
Group Decision and Negotiation, 2:301-317 (1993)
�9 1993 Kluwer Academic Publishers

Search Reduction in Hierarchical Distributed
t oblem Solving

THOMAS A. MONTGOMERY
monty@vutcan.srl.ford.com
Ford Motor Company, Scientific Research Laborato~w, P.O. Box 2053, MD #2036, Dearborn~ MI
48121-2053

EDMUND H. DURFEE
durfee@caen.engin.umich.edu
Department of Electrical Engineering and Computer Science, University of Michigan, Ann
Arbor, Michigan 48109

Abstract

Knobtock and Korf have determined that abstraction can reduce search at a single agent from
exponential to linear complexity (Knoblock 1991; Korf 1987). We extend their results by showing
how concurrent problem solving among multiple agents using abstraction can further reduce search
to logarithmic complexity. We empirically validate our formal analysis by showing that it correctly
predicts performance for the Towers of Hanoi problem (which meets all of the assumptions of the
analysis). Furthermore, a powerful form of abstraction for large multiagent systems is to group
agents into teams, and teams of agents into larger teams, to form an organizational pyramid. We
apply our analysis to such an organization of agents and demonstrate the results in a delivery task
domain. Our predictions about abstraction's benefits can also be met in this more realistic domain,
even though assumptions made in our analysis are violated, Our analytical results thus hold the
promise for explaining in general terms many experimental observations made in specific distrib-
uted A1 systems, and we demonstrate this ability with examples from prior research.

Key words: abstraction, coordination, distributed artificial intelligence, multiagent systems, plan-
ning, search

1. Introduction

Prob lem solving pe r fo rmed by an indiv idual artificial in te l l igence (AI) sys t em can
be cha rac te r i zed as search through a p rob lem space; and, not surpr is ingly, dis-
t r ibu ted p rob lem solving (per formed by mult iple art if icial ly intel l igent agents) can
be charac te r ized as a d i s t r ibu ted search (Durfee and M o n t g o m e r y 1991). There -
fore, when a t t empt ing to improve pe r fo rmance in a d i s t r ibu ted p rob lem-so lv ing

This research has been sponsored, in part~ by the National Science Foundation under grants IRI-
9015423 and IRI-9010645, by the University of Michigan Rackham Graduate School, and by a Bell
Northern Research Postgraduate Award.

302 THOMAS A. MONTGOMERY/EDMUND H. DURFEE

system, it is natural to see how recent results in single agent search can be applied
to such multiagent systems. Recent results by Knoblock and Korf (Knoblock
1991; Korf 1987) show that abstraction can reduce search from exponential to
linear complexity by dividing a large problem into a number of smaller problems.
We extend these results in section 2 by showing that if these smaller problems are
distributed to different agents to be solved in parallel, then the time to solution
can be further reduced to logarithmic complexity.

This analysis can be applied to both task-level problem solving and meta-level
problem solving. At the task level, section 3 presents experimental results from
the Towers of Hanoi. Meta-level control was not the primary concern here as task-
level problems were distributed for parallel execution using a static allocation
scheme. Section 4 describes experiments from a robotic delivery task in which
robots must coordinate their activities to avoid collisions. Here we apply hierar-
chical abstraction to the meta-level problem of coordination, as opposed to the
task-level problem of path planning. An abstraction hierarchy in the delivery task
can be built by grouping the robots into teams, then grouping the teams into
teams, and so on. Then instead of all of the agents negotiating directly with all of
the other agents, agents need only negotiate directly with the members of their
team; team leaders handle negotiation between the teams. Thus, much as ab-
stracting and distributing a task-level problem allows the subproblems to be
solved in parallel, grouping agents into teams allows coordination to proceed in
parallel.

In this article, we show the best-case potential for scaling up distributed artifi-
cial intelligence (DAI) systems to large numbers of agents; in the Towers of Hanoi
the time to solution only grows as the log of the problem size. We also present
analytical and experimental results in which this large complexity reduction is not
possible. The delivery task does not meet many of the assumptions of the analy-
sis, yet abstraction can still be useful. When we relax the assumptions even fur-
ther, the use of abstraction becomes a hindrance by incurring useless overhead.
The analysis also allows us to get a handle on the utilization we can expect, and
we relate this back to domains such as the Distributed Vehicle Monitoring Testbed
(DVMT) (Corkill and Lesser 1983; Durfee, Lesser, and Corkill 1987). In DAI (and
in organization theory), the intuition is that solving problems cooperatively can
significantly decrease problem-solving complexity in many, but not all, situations.
ations. While other research has qualitatively verified this intuition, it has not
allowed a systematic, domain-independent characterization of the situations in
which cooperative problem solving is appropriate. Our work begins to formally
quantify and empirically validate the above informal intuition.

