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The purpose of this note is to give a simple algebraic proof of the following
special case of Fujita’s Freeness Conjecture:

Theorem 1. LetX be a smooth projective algebraic variety of dimensimver
a field (of any characteristic), and It be a very ample line bundle &f. Then
Kx + dL is globally generated unles§ = P? and L is the hyperplane bundle.

The proof here actually proves a stronger statement than Theorem 1 above.
The varietyX need not be smooth; F-rationality is sufficient (the definition is
recalled in the next section; in characteristic zero it is equivalent to rational
singularities). Also, the line bundle need not be very ample; it is sufficientif
is globally generated and the dimension the complete linear sy&tesgreater
thand. These generalizations are summarized in Theorem 2. Furthermore, with
a little more work, the same ideas prove even stronger statements, which are
interesting algebraically, but difficult to interpret geometrically (see Theorem 3).

Fujita’s Freeness Conjecture predicts the same conclusion under the much
weaker hypothesis thdt is only ample. While open in general, for varieties
defined over a field of characteristic zero, it is known in dimension four or less
[R], [EL], [Ka]. See also [AS] for important progress on the conjecture, and [Ko]
for a good survey about it.

In characteristic zero, it is not hard to give a geometric argument of the
special case above using the Kodaira Vanishing Theorem. The goal here is to
give a simple, quite different proof that is purely algebraic and valid in any
characteristic. This argument offers a nice illustration of how tight closure can
be used to prove geometric theorems in arbitrary characteristic without the use
of the usual tools of desingularization or vanishing theorems.
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In [S1], a different version of Fujita’s Conjecture was considered. There it
was shown thaK y + (d + 1) L is globally generated (instead &fy + d L) where
X is a smooth projective variety of any characteristic of dimengiamdL is a
globally generated ample line bundle. The proof of Theorem 1 begins by using
the same equivalent form of Fujita’s Conjecture in terms of local cohomology as
in [S1], but more subtle facts about tight closure are needed to reach the sharper
conclusion above.

Theorem 1 has a nice application to a seemingly unrelated result. As observed
by Ein in [Ei], Theorem 1 implies the finiteness of the Gauss map from X to the
appropriate Grassmannian defined by sending a poiitanits tangent plane. A
differentway of deducing that the dimension of the Gauss imagjisisonsidered
in [SSU], which also uses tight closure in a similar way as in this paper.

Thanks to Rob Lazarsfeld for helpful discussions, in particular for pointing
me towards [Ei].

The proof of Theorem 1

First some notation and review of facts. Détbe a normal projective algebraic
variety of dimensior/ over a field (of any characteristic), and lebe an ample
line bundle onX. Then the section rin@,‘f:OHo(X, nL) of the pair(X, L) will
be denoteds and its unique homogeneous maximal ideal will be deneted
Recall thatS is a normal graded ring of dimensiant- 1 over a fieldk such that
ProjS = X.

The proof uses the following way of interpreting global generation of adjoint
linear series in terms of local cohomology.

Proposition A. [S1, 1.1]With notation as above, the following are equivalent.

(1) The reflexive she&@x (K x + nL) is globally generated;

(2) There exists an intege¥ such that every element of the local cohomology
module H?+1(S) of degree less tha has a non-zero multiple of degree
—n.

Here,Ox (Kx) denotes the unique reflexive sheaf that agrees with the invert-
ible sheaf of algebraid-forms on the smooth locus & andOx (Kx + nL) is
its tensor product with the’” power ofL.

The proof of Theorem 1 will be valid, not only for smooth projectiebut
for any projective F-rational variet}{. We recall the definition:

Definition. A local ring of prime characteristic is F-rational if every ideal
generated by a system of parameters is tightly closed. A scheme of prime char-
acteristic is F-rational if all its local rings are.

For algebras essentially of finite type over a field of characteristic zero, one
can define a concept of "F-rational type" based on reduction to characteristic
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The pointis that thé-algebrak may be written as atensor prodé@4 R4, where

A is a finitely generate@d-algebra contained ik and R, is a finitely generated
A-algebra; then we say th&thas F-rational type if on a dense set of Spethe
closed fibers of the map SpRg — Sped (which are algebras over finite fields

of different characteristics) are F-rational. See [S2] for the detailed definition.
F-rational type, it turns out, is equivalent to rational singularities [S2, H]. The
important fact about F-rational local rings we will use here is the following:

Proposition B [S2]. Ifalocalring (R, m) of prime characteristic and dimension
d + lis F-rational on its punctured spectrum, then the tight closure of the zero
module in the local cohomology modut&+1(R) has finite length.

