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Abstract

A generational time scale, involving change from one generation to the next, is the time scale of evolution by natural
selection. Microevolutionary and macroevolutionary patterns reflect this process on longer time scales. Rates of
evolution are most efficiently expressed in haldane units, H, in standard deviations per generation, indexed by the
log of the time interval. Rates from replicated selection experiments and simulations have rate-interval [RI] and log
rate-log interval [LRI] scaling relations enabling directional, stationary, and random time series to be distinguished.
Empirical microevolutionary and macroevolutionary data exhibit stationary scaling, but point to generational rates
of evolution (H0) conservatively on the order of 0.2 standard deviations per generation on the time scale of the
evolutionary process. This paradox of long-term stationary scaling and short-term high rates of change can be
explained by considering the shape of an heuristic time-form evolutionary lattice. Cenozoic mammals occupy a
lattice that is about four orders of magnitude longer in time than it has ever been wide in form. The evolutionary
process is dynamic but operates within relatively narrow morphological constraints compared to the time available
for change.

Introduction

Evolution is the name we give both to patterns of
change in the forms of life we observe, and to the pro-
cess of natural selection that produces these patterns.
Dobzhansky (1937, p. 12) distinguished microevolu-
tion, representing evolution observable in the span
of a human lifetime, from macroevolution, involving
patterns on a geological time scale. Generally speak-
ing, the former includes experimental and historical
patterns that may span anywhere up to 100 or so gen-
erations, while the history of life over geological time
involves patterns on scales of hundreds to millions
of generations. However, there are really three time
scales of interest in evolution:

1. a generational time scale, involving change from
generation-to-generation;

2. a microevolutionary time scale, involving patterns
on scales from 2–100 or so generations; and

3. a macroevolutionary time scale, involving patterns
on scales of hundreds or more generations.

The first of these is the time scale of the evol-
utionary process, and the second and third show
how the process plays out in producing patterns of
change over longer and longer time scales. There are
relatively few studies quantifying microevolutionary
change, and many more quantifying macroevolution-
ary change. The former sometimes involve artificial
selection, while the latter usually treat organisms that
lived before humans and are clearly free of human
influence. The former yield higher rates of change
and the latter yield lower rates: which studies – mi-
croevolutionary or macroevolutionary (or neither) –
yield rates representative of the evolutionary process
on a generational scale of time? We cannot under-
stand the evolutionary process without answering this
fundamental question.

Quantification of rates

Charles Darwin’s Origin of Species (1859, p. 116–
117) included a single figure, showing a hypothetical
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pattern of what he considered ‘species... supposed
to resemble each other in unequal degrees’ and their
‘varying offspring’ changing through time, where the
intervals of time ‘may represent each a thousand gen-
erations’. The degrees of resemblance and variation
were not explicitly quantified, but there is a sense
in Darwin’s diagram of resemblance-standardized-by-
variation, and the time scale is in generations. Ninety
years later Haldane proposed (1949, p. 55) that ‘it
may be desirable to coin some word, for example a
darwin, for a unit of evolutionary rate, such as an in-
crease or decrease of size by a factor of e per million
years’, where e is the base of the natural logarithms.
Haldane then found that horses evolved at rates of
about 40 millidarwins (0.40 darwins), calculated on
time scales of 5–14 million years. Rates have gener-
ally been calculated in darwins and millidarwins ever
since.

However, Haldane (1949, p. 52) prefaced his
proposal of the darwin unit by noting that ‘if evol-
ution... depends on selection, the generation seems
the more suitable unit of time’, and ‘the use of the
standard deviation as a yardstick has a certain in-
terest because, on any version of the Darwinian
theory, the variation within a population at any
time constitutes, so to say, the raw material avail-
able for evolution’. Following Haldane, Lerman
(1965), Lande (1976), Lynch (1990), and others,
it is desirable to quantify evolutionary change in
terms of proportion expressed in units of standard
deviation per generation. I have called this unit a
haldane (Gingerich, 1993), both to recognize it as
Haldane’s and to contrast it with his widely used
darwin.

Calculating a rate of change between two samples
requires three quantities: (1) the proportional differ-
ence between the sample means, d = ȳ2 − ȳ1; (2) the
pooled standard deviation of the samples, e.g., sp =√

s2
p , where s2

p = ((n1−1)s2
1+(n2−1)s2

2 )/(n1+n2−2)

(Sokal & Rohlf, 1981, p. 226); and (3) the time
interval between the samples, I = t2 − t1, counted
or estimated in generations. Proportionality is incor-
porated by taking ȳi to be the mean of each sample
of logged measurements, while si is the standard devi-
ation of each sample of logged measurements (logs to
the base e, ln, are generally used because they make
the standard deviation of the logged measurements
equivalent to the more familiar coefficient of variation
of unlogged measurements; Lewontin, 1966). Log-
ging is necessary because of the geometric normality
of biological variation (Gingerich, 2000). Finally, the

rate of change in standard deviations per generation
(haldanes) is calculated as:

H(logI ) = D/I, where D = d/sp. (1)

Rates calculated over different intervals are not dir-
ectly comparable, which is why rates must be indexed
by the log (here base 10) of the interval.