2. Search reduction analysis

To analyze search reduction in hierarchical distributed problem solving, we must
first define our terms. Problem solving is traditionally viewed as search through

SEARCH REDUCTION IN HIERARCHICAL DISTRIBUTED PROBLEM SOLVING 303

a problem space defined by a set of states that the world might be in and a set of
operators connecting the states. Problem solving is performed by searching for a
series of operators that lead from the initial state to one of a set of allowable goal
states. Distributed problem solving is characterized by the fact that more than one
agent (e.g., processor) is involved in the search. Thus, to find a solution, each
agent performs some search locally on a portion of the search space and may
communicate with other agents to direct their search efforts toward mutually ben-
eficial areas. (Agents are considered to be distributed if communication between
them is not instantaneous.)

Hierarchical problem solving relies on a hierarchy of abstract problem spaces
to focus the search process. Search proceeds by finding a solution to the problem
in the most abstract space first. The skeletal plan produced is then fleshed out by
successive problem solving in the more detailed problem spaces (in which oper-
ators are inserted between the steps in the skeletal plan, or the abstract operators
in the skeletal plan are replaced by more detailed operators). The hope is that this
iterative refinement will provide direction that successfully prunes the search in
the more detailed spaces. In practice, however, it may be necessary to backtrack
up the hierarchy and reject some or all of the skeletal plan.

Hierarchical distributed problem solving then combines the features of hierar-
chical and distributed problem solving--multiple, distributed agents solving a
problem by searching through a hierarchy of problem spaces (Durfee and Mont-
gomery 1991; Parunak 1992).

2.1. Single-level abstraction hierarchy

Knoblock showed that a single level of abstraction can reduce an exponential

search O(b n) to O(~/nb~). Like ours, his derivation assumes the problem to be
solved has a solution of length n (n operators must be applied to get from the
initial state to a goal state), and a search complexity that is a function of n. Knob-
lock also assumes an exponential search with branching factor b, giving a worst
case complexity of O(bn). In our derivation, we generalize his results to an arbi-
trary function for the complexity, f(n).

If we first solve an abstract problem, dividing the overall problem into k sub-
problems that must be solved serially, then the complexity becomes the sum of
the complexity of solving the abstract problem plus the complexities of solving all
of the individual subproblems. Since k is the length of the abstract problem, the
total complexity isf(k) + f(n'l) + f (n ' :) + . . . + f(n'k) where n'i is the length
of the ith subproblem. Assuming that the problem can be divided into equal-sized
subproblems, and that the number of subproblems can be chosen such that it is
equal to the solution length of each subproblem, then n'i = k for all i, and the
complexity becomes (k + 1)f(k). If the length of the final solution with abstraction
is the same as the length of the original solution (k: = n), then k = k/~, and the
complexity is:

304 THOMAS A. MONTGOMERY/EDMUND H. DURFEE

0((~,/~ + 1)f(Nf~)) = OC~fnf(~-n)) (1)

Note that iff(n) = b n, we duplicate Knoblock's result (b" reduces to ~/~b~).
If we further assume that each subproblem is solved by a different agent (a

different processor or team of agents), and we ignore the cost of assigning sub-
problems to agents, then the complexity is reduced even further. Instead of the
subproblems' complexities adding when they are being solved serially, only the
longest subproblem contributes to the overall time complexity when they are
solved in parallel. Making similar assumptions as above, the time complexity be-
comes:

O(f(k) + max(f(n'i),f(n'2),... ,f(n'k))) = O(2f(Vn)) = O(f(~/-n)) (2)

Thus, given concurrency, an O(b") search can ideally be reduced to O(b'~). As a
quick sanity check of this result, note that for the k subproblems to be solved in
parallel, there must be k agents working on them. Since k = X/-n, the decrease in
complexity between expressions (1) and (2) is as expected: ~/-n.

2.2. Multilevel abstraction hierarchy

Now we generalize to l levels of abstraction. Starting with the ground space and
moving up the abstraction hierarchy, the first abstraction level divides the initial

n
problem of length n into ~ subproblems of length k. At each abstraction level

above, k subproblems are abstracted into one subproblem of length k, until the

level is reached, at which point there is one problem left of length ktn~_ ~. If each top

problem is solved serially, then the overall complexity is:

n) n n
f ~ + - ~ f (k) + -~_2f(k) + . . . + kf(k)" (3)

If we set I = logk n, then expression (3) reduces to (1 + k + k 2 q - . . . - t - U-')f(k)
which can be simplified as:

0(~- - -~ f(k)) = O[-/k~~ - k --- 1 n - 1 (4)

The final step in expression (4) is possible since k is assumed constant for a given
problem space and abstraction hierarchy, while l must grow with the problem size.
Thus, given a search of arbitrary complexity in the length of the solution, O(f(n)),

SEARCH REDUCTION IN HIERARCHICAL DISTRIBUTED PROBLEM SOLVING 305

multiple levels of abstraction can reduce the complexity to a linear number of
constant terms. In particular, we get Knoblock's result of reducing an exponential
search to linear complexity.

