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Abstract 

Knobtock and Korf have determined that abstraction can reduce search at a single agent from 
exponential to linear complexity (Knoblock 1991; Korf 1987). We extend their results by showing 
how concurrent problem solving among multiple agents using abstraction can further reduce search 
to logarithmic complexity. We empirically validate our formal analysis by showing that it correctly 
predicts performance for the Towers of Hanoi problem (which meets all of the assumptions of the 
analysis). Furthermore, a powerful form of abstraction for large multiagent systems is to group 
agents into teams, and teams of agents into larger teams, to form an organizational pyramid. We 
apply our analysis to such an organization of agents and demonstrate the results in a delivery task 
domain. Our predictions about abstraction's benefits can also be met in this more realistic domain, 
even though assumptions made in our analysis are violated, Our analytical results thus hold the 
promise for explaining in general terms many experimental observations made in specific distrib- 
uted A1 systems, and we demonstrate this ability with examples from prior research. 

Key words: abstraction, coordination, distributed artificial intelligence, multiagent systems, plan- 
ning, search 

1. Introduction 

Prob lem solving pe r fo rmed  by an indiv idual  artificial in te l l igence  (AI) sys t em can  
be cha rac te r i zed  as search through a p rob lem space;  and,  not  surpr is ingly,  dis- 
t r ibu ted  p rob lem solving (per formed by mult iple  art if icial ly intel l igent  agents)  can  
be charac te r ized  as a d i s t r ibu ted  search (Durfee and  M o n t g o m e r y  1991). There -  
fore,  when  a t t empt ing  to improve  pe r fo rmance  in a d i s t r ibu ted  p rob lem-so lv ing  
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system, it is natural to see how recent results in single agent search can be applied 
to such multiagent systems. Recent results by Knoblock and Korf (Knoblock 
1991; Korf 1987) show that abstraction can reduce search from exponential to 
linear complexity by dividing a large problem into a number of smaller problems. 
We extend these results in section 2 by showing that if these smaller problems are 
distributed to different agents to be solved in parallel, then the time to solution 
can be further reduced to logarithmic complexity. 

This analysis can be applied to both task-level problem solving and meta-level 
problem solving. At the task level, section 3 presents experimental results from 
the Towers of Hanoi. Meta-level control was not the primary concern here as task- 
level problems were distributed for parallel execution using a static allocation 
scheme. Section 4 describes experiments from a robotic delivery task in which 
robots must coordinate their activities to avoid collisions. Here we apply hierar- 
chical abstraction to the meta-level problem of coordination, as opposed to the 
task-level problem of path planning. An abstraction hierarchy in the delivery task 
can be built by grouping the robots into teams, then grouping the teams into 
teams, and so on. Then instead of all of the agents negotiating directly with all of 
the other agents, agents need only negotiate directly with the members of their 
team; team leaders handle negotiation between the teams. Thus, much as ab- 
stracting and distributing a task-level problem allows the subproblems to be 
solved in parallel, grouping agents into teams allows coordination to proceed in 
parallel. 

In this article, we show the best-case potential for scaling up distributed artifi- 
cial intelligence (DAI) systems to large numbers of agents; in the Towers of Hanoi 
the time to solution only grows as the log of the problem size. We also present 
analytical and experimental results in which this large complexity reduction is not 
possible. The delivery task does not meet many of the assumptions of the analy- 
sis, yet abstraction can still be useful. When we relax the assumptions even fur- 
ther, the use of abstraction becomes a hindrance by incurring useless overhead. 
The analysis also allows us to get a handle on the utilization we can expect, and 
we relate this back to domains such as the Distributed Vehicle Monitoring Testbed 
(DVMT) (Corkill and Lesser 1983; Durfee, Lesser, and Corkill 1987). In DAI (and 
in organization theory), the intuition is that solving problems cooperatively can 
significantly decrease problem-solving complexity in many, but not all, situations. 
ations. While other research has qualitatively verified this intuition, it has not 
allowed a systematic, domain-independent characterization of the situations in 
which cooperative problem solving is appropriate. Our work begins to formally 
quantify and empirically validate the above informal intuition. 

