
Abstract Relatively scant chemical information has been
available on the proteinases and peptidases of spirochetes
in spite of the association of spirochetes with several seri-
ous infections known to plague humans and other animal
species. This situation has partly resulted from difficulties
in growing some spirochetes under laboratory conditions.
The cells of Treponema denticola, a spirochete suggested
to be associated with periodontal infections, have turned out
to be a good source of new chemical information on those
enzymes. Latest studies suggest that the outer cell en-
velope or the periplasmic space of T. denticola contains
several novel proteinases and peptidases (hence called 
“ectoenzymes”) which may contribute to the chronicity of
periodontal infections. Some of the oligopeptidases dis-
covered are specific for proline-containing host tissue pep-
tides such as substance P, bradykinin, neurotensin, etc., and
possibly small collagen fragments. The only spirochetal
peptidases purified to give a single band on sodium dode-
cyl sulfate-polyacrylamide gel electrophoresis have been
obtained from T. denticola. One particular peptidase, sug-
gested to be similar to the oligopeptidase B (EC 3.4.21.83)
of Escherichia coli seems to be present in the cell enve-
lope or in the periplasmic space at quite large concentra-
tions. The presence of this and several other peptidases in
the outer cell structures of the treponemes suggests that
such enzymes are important for the nutrition of these highly
motile and invasive organisms. The biological role of these
enzymes can thus be envisaged in the peptidolytic process-
ing of host tissue proteins and peptides to gradually smaller
molecules to fulfill the nutritional requirements of these
organisms. Although the genetic similarity between T. den-
ticola and some other treponemes and spirochetes can be
hotly debated, it is nevertheless now possible to use T. den-
ticula enzymes as suitable objects for comparison when
the chemistry of other spirochetes is studied.
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Introduction

The spirochetes (order Spirochaetales) are helical, highly
motile and invasive bacteria which are associated with a
large number of eukaryotic cells. Based on ecological,
morphological and physiological criteria, five spirochete
genera have been classified: Leptospira, Spirochaeta,
Christispira, Treponema, and Borrelia [19]. Some spiro-
chetes are pathogenic to humans causing syphilis, bejel,
pinta, yaws, intestinal disorders, relapsing fever, Lyme dis-
ease, leptospirosis, destructive periodontitis, ulcerative
gingivitis, avian spirochetosis, swine dysentery, and other
diseases [5, 19, 27, 59]. The human and animal gastroin-
testinal tract and the urogenital areas of humans and other
animals harbor several different spirochetes, most of which
have been cultivated [19]. Treponemal infections are an-
cient diseases which have plagued humans and other ani-
mals from times immemorial [58].

In no case is the detailed mechanism of the chemical
aggressiveness of a pathogenic spirochete known. Proteo-
lytic enzymes present in the outer cell wall or in the peri-
plasmic space of the cells, among other factors, have been
suggested to play a role [22]. In general, bacterial cell sur-
face products or particles such as endotoxins, lipoteichoic
acid, capsules, vesicles, mucopeptides, peptidoglycans and
other factors, may contribute to inflammation in addition
to true enzyme proteins. Several inflammation-associated
bacterial factors have been given dubious “-lysin”-ending
names. Quite frequently such factors have turned out to be
hydrolytic enzymes. Although the molecular-level patho-
genesis of spirochetal infections is poorly known, signifi-
cant advances have been made in the treatment of some in-
fections, such as Lyme disease. Venereal spirochetoses
have long been treated by antibiotic therapy [59].

The molecular mechanism of spirochetal infections is
poorly known largely because most spirochetes are ex-
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tremely difficult to grow outside the mammalian host, not
to mention mass-culturing spirochetes for large-scale en-
zyme purification and characterization. The cells of T. den-
ticola can be mass cultured [37].

It has been suggested that all treponematoses are caused
by the same organism [21]. Although this idea has not re-
ceived much support, there may be similarities between the
oral disease-associated T. denticola and the syphilis-caus-
ing T. pallidum [21, 22, 56], and between intestinal spiro-
chetes from human and other animal species [26]. Riviere
et al. [56] identified the organisms associated with acute
ulcerative gingivitis as T. pallidum-related spirochetes.
Provided that such a bacterial cognation can be vindicated,
it is possible that the easily cultivable T. denticola can in-
deed be exploited as a model for T. pallidum and a num-
ber of other spirochetes, until the latter can be grown out-
side the mammalian host for in-depth chemical character-
ization. However, this issue is subject to a hot debate at
this stage, since most spirochete experts have not been will-
ing to accept any cognation (other than “genus-based”)
between the treponemes. The present authors predict a
gradual softening in this stand. T. denticola has anyway re-
ceived considerable attention as a producer of peptidases
and proteinases. In fact, the cells of T. denticola can be fig-
uratively regarded as “motile enzyme packages or hydro-
lytic work benches equipped with a powerful and versatile
proteolytic and peptidolytic armamentarium immobilized
in the outer cell envelope” [42].