If we assume that each subproblem is solved by a separate agent (processor),
n

then after the most abstract problem is solved, its ~ subproblems can be solved

n
in parallel, after which the next ~ subsubproblems can be solved in parallel,

and so on. In effect, all the coefficients in expression (3) are eliminated, giving:

(5)

Substituting l = log~ n, this reduces to (logk n)f(k) which is O(log k n). Therefore,
concurrent processing can potentially reduce an exponential search problem not
just to linear complexity but to logarithmic.

2.3. Assumptions of the analysis

Our analysis is based on the following assumptions [as taken verbatim from Knob-
lock (1991) with our comments in brackets]:

1. The number of abstraction levels is logk of the solution length. Thus, the
number of abstraction levels must increase with the size of the problems.

2. The ratio between levels is the base of the logarithm, k.
3. The problem is decomposed into subproblems that are all of equal size. If

all the other assumptions hold, the complexity of the search will be the complexity
of the largest subproblem in the search.

4. The hierarchical planner produces the shortest solution. The analysis holds
as long as the length of the final solution is linear in the length of the optimal
solution. [Here, optimal solution means the solution that would be found without
hierarchical planning.]

5. There is only backtracking within a subproblem. This requires that a problem
can be decomposed such that there is no backtracking across abstraction levels
or across subproblems within an abstraction level. [In other words, the downward
refinement property (Bacchus and Yang 1991) must hold.]

In addition, our extensions to the analysis require that:
I. There are at least as many agents as there are bottom (most detailed) level

n
subproblems (i.e., there are -~ or, equivalently U -~ agents). We expect one agent

to solve the most abstract problem, ship all but one of the subproblems to other

306 THOMAS A. MONTGOMERY/EDMUND H. DURFEE

agents, and then begin working on the one subprobtem that it kept. Agents re-
ceiving subprobtems repeat this process until the bottom level is reached. This
implies that one agent is kept busy throughout the entire problem-solving cycle,
while some number of agents, k ~- ~ - k ~-2, are not enlisted until the most detailed
subproblems are reached. Thus, even though larger problems require larger num-
bers of agents, the average toad on the agents actually decreases with increased
problem size.

2. The process of distributing subproblems does not increase the time com-
plexity. In general, determining which agents should work on which subproblems
is a nontrivial problem. In the DAI literature this has been referred to as the
connection problem (Davis and Smith 1983), while in operating systems it can be
seen as a variant of load-balancing. However, if we assume that the amount of
time an agent takes to decide who to send k subproblems to is a function of k, and
that sending messages is time bounded, then this assumption is met. Essentially
the derivation proceeds as above, but now f(k) includes the maximum message
delay and the time to decide where to ship subproblems.

3. Collecting t~sults from subproblems does not contribute to the problem com-
plexity. If we again assume a time-bounded message delay and that the amount of
time to assemble the results of k subproblems is a function of k, then this as-
sumption is met. In terms of our analysis, the process of collecting results would
just be the reverse of solving and distributing subproblems, benefiting equally
from parallelism.

Therefore, our analysis predicts that it is possible to achieve logarithmic time
complexity by using an abstraction hierarchy and multiple agents, but this re-
quires a large number of assumptions to be met. In the next section we describe
experiments in the Towers of Hanoi in which all of these assumptions of are met.
Then in section 4 we begin to relax some of these assumptions, presenting both
analytical results and experimental results (from the delivery task) in which many
of these assumptions are not met. In both cases, it is clear that the use of abstrac-
tion can benefit distributed problem solving in much the same way that it benefits
single-agent problem solving.

3. Search reduction in ideal ease

In order to verify empirically the formal analysis in the previous section, we ran
a series of experiments on the Towers of Hanoi problem. The abstraction hier-
archy of the Towers of Hanoi meets all of the assumptions of the analysis. It is
created by ignoring the smallest disk at the first level of abstraction, then the
smallest remaining disk at successive levels, until ultimately only the largest disk
remains at the most abstract level. Problem solving proceeds by solving the prob-
lem at the most abstract level, then creating subproblems at successively more
detailed levels of the hierarchy in which the goals of the subproblems are to (1)

SEARCH REDUCTION IN HIERARCHICAL DISTRIBUTED PROBLEM SOLVING 307

achieve the preconditions of the operators in the current abstract plan and (2)
reach the final goal state,

3.1. Solution time

We ran our experiments on a TI Explorer II and recorded average CPU times to
complete the task. For the distributed (multiagent) version, we simulated concur-
rent execution of the subproblems by implementing the agents in MICE (Mont-
gomery and Durfee 1990), charging real time for agent reasoning, and allowing
any number of messages to be sent by different agents at one time. Figure 1 pre-
sents the elapsed time to solve problems of various sizes 1 for:

(x) A single agent w#hout abstraction. In this case the time to solve the problem
grows exponentially with the size of the problem.

(o) A single agent w#h abstraction. Duplicating Knobtock's result, the time for a
single agent using hierarchical abstraction to solve the problem grows linearly
with the size of the solution.

