
Journal of Computer-Aided Molecular Design, 15: 697–708, 2001.
KLUWER/ESCOM
© 2001 Kluwer Academic Publishers. Printed in the Netherlands.

697

Prediction of blood-brain partitioning using Monte Carlo simulations of
molecules in water

Yiannis N. Kaznessisa,b,c,∗, Mark E. Snowb & C. John Blankleyb

aDepartment of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; bPfizer Global Re-
search and Development, Ann Arbor, MI 48105, USA; cCurrent address: Department of Chemical Engineering
and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA

Accepted 29 May 2001

Key words: blood-brain partition coefficient, computer simulations, Monte Carlo, QSPR

Summary

The brain-blood partition coefficient (logBB) is a determining factor for the efficacy of central nervous system
acting drugs. Since large-scale experimental determination of logBB is unfeasible, alternative evaluation methods
based on theoretical models are desirable. Toward this direction, we propose a model that correlates logBB with
physically significant descriptors for 76 structurally diverse molecules. We employ Monte Carlo simulations of
the compounds in water to calculate such properties as the solvent-accessible surface area (SASA), the number
of hydrogen bond donors and acceptors, the solute dipole, and the hydrophilic, hydrophobic and amphiphilic
components of SASA. The physically significant descriptors are identified and a quantitative structure-prediction
relationship is constructed that predicts logBB. This work demonstrates that computer simulations can be em-
ployed in a semi-empirical framework to build predictive QSPRs that shed light on the physical mechanism of
biomolecular phenomena.

Introduction

The relative distribution of drugs in the blood and
brain compartments is a determining criterion for
screening of potential therapeutic agents in the early
preclinical drug discovery stages. In the case of cen-
tral nervous system (CNS) acting drugs, penetration of
compounds from the blood circulation into the brain
is a functional prerequisite, whereas for peripherally
acting drugs penetration is undesirable due to potential
CNS-related side-effects. This penetration is regulated
by the blood-brain barrier (BBB), a complex physi-
cal and biochemical interface, which morphologically
is based on tightly joined blood capillary endothelial
cells [1, 2].

Since the BBB is devoid of transport pores, pas-
sive diffusion is the dominant physical process of
cerebrovascular transport. At the molecular level, the
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principal component of the barrier is the lipid bilayer
of the capillary endothelial cell membrane, through
which compounds have to diffuse to reach the brain.

The relative affinity for the blood or brain tissue
can be expressed in terms of the blood-brain parti-
tion coefficient, logBB = log(Cbrain/Cblood), where
Cbrain and Cblood are the equilibrium concentrations
of the drug in the brain and the blood respectively.
Both in vivo [3] and in vitro [4, 5] experiments have
been conducted that calculate logBB. In in vivo
experiments, peripheral application of radiolabeled
compounds is followed by brain concentration level
measurements. In in vitro experiments, the partition
of the compound between an aqueous and an organic
phase is measured and the results are used for relative
logBB ranking of compounds, since it is generally be-
lieved that the drug permeation is largely determined
by the molecule’s relative affinity for the water/lipid
interface.

Both these methodologies are costly and difficult,
hence not amenable to high-throughput screening of
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therapeutic candidates. Consequently, there have been
numerous attempts to employ theoretical and com-
putational methodologies to predict the blood-brain
partition coefficient.

Young and co-workers [3] proposed the correla-
tion between logBB and � logP , shown in Equation
1. � logP is known as the Seiler parameter [6],
and is defined as � logP = logPow − logPcyclw,
where Pow and Pcyclw are the octanol/water and cy-
clohexane/water partition coefficients, respectively

logBB = −0.485(±0.160)� logP

+ 0.889(±0.500),

n = 20, r = 0.831, s = 0.439,

F = 40.23. (1)

In Equation 1, n is the number of compounds, r is the
correlation coefficient, s is the standard error, and F is
the Fischer value that gives a measure of the statistical
significance of the relationship. � logP is considered
to be a measure of hydrogen-bonding potential [7].

Seelig and co-workers [8, 9] identified the molec-
ular parameters governing the passive diffusion of the
molecules through lipid membranes, using theoretical
arguments. They suggested that the optimal charac-
teristics for a molecule to penetrate the BBB are (i)
amphiphilicity ��Gam > −3 kJ/mol (they defined
amphiphilicity as ��Gam = �Gaw − �Gmic where
�Gaw and �Gmic are the free energies of partitioning
into the air-water interface and of micelle formation
respectively), (ii) a value for the air/water partition co-
efficient Kaw in the range of 105–103 M−1, and (iii) a
molecular cross-sectional area AD < 80 Å2.