2. Search reduction analysis 

To analyze search reduction in hierarchical distributed problem solving, we must 
first define our terms. Problem solving is traditionally viewed as search through 
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a problem space defined by a set of states that the world might be in and a set of 
operators connecting the states. Problem solving is performed by searching for a 
series of operators that lead from the initial state to one of a set of allowable goal 
states. Distributed problem solving is characterized by the fact that more than one 
agent (e.g., processor) is involved in the search. Thus, to find a solution, each 
agent performs some search locally on a portion of the search space and may 
communicate with other agents to direct their search efforts toward mutually ben- 
eficial areas. (Agents are considered to be distributed if communication between 
them is not instantaneous.) 

Hierarchical problem solving relies on a hierarchy of abstract problem spaces 
to focus the search process. Search proceeds by finding a solution to the problem 
in the most abstract space first. The skeletal plan produced is then fleshed out by 
successive problem solving in the more detailed problem spaces (in which oper- 
ators are inserted between the steps in the skeletal plan, or the abstract operators 
in the skeletal plan are replaced by more detailed operators). The hope is that this 
iterative refinement will provide direction that successfully prunes the search in 
the more detailed spaces. In practice, however, it may be necessary to backtrack 
up the hierarchy and reject some or all of the skeletal plan. 

Hierarchical distributed problem solving then combines the features of hierar- 
chical and distributed problem solving--multiple, distributed agents solving a 
problem by searching through a hierarchy of problem spaces (Durfee and Mont- 
gomery 1991; Parunak 1992). 

2.1. Single-level abstraction hierarchy 

Knoblock showed that a single level of abstraction can reduce an exponential 

search O(b n) to O(~/nb~). Like ours, his derivation assumes the problem to be 
solved has a solution of length n (n operators must be applied to get from the 
initial state to a goal state), and a search complexity that is a function of n. Knob- 
lock also assumes an exponential search with branching factor b, giving a worst 
case complexity of O(bn). In our derivation, we generalize his results to an arbi- 
trary function for the complexity, f(n). 

If we first solve an abstract problem, dividing the overall problem into k sub- 
problems that must be solved serially, then the complexity becomes the sum of 
the complexity of solving the abstract problem plus the complexities of solving all 
of the individual subproblems. Since k is the length of the abstract problem, the 
total complexity isf(k)  + f(n'l) + f (n ' : )  + . . . + f(n'k) where n'i is the length 
of the ith subproblem. Assuming that the problem can be divided into equal-sized 
subproblems, and that the number of subproblems can be chosen such that it is 
equal to the solution length of each subproblem, then n'i = k for all i, and the 
complexity becomes (k + 1)f(k). If the length of the final solution with abstraction 
is the same as the length of the original solution (k: = n), then k = k/~, and the 
complexity is: 
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0((~,/~ + 1)f(Nf~)) = OC~fnf(~-n)) (1) 

Note that iff(n) = b n, we duplicate Knoblock's result (b" reduces to ~/~b~). 
If we further assume that each subproblem is solved by a different agent (a 

different processor or team of agents), and we ignore the cost of assigning sub- 
problems to agents, then the complexity is reduced even further. Instead of the 
subproblems' complexities adding when they are being solved serially, only the 
longest subproblem contributes to the overall time complexity when they are 
solved in parallel. Making similar assumptions as above, the time complexity be- 
comes: 

O(f(k) + max(f(n'i),f(n'2),... ,f(n'k))) = O(2f(Vn)) = O(f(~/-n)) (2) 

Thus, given concurrency, an O(b") search can ideally be reduced to O(b'~). As a 
quick sanity check of this result, note that for the k subproblems to be solved in 
parallel, there must be k agents working on them. Since k = X/-n, the decrease in 
complexity between expressions (1) and (2) is as expected: ~/-n. 

