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The purpose of this note is to give a simple algebraic proof of the following
special case of Fujita’s Freeness Conjecture:

Theorem 1. LetX be a smooth projective algebraic variety of dimensiond over
a field (of any characteristic), and letL be a very ample line bundle ofX. Then
KX + dL is globally generated unlessX = P

d andL is the hyperplane bundle.

The proof here actually proves a stronger statement than Theorem 1 above.
The varietyX need not be smooth; F-rationality is sufficient (the definition is
recalled in the next section; in characteristic zero it is equivalent to rational
singularities). Also, the line bundleL need not be very ample; it is sufficient ifL

is globally generated and the dimension the complete linear system|L| is greater
thand. These generalizations are summarized in Theorem 2. Furthermore, with
a little more work, the same ideas prove even stronger statements, which are
interesting algebraically, but difficult to interpret geometrically (see Theorem 3).

Fujita’s Freeness Conjecture predicts the same conclusion under the much
weaker hypothesis thatL is only ample. While open in general, for varieties
defined over a field of characteristic zero, it is known in dimension four or less
[R], [EL], [Ka]. See also [AS] for important progress on the conjecture, and [Ko]
for a good survey about it.

In characteristic zero, it is not hard to give a geometric argument of the
special case above using the Kodaira Vanishing Theorem. The goal here is to
give a simple, quite different proof that is purely algebraic and valid in any
characteristic. This argument offers a nice illustration of how tight closure can
be used to prove geometric theorems in arbitrary characteristic without the use
of the usual tools of desingularization or vanishing theorems.
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In [S1], a different version of Fujita’s Conjecture was considered. There it
was shown thatKX +(d +1)L is globally generated (instead ofKX +dL) where
X is a smooth projective variety of any characteristic of dimensiond andL is a
globally generated ample line bundle. The proof of Theorem 1 begins by using
the same equivalent form of Fujita’s Conjecture in terms of local cohomology as
in [S1], but more subtle facts about tight closure are needed to reach the sharper
conclusion above.

Theorem 1 has a nice application to a seemingly unrelated result.As observed
by Ein in [Ei], Theorem 1 implies the finiteness of the Gauss map from X to the
appropriate Grassmannian defined by sending a point inX to its tangent plane. A
different way of deducing that the dimension of the Gauss image isd is considered
in [SSU], which also uses tight closure in a similar way as in this paper.

Thanks to Rob Lazarsfeld for helpful discussions, in particular for pointing
me towards [Ei].

The proof of Theorem 1

First some notation and review of facts. LetX be a normal projective algebraic
variety of dimensiond over a field (of any characteristic), and letL be an ample
line bundle onX. Then the section ring⊕∞

n=0H
0(X, nL) of the pair(X, L) will

be denotedS and its unique homogeneous maximal ideal will be denotedm.
Recall thatS is a normal graded ring of dimensiond + 1 over a fieldk such that
ProjS = X.

The proof uses the following way of interpreting global generation of adjoint
linear series in terms of local cohomology.

Proposition A. [S1, 1.1]With notation as above, the following are equivalent.

(1) The reflexive sheafOX(KX + nL) is globally generated;
(2) There exists an integerN such that every element of the local cohomology

moduleHd+1
m (S) of degree less thanN has a non-zero multiple of degree

−n.

Here,OX(KX) denotes the unique reflexive sheaf that agrees with the invert-
ible sheaf of algebraicd-forms on the smooth locus ofX andOX(KX + nL) is
its tensor product with thenth power ofL.

The proof of Theorem 1 will be valid, not only for smooth projectiveX, but
for any projective F-rational varietyX. We recall the definition:

Definition. A local ring of prime characteristic is F-rational if every ideal
generated by a system of parameters is tightly closed. A scheme of prime char-
acteristic is F-rational if all its local rings are.