Kelder and co-workers [10] examined the distrib-
ution of the polar surface area of 776 CNS and 1590
non-CNS drugs and deduced that penetration of mole-
cules is possible only if their polar surface area is less
than 120 Å2. They also suggested that drugs can be
tailored for brain penetration by decreasing the polar
surface to less than 60 Å2.

A number of more comprehensive computational
approaches that resulted in the development of quan-
titative structure-property relationships (QSPR) have
also been reported. Van de Waterbeemd and Kansy
[11] established the following QSPR for 20 molecules:

log BB = −0.021PSA(±0.003)

− 0.003(±0.001)Vmol

+ 1.643(±0.465),

r = 0.835, s = 0.448, F = 19.5, (2)

where PSA is the molecular polar surface area, and
Vmol is the molecular volume. This relationship pro-
vides additional physical insight into the mechanism
of the diffusion process, suggesting that hydrophilicity
and volume negatively impact the permeability of the
compounds. However, Calder and Ganellin [12] found
that Equation 2 overestimates the experimental values
of 5 compounds not in the initial set. This finding
indicated the need for a larger set of compounds.

Abraham and co-workers [13–15] constructed the
following model equations using a fragment-based
scheme and a larger set of 57 compounds:

log BB = −0.038(±0.064)

+ 0.198(±0.100)R2

− 0.687(±0.125)πH
2

− 0.715(±0.334)
∑

αH
2

− 0.698(±0.107)
∑

βH2

+ 0.995(±0.096)Vx,

n = 57, r = 0.952, s = 0.197,

F = 99.2, (3a)

logBB = 0.023 logPow − 0.507
∑

αH
2

− 0.500
∑

βH2 + 0.055,

n = 49, r = 0.949, s = 0.201,

F = 136.1, (3b)

where R2 is an excess molar refraction, πH
2 is the

dipolarity/polarizability parameter,
∑

αH
2 and

∑
βH2

are the solute hydrogen-bond acidity and basicity, re-
spectively, and Vx is the characteristic volume of
McGowan [14]. These equations demonstrate the im-
portance of hydrogen-bonding potential in the perme-
ation of molecules through the BBB. However, they
require the calculation of many parameters for frag-
ments, and the additivity of those parameters to mole-
cular level properties is problematic, since this scheme
assumes no intramolecular interactions between these
fragments.

Lombardo and co-workers [16] correlated logBB

with the free energy of solvation �Gw with the fol-
lowing equation

logBB = 0.054(±0.005)�Gw + 0.43(±0.07),

n = 55, r = 0.82, s = 0.41, F = 108.3.
(4)

This correlation provides an elegant means for suc-
cessful logBB prediction. It, however, relies on cal-
culating the energy of solvation from semi-empirical
calculations in the gas phase. The solvent might play
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an important role in the conformations of the solute,
which will in turn lead to different values for a number
of parameters, such as the solvent-accessible surface
area (SASA), the molecular volume and the molecular
dipole moment, all of which influence the energy of
solvation.

Kaliszan and Markuszewski [17] re-established the
correlation of logBB with logPow and refined it, em-
ploying the molecular mass as an additional descriptor
of molecular bulkiness:

log BB = −0.088(±0.051)

+ 0.272(±0.017) logP

− 0.001116(±0.00049)Mm,

n = 33, r = 0.947, s = 0.126,

F = 131.1. (5)

These authors indicated that a molecular bulkiness
descriptor should be used to better account for non-
specific dispersive properties of molecules.

More recently, Norinder and co-workers [18] used
MolSurf [19] parametrization to calculate various
properties related to the molecular valence region, and
combined it with the Partial Least Squares to Latent
Structures (PLS) method [20] to develop a QSPR with
three statistically significant components (the compo-
nents were obtained by means of the Principal Compo-
nent Analysis, PCA, method [21]) and the following
statistics: n = 56, r = 0.913, s = 0.312, F = 86.95.
Again this method relies on gas phase properties. In
addition, the PCA method generally appears to strip
the QSPR from explicit physical insight.

Luco [22] employed the PLS technique to develop
a QSPR based on several topological and constitu-
tional descriptors. This analysis also resulted in a
significant three-component model with the following
statistics: n = 58, r = 0.922, s = 0.318 and F = 102.

Recently, Feher and co-workers [23] revisited the
logBB/ logPow correlation building the following
regression model

log BB = −0.1092 logPow − 0.3873nacc,solv

− 0.0017PSA + 0.4275,

n = 61, r = 0.854, s = 0.424,

F = 51, (6)

where nacc,solv is the number of hydrogen-bond accep-
tors. The correlation coefficient errors were not given
for Equation 6.

Finally, Clark [24] built a model for the predic-
tion of logBB from a set of 55 compounds. His re-
sults also indicate the importance of the polar surface

area for predicting logBB and the correlation be-
tween the blood/brain and the octanol/water partition
coefficients.

