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Ordinary Cokriging Revisited1

P. Goovaerts2

This paper sets up the relations between simple cokriging and ordinary cokriging with one or several
unbiasedness constraints. Differences between cokriging variants are related to differences between
models adopted for the means of primary and secondary variables. Because it is not necessary for
the secondary data weights to sum to zero, ordinary cokriging with a single unbiasedness constraint
gives a larger weight to the secondary information while reducing the occurrence of negative
weights. Also the weights provided by such cokriging systems written in terms of covariances or
correlograms are not related linearly, hence the estimates are different. The prediction performances
of cokriging estimators are assessed using an environmental dataset that includes concentrations
of five heavy metals at 359 locations. Analysis of reestimation scores at 100 test locations shows
that kriging and cokriging perform equally when the primary and secondary variables are sampled
at the same locations. When the secondary information is available at the estimated location, one
gains little by retaining other distant secondary data in the estimation.

KEY WORDS: cokriging, unbiasedness constraints, negative weights, standardization.

INTRODUCTION

Depending on the model adopted for the random function, three kriging variants
can be distinguished: simple kriging, ordinary kriging, and kriging with a trend
model (universal kriging). Several authors (Matheron, 1970, p. 129; Journel
and Rossi, 1989) showed that the latter two algorithms are but simple kriging
with the stationary mean replaced by a local mean that is estimated within each
search neighborhood. Similar relations exist in the multivariate situation and are
developed here for the most frequently used simple and ordinary cokriging.
Moreover, the cokriging system for estimating the local primary and secondary
means implicitly used in ordinary cokriging is established.

The unbiasedness of the ordinary cokriging estimator is ensured by forcing
the primary data weights to sum to one whereas the weights of each secondary
variable are constrained to sum to zero. Under these "traditional" constraints
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most of the secondary data weights tend to be small and some of them are
necessarily negative with a risk of getting unacceptable results such as negative
concentration estimates. To reduce the occurrence of negative weights and avoid
limiting artificially the impact of secondary data, Isaaks and Srivastava (1989,
p. 416) proposed to use a single constraint that forces all primary and secondary
data weights to sum to one. Unbiasedness of the estimator then is ensured by
rescaling all secondary variables to the same mean as the primary variable,
hence the term "rescaled" or "standardized" ordinary cokriging (Deutsch and
Journel, 1992, p. 70). Another advantage of using a single contraint is that the
secondary information can be limited to a single datum when the secondary
variable is sampled at the estimated point (collocated cokriging; Almeida and
Journel, 1994); under the traditional constraints that datum would get, by con-
struction, a zero weight. In this paper, properties of traditional and rescaled
ordinary cokriging estimators are compared and the impact of the unbiasedness
constraints on the cokriging weights is investigated.

Several authors (Stein and others, 1988; Hevesi, Istok, and Flint, 1992;
Asli and Marcotte, 1995) have compared the prediction performances of simple
and ordinary kriging or cokriging in the equally and undersampled situations.
Using an environmental dataset, that comparison is here extended to rescaled
ordinary cokriging and the situation of single collocated secondary data. Two
performance criteria are considered: (1) the mean absolute error of prediction
of heavy metal concentrations at 100 test locations, and (2) the proportion of
test locations that are classified wrongly as safe or contaminated on the basis of
cokriging estimates.

SIMPLE COKRIGING

Let (z1(ua1), «1 = 1, . . . , n1} be the values of the primary attribute z1 at
n1 locations ua1. To alleviate notation consider the situation where there is only
one secondary attribute z2 measured at, possibly different, locations ua2,
{z2(uM2), a2= 1, ... ,n2}.

The simple cokriging (SCK) estimator of z\ at location u is written:

where \^K(u) is the weight assigned to the primary datum z1(ua1), Xf^(u) is
the weight assigned to the secondary datum z2(um2), and m1 and m2 are the
primary and secondary means assumed known and constant within the study
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area &. Typically, only primary and secondary data closest to the location u
being estimated are retained, that is ni(u) is usually smaller than ni. Note that
the number of data retained and the size of the search neighborhood need not
be the same for all attributes.