(*) Multiple agents with abstraction. Here the benefits of parallel execution of
the subproblems reduce the elapsed time to logarithmic complexity in the so-
lution length.

Thus, the results presented in Figure 1 verify the predictions of the analysis. Fig-
ure I also shows the sum of the CPU time used by the agents in the distributed
version (+). As expected, this line has a greater slope than the single agent case
(o) due to the overhead of sending messages and keeping track of the other agents;
however, it is also still linear in the length of the solution.

10~

�9 o 7~
C '
o 6-~
o

45 .

E s-~
i,= ~

0
0 20 40 60 80 I O0 120 t 40

Solut ion Length

Figure t. Elapsed time to solve the Towers of Hanoi problem.

. No Abs t rac t ion

o Abs t rac t ion

Dis t r ibuted

1 Dis t r ibuted

308 THOMAS A. MONTGOMERY/EDMUND H. DURFEE

3.2. Ut i l i za t ion

Figure 2 displays the average CPU utilization of the agents in the distributed ver-
sion. Since the number of agents required to solve the problem grows linearly with

the problem size (k agents are required), but the elapsed time only grows loga-

rithmically, we see that the average CPU utilization actually decreases with in-
creased problem size. This conforms to the predictions of the analysis in which
the expected average utilization is:

k(n - 1) k(n - 1)

(k - 1)nl (k - 1)n(logk n)"
(6)

n
(There are ~ agents available for l f (k) time units, giving I f(k) available CPU

cycles, of which (1 + k + k 2 + . . . + kt-bf(k) = k (k) - k (k) are

used.) This decreasing utilization implies that abstraction would be well suited to
solving problems in computer networks in which there are large numbers of com-
puters available, each with a small amount of excess CPU cycles. The analysis
also implies that reasonably good speedups can be achieved with dramatically
fewer agents. For example, if we reduce the number of agents by a factor of k,

then we add (k - 1)f(k) to the complexity of expression (5). However , since k is
constant, this represents only a constant factor decrease in performance. Ulti-
mately, however, if the number of agents are dramatically reduced, the perform-
ance will approach the single-agent case of linear time complexity.

/
�9 ~ 1

O 0.4 \
g0.3. ~
I~ 0.2-
�9 0.1-

0 i i ~ i i d t

o o o o o oo ~ o od

S o l u t i o n Length

Figure 2. Average CPU utilization in distributed Towers of Hanoi.

SEARCH REDUCTION IN HIERARCHICAL DISTRIBUTED PROBLEM SOLVING 309

If a separate agent were used for every node in the abstraction hierarchy, for a
n - 1 I

total o f ~ - L - ~ agents, then the utilization of the agents would become 7 =

1
- - (because each agent is only busy during the time that problem solving on
log~ n
its level is taking place). However , if there is a continuous supply of problems, all
of the agents can be kept busy most of the time. After the top agent solves the
most abstract problem and ships the subproblems off to other agents, it can start
working on the next problem. Eventually the entire "pipel ine" (hierarchy of
agents) will be filled.

The next question to ask, then, is how much processing power is lost waiting
n - 1

for the pipeline to fill. All ~ agents are busy after time (l - l)f(k); therefore,

(n l)(l
1)f(k)-- total available CPU cycles while the pipeline is filling. there are k - 1

When propagating top-down, there are k + k 2 + . . . + k ~- 1 agents idle during
the f i r s t~k) time units, k 2 + k 3 + . . . + k ~-1 during the second, and so on. This
gives the total CPU cycles lost as (k + 2 k ~ + . . . + (1 - 1) k l - t) f (k) , which can

be rewritten as \ k- 2_] ~--_- (k). Dividing the lost cycles by the to-

tal available gives the fraction of available CPU cycles wasted while waiting for
processing to propagate from the top agent down to the leaves as:

k - n + (k - 1) n (l - 1)

(k - 1) (n - l) (l - 1)

k - n + (k - 1)n(logkn - 1)

(k - 1) (n - 1)(logk n - 1)
(7)

Of course, this pipeline can be filled top-down or bo t tom-up-- top-down process-
ing can be viewed as a contracting/subcontracting process (Davis and Smith 1983),
while bottom-up processing can be viewed as data-driven hypothesis generation
(Corkill and Lesser 1983). In the case that processing proceeds bottom-up, the
fraction of available processing power unused while filling the hierarchy is just
one minus the quantity in expression (7). Because of the symmetry between top-
down and bot tom-up processing, the ratio in expression (7) is also the processor
u t i l i z a t i o n when processing propagates bottom-up, and one minus expression (7)
is the utilization for top-down.