The aim of this review is to consider the peptidolytic
profile of spirochetes, and was prompted by recent ad-
vances made in the field: it is likely that the “ectopepti-
dases” associated with the outer cells envelope of the spi-
rochetes attack host tissues directly by proteolytic diges-
tion. Such enzymatic processes can lead to serious clini-
cal ramifications. Another rationale behind this review can
be seen in the increasing interest in Lyme disease, the oral
treponemal infections, and venereal and non-venereal tre-
ponematoses in general. More emphasis will be placed on
T. denticola than other spirochetes, owing to the compar-
atively large number of studies carried out on this organ-
ism. De facto, the only spirochete peptidases purified to
homogeneity and characterized, have all been obtained
from T. denticola. This review will hopefully stimulate en-
zyme studies in other spirochetes as well. The role of pro-
teinases and peptidases in spirochetal infections should not
be overestimated, either. Some spirochetes seem to lack 
effective ectopeptidases, being predominantly involved in
other hydrolytic enzyme catalyses. B. burgdorferi (which
causes Lyme disease) seems to produce no endogenous
proteinases for the digestion of extracellular matrix pro-
teins [23]. All microbial cells do contain several peptido-
lytic enzymes which are needed in the cellular intermedi-
ate metabolism, cellular protein turnover, cell division, and
other events, but such enzymes may not be directly in-
volved in pathogenicity.

Evidence of the tissue-destructive capacity 
of spirochetes

Exploiting the terminology used by authors of reports pub-
lished on the pathogenic potential of some spirochetes (Ta-
ble 1), one can conclude that these organisms are indeed
associated with quite diverse pathological phenomena and
that the cell wall of some spirochetes is well armed with
regard to factors that can directly elicit inflammatory tis-
sue responses. Although peptidolytic processes may not be
directly involved in all reactions listed in Table 1, it is ob-
vious, however, that they may contribute indirectly. Most
peptidolytic activities discovered in spirochetes are listed
in Table 2, while Table 3 lists those spirochetal peptidases
and proteinases that have been purified to an SDS-PAGE
pure form and chemically characterized.

Arginyl/lysyl oligopeptidase

This enzyme has been more thoroughly studied in T. den-
ticola ATCC 35405 and T. denticola ASLM (a clinical
strain isolated from the subgingival plaque of a periodon-
titis patient). The enzyme was previously called “trypsin-
like” and “BAPNA-peptidas” or “BANA-peptidase.” The
activity levels of this enzyme in dental plaque, along with
similar activities from Porphyromonas gingivalis, have
been measured in numerous studies, and have been used
in a diagnostic test for periodontal infections [28].

Although the enzyme resembles trypsin with regard to
some specificity and inhibition characteristics, its cogna-
tion with trypsin is more remote. The enzyme has, instead,
been proposed to belong to the prolyl oligopeptidase
(EC 3.4.21.26; POP) superfamily, and may be similar to 
E. coli oligopeptidase B (EC 3.4.21.83: OPB). Conse-
quently, this enzyme is a true oligopeptidase instead of a
proteinase such as trypsin [38]. Further proof on the close
similarity of the OPB and the POP superfamily with the
T. denticola enzyme can be obtained by comparing the
available sequence homology data (Figs. 1, 2). Table 4
shows that there is considerable homology between the
T. denticola OPB-like enzyme and several other proteins.
It is obvious that several other bacterial enzymes which
hydrolyse BAPNA or BANA, should in reality be regarded
as OPB-like. For example, “Enzyme II” described by Shib-
ata et al. [63] in Capnocytophaga gingivalis may be an
OPB.

The enzyme is specific for substrates which have an Arg
or a Lys residue with a blocked amino terminus in the olig-
opeptide structure. The enzyme hydrolyses true peptides
such as angiotensin I and angiotensin II (which are hydro-
lyzed at Arg2-Val3). Other substrates include Met-Lys-bra-
dykinin and neurotensin [38]. The enzyme has been con-
veniently assayed using BAPNA as substrate which is op-
timally hydrolyzed in the presence of 1.0 mmol/l Ca2+.
OPB is not a metallopeptidase. Its activity is suggested to
depend on an active COOH group, on an active seryl res-
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Effect or reaction Remarks and references

1. Attachment of the pathogen to human and rat epithelial cells (EC), Rounded rat palatal ECs were more receptive for
and to monolayers of ECs of different origin ( Treponema denticola ) attachment than flattened ECs. Human ECs were

quite receptive immediately after mitosis [24, 25, 52]
2. Inhibition of fibroblast proliferation, lymphocyte blastogenesis, Observed in vitro, but suggests that the treponemes

neutrophil degranulation, and free radical production can inhibit host reparative processes [3, 4, 61, 62]
(oral treponemal extracts)