The simple cokriging estimator (1) can be rewritten as:

where X^(u) and \s£K(u) are the weights given to the primary and secondary
means, respectively:

The cokriging weights that minimize the error variance CT|(U) =
Var{Zsck̂ (u) — Z1u)} are obtained by solving the following system of (n1(u)
+ n2(u)) linear equations:

where Cij(ua1 — uBj) is the cross-covariance between variables Zi and Zj at
locations uw and uBj.

CORRELOGRAM NOTATION

When the variances of primary and secondary variables differ by several
orders of magnitude, there are large differences between the covariance terms
of the system (3) with risks of numerical instability when solving it (Isaaks and
Srivastava, 1989, p. 416). A solution consists of rescaling the auto and cross-
covariance values, e.g., solving the cokriging system (3) in terms of correlo-



24 Goovaerts

grams:

where the cross-correlogram pij(h) is defined as the ratio Cij(h)/(<i • oj) with
a2 being the stationary variance of RF Zi(u).

Simple cokriging systems written in terms of correlograms or covariances
yield two different sets of weights that are linearly related. Indeed, accounting
for the definition of the cross correlogram, system (4) becomes:

Multiplying the first n1(u) equations by o2 and the next n2(u) equations by f1,cr2,
one deduces the following relation between the two sets of cokriging weights:

Whereas the primary data weights are the same for both systems, the weights
of the secondary data are rescaled by the ratio of standard deviations. For
example, the larger the variance of the secondary variable relative to the variance
of Z1, the smaller the secondary data weights relative to the primary data weights.
The cokriging estimator (1) then is written:
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The standardized form of that SCK estimator is obtained by dividing both terms
of the expression by a1:

Thus the estimator Zsck̂ (u) in the standardized form (5) with weights provided
by the cokriging system (4) identifies the estimator (1), as it should.

ORDINARY COKRIGING

For the case of a single secondary attribute z2, the ordinary cokriging (OCK)
estimator of z1 at u is:

That estimator is unbiased under the following constraints on the cokriging
weights:

Minimization of the error variance a2(u) under the two constraints (7)
yields the following system of (n1(u) + n2(u) + 2) linear equations:

where the two Lagrange parameters u1
0CK(u) and u2

0Ck(u) account for the two
unbiasedness constraints (7).
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Correlogram Notation

The standardized form of the ordinary cokriging estimator (6) is:

where the cokriging weights v o c K ( u ) are obtained by solving the ordinary co-
kriging system (8) expressed in terms of correlograms. Similar to simple cok-
riging weights, OCK weights of original and standardized variables are linearly
related:

Again, one verifies that both standardized and original forms of ordinary co-
kriging result in the same cokriging estimate.

Local Reestimation of the Mean

Ordinary cokriging usually is preferred to simple cokriging since it requires
neither knowledge nor stationarity of the primary and secondary means over the
entire area &. Indeed, one can show that ordinary cokriging with local search
neighborhoods amounts to:

(1) reestimating the local primary and secondary means, say m^^(u) and
OTock(u), at each location u using both primary and secondary data
specific to that neighborhood (see Appendix),

(2) then applying the simple cokriging estimator (1) using these local means
rather than the stationary means m1 and m2:

Accounting for the expression (2) of the simple cokriging estimator, the
following relation between the two estimators is deduced:
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Differences between simple and ordinary cokriging estimators are caused by
departures of estimated primary and secondary local means from the stationary
means m1 and m2.

Example

The comparison simple versus ordinary cokriging is illustrated using the
one-dimensional example of Figure 1. This transect is part of a dataset including
the topsoil concentrations of seven heavy metals measured at the same 359
locations (Atteia, Dubois, and Webster, 1994; Webster, Atteia, and Dubois,
1994). The primary variable is here cadmium concentration, whereas nickel is

Figure 1. Transect of 10 Cd concentrations and 16 Ni concentrations. Bottom graphs show exper-
imental direct and cross semivariograms inferred from full dataset (n = 259) with linear model of
coregionalization fitted.
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the secondary variable. The information available for estimating Cd concentra-
tions along the transect consists of:

(1) ten Cd data and 16 Ni data (see Fig. 1, top graphs). Black dots depict
locations where both primary and secondary variables are known. Open
circles correspond to six locations where only the secondary variable
is available.