For algebras essentially of finite type over a field of characteristic zero, one
can define a concept of "F-rational type" based on reduction to characteristicp.
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The point is that thek-algebraR may be written as a tensor productk⊗ARA where
A is a finitely generatedZ-algebra contained ink andRA is a finitely generated
A-algebra; then we say thatR has F-rational type if on a dense set of SpecA, the
closed fibers of the map SpecRA → SpecA (which are algebras over finite fields
of different characteristics) are F-rational. See [S2] for the detailed definition.
F-rational type, it turns out, is equivalent to rational singularities [S2, H]. The
important fact about F-rational local rings we will use here is the following:

Proposition B [S2]. If a local ring(R, m)of prime characteristic and dimension
d + 1 is F-rational on its punctured spectrum, then the tight closure of the zero
module in the local cohomology moduleHd+1

m (R) has finite length.

The proof will also require the following result about tight closure of ho-
mogeneous ideals. This is an improvement of a Theorem in [S3]; its proof will
appear after the proof of the main theorem.

Theorem C. Let R be a normalN-graded ring over a perfect field of prime
characteristicp, and letI1 and I2 be ideals ofR generated by homogeneous
elements of degrees strictly less thanδ and greater than or equal toδ respectively.
Let z be an element ofR homogeneous of degreeδ. Then ifz ∈ (I1 + I2)

∗, then
z ∈ I ∗

1 + I2.

Theorem 1 is a special case of the following theorem.

Theorem 2. LetX be a projective variety of dimensiond over a field of arbitrary
characteristic. Assume thatX is F-rational (type). LetL be a globally generated
ample line bundle such that the dimension of the complete linear system|L|
associated toL exceedsd. ThenKX + nL is globally generated for alln ≥ d.

Because every smooth variety is F-rational (type), and every very ample
line bundle (with the exception of the hyperplane bundle onP

d) satisfies the
hypothesis of Theorem 2, Theorem 1 follows immediately from Theorem 2.

We now prove Theorem 2. First, a standard argument reduces the problem to
the case where the ground field has prime characteristicp (the details are worked
out in [S1]). Thus the section ringS may be assumed to be a graded ring of prime
characteristic. The point now is really to prove the borderline case, thatKX +dL

is globally generated; in any case, the case wheren > d is covered by [S1].
BecauseX is F-rational, its section ringS is F-rational on its punctured

spectrum SpecS − m. By Proposition B, this means that the tight closure of the
zero module in the local cohomology moduleHd+1

m (S) has finite length. Thus
there exists an integerN such that the tight closure of zero is contained in the
submodule ofHd+1

m (S) generated by elements of degreeN and higher.
To prove the theorem, we use the equivalent formulationA above. Letη be a

homogeneous element ofHd+1
m (S) of degree−n < min(N, −d − 1), so thatη

is not in the tight closure of zero. We need to show thatη has a non-zero multiple
of degree−d. Suppose that this is not the case, that is, suppose thatSn−d kills η.
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BecauseL is globally generated,S admits a system of parameters of degree
one (if necessary, we can enlarge the ground field, see [S1, last paragraph of
Sect.2]). Letx0, x1, . . . , xd be a system of parameters of degree one. The local
cohomology moduleHd+1

m (S) can be computed as the cokernel of the following
map

Sx/x0 ⊕ Sx/x1 · · · ⊕ Sx/xd
→ Sx(

s0x
t
0

xt
,
s1x

t
1

xt
, . . . ,

sdx
t
d

xt

)
7→

∑d
i=0(−1)isix

t
i

xt

wherex denotes the productx0x1 . . . xd of the xi ’s. (This is the last map in
the Cech complex for computing the cohomology of the sheaf ofOX-algebras⊕∞

i=0 OX(nL) with respect to the affine cover ofX given by thed + 1 open
setsUi wherexi does not vanish.) Thus we represent elements ofHd+1

m (S) by
fractions[ z

xt ], with the square bracket reminding us of the equivalence relation
on fractions. In [S2] it is proven that an element[ z

xt ] is in the tight closure of
the zero module inHd+1

m (S) if and only if the elementz is in the tight closure of
the ideal(xt

0, x
t
1, . . . , x

t
d) in S. In particular, the elementη above, which is not in

the tight closure of zero, can be written[ z
xt ], wherez is not in(xt

0, x
t
1, . . . , x

t
d)

∗.
Because the degree ofη is −n, we see that−n = degz − t (d + 1).

