (¢) first leaves a small neighborhood of the annul#&, until the time it
last returns to it.

As we describe below, this estimate immediately allows us to conclude that
all the theorems of references [37, 36, 32] remain valid if we substitute a multi-
pulse singular homoclinic intersection surfaﬁg (6p) as discussed above for any
1-pulse singular homoclinic intersection surface as discussed in those references.
In particular, we can show the existence of orbits homoclinic to resonance bands
that have several groups of consecutive pulses interspersed with slow stretches near
the annulus#Z,. We call such groups of pulsésimps

In order to describe multi-bump orbits homoclinic to resonance bands, we must
first make two assumptions. The firstis

Assumption 5. There exists a positive integat, and N positive integers;, with
i =1,..., N, such that theX;-pulse Melnikov function®/x, (Io, 6o, t) at the
resonance have simple zeros at the poiigts= 6o ;, for someu = ji. That is,
Mk, (Io, 60,i, it) = 0and Dg,Mk, (Io, 90, i) + Oforeachi = 1,..., N.

Under this assumption, Theorem 1 implies that there eXisndividual, not
necessarily disjointK;-pulse homoclinic intersection surfacéﬂ*(éo’,-), i =
1, ..., N, for all © close toi that limit onto the surfacexé‘(éo,i) ase — 0.
The second assumption is

Assumption 6. There existV — 1 orbit segment;(i1),i = 2,..., N, on the
annulus_#Zg with endpointsi; (it) andc; (1), respectively. The trajectories of the
outer systenfl2.3)on the segmer@®; (jx) flow fromd; (2) to ¢; (x) in forward time.
Moreover, one of the following two statements holds:

1. The lined = 6o, (1) — AG_(Ip) intersects the segmemk; (1) transversely at
the pointc; (i) fori = 2,..., N, and the line = 6o (1) + (K; — 1) A6(Ip) +
AB4 (Ip) intersects the segmen; 1 (jx) transversely at the point; 1(jx) for
i=1,...,N-1.

2. The lined = 6g; (1) — AO_(Ip) intersects the segmenk; (1) transversely at
the pointc; (z) fori = 2,..., N, and the lined = g ; (1) + (K; — 1) A8 (Ip) +
A6, (Ip) intersects the segment; 1 (1) transversely at the point; +1(ix) for
i =2,..., N —1. Theh coordinate of the point>(ix) is equal to zero.

Finally, for all i = 2,..., N — 1, the difference in thé coordinates of the two
pointsc; (it) andd; +1(i1) is equal to zero.

Note that the difference in thecoordinates of the two points(it) andd; +1(jix)
can be computed from equation (12.4), and thaktb@ordinates of the points (i)
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Fig. 12.4. AnN-transition orbit in the cas& = 3 (the argument, of the functions
AB(1y), A8+ (Iy) has been suppressed in the figure). This “orbit” is composed of three
heteroclinic orbitsly, I;, and I's of the inner system (12.6), connected by two orbit
segment); (x) and O, (i) of the outer system (12.3). The time scales of the inner and
outer systems are incompatible.

andd; (1) cannot be equal to zero when the intersections of the orbit seg@gipts
with the linesd = 6o ; (Io, 1) — A6_(Ip) andd = 6o ; (Io, 1) + (K; — 1) AG(Ip) +
A64 (Ip) are transverse.

Assumption 6 implies that, forea¢h= 2, ..., N —1, astring ofk; heteroclinic
orbits, which we label;, contained in the surfacEé‘(éo,i) atu = [, connects
the two intersection points (i1) andd; 1 (). Moreover, a strind on the surface
26‘(9_0,1) consisting ofK; heteroclinic orbits connects some poin{it) on the
annulus._#y to the pointdz(i1) on the segmen®2(it), and a stringl'y on the
surfacex(‘)‘ (6o, n) consisting ofK 5 heteroclinic orbits connects the point (i) on
the segmen® y (1) to some pointl/y+1(ft) on the annulus#Zy. In this case, we say
that there exists aN-bump singular transition orbibr amodified N-bump singular
transition orbit depending on whether statement 1 or statement 2 in Assumption 6
holds. ThisN-bump singular transition orbit, denoted By is a continuous broken
curve, which consists of the heteroclinic strinson the surfaceé?é‘(éo,,-) for
u = p that connect the points (i1) andd; +1(i1), foreachi = 1, ..., N and the
parts of the orbit segment3; (1) betweerd; () andc; (1), foreachi = 2,..., N
(see Figure 12.4). We call the points(ix) anddy+1(i2) the takeoff and landing
points, respectively, of the singular orlit