(2) the linear model of coregionalization shown at the bottom of Figure 1:

where go(h) is a nugget effect model, and Sph(h/a) is an isotropic
spherical model of range a.

(3) primary and secondary stationary means identified to the sample means
of Cd and Ni data along the transect: m1 = 1.49 mg/kg, m2 = 19.6
mg/kg.

The estimation is performed every 50 m using at each location the five closest
primary data and five closest secondary data, that is, n1(u) = n2(u) = 5 V u.

Figure 2 (top graphs) shows the overall means (horizontal dashed line) and
local means (solid line) of Cd and Ni that are used implicitly in simple and
ordinary cokriging, respectively. The local means were estimated using the
procedure described in the Appendix; they both have a staircase shape, each
step corresponding to estimates based on the same neighboring primary and
secondary data. The profiles of local means follow the general increase in Cd
and Ni concentrations along the transect.

Figure 2 (bottom graph) shows the simple (dashed line) and ordinary (solid
line) cokriging estimates of Cd concentrations. Note that:

both interpolators are exact in that they honor Cd data at their locations.
OCK estimates are smaller than SCK estimates in the left part of the
transect where the Cd local mean is smaller than the overall mean.
OCK estimates are larger than SCK estimates in the right part of the
transect where the Cd local mean is larger than the overall mean.

RESCALED ORDINARY COKRIGING

Rescaled or standardized ordinary cokriging (Isaaks and Srivastava, 1989,
p. 409-416; Deutsch and Journel, 1992, p. 70) is a variant of ordinary cokriging
where the two unbiasedness constraints (7) are replaced by a single constraint

Dcd(h) = 0.3 g0(h) + 0.3 Sph(h/200 m) + 0.26 Sph(h/1.3 km)

GNi(h) = 11 g0(h) + 71 Sph(h/1.3 km)

Gcd-Ni(h) = 0.6 g0(h) + 3.8 Sph(h/1.3 km)
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Figure 2. Estimates of Cd and Ni local
means, and Cd concentrations using in-
formation of Figure 1 and simple cokrig-
ing (dashed line) or ordinary cokriging
(solid line).

that requires all primary and secondary data weights to sum to one:

By using this single constraint one lessens two shortcomings associated with the
traditional constraint that all secondary data weights sum to zero, which are (1)
some of the secondary data weights are negative, thereby increasing the risk of
getting unacceptable estimates such as negative concentrations, (2) most of the
weights X^2

c/f(u) tend to be small, thus reducing the influence of the secondary
information.
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Under the single constraint (13) the unbiasedness of the ordinary cokriging
estimator is ensured by rescaling the secondary variable 72 so that its mean is
equal to that of the primary variable. The rescaled cokriging (RCK) estimator
(6) is written:

where the means m1 and m2 are estimated by the sample means after possible
correction for preferential sampling (declustered means). The cokriging weights
are obtained by solving an ordinary cokriging system of type (8) with a single
unbiasedness constraint:

Local Reestimation of the Mean

Unlike ordinary cokriging, rescaled ordinary cokriging requires the knowl-
edge of the stationary means of primary and secondary variables. However, the
single unbiasedness constraint (13) leads to the reestimation of the common
local mean of primary and rescaled secondary variables within each search
neighborhood. Similar to the ordinary cokriging estimator (12), the estimator
(14) can be expressed as the sum of the SCK estimator Z$£(u) plus a multiple
of the difference between local and stationary means of the primary variable at
u:

where the local mean m^RCK(u) can be estimated using an approach similar to
that described in the Appendix for ordinary cokriging. Thus, local departures
from the overall means also are accounted for by rescaled ordinary cokriging.
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Figure 3. Estimates of Cd local means that is used implicitly in
ordinary cokriging (solid line) and rescaled ordinary cokriging
(dashed line).

Figure 3 shows the local mean implicitly re-estimated by ordinary cokriging
(solid line) and by rescaled ordinary cokriging (dashed line) along the transect
of Figure 1.