Clearly, there has been considerable progress in the
development of semi-empirical models for the relative
affinity of compounds for the blood and brain com-
partments, with considerable predictive ability. Never-
theless, all these approaches are based on mechanisti-
cally chosen topological descriptors or the calculation
of properties of stand-alone molecules in the low-
est gas-phase energy conformation. The solvation of
compounds in water and a lipid phase might be accom-
panied by conformational changes that in turn lead to
changes in the molecular properties. These changes
will be more pronounced for large flexible molecules.
Ideally, one might consider the simulation of the dif-
fusion of molecules through a lipid bilayer. Molecular
dynamics simulations of various molecules in lipid
bilayers embedded in an aqueous environment have
been reported [25, 26]. Unfortunately, the time scales
of diffusion of small molecules span scales of several
microseconds and molecular dynamics can simulate
atomistic systems for only a few nanoseconds. There-
fore, one has to turn to semi-empirical approaches
that address the issue of the solvent’s influence on the
molecular conformations.

Jorgensen and co-workers [27, 28] have demon-
strated that Monte Carlo simulations of molecules in
water can be successfully employed to predict the
gas to liquid free energies of solvation in hexade-
cane, octanol and water, the logPow and the water
solubility log S. Constant temperature and pressure
ensemble averages were obtained for such properties
as the Coulomb and Lennard–Jones energies of inter-
action between the solute and the solvent, the SASA,
the hydrophobic and hydrophilic components of SASA
and the numbers of donor and acceptor hydrogen-bond
sites. Using these descriptors, Duffy and Jorgensen
[28] developed the following QSPR model for the
octanol/water partition coefficient

MC logPow = 0.01448SASA − 0.731HBAC

− 1.064 (no. of amines)

+ 1.1718 (no. of nitro + acid groups)

− 1.772. (7)

We used the term MC logPow to distinguish the oc-
tanol/water partition coefficient calculated by Equa-
tion 7. The corrections for the number of amines, nitro
and acidic groups were deemed necessary due to im-
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Table 1. Set of simulated compounds with experimental log BB values. For compounds
46–65 we retained the names used in [13]; numbers of the lu compounds were the ones
adopted by Luco [22]; for compounds 72–78 we retained the names used in [10]; for
compounds 79–85 the names used in [15] were retained

# Name log BB # Name log BB

1 acetone13 −0.15 44 toluene13 0.37

2 benzene13 0.37 45 zolantidine13 0.14

3 butanone13 −0.08 46 cmpd_213 −0.04

4 chloroform13 0.29 47 cmpd_413 −1.30

5 carbamazepine16 0.00 48 cmpd_1313 −2.15

6 carbamazepineepoxide16 −0.34 49 cmpd_1513 −0.67

7 cimetidine13 −1.42 50 cmpd_1613 −0.66

8 clonidine13 0.11 51 cmpd_1713 −0.12

9 desipramine10 1.00 52 cmpd_1913 −0.18

10 2,2-dimethylbutane13 1.04 53 cmpd_2013 −1.15

11 domperidone10 −0.78 54 cmpd_2213 −1.57

12 enflurane13 0.24 55 cmpd_2313 −1.54

13 ether13 0.00 56 cmpd_2413 −1.12

14 ethanol13 −0.16 57 cmpd_2513 −0.73

15 fluroxene13 0.13 58 cmpd_2613 −0.27

16 halothane13 0.35 59 cmpd_2913 −0.28

17 heptane13 0.81 60 cmpd_3013 −0.46

18 icotidine13 −2.00 61 cmpd_3113 −0.24

19 imipramine13 0.83 62 cmpd_3413 −0.02

20 isoflurane13 0.42 63 cmpd_3613 0.69

21 lupitidine10 −1.06 64 cmpd_3713 0.44

22 mepyramine13 0.49 65 cmpd_4213 0.22

23 methane13 0.04 66 lu2822 −1.17

24 methoxyflurane13 0.25 67 lu6922 −0.16

25 methylcyclopentane13 0.93 68 lu7222 −0.30

26 3-methyhexane13 0.90 69 lu7322 −1.34

27 2-methylpentane13 0.97 70 lu7422 −1.82

28 3-methylpentane13 1.01 71 lu7522 0.89

29 mianserin10 0.99 72 Org442810 0.82

30 mirtazepine10 0.53 73 Org522210 1.03

31 pentane13 0.76 74 Org1296210 1.64

32 propanol-113 −0.16 75 Org1301110 0.16

33 propanol-213 −0.15 76 Org3210410 0.52

34 ranitidine13 −1.23 77 Org3052610 0.39

35 risperidone10 −0.02 78 Org3416710 0.00

36 risperidone9OH10 −0.67 79 skf10146815 0.25

37 teflurane13 0.27 80 skf8912415 −0.43

38 temelastine13 −1.88 81 yg1415 −0.30

39 tibolone10 0.40 82 yg1515 −0.06

40 tiotidine13 −0.82 83 yg1615 −0.42

41 1,1,1-trichloroethane13 0.40 84 yg1915 −1.30

42 trichloroethylene13 0.34 85 yg2015 −1.40

43 1,1,1-trifluoro-2-chloroethane13 0.08
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perfections of the CM1P partial charges assigned to
the compounds of their training set.