One can easily verify (see [32]) that Akbump singular transition orbit implies
the existence of a continuous, two-parameter family of such orbits, the parameters
beingh andu. Likewise, a modifiedV-bump singular transition orbit implies the
existence of a continuous, one-parameter family of such orbits, the parameter being
. In other words, a uniqud&’-bump modified singular transition orhit(.) exists
at most a distance’'(u — 1) away from the originalv-bump modified singular
transition orbitl” for any i close enough te.
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Fig. 12.5. (a) Anillustration of Proposition 12.3, showing a two-bump connection between
a saddle and an unstable limit cycle on the annul#s . The first and second bump consist

of two pulses. (b) The singular transition orbit&; o (1) and. &yc1 0(1) pass through
each other transversely aspasses through.

We are now ready to state four propositions that extend the results of [32] to
cover homoclinic and heteroclinic orbits whose bumps are groups of consecutive
pulses, rather than single pulses. First, we consider the existence of a heteroclinic
connection between either a stable periodic orbit or a saddle of the outer system to
either an unstable periodic orbit or another saddle of the outer system.

Proposition 12.3. For u near u = [, let the curveO1 (1) be either a stable
periodic orbit for the restricted syste(h2.2)on the annulus#Z, or a (restricted
unstable manifold of a saddle . () for this system, and let the curé®y ;1 . (1)
be either an unstable periodic orbit for the restricted syst@a2)on .. or
a (restricted stable manifold of a saddley1 () for this system. Let the line
0= 50,1(#) — A6_(Ip) intersect the curv@®1 o(n) transversely at the poirt (1),
and let the lined = g v (1) + (Ky — 1)A8(Io) + A6 (Ip) intersect the curve
On+1,0(w) transversely at the poindyi+1(u). At u = @, let the pointse (i)
anddy1(i1) be connected by a singular transition orliit. For u nearu = i,
let . 410(n) be the singular transition orbit whose takeoff pointcgi), and
let. 4n+1,0(1) be the singular transition orbit whose landing pointdg 1 (w).
Furthermore, assume that the singular transition orbi#§ o(u) and. 4y 41,0(w)
pass through each other (ard) transversely ag passes througfi. Then, for all
small enougle and for somew = w(¢) with (0) = 1, there exists a heteroclinic
orbit connecting either the periodic orbi?; . (i (g)) or the saddleq . () to either
the periodic orbitOy 1. (1 (¢)) or the saddlesy 1. (1). (See Figure 12.5.)
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Fig. 12.6. An illustration of Proposition 12.4, showing a two-bump connection between a
sink and a stable limit cycle on the annulu4’. .

Next, we describe heteroclinic orbits between either two equilibria that are sinks
for the restricted system (12.2), or between a sink and a stable periodic orbit for
that system; see Figure 12.6.

Proposition 12.4. Letcy o(n) be a center for the outer systétr?.3) and atu = &
let it be located at

(h(Cl,o([L)), 9(61,0(,&))) = (0, fo,1(i1) — AQ—(IO)),
with

d _
an [6(c10(w) — Oo1(i) + AO_(I0)] + 0

at © = . Let the corresponding perturbed equilibrium, (1) be a sink for the
restricted systerfl2.2)for all small enougls and all « close enoughtp = ji. Let

the restricted systelfi2.2)on the annulus /2. possess either another sink(w)

or a stable limit cycl®, (1), and denote the associated basin of attractionAl.
Moreover, let there exist a modified singular transition orbit connecting the point
c1,0(ix) to a pointdy4+1(fx), and assume that the poidt+1(&) lies in a compact
domain.#2 that is all contained in an open regiox?, the limit ase — 0 of the
basin of attraction ;. Then, for smalk > 0, there exists a functiop = w(g)

with «(0) = @ and a heteroclinic orbit connecting the equilibrium . (1 (¢)) to
either the equilibriurmc, (e (e)), or the periodic orbitO, (. (¢)).

Next, we find heteroclinic connections between a saddle or a stable limit cycle
on the annulus#4, and a sink or another stable limit cycle o#,, such as the
one shown in Figure 12.7.