2.2. Multilevel abstraction hierarchy 

Now we generalize to l levels of abstraction. Starting with the ground space and 
moving up the abstraction hierarchy, the first abstraction level divides the initial 

n 
problem of length n into ~ subproblems of length k. At each abstraction level 

above, k subproblems are abstracted into one subproblem of length k, until the 

level is reached, at which point there is one problem left of length ktn~_ ~. If each top 

problem is solved serially, then the overall complexity is: 

n ) n n 
f ~ + - ~ f ( k )  + -~_2f(k) + . . .  + kf(k)" (3) 

If we set I = logk n, then expression (3) reduces to (1 + k + k 2 q -  . . . - t -  U-')f(k) 
which can be simplified as: 

0(~- - -~  f(k)) = O[-/k~~ - k --- 1 n - 1  (4) 

The final step in expression (4) is possible since k is assumed constant for a given 
problem space and abstraction hierarchy, while l must grow with the problem size. 
Thus, given a search of arbitrary complexity in the length of the solution, O(f(n)), 
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multiple levels of abstraction can reduce the complexity to a linear number of 
constant terms. In particular, we get Knoblock's result of reducing an exponential 
search to linear complexity. 

If we assume that each subproblem is solved by a separate agent (processor), 
n 

then after the most abstract problem is solved, its ~ subproblems can be solved 

n 
in parallel, after which the next ~ subsubproblems can be solved in parallel, 

and so on. In effect, all the coefficients in expression (3) are eliminated, giving: 

(5) 

Substituting l = log~ n, this reduces to (logk n)f(k) which is O(log k n). Therefore, 
concurrent processing can potentially reduce an exponential search problem not 
just to linear complexity but to logarithmic. 

2.3. Assumptions of the analysis 

Our analysis is based on the following assumptions [as taken verbatim from Knob- 
lock (1991) with our comments in brackets]: 

1. The number of abstraction levels is logk of the solution length. Thus, the 
number of abstraction levels must increase with the size of the problems. 

2. The ratio between levels is the base of the logarithm, k. 
3. The problem is decomposed into subproblems that are all of  equal size. If 

all the other assumptions hold, the complexity of the search will be the complexity 
of the largest subproblem in the search. 

4. The hierarchical planner produces the shortest solution. The analysis holds 
as long as the length of the final solution is linear in the length of the optimal 
solution. [Here, optimal solution means the solution that would be found without 
hierarchical planning.] 

5. There is only backtracking within a subproblem. This requires that a problem 
can be decomposed such that there is no backtracking across abstraction levels 
or across subproblems within an abstraction level. [In other words, the downward 
refinement property (Bacchus and Yang 1991) must hold.] 

In addition, our extensions to the analysis require that: 
I. There are at least as many agents as there are bottom (most detailed) level 

n 
subproblems (i.e., there are -~ or, equivalently U -~ agents). We expect one agent 

to solve the most abstract problem, ship all but one of the subproblems to other 
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agents, and then begin working on the one subprobtem that it kept. Agents re- 
ceiving subprobtems repeat this process until the bottom level is reached. This 
implies that one agent is kept busy throughout the entire problem-solving cycle, 
while some number of agents, k ~- ~ - k ~-2, are not enlisted until the most detailed 
subproblems are reached. Thus, even though larger problems require larger num- 
bers of agents, the average toad on the agents actually decreases with increased 
problem size. 

2. The process of  distributing subproblems does not increase the time com- 
plexity. In general, determining which agents should work on which subproblems 
is a nontrivial problem. In the DAI literature this has been referred to as the 
connection problem (Davis and Smith 1983), while in operating systems it can be 
seen as a variant of load-balancing. However, if we assume that the amount of 
time an agent takes to decide who to send k subproblems to is a function of k, and 
that sending messages is time bounded, then this assumption is met. Essentially 
the derivation proceeds as above, but now f(k) includes the maximum message 
delay and the time to decide where to ship subproblems. 

3. Collecting t~sults from subproblems does not contribute to the problem com- 
plexity. If we again assume a time-bounded message delay and that the amount of 
time to assemble the results of k subproblems is a function of k, then this as- 
sumption is met. In terms of our analysis, the process of collecting results would 
just be the reverse of solving and distributing subproblems, benefiting equally 
from parallelism. 

Therefore, our analysis predicts that it is possible to achieve logarithmic time 
complexity by using an abstraction hierarchy and multiple agents, but this re- 
quires a large number of assumptions to be met. In the next section we describe 
experiments in the Towers of Hanoi in which all of these assumptions of are met. 
Then in section 4 we begin to relax some of these assumptions, presenting both 
analytical results and experimental results (from the delivery task) in which many 
of these assumptions are not met. In both cases, it is clear that the use of abstrac- 
tion can benefit distributed problem solving in much the same way that it benefits 
single-agent problem solving. 

