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A yield criterion for anisotropic and 
pressure dependent solids such as 
oriented polymers 
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The anisotropic yield criterion first posed by Hill has been modified to account for 
differences in tensile and compressive yield strengths in a given direction; additionally, 
the influence of hydrostatic pressure on yielding is also considered. Predictions using 
this new criterion are compared with published experimental results involving oriented 
polymers and excellent agreement is found. It is suggested that this criterion is more 
correct on fundamental grounds than those put forth in earlier publications. 

1. In t roduct ion 
The macroscopic yielding behaviour of isotropic 
polymers has been studied during recent years 
by various authors [1-5] and from those pub- 
lications have come different phenomenological 
yield criteria. A detailed comparison of those 
studies was made by Raghava [6] and a sub- 
sequent publication [7] supports the stand that 
the criterion proposed in [5] predicts more 
realistically the yielding behaviour of polymers 
under increasing hydrostatic pressure than do 
others [1-4]. There is, however, unanimous 
agreement among all of the aforementioned 
investigators that the yield behaviour of polymers 
is influenced by the magnitude of the mean 
normal stress (i.e. the behaviour is "pressure 
sensitive"). 

Fewer studies have been carried out in regard 
to the yield behaviour of anisotropic polymers. 
The work of Brown et al [8], Rider and Har- 
greaves [9], Rawson and Rider [10], and, most 
recently, Shinozaki and Groves [11 ] are typical. 
Hill's "anisotropic" yield criterion [12] has been 
used [8-10] as a basis from which to explain the 
experimental results but a modifying parameter 
(denoted as a~ or axx), had to be included to 
produce a reasonable correlation. This para- 
meter was denoted as a "Bauschinger" term and 
was considered to account for the effect of 
"internal" stresses developed during the orienta- 
tion process that produced an anisotropic 
material. Rawson and Rider [10] noted that this 
term was not an arbitrary parameter but was 
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related to the yield strengths in tension and 
compression for a particular direction in the 
oriented sheet used by them. 

Hill's basic criterion [12] does not include 
linear terms since no Bauschinger effect is 
assumed thus, in any angular orientation, the 
tensile and compressive yield strengths are equal 
in magnitude. Another implicit condition relates 
to the assumption that there is no change in 
plastic volume during deformation. Neither of 
these assumptions is valid for polymeric solids 
[1, 8-11], so one should not expect the Hill 
criterion to find direct application with such 
solids unless modifications are made. Now the 
use of an "internal" stress term [8-10] may 
satisfy one of these assumptions but the improved 
correlation that results between experiment and 
this modified theory is perhaps fortuitous at best 
and a fudge factor at least. This was recognized 
apparently by Rawson and Rider [10] who 
modified an earlier suggestion [4] but they were 
not fully successful. 

What is crucial here is that a yield criterion for 
anisotropic polymers must account directly for 
differences in tensile and compressive yield 
strengths and accommodate changes in plastic 
volume if it is to satisfy observed evidence. The 
criteria proposed to date [8-11] do not. This 
paper uses as a starting point the pressure- 
dependent criterion proposed for isotropic 
polymers [5-7] and by adapting this to a Hill 
type of approach, leads to a proposed criterion 
that seems more direct and more fundamentally 
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sound than any put forth to date. Agreement 
with results already published in the literature 
[10, 11 ] is excellent. 

2. Development of the suggested 
anisotropic yield criterion 

To most readily explain the rationale behind the 
proposed end result, first consider the yield 
criterion that really forms the starting point for 
this whole discussion. This is the criterion most 
widely attributed to yon Mises and applies to 
isotropic solids that exhibit no Bauschinger 
effect and whose yield behaviour is unaffected 
by the magnitude of the mean normal stress 
(i.e. the superposition of a hydrostatic stress does 
not influence yielding). One form is expressed as, 

(~ - ~ ) ~  + ( ~  - ~ ) ~  + ( ~  - ~ ) ~  (1) 
+ 6(~- ~ + % 2 +  %2) = 2 y 2 .  