Proposition 12.5. Let the curveO1 . () be either a stable periodic orbit on the
annulus #z., or the(restricted unstable manifold of a saddig(i) on the annulus
A forall unearu = 1, and all small enough positive Let the restricted system
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Fig. 12.7. An illustration of Proposition 12.5, showing a two-bump connection between a
saddle and a stable limit cycle on the annulvg. .

(12.2)on the annulusZZ, also possess either a siak(u) or a stable limit cycle
O.(wn), and denote the associated basin of attractionBy. At u = 1, let the
curveO1,0(jt) and the lingd = () — AG_(Ip) intersect transversely at the point
c1,0(iv). Let the pointy o(f2) be connected via a singular transition orlditto the
pointdy+1,0(2). Moreover, let the poindy 11,0(f) lie in a compact domaiv2 that
is all contained in an open regio?, the limit ase — 0 of the basin of attraction
.Z. Then, for all small enough positiveand all « close enough ta = 1, there
exists a heteroclinic orbit connecting either the periodic oit, (1) or the saddle
se(w) to either the equilibriunt, (1) or the periodic orbitO, (). Moreover, the
intersection of the unstable manifol&&* (01 . (1)) or W* (s, (u)) with the stable
manifoldsW* (c. (1)) or W¥(0,(w)) is transverse along that heteroclinic orbit.

We note that, as in [37, 32], we can describe still other heteroclinic connections
by inverting the time flow in Propositions 12.4 and 12.5.

Finally, we look at the case when the perturbed vector field (2.1) is derived
from the Hamiltonian (2.2), i.e., when equations (2.1) are replaced by equations
(2.3). In this case, an easy argument given in [32] shows that the end points of each
N-bump singular transition orbit must be atthe same values of the outer Hamiltonian
T (h, 6, n). Furthermore, ifl" is a singular transition orbit that connects a pair
of slow-time periodic orbit01 (1) and Oy+1.0(it), then there exists a pair of
two-parameter families,

{010) 1v1(0) < v < va(), e neara},

[0k +1000) 1 Vi) < v < va(u0). u e,
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Fig. 12.8. An illustration of Proposition 12.6, showing a three-bump connection between
two periodic orbits on the annulug/Z. in the Hamiltonian case.

of slow-time periodic orbits nea©1,0(it) and Ox41,0(it), such that each pair
01 o(n) and ONJrl o(n) is connected by amVv-bump singular transition orbit
I'V(w). Here the parameter is the value of the outer Hamiltonia®? (h, 0, 1)
along the orbitD? Lo and 0N+l o(1).

For small positives, we now conclude:

Proposition 12.6. At © = j1, assume that the ling = 9_0,1(;1) — A6_(Ip) trans-
versely intersects a periodic orbi?1 o(fz) at the pointcs o(fx). Assume also that
the lined = 6o, v (1) + (Ky — 1) AO(Ip) + Ab, (Io) transversely intersects a peri-
odic orbit Oy 1,0(i2) at the pointdy11.0(2). Furthermore, assume that the points
c1,0(x) anddyy1,0(ir) are connected to each other by a singular transition orbit
I'. Then for eactu near 1, there exist a function(e), withn(¢) — Owithe — 0,
and two continuous families of periodic orbits,

{0{,8(M) | vi(u) +n(e) < v < va(u) —n(e), u near,a},

{0k 41,000 Tv1G0) + n(e) < v < va(w) = n(e), u nearit],

suchthateach pai©; , (1) and ONJrl . () isconnected by aN-bump heteroclinic
orbit. The value of the parameteralong the orbitsOy (1) and Oy, 4 (1) is
equal to the value of the constad¥, (h, 6, i), given by equatiorf12.5) along
these orbits, and also to the value of the outer Hamiltorw@f(i, 0, 1) along the
orbits 01 o(w) and Oy, Ni10). Ase — O, the union of the orbit®; (1) and
Oy 41..(n) and the connecting heteroclinic orbit collapses onto the union of the
curvesO1 o) and Oy, Nizo) and the singular transition orbif™¥ (). Moreover

the intersection of the unstable manlfdM”(Ol’g(u)) with the stable manifold

wS (O;,+l s(ﬂ)) along the heteroclinic orbit that connects the ortrﬁﬁs(u) and
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Oy 41.(n) is transverse inside the corresponding level surface of the perturbed
Hamiltonian(2.2). (See Figure 12.8.)

The proofs of Propositions 12.3-12.6 proceed with the help of Proposition 12.2
exactly as the proofs of the corresponding theorems in [32].