In this paper, we employ this methodology for 85
structurally diverse molecules and develop a QSPR for
the prediction of the blood-brain partition coefficient.
Our goal is to demonstrate the utility of statistical me-
chanics simulations in QSPR building and their pos-
itive influence on the early stages of the drug design
process.

In the following section we describe the simulation
technique. Then, we describe the results and the de-
veloped model and discuss its predictive ability. We
then calculate MC logPow for all the compounds,
as predicted by Equation 7 and use the calculated
octanol/water partition coefficient values to compare
our approach with previous logBB-predicting models
that incorporate logPow. Finally, we conclude assess-
ing the methodology as a tool for high-throughput
screening in an industrial setting.

Methodology

Biological data

A set of 85 molecules, shown in Table 1, was simu-
lated in water. The set was compiled from structures
presented in [10, 13, 15, 22]. They represent a wide
set of structurally diverse groups of molecules with
publicly available blood-brain partition coefficients.

Monte Carlo simulations

Details of the simulation protocol are provided in
[28]. Here, we describe the main aspects of the
methodology. Initially the molecules were represented
in SMILES format [29]. The SMILES were then
transformed in mol2 files using the Sybyl software
package [30]. The simulations were performed us-
ing the BOSS4.2 software package [31], after trans-
forming the mol2 files in the appropriate BOSS-
input format. The force field used by BOSS accounts
for intramolecular interactions using harmonic bond-
stretching terms, angle-bending terms and a Fourier
series for the torsion terms, whereas the intermolecular
interactions are dealt with a 12-6 Lennard-Jones po-
tential and Coulomb’s law. The total potential energy
function is given by:

E=
∑
i

kb,i(ri − r0,i)
2 +

∑
i

kθ,i(θi − θ0,i)
2

+
∑
i

[
1
2V1,i(1 + cos ϕi ) + 1

2V2,i(1 + cos 2ϕi )

Table 2. Ensemble averaged properties calculated from Monte Carlo
simulations

Property

Coulomb energy between solute and solvent, ESXC

Lennard-Jones energy between solute and solvent, ESXL

Solvent accessible surface area, SASA

Hydrophobic component of SASA, FOSA

Hydrophilic component of SASA, FISA

Aromatic component of SASA, ARSA

Dipole moment of solute, DIPO

Number of solute-solvent interaction <−3.75 kcal mol−1, INST

Number of solute-solvent interaction <−2.75 kcal mol−1, INME

Number of solute hydrogen-bond donors, HBDN

Number of solute hydrogen-bond acceptors, HBAC

Molecular volume, MVOL

+ 1
2V3,i(1 + cos 3ϕi )

]
+

∑
i

∑
j>i

{
qiqj

rij
+ 4ε

[(
σ

rij

)12

−
(

σ

rij

)6
]}

(8)

where the indices i and j run over all the atoms in
the simulation. The force constants k, the distance and
angle reference values, the Fourier coefficients V , and
the Lennard-Jones parameters are all from the OPLS-
AA force field [32]. The partial charges were obtained
from AM1 calculations using the CM1A procedure
[33].

Each molecule was solvated in 500 water mole-
cules. The TIP4P model[34] was used for the waters.
The systems were simulated in the NPT ensemble at
25 ◦C and 1 atm and periodic boundary conditions
were employed.

Each simulation consisted of 3 × 105 equilibration
steps and 107 production steps. All internal degrees of
freedom of the solutes were sampled, whereas water
was allowed to undergo only translational and rota-
tional moves. The motion ranges were tuned to allow
for a 30% acceptance rate. Ensemble averages were
calculated during the simulations for the properties
shown in Table 2.

The cutoff distance used for calculating the accep-
tor and donor hydrogen bonds is 2.5 Å, which is the
distance of the minimum of the first peak in X-H radial
distribution functions [35].

The SASA is determined using a spherical probe
with a 1.4 Å radius. All heteroatoms and their hydro-
gens are considered hydrophilic whereas carbon atoms
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and their hydrogens are considered either aromatic or
hydrophobic.

Duffy and Jorgensen [28] introduced INME and
INST as counts of the total number of hydrogen bonds
and the strong hydrogen bonds, respectively.