This analysis can help to explain analytically some of the empirical results pre-
viously reported in the literature. In Corkill and Lesser ' s Distributed Vehicle
Monitoring Testbed (DVMT) (Corkill and Lesser 1983), hypotheses are generated
bottom-up, so it takes some time before the agents integrating high-level hy-
potheses have data on which to work. While Corkill and Lesser note that proc-
essing is lost "as nodes wait for something to do ," we can now set a lower bound
on the amount of processing that must be lost waiting. For example, if we have a
three-level hierarchy with k = 2 and n = 8, and if processing proceeds bottom-

310 THOMAS A. MONTGOMERY/EDMUND H. DURFEE

2
up, then ff of the available processing power is lost by agents waiting for some-

thing to do.
Predicting the optimal performance of a system of agents is an important step

in evaluating alternative approaches to coordination, and our analysis can be used
to make such predictions. For example, in Durfee, Lesser, and Corkill (1987)
DVMT researchers calculated the optimal improvement in processing time due to
multiple agents by hand-simulating the shortest data path through the hierarchy.
Their hand simulations, which included implementation specific details due to
knowledge source interactions and communication delays, showed that p agents
could never achieve a factor o f p speedup, z Our analysis can be used to generate
similar results without going to the trouble of hand simulations. In the DVMT, the
optimal processing time for a vehicle track is achieved when there is one agent
for every vehicle location in the track. Processing proceeds in a bottom-up fashion
by creating vehicle location hypotheses and then combining them into longer and
longer track hypotheses. A track of length 8 amounts to a 4 level problem with a
branching factor of 2. According to expression (6), the average utilization of those

15 .
8 agents would be ~ , implying that the best possible speedup is no more than

15
- - * 8, or less than 4 times.
32

3.3. Discussion

So far we have seen that combining parallelism and hierarchical problem solving
can be very powerful: in well-behaved problems like the Towers of Hanoi, it can
reduce exponential search to logarithmic time complexity. Furthermore, this ex-
ponential improvement in time complexity is paid for by only a linear increase in
the number of agents (even when a separate agent is desired at each node in the

n - 1 n
hierarchy, ~ instead of ~ agents are required--still linear in the size of the

problem). Given a continuous stream of problems and an agent at each node in
the hierarchy, we can even approach full utilization of the agents (processors)
involved. Unfortunately, real-world problem domains are not likely to meet all of
the necessary assumptions to achieve this best-case performance. Therefore,
in the next section we show the application of abstraction to a more realistic do-
main: the delivery task.

4 . S e a r c h r e d u c t i o n in rea l i s t i c c a s e

In this section we look at the effects of relaxing some of the assumptions of the
analysis. First we see analytically how a fixed number of levels of abstraction

SEARCH REDUCTION IN HIERARCHICAL DISTRIBUTED PROBLEM SOLVING 3 i I

affect our results, then we see empirically how abstraction performs in the deliv-
ery task domain.

4.1. Fixed number of levels

For some problem domains it is easy to meet the assumption that the number of
levels of the hierarchy, l, increases with the size of the problem. In the Towers of
Hanoi, this is done by having a separate level of abstraction for each disk. In many
more realistic problem domains, however, the number of levels of abstraction may
be fixed. For example, our work in the delivery task has only a single level of
abstraction (agents grouped into teams).

Here we draw on others' results (Bacchus and Yang 1992) to illustrate the effect
on our analysis of having a fixed number of abstraction levels. In such a case, the
ratio between levels of the hierarchy, k, is no longer constant since it must now
grow with the length of the solution, n, according to k = ~ . Thus, for 1 levels of
abstraction in which all subproblems are solved by a single agent, expression (4)

(
becomes O N ~ f (\ ! ~) . = O(nf(~/~)), which gives the result reported by

Bacchus of O(nb ~'~) whenf(n) = b ".
When the subproblems are solved in parallel and the number of levels are fixed,

expression (5) becomes O (l f (~)) = O(f(~V~)). Therefore, given a fixed number
of levels, abstraction no longer reduces an exponential search to linear complexity
for a single agent and logarithmic complexity for multiple agents. Instead, it re-
duces the complexity to a more slowly growing exponential with a further factor
of n speedup possible with parallelism. Thus, when the assumption of a variable
number of levels of abstraction is violated, the full performance improvement to
logarithmic time cannot be realized. Nonetheless abstraction may still be useful,
as we shall see.

4.2. The delivery task

We now turn to a delivery task domain in which a number of robots must deliver
packages to specified locations without colliding. This domain captures many of
the coordination issues that are present in air traffic control, intelligent vehicle
highway systems, cooperative robotic reconnaissance, and factory floor control.
When such a gn'oup of autonomous agents must coordinate their activities, they
could do so by individually negotiating with every other agent in the environment,
but this results in a large amount of communication when large numbers of agents
are involved (for example, the individual negotiations among 2.0 agents depicted
in Figure 3). Alternatively, they can group themselves into teams of agents, have
team leaders negotiate between teams, and only individually negotiate within
teams (for example, the team negotiation pattern in Figure 3). When even more

312 THOMAS A. MONTGOMERY/EDMUND H. DURFEE

Individual Negotlalion Team Negotlatlon

Figure 3. Individual vs. team negotiation Patterns.

agents are involved, this abstraction into teams can be extended to an arbitrary
number of levels by creating teams of teams, teams of teams of teams, and so on.