3. Search reduction in ideal ease 

In order to verify empirically the formal analysis in the previous section, we ran 
a series of experiments on the Towers of Hanoi problem. The abstraction hier- 
archy of the Towers of Hanoi meets all of the assumptions of the analysis. It is 
created by ignoring the smallest disk at the first level of abstraction, then the 
smallest remaining disk at successive levels, until ultimately only the largest disk 
remains at the most abstract level. Problem solving proceeds by solving the prob- 
lem at the most abstract level, then creating subproblems at successively more 
detailed levels of the hierarchy in which the goals of the subproblems are to (1) 
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achieve the preconditions of the operators in the current abstract plan and (2) 
reach the final goal state, 

3.1. Solution time 

We ran our experiments on a TI Explorer II and recorded average CPU times to 
complete the task. For the distributed (multiagent) version, we simulated concur- 
rent execution of the subproblems by implementing the agents in MICE (Mont- 
gomery and Durfee 1990), charging real time for agent reasoning, and allowing 
any number of messages to be sent by different agents at one time. Figure 1 pre- 
sents the elapsed time to solve problems of various sizes 1 for: 

(x) A single agent w#hout abstraction. In this case the time to solve the problem 
grows exponentially with the size of the problem. 

(o) A single agent w#h abstraction. Duplicating Knobtock's result, the time for a 
single agent using hierarchical abstraction to solve the problem grows linearly 
with the size of the solution. 

(*) Multiple agents with abstraction. Here the benefits of parallel execution of  
the subproblems reduce the elapsed time to logarithmic complexity in the so- 
lution length. 

Thus, the results presented in Figure 1 verify the predictions of the analysis. Fig- 
ure I also shows the sum of the CPU time used by the agents in the distributed 
version (+).  As expected, this line has a greater slope than the single agent case 
(o) due to the overhead of sending messages and keeping track of the other agents; 
however, it is also still linear in the length of the solution. 
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Figure t. Elapsed time to solve the Towers of Hanoi problem. 
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3.2.  Ut i l i za t ion  

Figure 2 displays the average CPU utilization of the agents in the distributed ver- 
sion. Since the number of  agents required to solve the problem grows linearly with 

the problem size (k agents are required), but the elapsed time only grows loga- 

rithmically, we see that the average CPU utilization actually decreases with in- 
creased problem size. This conforms to the predictions of the analysis in which 
the expected average utilization is: 

k(n - 1) k(n - 1) 

(k - 1)nl (k - 1)n(logk n)" 
(6) 

n 
(There are ~ agents available for l f (k)  time units, giving I f(k)  available CPU 

cycles, of  which (1 + k + k 2 + . . .  + kt-bf(k) = k (k) - k (k) are 

used.) This decreasing utilization implies that abstraction would be well suited to 
solving problems in computer  networks in which there are large numbers of  com- 
puters available, each with a small amount of  excess CPU cycles. The analysis 
also implies that reasonably good speedups can be achieved with dramatically 
fewer agents. For  example, if we reduce the number of agents by a factor of k, 

then we add (k - 1)f(k) to the complexity of expression (5). However ,  since k is 
constant,  this represents only a constant factor decrease in performance.  Ulti- 
mately, however, if the number of agents are dramatically reduced, the perform- 
ance will approach the single-agent case of linear time complexity. 

/ 
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Figure 2. Average CPU utilization in distributed Towers of Hanoi. 
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If a separate agent were used for every node in the abstraction hierarchy, for a 
n - 1  I 

total o f ~ - L -  ~ agents, then the utilization of  the agents would become 7 = 

1 
- -  (because each agent is only busy during the time that problem solving on 
log~ n 
its level is taking place). However ,  if there is a continuous supply of  problems, all 
of  the agents can be kept busy most of  the time. After the top agent solves the 
most abstract problem and ships the subproblems off to other agents, it can start 
working on the next problem. Eventually the entire "pipel ine" (hierarchy of  
agents) will be filled. 