The proof will also require the following result about tight closure of ho-
mogeneous ideals. This is an improvement of a Theorem in [S3]; its proof will
appear after the proof of the main theorem.

Theorem C. Let R be a normalN-graded ring over a perfect field of prime
characteristicp, and letl; and I, be ideals ofR generated by homogeneous
elements of degrees strictly less ttdaand greater than or equal tbrespectively.
Letz be an element ak homogeneous of degréeThen ifz € (I, + I)*, then
zelf+ .

Theorem 1 is a special case of the following theorem.

Theorem 2. LetX be a projective variety of dimensidrover afield of arbitrary
characteristic. Assume that is F-rational (type). LetL be a globally generated
ample line bundle such that the dimension of the complete linear sy&tem
associated td. exceedd. ThenKy + nL is globally generated for alk > d.

Because every smooth variety is F-rational (type), and every very ample
line bundle (with the exception of the hyperplane bundlePéh satisfies the
hypothesis of Theorem 2, Theorem 1 follows immediately from Theorem 2.

We now prove Theorem 2. First, a standard argument reduces the problem to
the case where the ground field has prime charactefigtive details are worked
outin [S1]). Thus the section rin§may be assumed to be a graded ring of prime
characteristic. The point now is really to prove the borderline casekthatd L
is globally generated; in any case, the case whesed is covered by [S1].

BecauseX is F-rational, its section ring is F-rational on its punctured
spectrum Spe&— m. By Proposition B, this means that the tight closure of the
zero module in the local cohomology modu#*1(S) has finite length. Thus
there exists an integéy such that the tight closure of zero is contained in the
submodule of7¢+1(S) generated by elements of degrmeand higher.

To prove the theorem, we use the equivalent formulati@bove. Let; be a
homogeneous element &f¢+1(S) of degree—n < min(N, —d — 1), so thaty
is not in the tight closure of zero. We need to show thlaas a non-zero multiple
of degree—d. Suppose that this is not the case, that is, supposé thakills 7.
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Becausd. is globally generated§ admits a system of parameters of degree
one (if necessary, we can enlarge the ground field, see [S1, last paragraph of
Sect. 2]). Letxg, x1, ..., x4 be a system of parameters of degree one. The local
cohomology modulgZ?+1(S) can be computed as the cokernel of the following
map

Sx/xo & Sx/xl - Sx/xd - Sx
J .
(sox(’) $1X] sdx;) . D o(=1) six]

xt 7T oxt 7Tyt x!

wherex denotes the productyx; ...x,; of the x;'s. (This is the last map in
the Cech complex for computing the cohomology of the she#& pfalgebras
P2, Ox(nL) with respect to the affine cover of given by thed + 1 open
setsU; wherex; does not vanish.) Thus we represent elementd Hf1(S) by
fractions[ %], with the square bracket reminding us of the equivalence relation
on fractions. In [S2] it is proven that an elemért] is in the tight closure of
the zero module iF4+1(S) if and only if the element is in the tight closure of

the ideal(x}, xi, ..., x}) in S. In particular, the elementabove, which is not in

the tight closure of zero, can be writte ], wherez is not in (xg, xg, ..., x))*.
Because the degree nfis —n, we see that-n = degz —t(d + 1).

Now if S,_, Kills 5, then also the subset consisting of degree d mono-
mials inxg, x1, ..., x4 Kills 5. This means that all elements of the local coho-
mology module of the formi %], wherew is in the ideal(xo, x1, . .., xs)" ™
are zero. In particular, all such elements are in the tight closure of zero, so
that (xq, X1, ..., x4)" %z C (xg, x5, ..., xl)*. That is,z € (x{, x1, ..., x)* :

(x0, X1, ..., xd)nfd.

The colon capturing property of tight closure allows us to manipulate pa-
rameters as if they are a regular sequence, up to tight closure; that is, we may
formally compute the colon ideal as if the are the variables in a polynomial
ring, and the actual colon ideal will be in the tight closure of this formal colon
ideal (see [HH, Sect.7]). In this case, we can use colon capturing to conclude
that this colon ideal is contained in

— —(n— *
((xgy XL, + oo X)) + (0, X1, .., xg) 7DD C=DEDT

Because the degree ofs ¢ (d + 1) — n, we see that
z € ((xf), XL, e X))+ (xo, X1, . xd)degz)* .
By Theorem C above, in fact,

* d
ZE€ (x(’),xi,...,x;) + (x0, X1, - . ., xq)%¢9.
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We writez asz’ + y wherey andz’ are homogeneous of the same degree as
z, andy is ak-linear combination of the monomiatg’x;’ ... x)/ of degree equal
to the degree of andz’ € (xg, ..., x))*. But then

7 y
1= 5]+ 1]
Where[i—f] is in the tight closure of zero ik ?*1(S). But because this tight

closure module vanishes in degrees less thiawe see that;é] = 0, since its
degree is-n < N. Thus we may assume that

io i1 iq
n= |:Z)‘ioi1..‘idxo Xy ..o Xy j|

x!