If negotiation in a hierarchy of teams starts at the top (most abstract) level and
works its way down to individuals negotiating with their fellow team members,
then the analysis presented in section 2 can be directly applied to the time taken
to complete all negotiations. The search complexity fin) would describe the com-
plexity of searching for nonconflicting behaviors (i.e., negotiating), and n would
relate to the number of agents involved. For example, elsewhere (Montgomery
and Durfee 1992) we analyzed our hierarchical communication protocol (Durfee
and Montgomery 1990) and found it to have O(n 3) complexity where n is the num-
ber of agents. 3 Grouping agents into teams (a single-level hierarchy) has the po-
tential to reduce such an O(n 3) protocol to O(n 2) [by expression (1)], and if the
teams can negotiate in parallel, then the time complexity is reduced to O(n ~5) [by
expression (2)]. If the agents are grouped into a hierarchy of teams, then ulti-
mately the time complexity of the negotiation can be reduced to logarithmic time.

One way to realize such complexity reductions is to have the highest team lead-
ers negotiate first, then the subteam leaders negotiate with each other, and so on.
Alternatively, negotiation can start at the bottom level (individuals negotiating
with their fellow team members) and work its way up. Negotiation in either di-
rection (top-down or bottom-up) can meet the assumptions of the analysis, but in
reality it may be necessary to employ elements of both: negotiating bottom-up
gives team leaders the chance to accumulate information about what their team
members are planning to do; however, since ultimately it is individuals that exe-
cute plans, the decisions made by team leaders must flow back down to the indi-
viduals.

4.3. Experiments

Our implementation of agents in the delivery task has both bottom-up and top-
down elements. Agents negotiate with their fellow team members first; this gives

SEARCH REDUCTION IN HIERARCHICAL DISTRIBUTED PROBLEM SOLVING 313

the team leaders sufficient knowledge to begin team-level negotiations. During
the course of team-level negotiations, the leaders may need to request further
details from their members. After team-level negotiations finish, the leaders in-
struct their members on how they need to adapt their plans to avoid conflict with
the other teams. Therefore, since there could be significant communication up
and down the hierarchy, an assumption that the costs of distributing subprob-
lems and collecting the results are negligible--may be violated.

The formal analysis also assumes that subproblems are of equal size. However,
since we generate delivery problems randomly, different teams may face coordi-
nation problems with very unequal levels of difficulty. It is also not clear whether
the implementation meets the assumption that linearly comparable solutions are
reached with and without abstraction. We get different plans for delivering the
same packages depending on whether or not teams are used (the presence of
teams can change both the assignments of packages to agents, and the order in
which conflicts are identified and resolved). However, in spite of the fact that
many of the assumptions of the analysis are not strictly met in this domain, we
show below that abstraction by grouping agents into teams still holds promise. It
appears that the analysis is tolerant of violations of some of the underlying as-
sumptions and thus can be used in developing domain-independent explanations
for phenomena seen in specific DAI systems (as in section 3.2).

In our experiments, we grouped the agents into teams that were restricted to
working in one quadrant of the overall environment. These quadrants overlapped
at the edges so that, in delivering packages that spanned multiple teams' regions,
the agents from one team could drop packages off at the boundary for agents from
another team to pick up (see Figure 4). This also made it necessary for the teams
to negotiate with each other to avoid colliding in the boundary regions. Packages

o | o
+ +

| + + |
Quadrant 2 ~ Quadrant 1

~ g ~ B o u n d ~ A r e a ~ ~
|

~ ~
Quadrant 3 ~ Quadrant 4

Figure 4. An example random environment.

314 THOMAS A. MONTGOMERY/EDMUND H. DURFEE

were distributed randomly in the environment, with randomly chosen destination
locations.

In the first set of experiments, we distributed the packages evenly among the
quadrants and restricted a package's destination to be within the same quadrant
as its initial location. Thus, the division of agents into teams matched the coor-
dination problem precisely, causing no backtracking between subproblems (drop-
ping packages off for another team to deliver). Figure 5 shows the average amount
of time for agents that negotiate as individuals to deliver a set of packages versus
the time for the same number of agents grouped into four teams to deliver the
same packages. The number of packages to be delivered is equal to the number
of agents; thus, each agent has one delivery to make. We see that when (1) the
hierarchy is well matched to the problem, (2) there is no need to "backtrack" at
a given level of the hierarchy, and (3) the subproblems are of approximately equal
size, then grouping agents into teams shows a definite benefit.

If we relax our assumptions further by not restricting package destinations to
their originating quadrants, then we get very different behavior. Now, as shown
in Figure 6, the total time to coordinate activities and deliver the packages is
initially worse for the teams of agents than for the individuals. This is primarily
because the teams of agents must first drop packages off at their boundary, and
then renegotiate to complete the deliveries of packages dropped off in their re-
spective regions--essentially, the teams are violating the assumption of no back-
tracking. In contrast, the individuals only negotiate once and then deliver their
packages all the way to their destinations. Eventually, however, as the number of
agents is increased, the combinatorics of the negotiation process overwhelms the
individuals and the teams show an advantage again.