The next  question to ask, then, is how much processing power is lost waiting 
n -  1 

for the pipeline to fill. All ~ agents are busy after time (l - l)f(k); therefore,  

(n l)(l 
1)f(k)-- total available CPU cycles while the pipeline is filling. there are k - 1 

When propagating top-down, there are k + k 2 + . . . + k ~- 1 agents idle during 
the f i r s t~k)  time units, k 2 + k 3 + . . . + k ~-1 during the second, and so on. This 
gives the total CPU cycles lost as ( k  + 2 k  ~ + . . . + (1 - 1 ) k l - t ) f ( k ) ,  which can 

be rewritten as \ k- 2_ ] ~--_- (k). Dividing the lost cycles by the to- 

tal available gives the fraction of  available CPU cycles wasted while waiting for 
processing to propagate from the top agent down to the leaves as: 

k - n + (k - 1 ) n ( l -  1) 

( k -  1 ) ( n -  l ) ( l -  1) 

k - n + (k - 1)n(logkn - 1) 

( k -  1 ) ( n -  1)(logk n - 1) 
(7) 

Of course,  this pipeline can be filled top-down or bo t tom-up-- top-down process- 
ing can be viewed as a contracting/subcontracting process (Davis and Smith 1983), 
while bottom-up processing can be viewed as data-driven hypothesis generation 
(Corkill and Lesser  1983). In the case that processing proceeds bottom-up, the 
fraction of  available processing power unused while filling the hierarchy is just  
one minus the quantity in expression (7). Because of the symmetry  between top- 
down and bot tom-up processing, the ratio in expression (7) is also the processor  
u t i l i z a t i o n  when processing propagates bottom-up, and one minus expression (7) 
is the utilization for top-down. 

This analysis can help to explain analytically some of the empirical results pre- 
viously reported in the literature. In Corkill and Lesser ' s  Distributed Vehicle 
Monitoring Testbed (DVMT) (Corkill and Lesser  1983), hypotheses are generated 
bottom-up, so it takes some time before the agents integrating high-level hy- 
potheses have data on which to work. While Corkill and Lesser  note that proc- 
essing is lost "as nodes wait for  something to do ,"  we can now set a lower bound 
on the amount  of  processing that must be lost waiting. For  example,  if we have a 
three-level hierarchy with k = 2 and n = 8, and if processing proceeds bottom- 
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2 
up, then ff of the available processing power is lost by agents waiting for some- 

thing to do. 
Predicting the optimal performance of a system of agents is an important step 

in evaluating alternative approaches to coordination, and our analysis can be used 
to make such predictions. For example, in Durfee, Lesser, and Corkill (1987) 
DVMT researchers calculated the optimal improvement in processing time due to 
multiple agents by hand-simulating the shortest data path through the hierarchy. 
Their hand simulations, which included implementation specific details due to 
knowledge source interactions and communication delays, showed that p agents 
could never achieve a factor o f p  speedup, z Our analysis can be used to generate 
similar results without going to the trouble of hand simulations. In the DVMT, the 
optimal processing time for a vehicle track is achieved when there is one agent 
for every vehicle location in the track. Processing proceeds in a bottom-up fashion 
by creating vehicle location hypotheses and then combining them into longer and 
longer track hypotheses. A track of length 8 amounts to a 4 level problem with a 
branching factor of 2. According to expression (6), the average utilization of those 

15 . 
8 agents would be ~ ,  implying that the best possible speedup is no more than 

15 
- -  * 8, or less than 4 times. 
32 

3.3. Discussion 

So far we have seen that combining parallelism and hierarchical problem solving 
can be very powerful: in well-behaved problems like the Towers of Hanoi, it can 
reduce exponential search to logarithmic time complexity. Furthermore, this ex- 
ponential improvement in time complexity is paid for by only a linear increase in 
the number of agents (even when a separate agent is desired at each node in the 

n - 1  n 
hierarchy, ~ instead of ~ agents are required--still linear in the size of the 

problem). Given a continuous stream of problems and an agent at each node in 
the hierarchy, we can even approach full utilization of the agents (processors) 
involved. Unfortunately, real-world problem domains are not likely to meet all of 
the necessary assumptions to achieve this best-case performance. Therefore, 
in the next section we show the application of abstraction to a more realistic do- 
main: the delivery task. 