Rates calculated in haldanes and rates calculated
in darwins are correlated (Hendry & Kinnison, 1999),
but they are not the same. Rates in darwins, while di-
mensionless numbers, retain the same proportionality
to dimension as observed for coefficients of variation
(which can be confirmed by simple calculations par-
alleling those of Lande, 1977). Rates in haldanes are
independent of dimension. Quantification in haldanes
is always more appropriate in evolutionary studies be-
cause, as Haldane himself stated, variation is the raw
material of evolution and a generational time scale is
the time scale on which evolution takes place.

Variation is essential for evolution of any kind,
whether this be by artificial selection, natural se-
lection, or random drift, and this variation must be
quantified so rates can be appropriately scaled. Change
by any absolute amount or by any proportion is only
meaningful in terms of the distribution of variation
available for selection or drift: this is the basis for the
concept of selection intensity (see below). The stand-
ard deviation, the root-mean-square of all deviations
and the distance from the mean of a normal curve to
either of its inflection points, is a natural measure of
variation whatever the original unit of measurement.

A generational time scale is the time scale on
which the process of evolution takes place. The evol-
utionary process has no memory of a past beyond that
represented in genes and morphology of the present
generation, nor any clairvoyant anticipation of a fu-
ture: any selective decisions about what serves an
organism advantageously and disadvantageously are
made here-and-now as it interacts with its environ-
ment from conception through growth to reproduction.
Hence in characterizing the process there is no altern-
ative to knowing or inferring rates on a generation-to-
generation time scale.

Evolutionary process: a model for selection

A graphic model for quantification of natural selec-
tion is shown in Figure 1. This was developed as a
teaching tool, substituting a simple linear selection
gradient for the usual textbook case of selection by
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Figure 1. Change in human stature as a model for evolution from one generation (A) to the next (B) in response to a gradient of selection
(represented by the diagonal line superimposed in A). Population samples are normal on a logarithmic scale, with means of 5.140 and 5.145
ln units (corresponding to statures of 170.7 and 171.6 cm, respectively) and a common standard deviation of 0.05 ln units. Vertical lines within
normal curves are standard deviation [s.d.] units. Heritability h2 is assumed to be 0.5, which means that a selection differential S of 0.01 ln
units, equivalent to a selection intensity i of 0.2 standard deviation units (dashed normal curve in B), is required to achieve a response of 0.005
ln units (R) – equivalent to the response of 0.1 s.d. units shown here (R′; solid normal curve in B). Selection gradient in A indicates how sizes
are favored in relation to an arbitrarily small positive non-zero constant a at x̄ − 4 s.d. The gradient g shown here is that required to achieve a
change in means of 0.1 s.d. units for h2 = 0.5 (compare to the corresponding gradient for h2 = 1.0). This change is independent of population
size and equally efficient for populations of small or large effective size. The expected response R′ has a limit of approximately 0.124 standard
deviation units in this example (inset box at right in lower panel shows how R′ is related to g). Documentation of higher rates indicates that
such a linear gradient is probably not representative and truncation selection may be more common in nature than is generally recognized. The
selection and response notation here follows Falconer (1981; with a added to scale gradient slope to unit area under normal curve).

truncation (e.g., Falconer, 1981, p. 174; Roff, 1997,
p. 119). It is the simplest linear univariate reduction of
Lande and Arnold’s (1983) more general multivariate
treatment. The model illustrates selection in the con-
text of the well-documented difference in stature of
my generation (Figure 1(A)) and that of my students
(Figure 1(B)) – the latter being, on average, about a
centimeter taller. In the model, my generation at time i
is represented as having a mean stature ȳi = 5.140
on a natural logarithmic scale (equivalent to about
171 cm on a centimeter scale of measurement), with
a standard deviation si = 0.50. My students’ gener-
ation at time i + 1 is represented as having a mean

stature ȳi+1 = 5.145 on a natural logarithmic scale
(equivalent to about 172 cm on a centimeter scale of
measurement), with a standard deviation si+1 = 0.50.

The difference in stature in successive generations
can be explained by imagining a linear gradient of
selection affecting my generation, giving some slight
statistical reproductive advantage to taller people. The
slope of the gradient here is given by a/s, where a
is an arbitrarily small constant and s is a standard de-
viation unit (a is required to scale the slope relative
to unit area under the normal curve). A zero gradi-
ent (lower dashed line) would yield no effect, while
a slightly steeper gradient (upper dashed line) would
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be sufficient to explain the observed shift of means if
heritability h2 were complete (h2 = 1.0). The gradient
required for a more realistic case of partial heritability
(h2 = 0.5) is shown with a solid line.

A selection differential S of 0.01 ln units, equiva-
lent to a selection intensity i of 0.2 standard deviation
units, is required to effect an expected response R =
0.005 in ln units and R′ = 0.1 in standard deviation
units. Interestingly, in the model this response has a
limit of 0.248 · h2 · s (inset graph in Figure 1(A)) for a
linear selection gradient, which is only 0.124 standard
deviations per generation when h2 = 0.5. Thus it is
possible to explain an increase of a centimeter or so
of human stature in a single generation with a gradient
of selection, but the resulting rate H0 ≈ 0.1 is close to
the upper limit expected for a linear selection gradient.