Unbiasedness Constraint(s) and Cokriging Weights

The impact of using one or two unbiasedness constraints on the cokriging
weights is illustrated using the transect of Figure 1 and two criteria: (1) the sum
of negative secondary data weights, and (2) the ratio of the sums of absolute
values of the secondary and primary data weights:

where the rescaling factor a2/a1 corrects for differences in variances between
primary and secondary variables.

Figure 4 shows the values of the two criteria for ordinary cokriging (solid
line) and rescaled ordinary cokriging (dashed line). Although the magnitude of
negative weights is reduced slightly by rescaled ordinary cokriging (top graph),
the use of a single constraint does not increase the relative weight of secondary
data (middle graph). Except beyond the extreme right datum (extrapolation
situation), traditional and rescaled ordinary cokriging estimates are similar, (see
Fig. 4, bottom graph).

As mentioned in previous sections, the magnitude of cokriging weights
depends on the ratio of standard deviations of primary and secondary variables.
Other things being equal, the smaller the ratio a1la2, the smaller the secondary
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Figure 4. Impact of unbiasedness constraint(s)
on ordinary cokriging weights and estimates.

data weights relative to primary data weights, recall relations (10) and (11). In
the example of Figure 4, the standard deviation of Ni data is 10 times larger
than that of Cd data, hence secondary data weights are much smaller than
primary data weights:

The small secondary data weights entail that the single constraint (13) is actually
little different from the traditional constraint that the primary data weights must
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sum to one, that is

Thus, using one or two unbiasedness constraints yields similar cokriging weights
in the present example.

The impact of the single unbiasedness constraint (13) can be enhanced by
rescaling primary and secondary data weights so that they are of the same order
of magnitude. A solution consists of standardizing primary and secondary vari-
ables to a same zero mean and unit variance. The standardized form of the
rescaled ordinary cokriging estimator (14), denoted Z^ir(u), is:

The data weights c*c*(u) are solutions of a rescaled ordinary cokriging system
expressed in terms of correlograms:

Unlike simple or ordinary cokriging, the weights provided by rescaled ordinary
cokriging systems written in terms of covariances or correlograms, X*c*(u) and
i>aRCK(u), are not linearly related, and so the estimators Z^(u) and Z^,(u)
are different!

Figure 5 shows that the single unbiasedness constraint (13) has a greater
impact on data weights when the cokriging system is solved in terms of corre-
lograms. A single constraint reduces substantially the sum of negative secondary
data weights and increases the influence of the secondary information as mea-
sured by the ratio (16). Thus, the difference between traditional and rescaled
ordinary cokriging is more pronounced, compare Figures 4 and 5 (bottom graph).
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Figure 5. Impact of unbiasedness constraint(s)
on ordinary cokriging weights and estimates
when both primary and secondary variables are
standardized to unit variance. Single unbiased-
ness constraint (dashed line) yields less negative
secondary data weights and gives more impor-
tance to secondary information (larger ratio ^(u))
than two nonbias constraints (solid line).

Remarks

Simple and ordinary cokriging assign zero weights to secondary data
when the primary and secondary variables are measured at the same
locations (isotopic situation) and the cross covariance C12(h) is propor-
tional to the primary autocovariance C11(h) (Matheron, 1979; Wacker-
nagel, 1994). Such a simplification does not apply to ordinary cokriging
with a single unbiasedness constraint in that the secondary variable still
contributes to me estimation (Helterbrand and Cressie, 1994).
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Figure 6. Location map showing split of 359 data loca-
tions into test set (black dots) and prediction set (open
circles).

When the secondary variable is known at the estimated location u, the
secondary datum z2(u) collocated with the unknown value z1(u) tends to
screen the influence of more distant secondary data (Asli and Marcotte,
1995). Thus, retaining only that secondary datum in the estimation, that
is, n2(u) = 1, should suffice. Such collocated cokriging (Xu and others,
1992; Almeida and Journel, 1994) cannot be implemented under the two
traditional constraints (7) since it would yield a zero weight for the
secondary datum. In this situation, rescaled ordinary cokriging must be
used.