4 .  S e a r c h  r e d u c t i o n  in rea l i s t i c  c a s e  

In this section we look at the effects of relaxing some of the assumptions of the 
analysis. First we see analytically how a fixed number of levels of abstraction 
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affect our results, then we see empirically how abstraction performs in the deliv- 
ery task domain. 

4.1. Fixed number of  levels 

For some problem domains it is easy to meet the assumption that the number of 
levels of the hierarchy, l, increases with the size of the problem. In the Towers of 
Hanoi, this is done by having a separate level of abstraction for each disk. In many 
more realistic problem domains, however, the number of levels of abstraction may 
be fixed. For example, our work in the delivery task has only a single level of 
abstraction (agents grouped into teams). 

Here we draw on others' results (Bacchus and Yang 1992) to illustrate the effect 
on our analysis of having a fixed number of abstraction levels. In such a case, the 
ratio between levels of the hierarchy, k, is no longer constant since it must now 
grow with the length of the solution, n, according to k = ~ .  Thus, for 1 levels of 
abstraction in which all subproblems are solved by a single agent, expression (4) 

( 
becomes O N ~ f ( \ ! ~ ) .  = O(nf(~/~)), which gives the result reported by 

Bacchus of O(nb ~'~) whenf(n)  = b ". 
When the subproblems are solved in parallel and the number of levels are fixed, 

expression (5) becomes O ( l f ( ~ ) )  = O(f(~V~)). Therefore, given a fixed number 
of levels, abstraction no longer reduces an exponential search to linear complexity 
for a single agent and logarithmic complexity for multiple agents. Instead, it re- 
duces the complexity to a more slowly growing exponential with a further factor 
of n speedup possible with parallelism. Thus, when the assumption of a variable 
number of levels of abstraction is violated, the full performance improvement to 
logarithmic time cannot be realized. Nonetheless abstraction may still be useful, 
as we shall see. 

4.2. The delivery task 

We now turn to a delivery task domain in which a number of robots must deliver 
packages to specified locations without colliding. This domain captures many of 
the coordination issues that are present in air traffic control, intelligent vehicle 
highway systems, cooperative robotic reconnaissance, and factory floor control. 
When such a gn'oup of autonomous agents must coordinate their activities, they 
could do so by individually negotiating with every other agent in the environment, 
but this results in a large amount of communication when large numbers of agents 
are involved (for example, the individual negotiations among 2.0 agents depicted 
in Figure 3). Alternatively, they can group themselves into teams of agents, have 
team leaders negotiate between teams, and only individually negotiate within 
teams (for example, the team negotiation pattern in Figure 3). When even more 
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Individual Negotlalion Team Negotlatlon 

Figure 3. Individual vs. team negotiation Patterns. 

agents are involved, this abstraction into teams can be extended to an arbitrary 
number of levels by creating teams of teams, teams of teams of teams, and so on. 

If negotiation in a hierarchy of teams starts at the top (most abstract) level and 
works its way down to individuals negotiating with their fellow team members, 
then the analysis presented in section 2 can be directly applied to the time taken 
to complete all negotiations. The search complexity fin) would describe the com- 
plexity of searching for nonconflicting behaviors (i.e., negotiating), and n would 
relate to the number of agents involved. For example, elsewhere (Montgomery 
and Durfee 1992) we analyzed our hierarchical communication protocol (Durfee 
and Montgomery 1990) and found it to have O(n 3) complexity where n is the num- 
ber of agents. 3 Grouping agents into teams (a single-level hierarchy) has the po- 
tential to reduce such an O(n 3) protocol to O(n 2) [by expression (1)], and if the 
teams can negotiate in parallel, then the time complexity is reduced to O(n ~5) [by 
expression (2)]. If the agents are grouped into a hierarchy of teams, then ulti- 
mately the time complexity of the negotiation can be reduced to logarithmic time. 

One way to realize such complexity reductions is to have the highest team lead- 
ers negotiate first, then the subteam leaders negotiate with each other, and so on. 
Alternatively, negotiation can start at the bottom level (individuals negotiating 
with their fellow team members) and work its way up. Negotiation in either di- 
rection (top-down or bottom-up) can meet the assumptions of the analysis, but in 
reality it may be necessary to employ elements of both: negotiating bottom-up 
gives team leaders the chance to accumulate information about what their team 
members are planning to do; however, since ultimately it is individuals that exe- 
cute plans, the decisions made by team leaders must flow back down to the indi- 
viduals. 