13. An Example of Orbits Homoclinic to Resonance Bands

The example of a Duffing oscillator coupled into an anharmonic oscillator,

p=nq(I — g% — ap, (13.1a)
q=p, (13.1b)
I = —¢Ising — Bl — eyp?, (13.1¢c)
0=1-1-3n%g?—ecosp, (13.1d)

was used in [34—-37] to illustrate various types of one-bump and multi-bump orbits
homoclinic to resonance bands. In this exampte 1, n, «, 8, andy are positive
parameters. System (13.1) has the form (2.1) for nonzggoandy, and the form
(2.3) with the Hamiltonian

H(p.q.1,0) = H(p.q. 1)+ eH(p.q. 1,0)
2 2 2 2 2 (13.2)
=317 — 1+ 3p° — 3n°¢°(I — 3¢°) — el cOSh,

fora ==y =0.

The phase-space structure of system (13.1) withgeras follows. An unstable
invariant annulus, 72, with (p, g) = (0, 0) and! between any; andl,, such that
0 < I1 < 1 < I, is foliated by periodic orbitp = g = 0, I = constantf =
(I — Dt +6p. The annulus# is connected to itself by a pair of three-dimensional
homoclinic manifoldsW,.(_#2) andW_(.#4), which are parametrized byl and
6o in the homoclinic solutions (see Figure 13.1)

p=pt, ) = V251 sechinIntanh(n/11), (13.3a)
q=q"(t. 1) = £v2I sectiyVIr), (13.3b)
I=1, (13.3c)

0 =0"t, 1)+ 6= (I — Dt — nv/Ttanhn11) + 6p. (13.3d)

The phase differencad (1), defined by equation (2.8), between the end points of
any heteroclinic orbit (13.3) ia6 (1) = —2n~/1, which follows immediately from
equation (13.3d).

The frequencyl — 1 of the periodic orbits on the annulugz passes through
zero transversely dt = 1, so that the orbit at = 1 is a circle of equilibria, which
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Fig. 13.1. The annulus#Z and the homoclinic manifold®, (_#2) andW_(_#¢) for the
example of Section 13.

gives rise to a resonance band for 0. Pairs of points on this circle of equilibria
that areA6(1) = —2n apart are connected by heteroclinic orbits, obtained by
inserting the valud = 1 into the solutions (13.3).

Since the sep = ¢ = 0 is invariant even for nonzere, we can take the
perturbed annulusZ. to be the same as the annulu&. Thus, we immediately
calculate the restricted system (12.2) to be

h' = —1+ /eh)sind — B(L+/e), 6 =h— \/ecosh. (13.4)
The limiting outer system and the outer Hamiltonian are

hW=—-sing—-8, 6 =h, (13.5)

6 (h,0) = 3h? — cosd + 0, (13.6)

respectively.

When 0< B < 1, there are two equilibria on thke— 6 cylinder._#Zp, a centetg
at(h, 0) = (0, — arcsing) and a saddley, at(h, ) = (0, — +arcsing). The two
branches of the stable and unstable manifalds (so) andZ7 ™ (so) to the right of
the saddleq coincide to form a separatrix that encloses a family of periodic orbits
nested around the center. The two branches of the mani#aldssg) and 77 ™ (so)
to the left of the saddley wind around the cylinder#Zy towardsh = +oo and
h = —oo, respectively. For small positivg’e, the saddleg persists as a saddle
se, the centerg becomes a sink,, and the separatrix breaks. The top branch of
the unstable manifoldZ ™ (s.) of the perturbed saddle falls into the sinkc,.
No periodic orbits are left in this system, and all the points that lie in any compact
domain, that is, all contained inside the unperturbed separatrix asymptote to the
sink ¢, (see Figure 13.2).
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Fig. 13.2. The phase portrait for the outer system in the dissipative case.

The inner system (12.6) for this example is

p=n’q1—q?, (13.7a)
q=np, (13.7b)
h =0, (13.7¢)
6 = —3nq> (13.7d)

In references [35, 37, 32] we computed that, at the resonhred,, the Mel-
nikov function M (I, 6o, n, , B, ¥) on both homoclinic manifold$V, (.#2) and
W_(.#¢) is equal to

M(1, 60, n, @, B, y) = coslo — ) — oo+ n) — g + 280+ 15y n°. (13.8)

Likewise, thek-pulse Melnikov function equals

My (1,60, 1, . B, y) = COS6p — (2k — 1)) — cosbo + 1) — Fkan 139)

+2kpn + Skyn®.