3. Distortion of cell morphology; adhesion to fibronectin (FN); These and other cytophathic processes may follow
fragmentation of gingival fibroblasts (GF): detachment of after the contact of GF with the cells of
GF; degradation of FN (T. denticola ) T. denticola [8]

4. Activation of human vascular endothelial cells ( T. pallidum ) Spirochete membrane lipoproteins may be
involved [55]

5. Ability to evade host immune responses ( T. pallidum; T. denticola ) Many of the unusual properties of T. pallidum are
ultimately related to its protein content [50, 76]

6. Adherence of the pathogen to human gingival fibroblasts, T. pallidum causes similar reactions while the
fibronectin, laminin, fibrinogen, gelatin, type I nonpathogenic T. phagedenis (Reiter) does not
and IV collagens ( T. denticola ) [6, 11, 18, 76]

7. Invasion of the pathogen into healthy tissue ( T. denticola ) T. pallidum causes similar reactions
[12, 17, 20, 47, 48, 71, 73]

8. Blockage of attachment of IgG ( T. pallidum ) [11] May involve a peptidolytic process
9. Migration of the pathogen into healthy tissue ( T. denticola ) Migration may be associated with the activity of

a protease present outside of cell envelope [17]
10. Interaction between the pathogen and human gingival fibroblasts Specific binding proteins are involved [22, 76]

(T. denticola )
11. Microulceration of the sulcular epithelium ( T. denticola ) T. pallidum causes similar reactions [29, 46, 59, 71]
12. Suppression of fibroblast proliferation The inhibitory factor elutes as a 50-kDa substance

and is not an endotoxin [3]
13. Mutual symbiotic growth enhancement of T. denticola and P. gingivalis is another potential periodontal

Porphyromonas gingivalis pathogen [15, 16]
14. Activation of host latent procollagenase (T. denticola, Suggests that spirochaetal enzymes participate

oral spirochetes) directly in tissue destruction [65, 72, 74]
15. Direct degradation of basement membrane collagen As above [74]

(T. denticola)
16. Keratinolysis (T. denticola) The activity was cell bound and heat sensitive [43]
17. Bone resorption (T. denticola) A lipopolysaccharide-like material in the

outer cell membrane may be responsible [13]
18. Actin rearrangement and detachment of human gingival The processes might be stimulated by a bacterially

fibroblasts (T. denticola) associated protease [2]
19. Stimulation of growth by tissue proteins (T. denticola) Ceruloplasmin supports growth [66]
20. Termination of the biological action of host bioactive peptides Neurotransmitters, inflammatory mediators and

(T. denticola) other bioactive peptides of the host may serve as
substrates of spirochetal peptidases involved [37, 41, 42]

21. Cytopathy (T. denticola) The CTLP may play a role, affecting migrating and
stratified epithelial cells [75]

Table 1 Examples of pathological effects of spirochetes. Such 
effects are frequently caused by factors present in the outer cell en-
velope of the cells, and may also involve direct or indirect peptido-
lytic reactions catalyzed by spirochete enzymes. The statements and

effects (in bold) on the left represent those made by authors. Some
hemolytic and hemagglutinating effects, reported in several spiro-
chetes, may also involve at least indirect peptidolytic reactions cat-
alyzed by the pathogen’s enzymes [14, 45, 60, 70, 77]

idue, and perhaps on an active tyrosyl group; the latter one
may not participate in substrate binding. The enzyme is
relatively loosely bound to the outer cell wall structures
where it is present at a relatively high concentration, and
can be readily extracted in a highly active and stable form
with 0.05% Triton X-100.

T. denticola endopeptidase (“FALGPA-peptidase”)

The endopeptidase of T. denticola ATCC 35405, active on
2-furylacryloyl-L-Leu-Gly-L-Pro-L-Ala (FALGPA) and

bradykinin, is most likely associated with the outer cell en-
velope. It is a true endopeptidase, and does not hydrolyze
proteins [37]. The shortest hydrolyzable substrate seems
to be FALGPA, the hydrolysis of which at the Leu-Gly
bond is strongly and competitively inhibited by bradyki-
nin (Ki = 5.0 µM). The enzyme does not hydrolyze typical
synthetic collagenase substrates (other than FALPGA), nor
does it hydrolyze azocoll, azocasein, and type I and type IV
collagen. However, a proposal was made that since a sub-
stantial portion of the amino acid sequence of FALGPA is
present in collagen (and additionally acknowledging the
close structural resemblance between proline and the FA
moiety of FALGPA), the natural substrates of this enzyme
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Enzyme activities detected Source or cellular location of activity Organisms and references