In Equation 1, the yield strength, u is assumed 
equal in tension and compression. Raghava et al 
[5-7] have proposed a criterion for isotropic but 

pressure sensitive solids (such as polymers) which 
is a modification of Equation 1 ; it is, 

(~ - ~ ) ~  + ( ~  - ~ ) ~  + (~,. - ~ ) ~  (2) 
+ 6( r~  ~ + r~, 2 + r ~  ~) 
+ 2(C - T)(a~ + au + cry) = 2 c r  

where C and T are the absolute values of com- 
pressive and tensile yield strength measured at 
atmospheric pressure. The pressure influence is 
accounted for by the quantity (cr~ + ~u + ~,) 
and it may be noted that if C and T are equal, 
Equation 2 reduces to Equation 1. 

Hill's approach to the problem of plastic 
anisotropy was to modify Equation 1 in the 
following form, 

H(cr~ - eu)~ + F(c% - c~) 2 + G(~ - e~)2 (3) 
+ 2N~'~ 2 + 2L'%~ 2 § 2M%~ ~ = 1 . 

The parameters F, G, H, L, M and N charac- 
terize the state of anisotropy. Here, x, y and z 
denote the principal axes of anisotropy as well 
as the reference axes. Thus, if a polymeric sheet 
is oriented by stretching, for example, x may be 
viewed as the axis along which stretching 
occurred, y is at right angles to x and in the plane 
of the sheet, and z is normal to the plane of the 
sheet. 

Now Equation 3 is based upon the same as- 
sumptions attributed to Equation 1 except for the 
"anisotropic" parameters. As this effect becomes 
small, the parameters themselves relate in such a 
way that Equation 3 reduces to Equation 1. 
What we propose is to revise Equation 3 to 
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produce a pressure dependent, anisotropic yield 
criterion along the lines that Equation 2 follows 
from Equation 1. Thus, the proposed form is, 

g ( e ~  - ~ ) 2  + F(eu  _ %)~ + 6 ( %  - ~ ) 2  (4) 
2 N r ~  2 § 2Lvu,. 2 § 2Mv~ 2 

+ K , a ,  + Kuc% + K,,% = 1 

where the various parameters depend upon the 
absolute values of tensile and compressive yield 
strengths in the three reference directions. These 
are, C~, C~ and C~ (compression) and T~, T~ and 
T, (tension). The parameters are, 

1 1 
H +  G -  C x T x ' F  + H -  CuTu' (5) 

1 
G + F=C~T; 

and 

K s -  
C ~ - T ~  C ~ - T ~  

C~T~ ' Ku = C~T-----~" (6) 

C , - T ~  
C~T~ 

Certain special cases may be noted using 
Equation 4 and the relations given in Equations 
5 and 6. These are: 
1. ifC~ = C~ = C~ = T~ = T~ = T~, Equation 
4 reduces to Equation 1, 
2. if C~ --- T~, C~ = T~, C~ = T~ but T~ # 
T~ # T ,  Equation 4 reduces to Equation 3, 
3. i fC~  = Cy = C~ and T~ = T~ = T~.but 
C~ :/: Tx, Equation 4 reduces to Equation 2. 
Thus Equation 4 can be viewed as a more univer- 
sal criterion from which other, more widely used 
criteria may be developed because of particular 
relationships of pertinent property values. 

Consider a stretched or rolled sheet of polymer 
from which the compressive and tensile proper- 
ties are to be investigated for various orientations 
with respect to the oriented direction (taking x, 
y, and z in the same context as described under 
Equation 3). Standard strip tensile specimens, cut 
at an angle 0 to the "x  direction" would be 
subjected to a stress, a, at which yielding occurs. 
(Note a parallel description applies to com- 
pression tests.) For  such tests, 

cr~ = 1-~z = T~ = 0 (7) 

and such that at the onset of yielding in the 
"0 direction", 

~ -=-- c, cos 2 0 (8) 
c% = ~sin 2 0 
-rx~ = -or sin 0cos 0.  
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Substitution of Equations 7 and 8 into Hill's 
criterion (Equation 3) leads to, 

c~2[(G + H)  cos~0 + (H + F) sin40 (9) 
+ 2(N - H)  sin20 cos20] = 1 . 