If we setby_1 = 09 — (k — 1)n, this formula can be rewritten as
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Mk(17 907 777 a’ ﬂ’ J/)
= Mk(l, 9](—1 + (k - 1)77’ n, «a, 137 )/)

, ., (1310
= CO0k—1 — kn) — COXOk—1 + kn) — zkan + 2kBn + 1gkyn
= 2sinknsinf;_1 — %ern + 2kBn + %k}/ns.
If kn is not a multiple ofr and if
kn o 42
St (3 —B-frn?)| <1 (13.11)

then thek-pulse Melnikov function (13.10) has simple zeroséini at some
Or—1 = 9_/{,1,1 andf,_1 = 9_/{,1,2 = — 9_/{,1,1. If for i = 1 ori = 2, the values of
the j-pulse Melnikov functionV; (1, 6g;, n, &, B, y), With g ; = Ox_1,; + (k—1)n
andj =1,...,k — 1, are different from zero, and i, n, «, 8, andy satisfy the
inequality (13.11), then the stable and unstable manifMéis 72.) andW* (.#..)
intersect transversely along a symmetric pair of two-dimensidrpllse homo-
clinic surfaceszi”f”’(ék_l,,»). In the phase space of the inner system (13.7), this
pair collapses smoothly onto a pair of limitirkgpulse surfaceszi”g”’(ék,l,i),
parametrized by the expressions (13.3) Witk 1,00 = 6x_1.; + (k — 1 — 2j)n,
wherej = 0,...,k — 1, and arbitraryh. The sign in each of these expres-
sions is determined by the sign of the correspondifmulse Melnikov function
M](la 90,1" n, «, ﬂ? ]/)

We now describe a new example of orbits homoclinic to the saddiehose
existence follows from Proposition 12.3, provided that we fix0Oy < 8 < 1
andy = 9%y = Q). If 5« — 2y = 0, then for anyj = 1,...,k, the j-
pulse Melnikov function (13.10) becomes equal to the difference in the values of
the outer Hamiltonian (13.6) at the endpoints of the singular orbit along which
this Melnikov function is calculated. This implies, in particular, that khpulse
singular orbits picked out by the zeros of the Melnikov function must have both
their endpoints at the same value of the outer Hamiltonian (13.6). Moreover, since
n « 1, for all finite k, equation (13.10) becomes approximatelygginy ~ —8, so
thaték,lyl ~ —arcsing andék,l,z ~ —m + arcsing, which are the coordinates
of the centerp and the saddlgy, respectively.

From the discussion in the previous paragraph, it easily follows that for
fo; = Or_1; + (k —1—2j)n, withi = 1, 2, the values of thg-pulse Melnikov
functionsM; (1, 6o.i, 1, @, B, y) are different from zero foralf = 1,...,k — 1,
and are in fact of the same sign for gll This sign is negative fofp 1 and
positive forfp 2. Therefore, thek-pulse homoclinic surfaceEi”f’y(ék_l,l) and
Ei”f’y(ék_l,z) indeed exist in this case for all, and so do the limiting-pulse

surfaces,Ei’g””(ék_l,l) and Ei”’g’y(ék_l,z). Since the regions enclosed by the
two homoclinic manifoldsV,. (_#£) andW_(_#¢) are both convex, and the normal
n = (p, —n%q(I — ¢?), 0, 0) is easily seen to point out of them, it follows that or-

bits forming each of the surfac@i”g’y(ék_l,l) are parametrized by expressions
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(13.3) with alternating signs, and orbits forming each of the surfé)ie%” (6k—1.2)
are parametrized by expressions (13.3) with the same signs.

From the discussion in the previous two paragraphs, it follows that there exist
an integen > 1 and 22 symmetric pairs ok-pulse singular orbitsl“fk, with k =

1, ..., n, which lie on then pairs of limiting intersection surfacesi”g”’(ék,l,l),

and connect 22 pairs of points on the separatrix on the cylinde?y. The sign

in the subscript of the symbdl’fk is the same as the sign of the corresponding
surfacezj‘:’y’g’y(ék_l,l); the sign in the superscript is the same as the sign of the
h coordinate along the singular ortfnfk. As mentioned above, thgcoordinates
along the pulses of the orblffk have alternating signs. The equality of the
pulse Melnikov function and the corresponding difference in the values of the outer
Hamiltonian implies that fok > [, the takeoff point of the singular orblffk is

to the right of the takeoff point of the singular orblel, and the landing point of
the singular orbitl“fk is to the left of the landing point of the singular orlﬁfl.
Moreover, the takeoff point of any singular orbﬁfk is to the right of the landing
point of any other singular orbit’fl.