This example illustrates: (1) how the process
of evolution by natural selection takes place on a
generation-to-generation time scale; and (2) how nat-
ural it is to quantify change in standard deviation units
per generation, whether the quantity of interest is ex-
pected response R′ or calculated rate of change H0.
Anthropologists call the documented change leading
to greater human stature in recent generations the ‘hu-
man secular trend’ but claim that it cannot represent
evolution ‘because it is too fast’. I do not know if this
secular trend is evolutionary (nor do I claim this – its
heritability has not been demonstrated and the trend
could be due simply to improved nutrition), but as I
shall show below, such change cannot be ruled out as
evolution because it is too fast.

Evolutionary rates: experimental selection
in the laboratory

Evolution as a process takes place on a generational
time scale, repeated generation after generation until
patterns of change are produced on longer scales of
microevolutionary and macroevolutionary time. The
transition from generational to longer time scales is
amenable to investigation through experimentation
and simulation, and in rare instances field observation.
Falconer’s (1973) replicated selection experiments for
body weight in mice provide an example of exper-
imental evolution (Figure 2(A)). Three experiments
were carried out in parallel. In the first, six ‘large’
lineages were maintained in the laboratory for 23 gen-
erations, selected in each generation for larger body
size. In the second, six ‘small’ lineages were main-
tained in the laboratory for 23 generations, selected

in each generation for smaller body size. In the third,
six ‘control’ lineages were maintained in the labor-
atory for 23 generations, with founders of the next
generation drawn at random.

Each of Falconer’s lineages yields 23 independent
rates of response on a 1-generation time scale, and
each set of six lineages yields 138 independent rates
on a 1-generation time scale (Figure 2(A)). These are
autonomous rates because in each lineage the time
intervals are independent and non-overlapping. It is
possible to calculate rates on longer 2-generation, 3-
generation, etc., time scales by comparing intervals
from t to t2, t1 to t3, etc., but these would not be
autonomous rates because time intervals overlap oth-
ers in the same lineage and hence are not independent
of each other. An example of nonautonomous rates
spanning ten generations is shown in Figure 2(B),
and an example of rates spanning all 23 generations
is shown in Figure 2(C). The latter could be con-
sidered autonomous by themselves, but they are not
independent of the rates shown in Figure 2(A).

The rates that can be calculated for each of Fal-
coner’s experiments are shown graphically in Fig-
ures 3–5. The ‘large’ experiment has 138 1-generation
rates with a mean rate on this scale of 0.111 and a
standard deviation on this scale of 0.385 (Figure 3(A)),
132 2-generation rates with a mean of 0.110 and stand-
ard deviation of 0.212 (not shown), 126 3-generation
rates with a mean of 0.111 (Figure 3(B)), etc. Note
that the mean is relatively stable, while the standard
deviation decreases rapidly at first and continues de-
creasing as interval size gets longer. This is easily
seen in the histograms, and also in the rate versus
interval [RI] graph in Figure 3(M). A line fit to all
points declines slightly as interval length gets longer
(slope −0.001), indicating a very slight decline in re-
sponse over time. This line has an intercept of 0.109,
and an expected H0 of 0.108 (value of regression for
an interval of one generation), which is very close to
the observed mean rate of 0.111 for 1-generation rates
(Figure 3(A)). A different rate fingerprint is shown in
the log rate versus log interval [LRI] graph in Figure
3(N). Logging accentuates the slight negative slope of
the line in the previous panel, and this has a slope of
−0.236 on the LRI graph. The intercept of an ordinary
LRI plot is not a good predictor of H0 because aver-
aging positive and negative rates separately or pooling
them as absolute values systematically overestimates
the median.

The ‘small’ experiment (Figure 4) has 138 1-
generation rates with a mean rate on this scale of
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Figure 2. Replicated selection experiments of D.S. Falconer (1973) involving 6-week body weight (g) of laboratory mice. Six inbred popula-
tions were divided, with each subgroup founding a line selected in each generation to be large, selected to be small, or bred without artificial
selection to serve as a control. Experiments were continued for 23 generations. (A) Generation means for each of the six lines in each experiment
(large, small, and control, respectively): rates of response are indicated by the slope of each line segment. (B) Rates of response calculated
at 10-generation intervals. (C) Rates of response calculated at 23-generation intervals. Rates of response on all time scales are compared in
Figures 3–6.
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Figure 3. Comparison of rates of response in the Falconer experiment involving generational-scale selection for large body size. (A–L)
Histograms of rates calculated over different intervals of time (panels for even-numbered intervals are omitted to conserve space) – note
the symmetry of mean rates in panels A and L, B and K, etc., while standard deviations decline systematically. (M) Rate versus interval [RI]
plot combining rates for all time scales – predicted H0 is value of regression for an interval of one generation. (N) Log absolute value of
rate versus log interval [LRI] plot. Note that rates in LRI plot decline slightly with interval length (solid line slope = −0.236) compared to
expectation for a purely directional process (dashed line slope = 0.000).