Fibrinolytic (extracellular) Cultures and spent media T. denticola (several oral strains; 2 from
spinal fluid) [49]

Aminopeptidase Extracts of sonicated cells T. phagedenis (Reiter) [69]
Proteinase (trypsin like), peptidase Media and cells Small-sized oral spirochetes [10]
(cell bound; APIZYM) a

Proteinase (against type IV collagen, Neutral salt extracts of cells Intermediate-size oral spirochetes [72]
gelatin, etc.), elastase, trypsin like
Trypsin like b Extracts of sonicated cells T. denticola ASLM [51]
PIP (hydrolyzes Pro- pNA and Pro-2NA) Triton X-100 extracts; T. denticola ATCC 35405 and several

sonicated cells extracts clinical isolates [32, 33, 39]
Keratinolytic Cells T. denticola L12D [44]
Proteinases; collagenase like, Extracts of sonicated cells T. vincentii ATCC 35580 [34]
arginine aminopeptidase
Aminopeptidases (RapID-ANA) a Washed cells 72 Isolates of T. denticola and 4 reference

strains (ATCC 35404, 35405, 33520,
33521), T. socranskii (ATCC 35534,
35536), T. vincentii (ATCC 35580) [67]

Proteinases (against type IV collagen, Extracts of sonicated cells T. denticola ATCC 35405 [73]
gelatin, elastin, fibronectin, casein,
synthetic substrates)
CTLPc (hydrolyzes SAAPFNA) Extracts of sonicated cells; T. denticola ATCC 35405 [8, 42, 73, 75]

Triton X-100 extracts; cells
Collagenase like Extracts of sonicated cells T. denticola ATCC 35405 and several
(substrates: PZ-PLGPA, FALGPA) clinical isolates; T. vincentii ATCC 35580;

T. socranskii [36]
Peptidases (APIZYM) a Cells T. denticola ATCC 33520 and several

isolates; T. vincentii ATCC 35580 (and
isolates); T. pectinovorum ATCC 337768;
T. hyodysenteriae ATCC 271664, 31212
(and isolates); T. phagedenis (Reiter) [43]

Endopeptidase Extracts of sonicated cells T. denticola ATCC 35405 [37]
Peptidases, proteinases Cells T. denticola ATCC 33520 [48]
(APIZYM) a

CTLP (hydrolyzes SAAPFNA) Extracts of sonicated cells T. denticola ATCC 29522 [65]
Proteinases, PIP, trypsin-like (RapID Extracts of sonicated cells; cells T. denticola ATCC 35405 [68]
ANA)a

Trypsin-like Cells T. denticola ATCC 33520, 33521, 35405
and other isolates [53]

Proteinases, collagenase-like Extracts of sonicated cells T. denticola ATCC 35405; T. vincentii
ATCC 35580; T. socranskii ATCC 35536 [64]

Fibrinolytic Triton X-114 extracts, cells,  T. denticola ATCC 35404, 33520 [57]
crude outer sheats

POP (proline specific) Triton X-100 extracts T. denticola ATCC 35405 [41]
Oligopeptidase B b Triton X-100 extracts T. denticola ATCC 35405 [38]
Leucine arylamidase, etc. (APIZYM) a Cells 58 Spirochetal isolates ( B. burgdorferi ,

B. hermsii , leptospires, serpulinas, and a
treponeme) [7]

γ-Glutamyl (trans)peptidase Triton X-100 extracts T. denticola ATCC 35405 [40]

a APIZYM, RapID-ANA refer to so-called “rapid enzyme profile systems” which utilize microwell plates for testing a large number of en-
zyme activities simultaneously. Such methods are suitable for screening purposes
b The T. denticola “trypsin-like” enzyme may be an oligopeptidase B (EC 3.4.21.83)
c Que and Kuramitsu [54] and Arakawa and Kuramitsu [1] have reported isolation and characterization of genes that code for CTLP and
an enzyme active on PZ-PLGPA

Table 2 Peptidase- and proteinase-related enzyme activities re-
ported in spirochetes ( CTLP chymotrypsin-like proteinase, PIP pro-
line iminopeptidase, PZ-PLGPA phenylazobenzyloxycarbonyl- L-
prolyl-L-leucylglycyl- L-prolyl- D-arginine, FALGPA 2-furylacry-

loyl-L-leucylglycyl- L-prolyl- L-alanine, POP prolyl oligopeptidase,
SAAPFNA N -succinyl- L-alanyl- L-alanyl- L-prolyl- L-phenylalanyl-
p-nitroaniline, Pro-pNA prolyl-p-nitroaniline, Pro-2NA prolyl-2-
naphthylamine)



may be small, soluble collagen fragments [37]. This en-
zyme was initially purified from sonicated cell extracts.
However, washed whole cells also hydrolyze FALGPA,
and it is thus likely that this enzyme is present in the outer
cell structures.