5. Conclusion

Abstraction has long been recognized as capable of improving the efficiency of
search (Newell and Simon 1972; Sacerdoti 1973; Stefik 1981); and recently, de-
tailed complexity analyses of this ability have been presented (Bacchus and Yang
1992; Knoblock 1991; Knoblock, Tenenberg, and Yang 1991; Korf 1987). We have
extended this research to multiagent systems, showing both analytically and em-
pirically that search can be reduced to logarithmic time complexity using hierar-
chical distributed problem solving. In presenting this ideal case, we have enumer-
ated a sufficient set of conditions that allow it to be achieved. We have also shown
how abstraction can be applied to both task-level and meta-level problem solving
through our experiments in the Towers of Hanoi and delivery task problem do-
mains.

Perhaps more importantly, however, the perspective used in this article of view-
ing coordination as a distributed search (Durfee and Montgomery 1991) sheds
light on some of the fimdamental problems of DAI. In particular, DAI is often
concerned with achieving coherence and coordination among a set of distributed
agents. Because of the interdependency between agents that this implies, it is very

SEARCH REDUCTION IN HIERARCHICAL DISTRIBUTED PROBLEM SOLVING 315

r

E

4.a
0

Figure 5.

450.

400-:

350 .::

300-:

250 "i

200-:

150 -:

100-:

50 .i

o.::

z /
J

/
/

J

/
e Individuals

ii 4 Teams

4 8 12 16

Number of Agents
Total time for individuals and teams to complete bounded deliveries.

(D

E . m

I--
c~
0

I'--

800

700

600 :

500 :

400

300

200

1 O0

0

S

. /
/ J
I

f

4 8 12 16

Number of A g e n t s

o Individuals

il 4 Teams

Figure 6. Total time for individuals and teams to complete unbounded deliveries.

difficult to find the nearly independent subproblems that are required to achieve
the full complexity reduction possible. However, assuming that the problems can
be decomposed into nearly independent subproblems, then our analysis also
shows what can be achieved in various circumstances. For example, if the number
of levels of the hierarchy is fixed, then the best complexity reduction we can hope
for is from O(f(n)) to O(f(t~/-~)). Thus if a single agent requires exponential search
to solve a problem without abstraction, then a set of cooperating agents using
abstraction will still require exponential time, though it will be a much slower
growing exponential.

We have also shed some light on past research in DAI, such as showing analyt-
ically the minimum processing power lost waiting for data to reach a certain level
in the hierarchy. This helps explain, for instance, why p processors could not

316 THOMAS A. MONTGOMERY/EDMUND H. DURFEE

achieve a factor of p i m p r o v e m e n t in the D V M T (Corkill and Lesse r 1983; Durfee ,
Lesser , and Corkil l 1987). The analys is can also be applied to sys tems using the
con t rac t net protocol (Davis and Smith 1983). If con t rac t ing is pe r fo rmed as a

func t iona l decompos i t i on such that a manage r sends all subprob lems down to
n - 1

subord ina tes , then ~ agents are required, and full u t i l izat ion can be achieved

after the h ierarchy fills. However , if con t rac t ing is v iewed more as load ba lanc ing ,

n
such that an agent may bid on its own subtask , then only ~ agents are required.

but it is no longer clear that full u t i l izat ion can be real ized.
Viewing coord ina t ion as a d is t r ibuted search process has p roven to be a very

fruitful research di rec t ion to take. It has a l lowed us to adapt research on single-
agent p rob lem solving to d is t r ibuted sys tems , and g iven us insights into p rob lems
that have long been faced by DAI researchers . We in t end to con t inue this l ine of
research by seeing what fur ther insights on d is t r ibuted p rob lem solving can be
gained. Promis ing areas inc lude au tomat ing the crea t ion and eva lua t ion of hier-
archies (Knob lock , Tenenberg , and Yang 1991), and de t e rmin ing the expec ted
value of a h ierarchy based on the probabi l i ty of be ing able to re f ine the abs t rac-
t ions (Bacchus and Yang 1992).

Notes

1. Note that the problem size for the Towers of Hanoi grows exponentially with the number of
disks in the problem: n = 2 ~ - 1 where d is the number of disks.

2. The difficulty of achieving a factor of p speedup with p agents has long been recognized. Am-
dahl's law (Amdahl 1967) presents this from the perspective of a serial bottleneck. Holding the
problem size constant, no matter how many additional processors are used, a computational
task cannot be performed any faster than its serial portion. More recently, however, the per-
spective taken by Gustafson (1988) shows that by varying the problem size with the number of
agents, a scaled speedup can be achieved that approaches p for p agents. Gustafson's perspec-
tive is used here; it is appropriate since most problems tackled in DAI do scale up or down with
the number of agents. For example, the computational task of coordinating the movements of a
number of robots scales directly with the number of robots involved (processors available).