−0.137 and a standard deviation on this scale of 0.404
(Figure 4(A)), 132 2-generation rates with a mean of
−0.140 and standard deviation of 0.227 (not shown),
126 3-generation rates with a mean of −0.138 and
standard deviation of 0.160 (Figure 4(B)), etc. Note
that again the mean is relatively stable, while the
standard deviation decreases rapidly at first and con-
tinues decreasing as interval size gets longer. This is
easily seen in the histograms, and also in the rate
versus interval [RI] graph in Figure 4(M). A line fit
to all points declines slightly as interval length gets
longer (slope −0.000), indicating a very slight decline
in response over time. This line has an intercept of
−0.138, and a predicted H0 of −0.138, which is again
very close to the observed mean rate of −0.137 for
1-generation rates (Figure 4(A)). Again, logging ac-
centuates the slight negative slope of the line in the
previous panel, and this has a slope of −0.145 on the
LRI graph (Figure 4(N)).

The ‘control’ experiment (Figure 5) has rates dis-
tributed similarly to those in the two selection ex-
periments. A line fit to all points in the RI graph
(Figure 5(M)) declines slightly as interval length gets
longer (slope −0.000), indicating a very slight de-
cline in response over time. This line has an intercept
of 0.004, and a predicted H0 of 0.003, which is
again close to the observed mean rate of 0.012 for
1-generation rates (Figure 5(A)). However, logging
yields a much more negative slope representing the
relationship of log rate to log interval, and this has a
slope of −0.837 on the LRI graph (Figure 5(N)).

For completeness I constructed a fourth replicated
selection experiment by simulation, with the response
in each generation determined by selection at random
from a normal distribution of rates having the para-
meters of 1-generation rates in the control experiment
(Figure 5(A)). The ‘random’ experiment (Figure 6)
has rates distributed like those in the three previous
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Figure 4. Comparison of rates of response in the Falconer experiment involving generational-scale selection for small body size. (A–L) Histograms of rates calculated over different intervals
of time (panels for even-numbered intervals are omitted to conserve space) – note the symmetry of mean rates in panels A and L, B and K, etc., while standard deviations decline systematically.
(M) Rate versus interval [RI] plot combining rates for all time scales – predicted H0 is value of regression for an interval of one generation. (N) Log absolute value of rate versus log interval
[LRI] plot. Note that rates decline slightly with interval length (solid line slope = −0.145) compared to expectation for a purely directional process (dashed line slope = 0.000).
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Figure 5. Comparison of rates of response in the Falconer control experiment involving no artificial selection. (A–L) Histograms of rates calculated over different intervals of time (panels for
even-numbered intervals are omitted to conserve space) – note the symmetry of mean rates in panels A and L, B and K, etc., while standard deviations decline systematically. (M) Rate versus
interval [RI] plot combining rates for all time scales – predicted H0 is value of regression for an interval of one generation. (N) Log absolute value of rate versus log interval [LRI] plot. Note
that rates decline steeply with interval length (solid line slope = −0.837) but exceed expectation for a purely stationary process (dashed line slope = −1.000).
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experiments. A line fit to all points in the RI graph
(Figure 6(M)) inclines slightly as interval length gets
longer (slope 0.001), indicating a very slight chance
increase in response over time. This line has an in-
tercept of 0.036, and a predicted H0 of 0.037, which
is close to the observed mean rate of 0.030 for the
simulated sample of 1-generation rates. Again logging
yields a negative slope representing the relationship of
log rate to log interval, and this has a slope of −0.550
on the LRI graph (Figure 6(N)).

Evolutionary rates: three time-series simulations

The easiest way to understand the rate-interval finger-
prints in panels M and N of Figures 3–6 is through
analysis of response rates in time series constructed
by simulation to satisfy clearly-specified constraints.
Three time series are shown in Figure 7(A). Each of
these has a generation rate (base rate or step rate) set
arbitrarily at a constant value of ±0.1 standard de-
viation units per generation (this value need not be
constant, and it cannot be both constant and zero). The
first time series is a directional trend constrained to
have the same positive sign at every step (solid squares
in Figure 7(A)). The second time series is stationary,
with the sign free to change but constrained to change
at every step (solid circles in Figure 7(A)).

The third time series is random, with the sign free
to change at every step and the sign determined by
chance independently of the sign of the previous step
(open circles in Figure 7(A)).

Each time series in Figure 7(A) has distinct RI and
LRI fingerprints shown in Figures 7(B)–(C). The dir-
ectional trend (solid squares) is so constrained that its
rate r = 0.1 is independent of the interval (ti − ti−j)

over which it is calculated, and its RI fingerprint is just
a straight line of zero slope with intercept 0.1. Logging
does not affect the independence and the LRI finger-
print of this directional trend is also just a straight line
of zero slope with intercept 10−1 = 0.1.

The stationary time series (solid circles) has a rate
r that depends on the interval (ti − ti−j) so completely
that r is just the scaled inverse of the interval, and its
RI fingerprint (Figure 7(B)) is an inverse power distri-
bution centered on a line of zero slope with intercept
close to zero (here 0.002). The LRI fingerprint of the
stationary time series (Figure 7(C)) is a straight line of
slope −1.0 and intercept 10−1 = 0.1.

The random time series (open circles) has a rate
r that depends on the square root of the interval

(ti − ti−j). Its RI fingerprint (Figure 7(B)) is again an
inverse power distribution centered on a line of zero
slope. However the RI intercept of this center line is
−0.025, reflecting the negative drift of the particu-
lar random series shown. The LRI fingerprint of the
random time series is a scatter of points with slope
−0.360 and intercept 10−1 = 0.1. The expected slope
for a random time series is −0.500 because statistic-
ally y is proportional to

√
t , and the rate y/t is thus

proportional to t−0.5.
All three RI fingerprints can be modeled as power

functions of the general form:

R = ±r · I−m, (2)

where R is the rate ordinate, r is the generational or
step rate of the time series, I is the interval abscissa,
and − m is a variable in the range −1 ≤ −m ≤ 0. Vari-
able −m = 0 for the directional time series, −m = −1
for the stationary time series, and −m ≈ −0.5 for the
random time series.