We can now form a countable infinity of singular homoclinic orbits as follows.
Each such orbit starts along the right-hand branch of the unstable mawifalch)
of the saddleg on the annulus#Zy. The singular homoclinic orbit then takes off
from .#/g along one of the singular-pulse orbitsl“;k, and lands back onZg
at a point on the separatrix that connects the sadglte itself. After following
the separatrix for a while, the singular homoclinic orbit again takes off along some
singular/-pulse orbitl“;,, and so forth. Eventually, the singular homoclinic orbit
lands back on the separatrix and either follows it to the takeoff point of one of the
two heteroclinic orbits'};, where it takes another excursion along one of them
before returning to the saddig, or else proceeds directly to this saddle.

With each singular homoclinic orbit described in the previous paragraph, we
can associate in a one-to-one fashion a sequéneerio2, Whereo is either an
empty sequence or else is a string of symhigfs with variousk, andoy is either
empty or equal to one of the symbdly, . Eitheroy or o2 must be nonempty. We
denote the singular homoclinic orbit corresponding to the seqt&byd‘os. If we
denote by—S the sequence obtained fro$rby interchanging the- and— signs,
then the corresponding singular homoclinic orﬂdTS is the mirror image of the
singular orbitFOS under the transformatiotp, ¢) — (—p, —¢q), which preserves
equations (13.1).

Proposition 12.3 now implies

Proposition 13.1. Fix 0 < n < B < 1andj = n%y = (1). Let the sequence
S and its corresponding singular homoclinic ortﬁBg be as in the preceding two
paragraphs. Then, there exists a continuous funatigz) with 5a5(0) — 2y = 0,
such that for small positiveande = a5(e), there exists an orbiff, homoclinic to
the saddle,. The orbitFSS is @ (8(g))-close to the singular orbif‘os, wheres (¢) is
afunction withd(¢) — 0ase — 0. Moreoveras(s) = a_g(¢), and the orbitl"gs

is the mirror image of the orbiFSS under the transformatiotp, ¢) — (—p, —¢q).
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(P>

Fig. 13.3. Multi-bump orbits for the sequence constructed using Proposition 13.1.

As noted above, the sign of tliecoordinate along the pulses in eaclpulse
stretch of the orbit”’ alternates (see Figure 13.3).

In the same fashion, we can show the existenck-pifilse orbits homoclinic
to the saddles, that lie on the surface?i”f’y(ék_l,z). The ¢ coordinate along
all pulses of such an orbit has the same sign. The more complicated counterparts
of these orbits consisting of several separate groups of pulses, such as the ones
described in Proposition 13.1, do not exist.

Finally, we mention that we can use Propositions 12.4-12.6 to construct
Silnikov orbits [63-65] homoclinic to the spiral-saddig, heteroclinic connec-
tions between the saddig andc,, as well as orbits homoclinic to periodic orbits
in the resonance band in the Hamiltonian case wheas 8 = y = 0. All of
these homoclinic and heteroclinic orbits consist of several groups of consecutive
bumps, separated by long stretches near the annutiys and can be associated
with symbol sequences.

14. Conclusions

The main result of this paper, Theorem 1, and its extensions presented in Sec-
tion 10, consists of a tool that, for systems of the form (2.1), is comparable in
its applicability and efficiency to the celebrated Melnikov method. As such, it
is useful both for solving applied problems [6, 7, 38], and for unifying existing
perturbation-theoretic approaches to detection of homoclinic and heteroclinic or-
bits in near-integrable systems. In this latter vein, this paper already develops a
unifying approach to the results of references [6, 59, 23, 32]. We also believe that
our paper may be used to provide an alternative derivation of the result presented in
[21]. However, there are still many unresolved and challenging problems on the way
to develop our tool to handle systems even more general than (2.1), thereby achiev-
ing the same level of generality that the Melnikov method has reached through years
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of investigation devoted to it. Moreover, our study raises new problems which fur-
ther generalizations of the results described in this paper could help solve. Here
we mention just some of the obstacles and problems, which we are planning to
investigate in future work.