Proline-specific endopeptidase

An endo-acting proline-specific endopeptidase (POP) was
purified from mild Triton X-100 extracts of the cells of

T. denticola ATCC 35405 [41]. The minimum hydrolyz-
able peptide size was tetrapeptide P3P2P1P′1, while the max-
imum substrate mass was about 3 kDa. An imino acid res-
idue in position P1 is absolutely necessary. This Trepon-
ema enzyme has considerale homology with the Aeromo-
nas hydrophila POP and with the POP precursor of Flav-
obacterium meningosepticum. Since the T. denticola POP
hydrolyzes various proline-containing human bioactive
peptides as a high rate, it was suggested that the enzyme
contributes to the chronicity of infections by participating
in the peptidolytic processing (inactivation) of such pep-
tides [41].

Chymotrypsin-like proteinases

Two research groups initially reported on chymotrypsin-
like proteinase (CTLP)-like activity in the cells of T. den-
ticola. One enzyme was partially purified from the ATCC
strain 35405 [74, 75] and was suggested to be attached to
the outside of the cell envelope [17]. Another group re-
ported the isolation and characterization of a CTLP from
the same ATCC strain, after cloning the proteinase in
E. coli [1, 54]. The molecular mass of the latter enzyme
was reported to be about 30 kDa, while the former CTLP
has a mass of about 95 kDa. Based on the reported enzyme
characteristics, it appears that the proteinase described by
Uitto et al. [17, 73 – 75] in the sonicated cell extract, is
identical to the CTLP purified by conventional fast protein
liquid chromatography (FPLC) techniques from a mild Tri-
ton extract of T. denticola ATCC 35405 [42], but differs
from the enzyme described by Kuramitsu’s group [54]. The
activity of both enzymes has been determined using
SAAPFNA as substrate (see Table 2).

In studies designed to elucidate the peptidolytic inacti-
vation of substance P by washed whole cells of T. denti-
cola ATCC 35405, it appeared that the Phe8-Gly9 bond of
this peptide was hydrolyzed at a fast rate by a membrane-
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Fig. 1 A Alignment of amino acids present in the N-terminal (un-
digested) end of the Treponema denticola oligopeptidase (I) and the
Escherichia coli oligopeptidase B (OPB) (II). Identical amino acid
residues have been shaded. B Alignment of amino acids present in
E. coli OPB and in a peptide fragment of the T. denticola enzyme,
obtained by means of CNBr cleavage. Identical amino acid residues
have been shaded (60%) while those residues that are chemically re-
lated (sum of identical and related = 75%) are indicated with a dot.
The T. denticola oligopeptidase is most likely an OPB

Table 3 Proteinases and peptidases purified to homogeneity (as
judged from SDS-PAGE electrophoretograms) from T. denticola
ATCC 35405

Enzyme References

Oligopeptidase Ba [38, 51]
CTLPb [42, 73]
FALGPA-Peptidase [37]
POP [41]
PIPc [39]
GGTP [40]

a Previously known as BANA-peptidase, BAPNA-peptidase, or
“trypsin-like” enzyme
b Arakawa and Kuramitsu [1], and Que and Kuramitsu [54] have re-
ported on the isolation and characterization of the gene coding for
CTLP from T. denticola ATCC 35405, and on sequence analysis of
the enzyme
c T. phagedenis (Reiter) aminopeptidase [69] was obviously also ob-
tained in a relatively pure form



bound enzyme. Subsequent purification and characteriza-
tion [42] proved this enzyme to correspond to the CTLP
discovered by Uitto et al. and Grenier et al. [17, 73]. The
purification of the enzymes is hampered by its association
with large membrane structures, but can be accomplished
using polymyxin treatment. Without this treatment, the Tri-
ton-extracted enzyme appears on FPLC on a Superose 12
column in the void volume, giving a false molecular mass
of 500–600 kDa for the enzyme itself (owing to associa-
tion of the proteinase with membrane structures). After
polymyxin treatment the enzyme gives a molecular mass
of 95 kDa. The enzyme shows some strict specificity re-
quirements, hydrolyzing the P1P′1 bond in the sequence
– P2P1P′1P′2 –, where P1 is preferably a Phe residue, while
P2 if preferably a Phe or a Pro residue (Leu, for example,
can occupy position P2, but leads to a much slower rate of
hydrolysis). Val in position P1 does not result in any hy-
drolysis. This enzyme hydrolyzes proteins (fibrinogen,
gelatin, histone, casein, etc.) and peptides that meet the
above specificity requirements. There is no Pro-Phe se-
quence in insulin β-chain, but this peptide is still hydro-
lyzed at a fast rate between Leu and Tyr in sequence
P2P1P′1 = Ala14-Leu15-Tyr16. Much slower hydrolysis oc-