4.3. Experiments 

Our implementation of agents in the delivery task has both bottom-up and top- 
down elements. Agents negotiate with their fellow team members first; this gives 
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the team leaders sufficient knowledge to begin team-level negotiations. During 
the course of team-level negotiations, the leaders may need to request further 
details from their members. After team-level negotiations finish, the leaders in- 
struct their members on how they need to adapt their plans to avoid conflict with 
the other teams. Therefore, since there could be significant communication up 
and down the hierarchy, an assumption that the costs of distributing subprob- 
lems and collecting the results are negligible--may be violated. 

The formal analysis also assumes that subproblems are of equal size. However, 
since we generate delivery problems randomly, different teams may face coordi- 
nation problems with very unequal levels of difficulty. It is also not clear whether 
the implementation meets the assumption that linearly comparable solutions are 
reached with and without abstraction. We get different plans for delivering the 
same packages depending on whether or not teams are used (the presence of 
teams can change both the assignments of packages to agents, and the order in 
which conflicts are identified and resolved). However, in spite of the fact that 
many of the assumptions of the analysis are not strictly met in this domain, we 
show below that abstraction by grouping agents into teams still holds promise. It 
appears that the analysis is tolerant of violations of some of the underlying as- 
sumptions and thus can be used in developing domain-independent explanations 
for phenomena seen in specific DAI systems (as in section 3.2). 

In our experiments, we grouped the agents into teams that were restricted to 
working in one quadrant of the overall environment. These quadrants overlapped 
at the edges so that, in delivering packages that spanned multiple teams' regions, 
the agents from one team could drop packages off at the boundary for agents from 
another team to pick up (see Figure 4). This also made it necessary for the teams 
to negotiate with each other to avoid colliding in the boundary regions. Packages 

o |  o 
+ + 

| + + | 
Quadrant 2 ~ Quadrant 1 

~ g ~ B o u n d ~ A r e a ~ ~  
| 

~ ~ 
Quadrant 3 ~ Quadrant 4 

Figure 4. An example random environment. 
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were distributed randomly in the environment, with randomly chosen destination 
locations. 

In the first set of experiments, we distributed the packages evenly among the 
quadrants and restricted a package's destination to be within the same quadrant 
as its initial location. Thus, the division of agents into teams matched the coor- 
dination problem precisely, causing no backtracking between subproblems (drop- 
ping packages off for another team to deliver). Figure 5 shows the average amount 
of time for agents that negotiate as individuals to deliver a set of packages versus 
the time for the same number of agents grouped into four teams to deliver the 
same packages. The number of packages to be delivered is equal to the number 
of agents; thus, each agent has one delivery to make. We see that when (1) the 
hierarchy is well matched to the problem, (2) there is no need to "backtrack" at 
a given level of the hierarchy, and (3) the subproblems are of approximately equal 
size, then grouping agents into teams shows a definite benefit. 

If we relax our assumptions further by not restricting package destinations to 
their originating quadrants, then we get very different behavior. Now, as shown 
in Figure 6, the total time to coordinate activities and deliver the packages is 
initially worse for the teams of agents than for the individuals. This is primarily 
because the teams of agents must first drop packages off at their boundary, and 
then renegotiate to complete the deliveries of packages dropped off in their re- 
spective regions--essentially, the teams are violating the assumption of no back- 
tracking. In contrast, the individuals only negotiate once and then deliver their 
packages all the way to their destinations. Eventually, however, as the number of 
agents is increased, the combinatorics of the negotiation process overwhelms the 
individuals and the teams show an advantage again. 

5. Conclusion 

Abstraction has long been recognized as capable of improving the efficiency of 
search (Newell and Simon 1972; Sacerdoti 1973; Stefik 1981); and recently, de- 
tailed complexity analyses of this ability have been presented (Bacchus and Yang 
1992; Knoblock 1991; Knoblock, Tenenberg, and Yang 1991; Korf  1987). We have 
extended this research to multiagent systems, showing both analytically and em- 
pirically that search can be reduced to logarithmic time complexity using hierar- 
chical distributed problem solving. In presenting this ideal case, we have enumer- 
ated a sufficient set of conditions that allow it to be achieved. We have also shown 
how abstraction can be applied to both task-level and meta-level problem solving 
through our experiments in the Towers of Hanoi and delivery task problem do- 
mains. 