The three LRI graphs in Figure 7(C) can be de-
rived from the RI graphs in Figure 7(B). After logging,
equation 2 becomes:

log R = log | ± r | − m · log I, (3)

which is a linear equation in log I and log R, with slope
− m and intercept log r. Parameter r is 0.1 and log
r = −1. Slope m has expected values of 0, −1, and
−0.5 as before.

Another way to look at LRI slopes is as indicators
of fractional or fractal dimension (Mandelbrot, 1967),
where fractal dimension D = | − m| + 1. A direc-
tional time series has D = 1, the dimension of an
ordinary Euclidean line. A stationary time series has
D = 2, the dimension of an ordinary Euclidean area,
reflecting how a zig-zag stationary time series effect-
ively fills a two-dimensional area. Finally, a random
time series has D = 1.5, which is the intermedi-
ate fractal dimension associated with a simple random
walk (Mandelbrot, 1983, p. 240). The idea that rates of
change are often inversely related to interval length is
well established in other contexts (e.g., Sadler, 1981,
1993; McShea & Raup, 1986; Foote, 1994).

The most effective way to characterize rates of
change on a generational time scale, H0, for a sample
rate distribution like those in Figure 7(B) is to cal-
culate residuals, treating positive and negative resid-
uals separately (Figure 7(D)). Working with residuals
avoids the problem of biased averaging when posit-
ive and negative rates are treated separately or pooled
as absolute values. The directional time series in
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Figure 6. Comparison of rates of response in a 23-generation replicated generational-scale selection simulation involving random selection of rates each generation from a distribution with
the mean and standard deviation for Falconer’s control experiment (Figure 5(A)). (A-L) Histograms of rates calculated over different intervals of time (panels for even-numbered intervals are
omitted to conserve space) – note the symmetry of mean rates in panels A and L, B and K, etc., while standard deviations decline systematically. (M) Rate versus interval [RI] plot combining
rates for all time scales – predicted H0 is value of regression for an interval of one generation. (N) Log absolute value of rate versus log interval [LRI] plot. Note that rates decline with interval
length (solid line slope = −0.550) and almost match expectation for a random process (dashed line slope = − 0.500).
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Figure 7. Three simulations showing interpretation of rate versus interval [RI] and log rate versus log interval [LRI] graphs in terms of model time series. (A) Solid squares in panel A show a
directional trend with signs constrained to be uniformly positive, modeling persistent directional selection in successive generations. Solid circles in panel A show a stationary time series with
signs constrained to fluctuate, modeling frequent reversals of direction tracking a stable adaptive peak. Open circles in panel A show a random time series with the sign at each step independent
of that in previous steps. All three time series are gradual, changing at 0.1 standard deviation units per generation. (B) Distributions of rates calculated for each time series are based on six
samples of 100 rates each, drawn at random from each time series on scales of 2, 4, 8, 16, 32, and 64 generations. (C) Ordinary LRI graph of rate distributions in panel B showing how each
model time series can be distinguished by its fractional or fractal dimension D derived from the slope of the LRI plot. (D) Alternative LRI plot of rate residuals separated by sign. (E) Modal
distributions of rates inferred from the scaling of rate residuals in panel D. Fifty percent or more of observed rates are expected to lie outside each of the shaded envelopes. MF slopes and
intercepts are derived using a robust median fitting routine minimizing absolute deviations. Note that the directional time series is most constrained and hence has least variance. The random
time series is least constrained and has greatest variance. All of the interpretative graphs (B–E) accurately recover the 0.1 standard deviation per generation rates of the model time series on a
generational scale of time, although these values exceed time-averaged rates on longer time scales for any but purely directional trends.
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Figure 7(B) has no residuals because R is independent
of I, so it is not considered further here. The stationary
time series in Figure 7(B) yields the residuals plot-
ted as solid circles in Figure 7(D). The slope of the
positive residuals is −1.060 and the slope of negative
residuals is −1.070, with intercepts being −1.010 and
−0.886 respectively. These yield the narrow hatched
envelope fit to the solid circles in Figure 7(E). The
random time series in Figure 7(B) yields the residuals
plotted as open circles in Figure 7(D). The slope of the
positive residuals is −0.795 and the slope of negative
residuals is −0.658, with intercepts being −0.901 and
−1.128 respectively. These yield the broader hatched
envelope fit to the open circles in Figure 7(E).

The hatched envelopes in Figure 7(E) are not con-
fidence intervals in the ordinary sense, but they do tell
us about the distribution of rates based on a sample
in each case. Since positive and negative residuals are
fit separately, each line describes the median of a dis-
tribution of residuals: half are expected to be above
the line and half below it. Hence we can say that at
least half, and possibly more, of all rates are expected
to fall above or below each hatched envelope. More
than a quarter of all rates will fall above the upper
line of the envelope if some from the upper half of
the distribution of negative residuals fall in the up-
per half of the distribution of positive residuals, and
more than a quarter of all rates will fall below the
lower line of the envelope if some from the lower
half of the distribution of positive residuals fall in the
lower half of the distribution of negative residuals. A
confidence interval is usually an interval that is con-
servative in describing what is included, but in this
case the interval is conservative in describing what is
excluded.