Now if Sn−d kills η, then also the subset consisting of degreen − d mono-
mials inx0, x1, . . . , xd kills η. This means that all elements of the local coho-
mology module of the form[wz

xt ], wherew is in the ideal(x0, x1, . . . , xd)
n−d

are zero. In particular, all such elements are in the tight closure of zero, so
that (x0, x1, . . . , xd)

n−dz ⊂ (xt
0, x

t
1, . . . , x

t
d)

∗. That is,z ∈ (xt
0, x

t
1, . . . , x

t
d)

∗ :
(x0, x1, . . . , xd)

n−d .
The colon capturing property of tight closure allows us to manipulate pa-

rameters as if they are a regular sequence, up to tight closure; that is, we may
formally compute the colon ideal as if thexi are the variables in a polynomial
ring, and the actual colon ideal will be in the tight closure of this formal colon
ideal (see [HH, Sect.7]). In this case, we can use colon capturing to conclude
that this colon ideal is contained in

(
(xt

0, x
t
1, . . . , x

t
d) + (x0, x1, . . . , xd)

(t−1)(d+1)−(n−d)+1
)∗

.

Because the degree ofz is t (d + 1) − n, we see that

z ∈ (
(xt

0, x
t
1, . . . , x

t
d) + (x0, x1, . . . , xd)

degz
)∗

.

By Theorem C above, in fact,

z ∈ (
xt

0, x
t
1, . . . , x

t
d

)∗ + (x0, x1, . . . , xd)
degz .
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We writez asz′ + y wherey andz′ are homogeneous of the same degree as
z, andy is ak-linear combination of the monomialsxi0

0 x
i1
1 . . . x

id
d of degree equal

to the degree ofz andz′ ∈ (xt
0, . . . , x

t
d)

∗. But then

η =
[

z′

xt

]
+

[ y

xt

]

where[ z′
xt ] is in the tight closure of zero inHd+1

m (S). But because this tight

closure module vanishes in degrees less thanN , we see that[ z′
xt ] = 0, since its

degree is−n < N . Thus we may assume that

η =
[∑

λi0i1...id x
i0
0 x

i1
1 . . . x

id
d

xt

]
.

We are assuming thatη is a non-zero element of degree−n. Thus at least one
of the coefficientsλI is non-zero. Note that we can also assume that allij are

strictly less thant , for otherwise, the fraction
x

i0
0 x

i1
1 ...x

id
d

xt represents zero in local
cohomology.

Assume thatλ = λi0i1...id is not zero. Let

w = x
t−1−i0
0 x

t−1−i1
1 . . . x

t−1−id
d s,

wheres is an arbitrary element of degree one. The degree ofw is (t −1)(d +1)−
(
∑

ij )+1 = (t −1)(d+1)−degz+1 = (t −1)(d+1)−(−n+ t (d+1))+1 =
n − d. Now multiplyingη by w we have

wη =
[
λsxt−1

xt

]
=

[
λs

x

]
,

since each of the other terms in the product is of the form[
λ′sxt−1−i0+j0

0 x1
t−1−i1+j1 ...x

t−1−id+jd
d

xt

]
where at least one of the sumst − 1− ik + jk is

greater than or equal tot .
Now if Sn−d kills η, then the element

wη =
[
λsxt−1

xt

]
=

[
λs

x

]
,

is zero, whences ∈ (x0, x1, . . . , xd)
∗. But sinces has degree one, Theorem C

above forcess ∈ (x0, . . . , xd).
Now becauses is an arbitrary element of degree one, we can obtain a con-

tradiction by choosings to be not in the linear system spanned by thex0. This
is always possible if the dimensionH 0(X, L) exceedsd + 1. In particular, if
L is very ample, then it is possible (except whenX = P

d andL = O(1)), for
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otherwise the embedding ofX given by the complete linear system|L| would
necessarily be an isomorphismX → P

d . This completes the proof.ut

We now prove Theorem C. This Theorem was proven in a slightly different
form (but not strong enough for our needs here) in [S3]. We draw heavily from
the ideas in that paper, but repeat some arguments for the sake of readability.

Assume thatz ∈ (I1 + I2)
∗ but z /∈ I ∗

1 + I2, and that this example of the
failure of our conclusion is choosen so thatI2 has the minimal possible number
of generators among all such examples. Letx1, . . . , xr be the generators ofI2,
all of which have the same degree asz.