PERFORMANCE COMPARISON

To investigate the prediction performances of cokriging variants, 100 lo-
cations out of the 359 available in the environmental dataset were put aside;
these test locations are depicted by black dots in Figure 6. Three sets of primary
and secondary variables were considered (see Table 1). The corresponding ma-
trix of linear correlation coefficients is given in Table 2. Figures 7 and 8 show

Table 1. Secondary Variables Used to Reestimate
Primary Metals at 100 Test Locations

Primary variable

Cd
Cu
Pb

Secondary variables

Ni, Zn
Pb, Ni, Zn
Cu, Ni, Zn
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the experimental direct and cross-semivariograms with the linear model of co-
regionalization fitted using the iterative procedure developed by Goulard and
Voltz (1992).

Three different combinations of sampling density and search strategy were
used:

(1) primary and secondary variables are available at all 259 data locations,
and the 16 closest data of each primary/secondary variable are retained,
i.e., ni(u) = 16 V i (isotopic situation).

(2) secondary variables are available at the 259 primary data locations plus
the 100 test locations, and ni(u) = 16 V i (heteropic situation).

(3) secondary variables are available at the 259 primary data locations plus
the 100 test locations, and the 16 closest primary data and only the

Figure 7. Experimental direct and cross-semivariograms for Cd, Ni, and Zn with linear model
of coregionalization fitted.

Table 2. Matrix of Linear Correlation Coefficients

Cd
Cu
Pb
Ni
Zn

Cd

1.00
0.12
0.22
0.49
0.67

Cu

1.00
0.78
0.23
0.57

Pb

1.00
0.31
0.59

Ni

1.00
0.63

Zn

1.00
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Figure 8. Experimental direct and cross-semivariograms for Cu, Pb, Ni, and Zn with linear
model of coregionalization fitted.

collocated secondary data are retained, n1(u) = 16, ni(u) = 1 V i > 1
(collocated situation).

In each situation, metal concentrations were estimated at test locations using
ordinary kriging (OK, reference), ordinary cokriging (OCK), and rescaled or-
dinary cokriging (RCK) expressed in terms of covariances (cov.) or correlograms
(corr.).

The prediction performances of algorithms are assessed using two criteria:

• the mean absolute error of prediction, that is the average absolute dif-
ference between the actual metal concentrations and the estimates,
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the proportion of test locations that are classified wrongly as safe or
contaminated on the basis of estimates; the tolerable maxima are 0.8
mg/kg for cadmium and 50 mg/kg for the two other metals.

Results are given in Tables 3-5.
As already observed for indicator variables (Goovaerts, 1994), cokriging

does not perform better than kriging in the isotopic situation. Indeed, when all
metals are sampled equally, the influence of the secondary information is screened
by primary data and so it contributes little to the cokriging estimate. In most
situations, there is even a slight decrease in prediction performances when equally
sampled secondary information is considered.

Accounting for better sampled secondary metals (heterotopic case) reduces
significantly the mean absolute error and the proportion of misclassified loca-
tions. The reduction is the most important for copper and lead which are well
correlated with each other (p = 0.78). Better results generally are obtained by
using a single unbiasedness constraint (RCK) rather than the traditional con-
straints requiring the secondary data weights to sum to zero (OCK).

Table 3. Mean Absolute Error of Prediction and Percentage of Test Locations that Are Declared
Wrongly Safe or Contaminated with Respect to Cd on Basis of Four (Co)Kriging Estimates. Three

Different Data Configurations Are Considered

Mean absolute error

Algorithm

OK
OCK
RCK (cov.)
RCK (corr.)

Isotopic

0.58
0.60
0.59
0.60

Heterotopic

0.58
0.51
0.52
0.52

Collocated

0.58
—

0.59
0.50

Perc. of misclassified locations

Isotopic

35
33
33
34

Heterotopic

35
26
25
25

Collocated

35
—
29
27

Table 4. Mean Absolute Error of Prediction and Percentage of Test Locations that Are Declared
Wrongly Safe or Contaminated with Respect to Cu on Basis of Four (Co)Kriging Estimates. Three

Different Data Configurations Are Considered

Algorithm

OK
OCK
RCK (cov.)
RCK (corr.)