Statistical analysis

A linear regression model, correlating the ensemble-
averaged properties with the blood-brain partition co-
efficients, was built employing the regression module
of the JMP program [36]. In a stepwise fashion, the
statistically less significant descriptor was eliminated
from the set of descriptors used in the model. The
significance of the descriptors was evaluated in term
of the F ′ ratios, defined as the ratios of the regres-
sion model mean square over the error mean square.
The optimal descriptor set was chosen, so that the
correlation coefficient was maximized, the standard
error minimized and requiring that the probability of
a greater F ′ value occurring by chance was less than
0.001. As noted in [28], for as small a set as the one
used herein the separation of data points to training
and testing sets is not statistically meaningful. Hence,
cross-validation of the resulting model was performed
by a leave-one batch-out procedure.

Results and discussion

Correlation coefficients

In Table 3, the correlation coefficients for all descrip-
tor pairs are reported. The correlation coefficient, rij ,
for any two variables xi and xj reflects the strength of
the linear relationship between the two variables and
is calculated as the Pearson product moment:

rij = s2
ij√

s2
ii s

2
jj

, s2
ij =

∑
(xi − xi)

(
xj − xj

)
N − 1

. (9)

The indices in Equation 9 run over all N observations.
High correlations are revealed between ESXC,

DIPO, INST, INME, HBDN, and HBAC as expected.
Also expected are the correlations between SASA,
ESXL, MVOL, and MWEI. A correlation coefficient
of 0.804 between HBAC and SASA indicates that for
the set of compounds investigated there is a uniform
distribution of hydrogen-bond accepting atoms on the
surface of the molecules.

Blood/brain partition coefficient

In the statistical analysis, 9 strong outliers were
identified and removed. The excluded molecules are
icotidine, temelastine, tiotidine, cmpd_2, cmpd_4,
cmpd_13, Org12962, yg_19 and yg_20. Of those,
icotidine, temelastine, cmpd_4, cmpd_13, were re-
moved as outliers by Abraham and co-workers in [13],
Org12962 was identified as a serious outlier by Kelder
and co-workers [10], and yg_19 and yg_20 were re-
moved by Abraham and co-workers in [15]. As noted
in the literature the deviation of these molecules can-
not be attributed to discernible structural trends differ-
entiating them from the rest. Hence, this deviation can
be explained in terms of the difficulty of experimental
measurements, or it can attributed to metabolism or
possible active transport mechanisms.

In the statistical analysis, in addition to the de-
scriptors described previously, we used the term
HBACxHBDN1/2/SASA. This cohesive index was in-
troduced by Jorgensen and co-workers [27, 28], and
can be viewed as an electrostatic surface tension. The
fractional power in HBDN reflects possible saturation
effects expected for molecules with a large number of
acceptors and donors, in which case it is not likely
that all of them will be simultaneously satisfied. This
term was statistically significant in a solubility model
proposed in [27].

Using 76 compounds and employing the stepwise
statistical approach described in the previous section,
we arrived at Equation 10, henceforth called model_1.

log BB = −0.2339(±0.013)HBAC

+ 0.00147(±0.00011)MVOL

31.6099(±4.0837)HBAC×HBDN1/2

/SASA − 0.04579(±0.05808),

n = 76, r = 0.97, s = 0.173,

F = 311.307. (10)

Model_1 predicts the blood-brain partition coef-
ficient extremely well, using only a small number
of physical descriptors. In addition, it provides a
solid physical picture of the molecular mechanisms
involved in cerebrovascular transport, indicating that
hydrophilicity negatively impacts the blood-brain per-
meation. In Table 4, the predicted logBB values
are presented. It should be noted that even when
all the compounds are included in the calculations,
the blood/brain partition coefficient predicting QSPR
contains the same descriptors with Equation 10.
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Table 3. Correlation coefficients for descriptor pairs