We have equations

czq − aqx
q

1 ∈ (I1 + (x2, x3, . . . , xr))
[q]

for all q = pe � 0, whereI [q] denotes the ideal ofR generated by theq − th

powers of the generators ofI . Herec andaq may be assumed homogeneous of
the same degree. By our minimality assumption,aq is non-zero for all largeq.

As pointed out in [S3], fixingc, there exists a homogeneousθ ∈ Ef =
End

Rpf (R) for somepf such thatθ(c) = 0 butθ does not killaq for all q > pf

unlessaq = λqc for someλq ∈ K. (The point is that the decreasing chain of
finite dimensional vector spaces

· · · ⊃ AnnRd
(AnnEf

(c)) ⊃ AnnRd
(AnnEf +1(c))

of all degreed elements annihilated by allRpf

-linear endomorphisms ofR
annihilatingc must eventually stabilize, and this stable vector space isKc. Thenθ
may be taken to be one of the finitely many homogeneousRpf

-module generators
for End

Rpf (R).)
Applying θ to the equations above, we have equations

θ(aq)x
q

1 ∈ (I1 + (x2, x3, . . . , xr))
[q]

for all large q. If aq is not in theK-span ofc in R for infinitely many q,
these equations show thatx1 ∈ (I1 + (x2, x3, . . . , xr))

∗. In this case,z ∈
(I1 + (x2, x3, . . . , xr))

∗, contrary to our minimality assumption.
Thus it must be that for all largeq, we haveaq = λ

q
qc for someλ

q
q in K.

(SinceK is perfect, there is no harm in writing our scalars in the convenient form
λ

q
q .) If all, or at least infinitely many, of theλq are equal, we get equations of the

form
c(z − λx1)

q ∈ (I1 + (x2, x3, . . . , xr))
[q]

for infinitely manyq, which shows thatz − λx1 is in (I1 + (x2, x3, . . . , xr))
∗.

By our minimality assumption,z − λx1 is in I ∗
1 + (x2, x3, . . . , xr), whencez

is in I ∗
1 + I2 and the proof would be complete. Thus we need to show that the
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λq are equal for infinitely manyq. If K is finite, this is immediate; this was the
assumption in [S3] which we must now weaken.

Let d be a test element forR not in theK-span ofc (such exists becauseR is
normal, and so the test ideal has height two or more).According to the arguments
above, we have sets of equations of the form

c(z − λqx1)
q ∈ (I1 + (x2, x3, . . . , xr))

[q]

and
d(z − µqx1)

q ∈ (I1 + (x2, x3, . . . , xr))
[q]

for all largeq. Multiplying the form bydµ
q
q and the latter bycλq

q and subtracting,
we get equations

cd(λq − µq)
qzq ∈ (I1 + (x2, x3, . . . , xr))

[q].

Again, by our minimality assumption, we see thatz ∈ I ∗
1 + I2, unlessµq = λq

for all largeq.
But the choice ofd was arbitrary, and we can taked to be, for example,cp,

which is clearly not in theK-span ofc. This produces equations of the form

cp(z − λqpx1)
qp ∈ (I1 + (x2, x3, . . . , xr))

[qp].

whereas by raising the equations above to thepth power we get

cp(z − λqx1)
qp ∈ (I1 + (x2, x3, . . . , xr))

[qp].

Subtracting these, we see that eitherx1 ∈ (I1 + (x2, x3, . . . , xr))
∗, whencez ∈

(I1 + (x2, x3, . . . , xr))
∗, contrary to minimality, or thatλqp = λq . Iterating this

process, we see we can findQ such that for allq � Q, λQq = λQ. But then the
equations

c(z − λQqx1)
Qq ∈ (I1 + (x2, x3, . . . , xr))

[Qq]

can be written

c(z − λQx1)
Qq ∈ (I1 + (x2, x3, . . . , xr))

[Qq]

whereQ is fixed, for all largeq. This shows that

z − λQx1 ∈ (I1 + (x2, x3, . . . , xr))
∗.

But now by minimality,z − λQx1 ∈ I ∗
1 + (x2, x3, . . . , xr), whencez ∈ I ∗

1 + I2.
This completes the proof of Theorem C.