As we have mentioned immediately after Assumption 1, we impose this techni-
cal requirement that the unperturbed problem have an analytic right-hand side for
the sole purpose of simplifying the presentation. There appear to be no major obsta-
clesto generalizing our results to the case when the Hamiltonian furféien/ ) of
the unperturbed system (2.4) has a finite degree of smoothness. This generalization
may be achieved by using the Smooth Linearization Theorem for two-dimensional
nonlinear saddle-type equilibrium points, described in [11, 61, 4, 67, 68], instead
of the analytic theorems described in [49, 60, 62].

On the other hand, while the results of Section 10 show that Theorem 1 is also
easily generalized to cover systems with sevérahdd variables, the same is not
true for systems in which the vectohas more than two components. There appear
to be two major obstacles on the way towards achieving this generalization. The first
is that, in general, smooth linearization is not possible for systems with multiple
degrees of freedom [11, 61], and thus the results of Sections 4 and 5 cannot be
immediately applied to this case. We do believe, however, that the situation should
be different for integrable Hamiltonian systems. This is indicated, for example, in
the results of [27, 12, 33], but this type of smooth linearization still needs to be
formulated in the context of the systems of interest for our theory. Moreover, for
multiple degrees of freedom, the situation is further complicated by the possibility
of resonances.

The second obstacle is that, when the vegtbas more than two components,
certain orbits that enter the neighborhobgl(_#Z.) of the hyperbolic manifold
¢ a distance” (¢) close to its local stable manifold| .(.7Z.) may exit this
neighborhood a distane@'(¢¥), with « & 1, away from the local unstable mani-
fold W .(.#2;) of .7Z.. This property is not limited to complicated nonlinear and
nonintegrable systems; it even occurs in simple four-dimensional linear models in
which the role of_#2, is played by the origin. In the problem of finding a Mel-
nikov function for multi-pulse homoclinic orbits, this property is likely to introduce
new singular submanifolds of the manifold’, the piece of the unstable manifold
wWH(#¢,) of the hyperbolic manifold#Z, which windsn times in and out of the
neighborhoodJs (.#4.) of . Z¢. and finally gives rise to an-pulse homoclinic in-
tersection surface. These singular submanifolds will probably have to be described
by conditions somewhat analogous to the nonfolding condition (5.29), but these
new conditions still need to be derived.

Other generalizations of our result include the case of equations (2.3), in which
the perturbed system is also Hamiltonian. In this case, as mentioned in Section 10,
the manifold 77, is filled by Kolmogorov-Arnold-Moser tori, and the interesting
guestion is not just whether the stable and unstable manifoldg/fintersect
along multi-pulse homoclinic intersection surfaces, but if this also happens to the
stable and unstable manifolds of the individual tori. The answer will be provided
by computing additional multi-pulse Melnikov functions in the direction of the
I coordinates, as derived in [25, 26, 58]. Standard single-pulse versions of these
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Melnikov functions have the rather annoying property that the integrals defining
them do not converge absolutely, and one mustin fact choose special time sequences
to make these integrals converge at all [58]. The time sequences that resolve this
non-convergence property are closely related to the geometry of the phase space
near the Kolmogorov-Arnold-Moser tori, and the fact that orbits wind densely on
these tori. A careful study of this geometry may also be needed while deriving
estimates analogous to those in this paper’s Sections 7 and 8 for these additional
Melnikov functions.

References [6, 48] study the limiting case in which one of the periodic orbits
on the two-dimensional unperturbed hyperbolic annulés degenerates into a
saddle-center equilibrium point. A particular limit of Theorem 1 or its extensions
in Section 10 could be developed to cover the general version of this limiting case.

A closely related problem is that of classifying homoclinic orbits as to whether
they are “secondary” or “primary,” that is, whether or not their existence is a con-
sequence of the existence of some other homoclinic orbits. In particular, in time-
periodically modulated planar conservative systems which possess homoclinic tan-
gles [52, 19], all 1-pulse homoclinic orbits are primary, and all multi-pulse ho-
moclinic orbits are secondary. (Here, we do not make any distinction between
“secondary,” “tertiary,” etc., which is sometimes made in the literature.) As stated
in the introduction, the existence of these secondary homaoclinic orbits follows di-
rectly from the topology of the homoclinic tangle, which is a direct consequence
of the existence of a single simple zero of the 1-pulse Melnikov function. Some
of these secondary homoclinic orbits can be shown to exist directly by using the
method of [59] or that developed in this paper. However, it is not clear whether
all the secondary homoclinic orbits in such perturbed planar conservative systems
can be detected in this way, since the method only provides a sufficient condition
for their existence. If the method fails to detect all secondary homoclinic orbits, an
interesting question would be just what geometric property distinguishes the ones
that are detected from the ones that are not.