Variable ESXC ESXL SASA FISA FOSA ARSA DIPO INST INME HBDN HBAC MWEI MVOL

ESXC 1.000 −0.111 −0.580 −0.567 0.043 −0.520 −0.833 −0.967 −0.968 −0.680 −0.757 −0.589 −0.563

ESXL −0.111 1.000 −0.726 0.120 −0.688 −0.388 0.055 −0.073 −0.082 0.198 −0.383 −0.686 −0.739

SASA −0.580 −0.726 1.000 0.250 0.558 0.691 0.464 0.693 0.698 0.342 0.804 0.950 0.997

FISA −0.567 0.120 0.250 1.000 −0.347 0.031 0.587 0.538 0.563 0.383 0.534 0.439 0.230

FOSA 0.043 −0.688 0.558 −0.347 1.000 0.007 0.028 0.103 0.096 −0.097 0.325 0.359 0.558

ARSA −0.520 −0.388 0.691 0.031 0.007 1.000 0.239 0.545 0.539 0.363 0.480 0.682 0.703

DIPO −0.833 0.055 0.464 0.587 0.028 0.239 1.000 0.838 0.853 0.455 0.688 0.485 0.441

INST −0.967 −0.073 0.693 0.538 0.103 0.545 0.838 1.000 0.995 0.653 0.835 0.687 0.675

INME −0.968 −0.082 0.698 0.563 0.096 0.539 0.853 0.995 1.000 0.631 0.848 0.703 0.680

HBDN −0.680 0.198 0.342 0.383 −0.097 0.363 0.455 0.653 0.631 1.000 0.401 0.323 0.323

HBAC −0.757 −0.383 0.804 0.534 0.325 0.480 0.688 0.835 0.848 0.401 1.000 0.790 0.785

MWEI −0.589 −0.686 0.950 0.439 0.359 0.682 0.485 0.687 0.703 0.323 0.790 1.000 0.954

MVOL −0.563 −0.739 0.997 0.230 0.558 0.703 0.441 0.675 0.680 0.323 0.785 0.954 1.000

In Figure 1, we plot the predicted logBB versus
the experimental ones. We also include the excluded
compounds for comparison.

The F values for the descriptors in the model in-
dicate that the most important ones are the HBAC
and the volume. The third term can be replaced
with HBDN with only a minor deterioration in the
predictive quality:

log BB = −0.28902(±0.012)HBAC

+ 0.00171(±0.00011)MVOL

− 0.07464(±0.01543)HBDN

− 0.13956(±0.06618),

n = 76, r = 0.958, s = 0.203,

F = 270.46. (11)

The small differences between Equations 10 and
11 point to the plasticity of the models.

The sum of squared errors for Equation 10 is 2.149.
The press statistic option in JMP, which calculates
the sum of squared residuals, where the residual for
each row is computed after dropping that row from
the computation, is 2.384. The small difference be-
tween these two numbers verifies the predictive ability
of the model. After the submission of the present
article, and at the request of one of the reviewers,
we simulated four additional compounds and calcu-
lated the blood/brain partition coefficient predicted
by model_1. The compounds were antipyrine, zi-
dovudine, pentobarbital, and trifluoroperazine. The
experimental values for logBB are −0.097, −0.72,
0.12, and 1.44 respectively, spanning a wide range

of logBB values. The predicted values are 0.084,
−0.77, −0.251, and 1.19 respectively. The mean rms
error is 0.48, a value that is satisfactory. Hence, this
small blind test verifies the predictive quality of our
model. Here again we stress the inability to establish
the significance of the model with rigorous statisti-
cal methods. The small number of compounds in the
literature with known blood/brain coefficients renders
the partitioning of the data set into training and test
sets and the validation of the model QSPR difficult to
justify with precise statistical terms.

The necessary CPU time for the simulations was an
average of 1.61 h for each compound on a 600 MHz
Intel-PentiumIII LINUX-based PC. This is a signifi-
cantly larger CPU time than the ones necessary for
other computational approaches for the prediction of
logBB. Hence, although the overall cost for the 85
simulated compounds for this study is negligible, this
method is not readily amenable for high-throughput
computational screening of drug-like molecules.

Nevertheless, the rigorous theoretical foundation
of the methodology and its ability to sample the inter-
action of many solute conformations with the solvent
in various ensembles make it particularly attractive.
This becomes evident when we plot the recorded in-
stantaneous property values for the duration of the
simulation. For example in Figure 2, the solvent ac-
cessible surface area values of skf89124, a moderately
flexible molecule with eight rotatable bonds, are plot-
ted against the recording intervals, which occur every
2 × 105 Monte Carlo steps. The fluctuations of the
SASA values are significant for the duration of the
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Table 4. Experimental and predicted values for the blood/brain partition coefficient. log BB_1 is predicted by model_1, log BB_2 is
predicted by model_2 and log BB_3 is predicted by model_3. The MC logPow is calculated using Equation 7

Compound log BB MC logPow log BB_1 log BB_2 log BB_3 Compound log BB MC logPow log BB_1 log BB_2 log BB_3