Perhaps more importantly, however, the perspective used in this article of view- 
ing coordination as a distributed search (Durfee and Montgomery 1991) sheds 
light on some of the fimdamental problems of DAI. In particular, DAI is often 
concerned with achieving coherence and coordination among a set of distributed 
agents. Because of the interdependency between agents that this implies, it is very 
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difficult to find the nearly independent subproblems that are required to achieve 
the full complexity reduction possible. However, assuming that the problems can 
be decomposed into nearly independent subproblems, then our analysis also 
shows what can be achieved in various circumstances. For example, if the number 
of levels of the hierarchy is fixed, then the best complexity reduction we can hope 
for is from O(f(n)) to O(f(t~/-~)). Thus if a single agent requires exponential search 
to solve a problem without abstraction, then a set of cooperating agents using 
abstraction will still require exponential time, though it will be a much slower 
growing exponential. 

We have also shed some light on past research in DAI, such as showing analyt- 
ically the minimum processing power lost waiting for data to reach a certain level 
in the hierarchy. This helps explain, for instance, why p processors could not 
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achieve a factor  of  p i m p r o v e m e n t  in the D V M T  (Corkill  and  Lesse r  1983; Durfee ,  
Lesser ,  and  Corkil l  1987). The  analys is  can also be applied to sys tems  using the 
con t rac t  net  protocol  (Davis and  Smith 1983). If con t rac t ing  is pe r fo rmed  as a 

func t iona l  decompos i t i on  such that a manage r  sends all subprob lems  down  to 
n -  1 

subord ina tes ,  then  ~ agents  are required,  and  full u t i l izat ion can  be achieved 

after the h ierarchy fills. However ,  if con t rac t ing  is v iewed more  as load ba lanc ing ,  

n 
such that  an agent  may  bid on its own  subtask ,  then  only  ~ agents  are required.  

but  it is no longer  clear  that  full u t i l izat ion can  be real ized.  
Viewing coord ina t ion  as a d is t r ibuted  search process  has p roven  to be a very  

fruitful research di rec t ion to take.  It  has a l lowed us to adapt  research  on  single- 
agent  p rob lem solving to d is t r ibuted  sys tems ,  and  g iven us insights  into p rob lems  
that  have long been  faced by  DAI  researchers .  We in t end  to con t inue  this l ine of 
research by  seeing what  fur ther  insights on  d is t r ibuted  p rob lem solving can  be 
gained.  Promis ing  areas inc lude  au tomat ing  the crea t ion  and  eva lua t ion  of  hier- 
archies  (Knob lock ,  Tenenberg ,  and  Yang 1991), and  de t e rmin ing  the expec ted  
value of  a h ierarchy based  on the probabi l i ty  of  be ing able  to re f ine  the abs t rac-  
t ions  (Bacchus  and  Yang 1992). 

Notes 

1. Note that the problem size for the Towers of Hanoi grows exponentially with the number of 
disks in the problem: n = 2 ~ - 1 where d is the number of disks. 

2. The difficulty of achieving a factor of p speedup with p agents has long been recognized. Am- 
dahl's law (Amdahl 1967) presents this from the perspective of a serial bottleneck. Holding the 
problem size constant, no matter how many additional processors are used, a computational 
task cannot be performed any faster than its serial portion. More recently, however, the per- 
spective taken by Gustafson (1988) shows that by varying the problem size with the number of 
agents, a scaled speedup can be achieved that approaches p for p agents. Gustafson's perspec- 
tive is used here; it is appropriate since most problems tackled in DAI do scale up or down with 
the number of agents. For example, the computational task of coordinating the movements of a 
number of robots scales directly with the number of robots involved (processors available). 

3. The intuition behind this complexity is that each agent must negotiate with every other agent 
(which is O(n2)), plus whenever an agent changes its plans during the course of one of these 

initial O(n 2) dialogues, it must re-negotiate (doublecheck) those changes with an average of n 
2 

agents. 
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