Finally, we point out the following purely algebraic result which is a gener-
alization of Theorem 2.
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Theorem 3. LetS anN-graded domain over a field, F-rational on its punctured
spectrum. Assume thatS admits a system of parameters{x0, . . . , xd} of degree
one generating an ideal whose tight closure is properly contained in the unique
homogeneous maximal idealm ofS. Then every element of the local cohomology
moduleHd+1

m (S) of sufficiently small degree has a non-zero multiple of degree
−d.

To prove Theorem 3, we begin with exactly the same observations as in the
proof of Theorem 2. Letη = [ z

xt ] ∈ Hd+1
m (S) be an element of degree−n

as in the proof of Theorem 2. If the ideal(x0, x1, . . . , xd)
n−d does not anni-

hilate η, thenη has a non-zero multiple of degree−d and there is nothing to
prove. Otherwise, exactly the same argument shows that we can assume that
z = ∑

λi0i1...id x
i0
0 x

i1
1 . . . x

id
d , where each exponentij is less thant .

Now, since(x0, . . . , xd)
∗ is properly contained inm, we can find a homoge-

neous element, sayw, of positive degreek, which is not in(x0, . . . , xd)
∗. We

claim that(x0, . . . , xd)
n−d−kw does not annilihateη, in which case the proof will

be complete, because thenη has a non-zero multiple of degree−d.
To check the claim, assume on the contrary that(x0, . . . , xd)

n−d−kw kills
η. Then, using the same method as above, we see that(x0, . . . , xd)

n−d−kwz ∈
(xt

0, . . . , x
t
d)

∗. Using the colon capturing property of tight closure, we see that

wz ∈ [
(xt

0, . . . , x
t
d) + (x0, x1, . . . , xd)

(d+1)(t−1)−(n−d−k)+1
]∗

.

Remembering thatz = ∑
λi0i1···d x

i0
0 x

i1
1 . . . x

id
d , where each monomial in the sum

has degree−n + (d + 1)t , we isolate one term of this sum, sayx
a0
0 x

a1
1 . . . x

ad

d ,
and observe that(

x
a0
0 . . . x

ad

d

)
w ∈ [

(xt
0, . . . , x

t
d) + (x0, . . . , xd)

(d(t+1)−n+k)
]∗ +({

x
b0
0 x

b1
1 . . . x

bd

d

∣∣∣∑ bj = (d + 1)t − n,

with somebj 6= aj

})
⊂

[
(xt

0, . . . , x
t
d) +

({
x

b0
0 x

b1
1 . . . x

bd

d

∣∣∣∑ bj = (d + 1)t − n,

with somebj 6= aj

})]∗

where({xb0
0 x

b1
1 . . . x

bd

d | ∑ bj = (d + 1)t − n, with somebj 6= aj }) denotes the
ideal generated by all monomials of degree(d +1)t −n exceptxa0

0 . . . x
ad

d . Now,
we again use colon capturing to estimate[

(xt
0, . . . , x

t
d) +

({
x

b0
0 x

b1
1 . . . x

bd

d

∣∣∣∑ bj = (d + 1)t − n,

with somebj 6= aj

})]∗ : (x
a0
0 . . . x

ad

d ),
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which is an ideal containingw. We know that the formal colon is a monomial
ideal inx0, . . . , xd , so provided the colon ideal is not the unit ideal, the result is
certainly contained in(x0, . . . , xd)

∗. But on the other hand, the formal colon is
not the unit ideal, because it it were, thenx

a0
0 . . . x

ad

d would be divisible by one
of the generatorsxt

j or x
b0
0 . . . x

bd

d , and it is not. This forcesw ∈ (x0, . . . , xd)
∗,

contrary to the choice ofw, completing the proof of the claim, and the proof of
Theorem 3.

This raises an interesting question: ifS is a section ring, can(x0, . . . , xd)
∗ =

m for some polarized variety(X, L) other thanPn, O(1) ? If L is very ample,
we can not have(x0, . . . , xd)

∗ = m by Theorem C above. It is easy to see
that in general, a graded ring can have(x0, . . . , xd)

∗ = m. For example, if
S = k[x, y, z]/(x2 + y4 + z4), the tight closure of(y, z) is (x, y, z) in all
characteristics. However, this ring can not be a section ring because its Hilbert
function is not eventually polynomial.
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