1 −0.15 0.52 0.06 0.06 0.00 44 0.37 2.55 0.60 0.80 0.72

2 0.37 2.08 0.51 0.70 0.58 45 0.14 3.42 0.17 0.12 0.11

3 −0.08 0.71 0.06 0.09 0.03 46 −0.04 0.54 −0.80 −0.53 −0.32

4 0.29 1.71 0.44 0.13 0.29 47 −1.30 3.62 −0.07 −0.14 −0.03

5 0.00 1.97 −0.13 0.01 0.00 48 −2.15 2.47 −0.34 −0.35 −0.10

6 −0.34 0.68 −0.66 −0.36 −0.58 49 −0.67 2.51 −0.64 −0.51 −0.18

7 −1.42 0.75 −1.13 −0.76 −0.55 50 −0.66 2.21 −0.63 −0.37 −0.04

8 0.11 1.99 −0.01 −0.06 0.03 51 −0.12 3.83 −0.23 0.04 0.32

9 1.00 3.52 0.73 0.72 0.53 52 −0.18 2.25 −0.26 −0.11 0.18

10 1.04 2.67 0.63 0.82 0.79 53 −1.15 0.73 −1.04 −0.83 −0.50

11 −0.78 0.86 −0.83 −1.14 −1.09 54 −1.57 −0.22 −1.52 −1.27 −1.03

12 0.24 1.83 0.33 0.05 0.12 55 −1.54 0.74 −1.41 −1.11 −0.76

13 0.00 1.23 0.16 0.33 0.24 56 −1.12 0.20 −1.25 −1.15 −1.02

14 −0.16 −0.06 −0.33 −0.08 −0.19 57 −0.73 3.24 −0.38 −0.34 −0.08

15 0.13 1.46 0.18 0.16 0.16 58 −0.27 2.16 −0.54 −0.33 −0.22

16 0.35 2.23 0.54 0.37 0.24 59 −0.28 3.19 −0.28 −0.04 0.16

17 0.81 3.53 0.78 0.99 1.10 60 −0.46 1.20 −0.41 −0.43 −0.50

18 −2.00 2.47 −0.66 −0.50 −0.27 61 −0.24 1.92 −0.31 −0.35 −0.41

19 0.83 4.06 0.99 0.89 0.71 62 −0.02 1.96 0.01 0.05 −0.05

20 0.42 2.31 0.49 0.24 0.31 63 0.69 5.01 0.78 0.88 0.95

21 −1.06 −0.07 −1.26 −1.41 −1.43 64 0.44 4.06 0.48 0.46 0.54

22 0.49 2.21 0.36 0.18 −0.07 65 0.22 3.88 0.33 0.42 0.35

23 0.04 0.59 0.24 0.40 0.17 66 −1.17 −0.51 −1.33 −0.95 −0.91

24 0.25 1.10 0.13 −0.04 −0.12 67 −0.16 2.89 −0.12 0.05 0.19

25 0.93 2.57 0.61 0.80 0.75 68 −0.30 1.96 −0.26 −0.62 −0.41

26 0.97 2.89 0.69 0.86 0.88 69 −1.34 0.20 −1.16 −1.24 −1.18

27 1.01 2.76 0.73 0.84 0.83 70 −1.82 −0.12 −1.58 −1.46 1.37

28 0.90 3.25 0.76 0.94 0.98 71 0.89 4.04 0.95 0.86 0.71

29 0.99 3.43 0.96 0.80 0.51 72 0.82 3.33 0.65 0.64 0.36

30 0.53 2.37 0.58 0.39 0.07 73 1.03 3.15 0.83 0.52 0.32

31 0.76 2.59 0.66 0.80 0.80 74 1.64 1.17 0.01 −0.33 −0.42

32 −0.16 0.55 −0.17 0.06 0.01 75 0.16 2.54 0.25 −0.28 −0.21

33 −0.15 0.25 −0.26 0.03 −0.11 76 0.52 2.54 0.40 0.39 0.09

34 −1.23 −0.11 −1.36 −1.26 −1.11 77 0.39 1.58 0.27 −0.01 −0.28

35 −0.02 2.14 0.08 −0.49 −0.51 78 0.00 1.98 0.13 0.04 −0.09

36 −0.67 1.03 −0.68 −0.97 −1.02 79 0.25 2.92 0.40 0.30 0.31

37 0.27 2.06 0.50 0.29 0.22 80 −0.43 1.27 −0.40 −0.47 −0.42

38 −1.88 2.86 −0.47 −0.57 −0.32 81 −0.30 −0.13 −0.29 −0.27 −0.53

39 0.40 4.08 0.56 0.57 0.61 82 −0.06 −0.62 −0.25 −0.42 −0.77

40 −0.82 −0.18 −1.85 −1.70 −1.14 83 −0.42 −1.43 −0.73 −0.84 −1.03

41 0.34 2.02 0.49 0.20 0.37 84 −1.30 1.87 0.14 0.04 0.07

42 0.40 2.12 0.52 0.46 0.41 85 −1.40 −0.07 −0.42 −0.38 −0.58

43 0.08 1.87 0.46 0.34 0.35

simulation, emphasizing the advantage of ensemble
averaging over choosing a single conformation for the
development of QSPRs.