curs at Tyr16-Leu17 and at Phe25-Tyr26. These specificity
features suggest that the CTLP has a relatively extended
active site. The enzyme activity depends on an active se-
ryl residue, but not on SH groups or metal cations. Chy-
mostatin is a potent inhibitor of the enzyme. In standard
SDS-PAGE (i.e. including treatment at 100 °C) this pro-
tein shows three different molecular forms, all with a mass
<95 kDa [42, 73]. The CTLP molecule was suggested to
contain proline-rich regions [42] characteristic of some
proteins involved in binding interactions [78]. A role for
the CTLP in the invasion and destruction of basement
membrane was proposed [17, 73].

CTLP-like cell-bound activity was reported in the cells
of T. denticola ATCC 33520 [48]. The characteristics re-
ported for this enzyme do not, at this stage, entitle its iden-
tification with the CTLP of strain ATCC 35405.

Proline iminopeptidase

There is limited chemical information on bacterial proline
iminopeptidases (PIPs). The only studies on a spirochetal
PIP have dealt with the T. denticola ATCC 35405 enzyme
which was regarded as a “dominant” aminopeptidase in
ultrasonically prepared cell extracts [33]. The high PIP ac-
tivity, determined with Pro-2NA, was indeed striking,
since other aminoacyl 2NAs were hydrolyzed at a much
lower rate, suggesting that this activity may be quite vital
for the organism. The biological role of the enzyme in 
the metabolism of the spirochete has not been established,
but the enzyme may contribute to the completion of the
peptidolytic processing of proline-containing peptides.
Whether such peptides are derived from the host’s colla-
gen or proline-containing bioactive peptides, such as hor-
mones, kinins, neurotransmitters, or salivary proline-con-
taining peptides, remains an intriguing question. It is also
possible that the high proline content of some treponemal
cell surface proteins and the high PIP activity of the cell
envelope, are interrelated properties. The PIP itself con-
tains a relatively large number of proline residues [39].

The enzyme is activated by NaCl at physiological salt
concentration, hydrolyzes Pro-pNA optimally at pH 7.5–
8.0, and does not require metal cations for full activity. The
purification of the enzyme from Triton X-100 extracts of
T. denticola was complicated by the cofractionation of a
large component with a mass approximately 500 kDa [39].
After successful purification, it appears that this PIP has a
mass of 120–144 kDa and represents a tetramer, the mini-
mum molecular mass of the monomer being approximately
32 kDa. The activity levels of the PIP vary greatly from
strain to strain, and also depend on growth conditions [68].

PZ-PLGPA peptidase

The systematic classification of the enzyme trivially called
PZ-PLGPA peptidase is not clear. The enzyme has been
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Fig. 2 A Alignment of amino acids present in E. coli OPB and in a
peptide fragment of the T. denticola oligopeptidase, obtained by
means of Glu-C digestion. Identical amino acid residues have been
shaded (60%) while those with the same polarity (sum of identical
and related = 84%) are indicated with a dot. B Alignment of amino
acids present in Aeromonas hydrophila prolyl oligopeptidase (POP),
Flavobacterium meningosepticum POP, and in a peptide fragment of
T. denticola oligopeptidase, obtained by means of Lys-C cleavage.
Identical amino acid residues have been shaded while those with the
same polarity are indicated with a dot. The percentage figures indi-
cate the relative amount of identical residues and the sum of identi-
cal and chemically related residues, respectively. The putative active
site aspartic acid residue has been circled. The T. denticola
oligopeptidase is most likely an OPB



demonstrated and partially characterized in T. denticola
ATCC 35405 and in several of its clinical isolates [32, 36].
The cells of T. vincentii ATCC 35580 and T. socranskii also
display activity on PZ-PLGPA which is hydrolyzed at the
Leu-Gly bond by the enzymes present in these organisms
[36]. The rationale of using PZ-PLGPA as a substrate in
Treponema studies lies in the suggestion that this mole-
cule, along with FALGPA, may be used as a substrate by
microbial collagenases. Both peptide derivatives can, how-
ever, be hydrolyzed by enzymes other than collagenases
and it is not known at present whether the hydrolysis of
PZ-PLGPA by the treponemes indeed involves “true” col-
lagenase action. However, the concept of “true collage-
nase” has also changed.

The extracts of ultrasonically treated cells of T. vin-
centii ATCC 35580 contained two enzymes hydrolyzing
PZ-PLGPA, one with a molecular mass of approximately
75 kDa, the other with a mass about 23 kDa (based on 
molecular permeation FPLC) [34]. The larger form hydro-
lyzed gelatin (the smaller one was not tested), and both
forms were sensitive to p-chloromercuribenzoate (pCMB)
and were moderately inhibited by metal chelators (al-

though a metalloenzyme nature was not established with
certainty). Both the T. denticola and the T. vincentii en-
zymes were similar in their reactions with pCMB and metal
chelators.