In most studies two numbers are required to repres-
ent H0. One is the median value of negative rate resid-
uals on a generational time scale (H0 ↓). This number
is generally negative because the rate corresponding to
the median of negative residuals is generally negative.
The other is the median value of positive rate residuals
on a generational time scale (H0 ↑). This number is
generally positive because the rate corresponding to
the median of positive residuals is generally positive.
If we consider the signs of H0 ↓ and H0 ↑ to be im-
portant, then the expected value of H0 is the average of
H0 ↓ and H0 ↑, which will be a number close to zero
in most studies. However, if the signs are unimportant,
then the expected value of H0 is the average of |H0 ↓ |
and |H0 ↑ |, which will be a number close to both
|H0 ↓ | and |H0 ↑ | in most studies.

Evolutionary rates: empirical evidence

Evolutionary rates are known from sources represent-
ing change in different settings and change on different
scales of time. A sampling of these is shown in Fig-
ure 8, taken from a survey of evolutionary rates that
is not complete, but nevertheless likely to be repres-
entative of rates in general. My purpose in making the
comparison is to show that all studies on all scales of
time yield consistent results.

One source of evolutionary rates is experimental.
All 413 of the nonzero autonomous rates calcu-
lated over single generation intervals of time in the
Falconer replicated laboratory selection experiments
(Figures 3(A), 4(A), and 5(A)) are shown in the LRI
graph of Figure 8(A). In addition, 12 rates from field
selection experiments of Reznick et al. (1997), calcu-
lated over intervals of about 7, 13, and 19 generations,
are shown as well. Regression of logs of the absolute
values of all rates on logs of their associated inter-
vals yields an LRI slope of −0.639, which is between
the value expected for random change (−0.500) and
that expected for a stationary time series (−1.000) –
and closer to the former. All of the Reznick et al.,
rates are positive. Regression of the logs of all posit-
ive experimental rates on the logs of their associated
intervals yields an LRI slope of −0.600 and an in-
tercept of −0.619. If we assume that residuals of all
rates over the long term will have the same sign as
the rates themselves, then we can calculate an ex-
pected upper median of positive rates, which here is
0.240 haldanes (10−0.619). There are no negative ex-
perimental autonomous rates calculated on time scales
longer than one generation in this sample, so it is not
yet possible to calculate an independent lower median
of negative experimental rates.

Hendry and Kinnison (1999) summarized a large
set of ‘microevolutionary’ rates, based on field and
laboratory studies, including those of Reznick et al.,
included in Figure 8(A) as experimental rates. These
too can be studied in an LRI context (Figure 8(B)).
Taken together, regression of logs of the absolute val-
ues of all rates on logs of their associated intervals
yields an LRI slope of −1.046, which is almost exactly
that expected for a stationary time series (−1.000).
Separate treatment of rates reported as positive and
negative yields an upper median of positive rates of
about 0.660 haldanes and a lower median of neg-
ative rates of about −0.486 haldanes. Some 50%
of all rates are expected to lie outside this range,
involving rates on the order of ± 0.5 or more stand-



139

Figure 8. Temporal scaling of evolutionary rates from different sources calculated on different scales of time to show their comparability.
(A) Laboratory selection experiments of Falconer (1973) and field selection experiments of Reznick et al. (1997). (B) Microevolutionary
rates summarized in Hendry and Kinnison (1999). (C) Historical field study of Michigan mouse Peromyscus gracilis (unpublished study of
L. Hester). (D) Paleontological studies of Colbert (1948), Haldane (1949), Maglio (1973), McDonald (1981), Malmgren et al. (1983), King
and Saunders (1984), Flynn (1986), Lister (1989), Barnosky (1990), Forstén (1990), Geary (1990), Lich (1990), Gingerich (1991), Heaton
(1993), Clyde and Gingerich (1994), Gingerich (1994), Gingerich and Gunnell (1995), Klein (1995), Gingerich (1996), Prothero and Heaton
(1996), Polly (1997), Ruff et al. (1997), and Bloch and Gingerich (1998). All rates are autonomous rates, meaning that they are calculated
over the shortest intervals spanning successive samples in a time series. Slopes and intercepts are derived using a robust median fitting routine
minimizing absolute deviations. Note that some log rate intercepts are on the order of 10−0.2, yielding H0 rates as high as about −0.6 or +0.6
standard deviations per generation. Hence we can expect rates on the order of 0.1–0.2 standard deviations to be common on the per-generation
scale of the evolutionary process.
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ard deviations per generation on a generational time
scale.

A third study of rates of change in Michigan field
mice collected during the past century is shown in
Figure 8(C). Taken together, regression of logs of the
absolute values of all rates on logs of their associ-
ated intervals yields an LRI slope of −1.203, which
is even a little more negative than that expected for a
stationary time series (−1.000). Treatment of positive
and negative rates separately yields an upper median
of positive rates of about 0.624 haldanes and a lower
median of negative rates of about −0.596 haldanes.
Some 50% of all rates are expected to lie outside this
range, involving rates on the order of ±0.6 or more
standard deviations per generation on a generational
time scale.