Mean absolute error

Isotopic

15.4
15.6
15.9
16.0

Heterotopic

15.4
7.9
7.8
7.4

Collocated

15.4
—
7.9
7.1

Perc. of misclassified locations

Isotopic

8
9
9
9

Heterotopic

8
3
1
1

Collocated

8
—
1
1
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Table 5. Mean Absolute Error of Prediction and Percentage of Test Locations that Are Declared
Wrongly Safe or Contaminated with Respect to Pb on Basis of Four (Co)Kriging Estimates. Three

Different Data Configurations Are Considered

Mean absolute error

Algorithm

OK
OCK
RCK (cov.)
RCK (corr.)

Isotopic

20.9
21.4
21.5
21.5

Heterotopic

20.9
10.8
10.7
10.6

Collocated

20.9

—
10.5
10.7

Perc. of misclassified locations

Isotopic

36
37
39
38

Heterotopic

36
20
23
23

Collocated

36
—
19
20

Retaining only the collocated secondary data (collocated situation) reduces
slightly the cokriging performances for cadmium. That loss is attenuated by
standardizing all variables to zero mean and unit variance. The strong correlation
between copper and lead enhances the screening of distant secondary data by
colocated secondary data, and so cokriging performs equally in the heterotopic
and colocated situations.

CONCLUSIONS

The various cokriging estimators differ in the way the trend component is
modeled. Whereas simple cokriging considers the primary and secondary means
as known and constant within the study area, rescaled and traditional ordinary
cokriging reestimate these means within each search neighborhood through the
incorporation of one or several unbiasedness constraints in the cokriging system.
Using a single constraint reduces the magnitude of negative secondary data
weights and increases the contribution of the secondary information to the es-
timate.

When primary and secondary variances are not of the same order of mag-
nitude, it is good practice to solve the cokriging system in terms of correlograms
to avoid numerical instability. Unlike other cokriging variants, rescaled ordinary
cokriging of the original or standardized variables does not yield the same es-
timate. For the one-dimensional example, the standardization of variables en-
hances the impact of the single unbiasedness contraint on the cokriging weights:
the magnitude of negative secondary data weights is reduced whereas the relative
weight of secondary variables vs. the primary variable increases.

The case study has confirmed the current practice that cokriging is not
worthwhile if primary and secondary variables are sampled at the same locations
(isotopic situation). When the secondary information is available at the estimated
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location, the approximation of retaining only the colocated secondary data affects
little prediction performance.
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APPENDIX. ORDINARY COKRIGING OF THE LOCAL MEANS

Consider the estimation of the local mean of Z1 at location u. In the situation
of a single secondary attribute z2 the ordinary cokriging estimator is written:
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where A^f(u) is the weight assigned to the datum zi(uw) for the estimation of
the primary mean.

The unbiasedness of estimator (Al) is ensured by constraining the primary
data weights to sum to one and the secondary data weights to sum to zero, that
is using the same constraints as for the estimation of Z1:

entails:

The error variance a2(u) = Var{m$£(u) — m1(u)} is expressed as a linear
combination of cross-covariance values:

Note that the last two terms of the error variance are zero since m1(U) is viewed
as a deterministic component.

The minimization of the error variance (A2) under the two unbiasedness
constraints yields the following system of (n1(u) + n2(u) + 2) linear equations:
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where ^if^(u) and i^^(u) are Lagrange parameters. Interchanging primary
and secondary variables in expressions (Al) and (A3) yields the estimator and
cokriging system for the secondary local mean at location u, mffcj^(u).

System (A3) is identical to the cokriging system (8) except for the right-
hand-side covariance terms Ci1(uai - u) being set to zero. The fact that all data-
to-unknown covariance terms are zero entails that the specific location u being
estimated does not occur in the cokriging system (A3). Provided the same set
of data is used to estimate the local mean at two different locations u and u',
the system (A3) remains unchanged. Thus, the two sets of cokriging weights
and the two trend estimates are identical: w^^(u) = m£J£x(u').