γ-Glutamyl transpeptidase activity

A convenient substrate for the measurement of this enzyme
activity is γ-glutamyl-pNA. γ-Glutamyl transpeptidase
(GGTP) activity was demonstrated in the cells of 
T. vincentii ATCC 35580 and T. denticola ATCC 35405
[32, 34]. A similar enzyme was partially purified from 
Fusobacterium nucleatum, another prospective periodon-
topathogen [35], and was active on γ-glutamylcysteinyl-
glycine (glutathione). The presence of cell-associated
GGTP in periodontal pathogens may be significant since
these enzymes may contribute to the metabolism of glu-
tathione, or break down γ-glutamyl linkages present in the
connective tissue, or act in general in γ-glutamyltransfe-
rase reactions. A GGTP was purified to homogeneity from
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Source of peptide Alignment

1. Plasmodium falciparum P-type cation translocating ATPase 1491 K V E L P R I K D I N Y S 1503
(1984 residues). Fragment 1491–1503. | | | | | | |
T. denticola OPase fragment FKIFLPRVKDTEYSVYPH 2 K I F L P R V K D T E Y S 14
(Glu-C cleavage). 61,76.

2. Amscata moorei poxvirus GIL protein (464 residues). 271 D K K A A Y F F N S S G 282
Fragment 271–282. | | | | | | | |
T. denticola OPase fragment 18 N K K A A Y F Y N E T G 29
AEGKQAFIFDDYVVSPDNKKAAYFYNETG
(CnBr cleavage). 66,91.

3. Immunoglobulin VH region (anti-idiotypic; mouse) 27 F S I T D Y V V S 35
(212 residues). Fragment 27–35. | | | | | | |
T. denticola OPase fragment (as in 2). 66,66. 7 F I F D D Y V V S 15

4. Streptococcus mutans sugar-binding protein MsME 106 K A G Y F Y N M T G 115
(420 residues). Fragment 106–115. | | | | | | | |
T. denticola OPase fragment (as in 2). 90,80 20 K A A Y F Y N E T G 29

5. Lyme disease spirochete lipoprotein (194 residues). 118 G K E A F I F 124
Fragment 118–124. | | | | | |
T. denticola OPase (as in 2). 85,100. 3 G K Q A F I F 9

6. Synaptonemal complex protein 1 (mouse) (993 residues). 805 L K D K K D K K I 813
Fragment 805–813. | | | | | | |
T. denticola OPase N-terminal end (undigested). 77,88 34 L K D K T D K K V 42

7. Intracellular serine proteinase inhibitor, placental thrombin 202 K Q S T F K K T Y I G E I 214
inhibitor 38 K (human) (376 residues). Fragment 202–214. | | | | | | | | |
T. denticola OPase N-terminal end (undigested). 61,69. 2 K Q S D F E K P P I A E I 14

8. Coxiella burnetii superoxide dismutase (EC 1.15.1.1.) 48 F E K E P L E E I 56
(193 residues). Fragment 48–56. | | | | | |
T. denticola OPase N-terminal end (undigested). 66,77 6 F E K P P I A E I 14

9. Bacillus subtilis protein ComE ORF3 (776 residues). 25 F P A I F L F I L F L 35
Fragment 25–35. | | | | | | | |
T. denticola OPase fragment GFPIIFLFKIFL 2 F P I I F L F K I F L 12
(Asp-N cleavage). 72,81.

Table 4 Homology of various T. denticola OPase peptide sequenc-
es with those of known proteins (the length of the latter, in number
of amino acid residues, is shown in parentheses). Identical amino ac-
ids are indicated by a vertical line. The two figures at the end give

the percentages of identical amino acid residues and of those with
the same polarity, respectively. The T. denticola OPase sequence in
number 6 is preliminary



a mild (0.5%) Triton X-100 extract of the cells of T. den-
ticola 35405 [40]. This enzyme gives a molecular mass of
approximately 213 kDa in FPLC, but breaks down into 
26-kDa forms in SDS-PAGE (to be reported).

Selective effect of the gaseous environment

The gaseous environment understandably effects the
growth of the spirochetes. There is preliminary informa-
tion on the effects of the growth atmosphere on the activ-
ity levels of cell-associated peptidases [68]. The activity
levels of the OBP-like enzyme were not appreciably af-
fected by the gaseous atmosphere, wherease the PIP activ-
ity varied significantly depending on the composition of
the gaseous environment, anaerobic growth conditions be-
ing associated with higher specific activity than aerobic
conditions.