Finally, a large sample of paleontological rates col-
lected from many sources is shown in Figure 8(D).
Taken together, regression of logs of the absolute val-
ues of all rates on logs of their associated intervals
yields an LRI slope of −1.019, which is again al-
most exactly that expected for a stationary time series
(−1.000). Treatment of positive and negative rates
separately yields an upper median of positive rates of
about 0.156 haldanes and a lower median of negat-
ive rates of about −0.629 haldanes (the high intercept
for negative rates is determined by short-term rates in
two studies). Some 50% of all rates are expected to
lie outside this range, involving rates on the order of
± 0.15 or more standard deviations per generation on
a generational time scale.

We can now address the question posed in the
introduction. Which studies – microevolutionary or
macroevolutionary (or neither) – yield rates repres-
entative of the evolutionary process on a generational
scale of time? Macroevolutionary studies yield rates
on the order of 10−2–10−6 haldanes calculated over
intervals of geological time ranging from 102–106

generations. Microevolutionary studies yield rates on
the order of 10−1–10−2 haldanes calculated over in-
tervals of historical time ranging from 101–102 gen-
erations. Microevolutionary and macroevolutionary
studies are consistent in pointing to very high rates
of change on a generational scale of time, although
neither group is itself representative of change on this
time scale. H0 is 0.240 in panel A of Figure 8, −0.486
and +0.660 in panel B, −0.596 and +0.624 in panel
C, and −0.629 and +0.156 in panel D. The most con-
servative H0 values indicate change on the order of
0.2 standard deviations or more per generation on a
generational time scale. These are evolutionary rates

on the time scale of the evolutionary process. Rates
from field studies and paleontological studies yield H0
values that equal or exceed average rates from selec-
tion experiments like those shown in Figures 3 and 4.
All evidence indicates that the evolutionary process is
much more dynamic than we generally recognize.

Evolution appears slow when we consider net rates
averaged over long intervals of time in the fossil re-
cord, but these are not rates on the time scale of the
evolutionary process. Lande (1976, p. 333) found that
change in fossil lineages can be explained by as few
as about one selective death per million individuals
per generation, and Lynch (1990, p. 739) found that
rates of morphological change in fossil lineages are
substantially below the minimum neutral expectation.
Both results are surprising, but each study erroneously
assumed that macroevolutionary rates calculated on
geological scales of time represent evolution on the
time scale of the process. All rates must be scaled
against interval length for comparison on a common
scale, and when this is done all studies yield consistent
estimates of H0.

Interpretation

If the process of evolution is so dynamic on a genera-
tional scale of time, why does it appear virtually sta-
tionary on longer scales of time? Here I will develop
an example from Cenozoic mammal evolution as an
illustration. This involves an heuristic evolutionary
time-form lattice (Figure 9(A)) facilitating compar-
ison of morphology to evolutionary time. Our obser-
vation that evolution takes place at rates on the order
of 0.1 haldanes (rounding to the nearest order of mag-
nitude) indicates that one 0.1 standard deviation unit of
morphological difference is evolutionarily equivalent
to one generation of temporal difference. Generations
and 0.1 standard deviation units calibrate and scale the
time-form lattice.

Now one of the smallest living mammals is the
least shrew weighing about 3 or e1.1 g, and the largest
living mammal is the blue whale weighing about 100
metric tonnes or e18.4 g. The standard deviation of
body weight in mammals is about 0.15 units on a
natural logarithmic scale. Hence the largest and smal-
lest mammals living today differ by approximately
100 standard deviations, which is 103 0.1-standard-
deviation units. These are physiological limits and
mammals have never been much smaller or much
larger: thus the time-form lattice for mammalian evol-
ution is about 103 units wide.
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Figure 9. Heuristic time-form lattice to explain how evolution can be so dynamic in the short term, with H0 rates on the order of 0.1 standard
deviations per generation on the scale of one generation, and so static over longer intervals. (A) If H0 rates are on the order of 0.1 standard
deviations per generation, then evolution takes place on a time-form lattice where a 0.1 standard deviation step or difference in morphology
corresponds roughly to a one-generation step or difference in evolutionary time. The smallest living mammal is the least shrew weighing about
3 or e1.1 g, and the largest living mammal is the blue whale weighing about 100 metric tonnes or e18.4 g. The standard deviation of body weight
in mammals is about 0.15 units on a natural logarithmic scale. Hence the largest and smallest mammals living today differ by approximately
100 standard deviations or 103 0.1-standard-deviation units. These are physiological limits and mammals have never been much smaller or
much larger: thus the time-form lattice for mammalian evolution is about 103 units wide. The generation time for an average living mammal
is on the order of one year, and the Cenozoic history of the modern orders of mammals as we know them goes back 55–65 million years,
which is conservatively about 10 million or 107 generations. Thus the time-form lattice for Cenozoic mammal evolution is about 107 units
long temporally. (B) The lattice is not square, but some four orders of magnitude longer temporally than it is wide in form. Mammals starting
at some average size at the beginning of the Cenozoic can be expected to have diffused and filled the lattice in less than 105 generations
[(500/1.96)2 ≈ 65000 generations] – less than one percent of their subsequent Cenozoic history. Then they were constrained to evolve within
the lattice for the remaining 99 percent of their history. Rates of evolution on the time scale of the process are so high that lineages rapidly find
and fill most niches within their physiological limits. Then they change little until the system is perturbed.