Adifferent case of distinction between primary and secondary homaoclinic orbits
occurs when the dynamics on the manifol, is slow, such as in the case of
orbits homoclinic to resonance bands discussed in Sections 12 and 13. In this case
all multi-pulse orbits, which consist of a single group of fast consecutive pulses,
are primary. Multi-bump orbits, which consist of several groups of fast consecutive
pulses interspersed with slow segments that slowly travel along the hyperbolic
annulus #, are, on the other hand, secondary. The existence of these secondary
orbits can be deduced from the existence of several zeros of the appropriate multi-
pulse Melnikov functions, as discussed in Section 12 and [32]. This example also
shows that, while secondary homoclinic orbits do come into being only because
some primary homoclinic orbits already exist, the actual process of establishing the
existence of secondary orbits from that of the primary orbits, developed in [32],
need by no means be trivial.

The distinction between primary and secondary homoclinic orbits is much less
clear in the model of an atmospheric slow manifold presented in Section 11. In this
example, there are occasions in which 2-pulse homoclinic orbits exist without there
being any 1-pulse homoclinic orbits nearby, yet, on the other hand, there exist near
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anyk-pulse homoclinic orbit cascadesepulse homoclinic orbits with any > k.

Itis quite clear that the 2-pulse homoclinic orbits with no nearby 1-pulse homoclinic
orbits must be primary, but the answer to the general question of which of the multi-
pulse orbits are primary or secondary is as yet unresolved. This question is even
more interesting, because, as mentioned at the end of Section 3, a whole class of
secondary multi-pulse homoclinic orbits in the model can be obtained by using the
Exchange Lemma [31], a technique different from those used in this paper. More
generally, in the context of the case when the dynamics on the normally hyperbolic
manifold.Z, is fast, we notice that the folds of the winding pi€#eof the unstable
manifoldW* (_#¢,) certainly have implications on the multiplicity of the transverse
intersections with the stable manifold® (_#2.). Since these intersections define
higher-pulse homoclinic orbits, we can expect these folds to play a role on how the
multi-pulse homoclinic orbits are organized in the case when the dynamics on the
annulus 7, is fast. Exactly what this role is and its relation with the cascade of
higher-pulse homoclinic orbits mentioned above have yet to be explored.

Finally, we point out that, apart from its main result, Theorem 1, and its gen-
eralizations given in Section 10, an interesting and potentially useful side result
of this paper is Lemma 1. This lemma, whose predecessor was developed in [71],
addresses the situation in which a manifdfl enters the small neighborhood
Us(#¢,) of the hyperbolic annulusZ, a distance” (¢) close to the local stable
manifold W;i .(.#2.), and exitsU;(.#¢.) the same distance from the local unsta-
ble manifoldW¢ .(.#2¢). The manifold’Z must have the same dimension as the
manifolds Wi .(.7Z.) and W¢ .(.7¢). If the tangent spaces of the manifold§
and Wi .(.72.) are also” (¢)-close when these two manifolds enter the neigh-
borhoodUs(.#2.), Lemma 1 gives precise conditions for when the tangent spaces
of the manifoldZ" andW,¢ .(.7Z.) are almost” (¢)-close as these manifolds exit
Us(.#¢), and locates folds oty when these conditions are not met. We have
already mentioned in the introduction that, while the tools used for establishing
this lemma have much in common with those used for establishing the Exchange
Lemma [28-31, 72, 70], the two lemmas describe complementary geometries. We
believe that Lemma 1 and its usefulness go beyond the framework of this paper.

In conclusion, in this paper we have developed a new computable criterion that
lets us establish the existence of multi-pulse homoclinic and heteroclinic orbits in a
large class of near-integrable systems with many degrees of freedom. This criterion
consists of finding simple zeros of thepulse Melnikov functionMy (¢, I, 6g, ),
and unifies several previously disjoint but related techniques. We have also devel-
oped alemma that describes in detail the behavior of certain manifolds that fly very
close to a hyperbolic manifold without intersecting its local stable and unstable
manifolds.
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