Selective effect of Cl–

It is not surprising that Cl– exerts quite diverse chemical
effects on enzyme proteins. The activity of treponemal pep-
tidases seems to depend selectively on Cl–. This property
can perhaps be utilized to differentiate some of those pep-
tidases with overlapping specificities. For example, among
the T. denticola cell-associated enzymes, FALGPA pepti-
dase is inhibited by Cl–, while the activities of the POP,
PIP and GGTP are strongly increased by Cl– [30, 32, 34,
35]. However, these effects depend on the buffer used. Very
low, physiological levels of Cl– may cause significant in-
crease of PIP activity [39], while higher salt concentrations
may be slightly inhibitory [41].

Such chloride effects may be partly unspecific. How-
ever, they may reflect an evolutionary dependency of some
of the pathological peptidolytic processes on the specific
[Cl–] provided by the host. Even the gingival crevicular
fluid may contain sufficiently high Cl– levels to be utilized
by peptidases present in periodontopathic treponemes [9].
A mammalian enzyme, aminopeptidase B (EC 3.4.11.6),
suggested to play a role in the extracellular inflammatory
processes, is specifically activated by physiological [Cl–]
[30, 31]. The above Cl– effects can be used as an additional
identification procedure of spirochetal peptidases.

Peptidolysis caused by whole cells

From the pathological point of view it is important to ob-
serve that several peptidolytic enzymes described in this
review – perhaps most of them – seem to be located in the
outer cell envelope or in the periplasmic space. Such in-
formation has by and large been derived from studies on
T. denticola, but offers interesting points of comparison for
studies with other spirochetes as well. In fact, for enzyme

purification and localization studies, it is advisable to first
use mild detergent extracts of washed whole cells rather
than ultrasonic treatment or other disruptive procedures.
Ultrasonic treatment can be used to disintegrate more
tightly bound enzyme-organel complexes. At this labora-
tory, virtually all peptidolytic reactions, first described
with sonicated cell extracts, have also been observed to be
caused by extracts of washed whole cells which frequently
catalyze such reactions much faster than the former prep-
arations. Microscopic examination of whole cells after
those reactions have shown the cells to remain morpholog-
ically intact. It is important to observe that small substrate
molecules may enter the periplasmic space of the cells, to
be hydrolyzed by peptidases located within that cell com-
partment, while larger molecules can be hydrolyzed by en-
zymes located on the outer cell surface. The ready hydrol-
ysis of various tissue proteins [74, 75] and human bioac-
tive peptides [41, 42] by the ectoenzymes of T. denticola
exemplify reactions that may be vital to the propagation of
the spirochetes, and important in human spirochetal infec-
tions.

Proline specificity of treponemal peptidases

Proline-specific peptidases (PSPs) were designated as
those enzymes that prefer the hydrolysis of peptide bonds
that involve an imino acid residues at or near the scissile
bond (in the treponemes, proline – not hydroxyproline –
has been involved in most of such reactions). Attention was
paid to the existence of such enzymes in the cell extracts
of T. denticola owing to a rapid hydrolysis of peptides that
meet the above structural requirements. Enzymes that were
thus regarded as PSPs include the FALGPA peptidase [37],
the POP [41], the enzyme that hydrolyzes PZ-PLGPA [36],
and the PIP [39]. It is possible that such specificity require-
ments are coincidental, or that the natural substrates of
these enzymes are indeed proline-containing peptides (for
the PIP this requirement is obvious). It is possible that the
true in vivo substrates of those PSPs include human bio-
active proline-containing peptides, small collagen frag-
ments, and proline-rich salivary peptides.

Trypsin-like enzymes

The peptidase and proteinase literature is replete with in-
formation on trypsin-like enzymes whose identity with
trypsin (EC 3.4.2.4) is, however, in many cases equivocal.
It may not always be appropriate to call an enzyme tryp-
sin like, even if the enzymes is active on synthetic trypsin
substrates (such as BANA and BAPNA), or is inhibited by
some trypsin inhibitors. As pointed out above, the evolu-
tionary relationship between the treponemal “trpysin-like”
proteinases and trypsin may be more remote, the former
being often more closely related to enzymes of the POP
superfamily. The T. denticola trypsin-like enzyme [38, 51]
is most likely an OPB (an enzyme first described in E. coli).
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The proteolytic profile of spirochetes other 
than treponemes

Regrettably scant information is available about the pro-
teinases and peptidases of spirochetes other than T. denti-
cola. The cells of B. burgdorferi, B. hermsii, and those of
leptospires and serpulinas do exhibit arylamidase activities
[7], but none of these enzymes has been characterized, and
no firm conclusions on their biological role has been pre-
sented. The present authors predict that several of the en-
zymes present in the cells of T. denticola will also be dem-
onstrated in T. pallidum.
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