We are assuming thatis a non-zero element of degre@. Thus at least one
of the coefficients,; is non-zero. Note that we can also assume thai; afe

. . . io il_., id .
strictly less than, for otherwise, the fractioR"L*. represents zero in local
cohomology.

Assume thak = 1y, ;, is not zero. Let

_ t=1—ip t—1—i1 t—1—iy4
w = Xy X1 ce Xy S,

wheres is an arbitrary element of degree one. The degreeisf(t — 1)(d + 1) —
Qip+l=@t-D(d+1)—degz+1= (t—1)(d+1)—(—n+t(d+1))+1=
n — d. Now multiplyingn by w we have

Asx!~1 AS
U)T’]: ; = — 1,
X X
since each of the other terms in the product is of the form

1o Almioti0  —1—ig+jp o lmidtid
Asxg X1 171..x,

= where at least one of the sums 1 —i; + ji is

greater than or equal to
Now if S,,_, kills n, then the element

Asxi—1 AS
wn = ; = _— s
X X

is zero, whence € (xo, x1, ..., xg)*. But sinces has degree one, Theorem C
above forces € (x, ..., xq).

Now because is an arbitrary element of degree one, we can obtain a con-
tradiction by choosing to be not in the linear system spanned by theThis
is always possible if the dimensiadi®(X, L) exceeds! + 1. In particular, if
L is very ample, then it is possible (except when= P’ andL = O(1)), for
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otherwise the embedding &f given by the complete linear systgi| would
necessarily be an isomorphisin— P“. This completes the proof.o

We now prove Theorem C. This Theorem was proven in a slightly different
form (but not strong enough for our needs here) in [S3]. We draw heavily from
the ideas in that paper, but repeat some arguments for the sake of readability.

Assume that € (I1 + )" butz ¢ I + I, and that this example of the
failure of our conclusion is choosen so thighas the minimal possible number
of generators among all such examples. L€t . ., x, be the generators d§,
all of which have the same degreezas

We have equations

cz? —agxl € (I + (x2, x3, ..., x, )1

forallg = p¢ > 0, wherel! denotes the ideal ak generated by the — th
powers of the generators of Herec anda, may be assumed homogeneous of
the same degree. By our minimality assumptignis non-zero for all largg .

As pointed out in [S3], fixinge, there exists a homogeneofise E; =
End,,s (R) for somep’ such tha# (c) = 0 butd does not Killa, for all g > p!
unlessa, = X,c for someir, € K. (The point is that the decreasing chain of
finite dimensional vector spaces

-+ D Anng, (Anng, (c)) D Anng, (Anng, , (c))

of all degreed elements annihilated by ak?’ -linear endomorphisms oR
annihilatinge must eventually stabilize, and this stable vector spakeighend
may be taken to be one of the finitely many homogenem’tfsmodule generators
for End,,s (R).)

Applying 6 to the equations above, we have equations

g(aq)-xg € (Il + (XZ’ x37 cet -xl))[q]

for all large q. If a, is not in the K-span ofc in R for infinitely many ¢,
these equations show that € (/1 + (x2, x3,...,x,))*. In this casez €
(I + (x2, x3, ..., x,))*, contrary to our minimality assumption.

Thus it must be that for all large, we havea, = Aic for somer] in K.
(SinceK is perfect, there is no harm in writing our scalars in the convenient form
A4.) If all, or at least infinitely many, of thi, are equal, we get equations of the
form

c(z —ax))? € (It + (x2, x3, ..., x,)4!
for infinitely manygq, which shows that — Axy is in (I3 + (x2, x3, ..., x,))*.
By our minimality assumptiong — Axs is in I + (x2, x3, ..., x,), whencez

is in I] + I and the proof would be complete. Thus we need to show that the
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A4 are equal for infinitely many. If K is finite, this is immediate; this was the
assumption in [S3] which we must now weaken.

Letd be a test element fak not in theK-span ofc (such exists becaugeis
normal, and so the test ideal has height two or more). According to the arguments
above, we have sets of equations of the form

c(z — Agx1)? € (It + (x2, x3, ..., x, NI

and
d(Z - qul)q S (Il + (x27 x37 ceey xr))[ql

for all largeq. Multiplying the form byd 1. and the latter by and subtracting,
we get equations

Cd()\'q - I’Lq)qzq € (Il + (-x2’ X3y eets -xr))[q]'

Again, by our minimality assumption, we see that I + I, unlessu, = A,
for all largegq.