The emergent important molecular properties are
the potential of hydrogen bond formation and the size
of the molecules. It is clear that the number of hy-
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Figure 1. Predicted log BB (using model_1) versus experimentally determined log BB.

drogen bond acceptors and donors adversely affects
the penetration of molecules through the blood/brain
barrier. Hence, hydrophilic groups of designed CNS-
acting drugs should be kept to a minimum, if the main
mechanism of penetration is expected to be passive
diffusion. A first reading of the model_1 equation
would suggest that larger molecules penetrate the BBB
with additional ease. We do feel, however, that this
second term in model_1 is correcting for the relatively
dominant importance of the HBAC term. There is a
high positive correlation between HABC and MVOL
(0.785) that justifies such an explanation. Hence, cau-
tion should be exercised in the development of rules
for the rational design of drugs based on simple
readings of QSPRs. Nevertheless, such an approach
does give a robust qualitative picture of the impor-
tant physicochemical molecular properties. Moreover,
since the emergent important properties in our QSPR
have been found to be important in previous works
with independent modeling approaches, the usefulness
and strength of our QSPR becomes more evident.

Comparison with literature log BB predictions

It is of interest to evaluate other models suggested in
the literature, using the descriptors calculated by the
simulations. The octanol/water partition coefficient

was also calculated from the simulation results using
the QSPR proposed by Duffy and Jorgensen [28]. The
calculated MC logPow values are shown in Table 4.

We initially built a model employing the number
of hydrogen-bond acceptors, the hydrophilic surface
area and the octanol/water partition coefficient, in a
way similar to the one adopted by Feher and co-
workers. In this case 8 compounds were identified
as outliers and removed. These compounds are the
same ones considered as outliers in model_1, except
cmpd_2, which fitted well. The resulting equation is
12 (model_2). The coefficients are of the same order
of magnitude with the ones in Equation 6, but model_2
is significantly better in predictive ability.

log BB = −0.1096(±0.0107)HBAC

− 0.00241(±0.00046)FISA

+ 0.20229(±0.02408)MC logPow

+ 0.27961(±0.08252)

n = 79, r = 0.932, s = 0.256,

F = 104.37. (12)

In Table 4, the predicted by model_2 logBB val-
ues are presented. In Figure 3, the predicted logBB

is plotted versus the experimental logBB. Here again
we present the excluded compounds.
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Figure 2. Solvent accessible surface area values of skf89124, recorded every 2 × 105 Monte Carlo steps

Figure 3. Predicted logBB (using model_2) versus experimentally determined logBB.



707

We also built a model (model_3) using just two
descriptors, logPow and MWEI, as the one built by
Kaliszan and Markuszewski [17]. In this case, only
6 compounds were chosen as outliers and removed,
since tiotidine, cmpd_2 and yg_20 fitted well. The
resulting Equation is 13 (model_3), which again out-
performs the proposed one in [17]. The predicted
blood/brain partition coefficients are presented in Ta-
ble 4.

log BB = −0.00329(±0.00038)MWEI

+ 0.41267(±0.03071)MC logPow

− 0.03688(±0.101521)

n = 77, r = 0.862, s = 0363,

F = 180.59. (13)

The fact that in model_3 just six compounds were
chosen as outliers, instead of the nine chosen in
model_1, or the eight chosen in model_2 reflects
the empirical nature of QSPR building. Nonetheless,
the consistent classification of icotidine, temelastine,
cmpd_4, cmpd_13, Org12962 and yg_19 as outliers
in all of our models and in the literature strongly sug-
gests that they might be the subject of possible active
mechanisms of transport, or that simply there were
difficulties with the experimental measurements.

Finally, if we employ the two descriptors used by
van de Waterbeemd and Kansy in Equation 2, namely
PSA (we use FISA instead) and MVOL a rather poor
model results (n = 76, r = 0.688, s = 0.52, F =
38.138).

Conclusions

The present work has yielded quantitative structure-
property relationships that accurately predict the
blood/brain partition coefficient from properties cal-
culated in statistical mechanics simulations. We have
demonstrated that simulations can be employed suc-
cessfully in a semi-empirical framework to elucidate
the mechanisms of biomolecular phenomena. The
traditional drawback of the simulations is their com-
putationally intensive nature, necessary for efficient
phase space sampling. One can however envision the
development of model equations that would refine the
information obtained by simulations and allow the
prediction of pharmacologically important properties
using the molecular structure as the sole input. On
the other hand there is need for more detailed sim-
ulations that would investigate the diffusion of small

drug-like molecules through lipid bilayers. Constant
improvement of available computer power and the de-
velopment of more accurate force-fields for lipids and
organic molecules renders increasingly attractive such
a research endeavor.
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