3. The intuition behind this complexity is that each agent must negotiate with every other agent
(which is O(n2)), plus whenever an agent changes its plans during the course of one of these

initial O(n 2) dialogues, it must re-negotiate (doublecheck) those changes with an average of n
2

agents.

References

Amdahl, Gene M. (1967). "Validity of the Single Processor Approach to Achieving Large Scale
Computing Capabilities." In AFIPS Conference Proceedings. Reston, VA: AFIPS Press, pp.
483--485.

SEARCH REDUCTION 1N HIERARCHICAL DISTRIBUTED PROBLEM SOLVING 317

Bacchus, Fahiem, and Qiang Yang. (1991). "The Downward Refinement Property." In Proceedings
of the Twelfth International Joint Conference on Artificial Intelligence, Sydney, Australia, Los
Altos, CA: Morgan Kaufmann, pp. 286-292.

Bacchus, Fahiem, and Qiang Yang. (1992). "'The Expected Value of Hierarchical Problem-Solv-
ing." In Proceedings of the National Conference on Artificial Intelligence, San Jose, CA, Bos-
ton: AAAI Press, pp. 369-374.

Corkill, Daniel D., and Victor R. Lesser. (1983). "The Use of Meta-level Control for Coordination in
a Distributed Problem Solving Network." In Proceedings of the Eighth International Joint Con-
ference on Artificial Intelligence, Karlsruhe, Federal Public of Germany, Los Altos, CA: Morgan
Kaufmann, pp. 748-756. Also appeared in Computer Architectures for Artificial Intelligence, Ben-
jamin W. Wah and G.J. Li (eds.), IEEE Computer Society Press, 1986, pp. 507-515.

Davis, Randall, and Reid G. Smith. (1983). "Negotiation as a Metaphor for Distributed Problem
Solving." Artificial Intelligence 20(1), 63-109. Also appeared in Alan H. Bond and Les Gasser
(eds.), Readings in Distributed Artificial Intelligence. San Mateo, CA: Morgan Kaufmann,
1988, pp. 333-356.

Durfee, Edmund H., and Thomas A. Montgomery. (1990). "A Hierarchical Protocol for Coordi-
nating Multiagent Behaviors." In Proceedings of the National Conference on Artificial Intelli-
gence, Boston: AAAI Press, pp. 86-93.

Durfee, Edmund H., and Thomas A. Montgomery. (1991). "Coordination as Distributed Search in
a Hierarchical Behavior Space." IEEE Transactions on Systems, Man, and Cybernetics 21(6)
(Special Issue on Distributed AI).

Durfee, Edmund H., Victor R. Lesser, and Daniel D. Corkill. (1987). "Coherent Cooperation
among Communicating Problem Solvers." IEEE Transactions on Computers C-36(11), 1275-
1291. Also appeared in Alan H. Bond and Les Gasser (eds.), Readings in Distributed Artificial
Intelligence. San Mateo, CA: Morgan Kaufmann, 1988, pp. 268-284.

Gustafson, John L. (1988). "Reevaluating Amdahl 's Law." Communications of the ACM 31(5),
532-533.

Knoblock, Craig A., Josh D. Tenenberg, and Qiang Yang. (1991). "Characterizing Abstraction
Hierarchies for Planning." In Proceedings of the National Conference on Artificial Intelli-
gence, Anaheim, CA, July, Boston: AAAI Press.

Knoblock, Craig A. (1991). "Search Reduction in Hierarchical Problem Solving." In Proceedings
of the National Conference on Artificial Intelligence, Anaheim, CA, July, Boston: AAAI Press.

Korf, Richard E. (1987). "Planning as Search: A Qualitative Approach." Artificial Intelligence
33(1), 65-88.

Montgomery, Thomas A., and Edmund H. Durfee. (1990). "Using MICE To Study Intelligent Dy-
namic Coordination." In Proceedings of the Tools for Artificial Intelligence Conference, Wash-
ington, DC, November.

Montgomery, Thomas A., and Edmund H. Durfee. (1992). "Search Reduction in Hierarchical Dis-
tributed Problem S01ving." In Proceedings of the 1992 Distributed A1 Workshop, Glen Arbor,
MI, February.

Newell, A., and H.A. Simon. (1972). Human Problem Solving. Prentice Hall.
Parunak, H. Van Dyke. (1992). "How To Describe Behavior Space." In Proceedings of the 1992

Distributed AI Workshop, Glen Arbor, MI, pp. 303-316.
Sacerdoti, Earl D. (1973). "Planning in a Hierarchy of Abstraction Spaces." In Proceedings of the

Third International Joint Conference on Artificial Intelligence, Los Altos, CA: Morgan Kauf-
mann, pp. 412-422.

Stefik, Mark. (1981). "Planning and Meta-Planning (MOLGEN: part 2)." Artificial Intelligence 16,
141-170.