But the choice of/ was arbitrary, and we can takleto be, for exampleg?,
which is clearly not in thek-span ofc. This produces equations of the form

P (z = hgpx))? € (I + (x2, X3, . . ., x,))\4P,

whereas by raising the equations above tottepower we get

(2= hgx)™ € (Iy+ (x2, X3, ..., x) ).
Subtracting these, we see that eithere (I1 + (x2, x3, ..., x,))*, whencez €
(I1 + (x2, x3, ..., x,))*, contrary to minimality, or that,, = 1,. Iterating this

process, we see we can figdsuch that for aly > 0, Ao, = 1¢. Butthen the
equations

ez — hogx1)? € (I + (x2, X3, ..., x,))1¢7

can be written
c(z —rogx1)? € (I + (x2, x3, ..., x,))' 7!
whereQ is fixed, for all largeg. This shows that
7 —hoxy € (It + (x2, x3, ..., x,))".

But now by minimality,z — Apx1 € I + (x2, x3, ..., x,), whencez € I + I».
This completes the proof of Theorem C.

Finally, we point out the following purely algebraic result which is a gener-
alization of Theorem 2.
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Theorem 3. LetS anN-graded domain over a field, F-rational on its punctured
spectrum. Assume thatadmits a system of parametdrs, . .., x,} of degree

one generating an ideal whose tight closure is properly contained in the unique
homogeneous maximal idealof S. Then every element of the local cohomology
module H4*1(S) of sufficiently small degree has a non-zero multiple of degree
—d.

To prove Theorem 3, we begin with exactly the same observations as in the
proof of Theorem 2. Ley) = [5] € H4*1(S) be an element of degreen
as in the proof of Theorem 2. If the ide@lo, x1, ..., x;)""¢ does not anni-
hilate n, thenn has a non-zero multiple of degreal and there is nothing to
prove. Otherwise, exactly the same argument shows that we can assume that
2= higin..igXg X1 - - - X, Where each exponentis less than.

Now, since(xo, ..., x4)* is properly contained im, we can find a homoge-
neous element, say, of positive degreé, which is not in(xo, ..., x;)*. We
claim that(xo, . . ., x4)"~“~*w does not annilihate, in which case the proof will
be complete, because themas a non-zero multiple of degreel.

To check the claim, assume on the contrary that . .., x;)" ¢ *w Kkills
n. Then, using the same method as above, we sedithat. ., x;,)" ¢ *wz €
(x5, - ... x})*. Using the colon capturing property of tight closure, we see that

wz € [(x§, ..., x4) + (x0, X1, ..., xd)(dJrl)(t*l)*(”*d*k”l]* .

Remembering that = 3" Agi,..,x0x1 . .. x4, where each monomial in the sum
has degree-n + (d + 1)t, we isolate one term of this sum, sg§fx;*...x}",
and observe that

(0. .. xg ) w e [(xhy ..oy x5 + (x0, .., x) DO 4
({xé’oxll’l Coxh Z bj = (d + )t —n,

with someb; # aj})

C [(xé, ce X))+ <{x8°xi’l ox

ij =(d+ 1Dt —n,
with someb; # aj})]*

where({x°x?* ... x5 Y b; = (d + 1)t — n, with someb; # a;}) denotes the

ideal generated by all monomials of degtde+ 1)r —n exceptyg’ . . . x;*. Now,
we again use colon capturing to estimate

[(x('), ce XD+ ({xgox[fl oxh Z bj =(d+ Dt —n,

with someb; # aj})]* Dl x4,
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which is an ideal containing. We know that the formal colon is a monomial
ideal inxo, ..., x4, SO provided the colon ideal is not the unit ideal, the result is

certainly contained irixo, .. ., x;)*. But on the other hand, the formal colon is
not the unit ideal, because it it were, thefi ... x ¢ would be divisible by one
of the generators! or x¢° ...x;’, and it is not. This forces € (xo, .. .. xa)*,

contrary to the choice af, completing the proof of the claim, and the proof of
Theorem 3.

This raises an interesting questionSifs a section ring, catxo, ..., xy)* =
m for some polarized varietyX, L) other thanP", O(1) ? If L is very ample,
we can not havéx, ..., x;)* = m by Theorem C above. It is easy to see
that in general, a graded ring can hawg, ..., x;,)* = m. For example, if
S = k[x,y,z]/(x? + y* + 7%, the tight closure of(y, z) is (x, y, z) in all
characteristics. However, this ring can not be a section ring because its Hilbert
function is not eventually polynomial.
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