The generation time for an average living mammal
can be assumed to be on the order of one year, and the
Cenozoic history of the modern orders of mammals,
mammals as we know them, goes back 55–65 million
years, which is conservatively about 10 million or 107

generations. Thus the time-form lattice for Cenozoic
mammal evolution is about 107 units long temporally.
The width and length of the lattice differ by four orders
of magnitude!

The diagram in Figure 9(B) is designed to illustrate
what a four-order-of-magnitude difference between
morphology and time means for the history of mam-
mals. If we assume that mammals start at an inter-
mediate size and speciate rapidly enough to diffuse
randomly across the time-form lattice at the rate of
their morphological evolution, 0.1 standard deviations

per generation, it will take some unknown number of
generations for the diffusion to reach the edges of the
lattice. At any given time t some 95% of all species
will lie within N lattice units of the starting size, where
N is given by:

N = 1.96 · t0.5. (4)

Solving this for t, we can expect the whole lattice
to be filled within about (500/1.96)2 ≈ 65000 gen-
erations. This is less than 105 generations, and less
than 1% of the time available, as shown by expansion
of the shaded envelope at the base of Figure 9(B).
The diffusion could be even more rapid if species in-
teract and selection plays a role. Empirical support
for rapid filling of the Cenozoic mammal time-form
lattice comes from Rose (1981) and Alroy (1998).
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Once the lattice is filled, evolutionary time series
can persist but become effectively stationary. This
would be true of a single isolated lineage free to dif-
fuse across an empty lattice through time (because
the lattice is so much longer than it is wide), but
it will be even more true when the lattice is filled
with competing species. Calculation that the time-
form lattice for body size in Cenozoic mammals is
four orders of magnitude longer temporally than it is
wide morphologically does not mean this is true for
all morphological characteristics of mammals nor for
all characteristics of other organisms. However, mor-
phology appears generally to be more constrained for
the simple reason that evolutionary history has been
so very long in relation to the generation times of
organisms.

Discovery that diffusion at documented rates can
fill a whole evolutionary lattice in less than 1% of the
time available for evolution is reminiscent of Gould’s
(1982, p. 84) characterization of geologically instant-
aneous punctuated change in branching speciation. He
defined punctuated change as encompassing ‘1 per-
cent or less of later existence in stasis’. The high
rates of evolutionary change on a generational scale of
time documented above, coupled with a temporally-
long and morphologically-narrow time-form lattice
for evolution provide evidence both permitting rapid
‘punctuated’ change and favoring long-term ‘stasis’
for all lineages that persist for any substantial number
of generations. This result is consistent with Lynch’s
(1990) conclusion that stabilizing selection is a pre-
dominant evolutionary force keeping the long-term
diversification of lineages well below its potential.
Punctuated evolution is not an alternative to gradual-
ism as proposed by Eldredge and Gould (1972), but
rather results from the very dynamism of step-by-step
gradual change on the generation-to-generation time
scale of the evolutionary process. Punctuated patterns
in the fossil record are real, but all that I am familiar
with can be explained by natural selection on a gener-
ational time scale. Punctuated patterns do not seem to
require any special mechanisms or processes beyond
natural selection.

In this view, the long-term history of life is almost
wholly decoupled from the evolutionary potential of
high rates of change on a generational time scale. We
would not know this if the history of life were short,
but life’s history, even the 65 m.y. history of Cenozoic
mammals, is long in relation to the variation we can
see and measure in the dimension(s) of form: form is
clearly more constrained than time.

If the long-term history of life is predominantly a
history of stasis, why are there so many shorter in-
tervals of rapid change? One possibility, for which
there is much evidence, is that the environmental and
ecological ‘theater’ of the evolutionary play is never
stable. Asteroids impact the earth, crustal plates move,
our orbit around the sun changes on various time
scales, volcanos erupt, sea level rises and falls, atmo-
spheric gases accumulate and dissipate, oceanic circu-
lation oscillates, climates change, floras are affected,
faunas respond, and there are connections, interac-
tions, and feedbacks at many levels. Thus evolution
on the time-form lattice is started and restarted episod-
ically. The history of life represented in subdivisions
of the geological time scale reflect this. Phanerozoic
time is divided into Paleozoic, Mesozoic, and Ceno-
zoic eras, and the latter is subdivided into Paleocene,
Eocene, etc., epochs, with each ‘chapter’ in the history
of life being an interval occupied by important new
macroevolutionary patterns of diversification.

We can speak of microevolutionary and macroe-
volutionary change, of microevolutionary and macro-
evolutionary patterns, and of history on microevolu-
tionary and macroevolutionary scales, but it is not
clear that there are any separate microevolutionary or
macroevolutionary processes. Generational change is
so rapid that stability comes soon, but the stability
is often perturbed and then new microevolutionary
and macroevolutionary patterns begin. Evolution on a
generational scale, by itself, cannot explain microe-
volutionary change over multiple generations, nor can
it explain macroevolutionary change over geological
time. Each must be studied on its own time scale,
remembering that the scale itself is important when
relating one to another.
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