Now it is apparent that once the parameters 
(G + H), (H + F) and (N - H)  are evaluated, 
Equation 9 predicts two roots of  equal absolute 
value for a given value of 0. With metallic solids 
this has often been verified*. For some of the 
reasons mentioned earlier, the situation with 
polymers is different so Equation 9 should not 
be expected to describe the yield behaviour of  
anisotropic polymers in an acceptable manner. 
Shinozaki and Groves [11] noted this quandary 
when applying Equation 9 while others [8-10] 
altered Equation 9 with the "internal" stress 
term mentioned earlier. 

Consider the proposed criterion; by substitu- 
ting Equations 7 and 8 into Equation 4 one finds, 

cr ~ [(G + H)cos40 + (H + F)sin40 (10) 
+ 2 ( N -  H)sin20 cos20] 

+ ~[K~ cos20 + K~ sin~0] = 1. 

Now, once the various parameters are deter- 
mined using the relations shown in Equations 5 
and 6, and (N - H)  is determined as discussed 
below, Equation 10 is a quadratic equation which 
for a given value of 0 will generally predict two 
roots of opposite sign and different magnitude 
(note the positive root is tensile and the negative 
is compressive). In this way, theoretical curves 
for tensile yield stress and compressive yield 
stress as functions of  0 will result and can then 
be compared with experimental findings. Before 
doing this, there is one very crucial point that 
must be made clear. From Equation 5 it may be 
noted that, 

1 1 1 
2H - C=T~ + C~T~ C,T~ (11) 

1 
and 2N = ~ (see Hill [12]) (12) 

"7"Xy 

thus, one can conclude that 2 ( N -  H), which 
itself is based upon a series of property values 
that are "constant"  in a given sheet, must be a 
unique parameter. Since Equation 10 yields 
different values for 2(N - H)  for variations in 0 
if the tensile and compressive yield stresses are 
not numerically equal, it may be concluded that 
only one condition will provide the unique value 
of 2(N - H). This is satisfied where, 
*Exceptions have been noted; see e.g. [13-15]. 

~r[K~cose0 + Kysin20] = 0 .  (13) 

A trivial solution occurs when cr = 0, so we 
conclude that Equation 13 must be satisfied 
when, 

K~ 
tan20 = - K'-~" (14) 

This value of 0 occurs where the absolute values 
of  the tensile and compressive yield stresses are 
equal. In ending this discussion it may be noted 
that the above considerations do not enter if one 
uses the usual form of the Hill criterion since as 
may be seen from Equation 9, no linear terms 
involving ~ exist. 

3. Comparison of theory and experiment 
From reference [11], where a series of tensile 
and compressive stress-strain curves are given 
for various 0 in a sheet 0fbriented polypropylene, 
we have selected pertinent information. As 
explained elsewhere [5], we would prefer to define 
a "yield stress" by the use of  a consistent offset 
rather than sometimes using deviations from 
linearity and other times using the maxima in the 
load curves. Without accurate raw data, however, 
we have been forced to do the following. 

1. Where a decided load maximum was 
obvious, the corresponding stress (note this is a 
nominal and not a true stress) was selected as the 
yield stress. 

2. Where a distinct load maximum was not 
present, the back-extrapolation method (see e.g. 
Fig. 3b of  [10]) was used. 
To avoid any confusion, Table I lists the values 
of tensile and compressive yield stress as a 
function of 0 which we have chosen from [11 ]. 

TABLE I Tensile and compressive yield stress for angle 
0 from the work of Shinozaki and Groves 
[111 

Angle to stretching Tensile yield Compressive yield 
direction (degrees) stress (kg mm -~) stress (kg mm -~) 

0 24.5 4 
5 20.2 3.9 

I0 16.0 - -  
t5 - -  4.4 
20 10 - -  
30 - -  4.6 
45 4.5 - -  
65 3.5 5.5 
85 2.9 - -  
90 2.75 5.8 
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From Equations 5 and 6, with T~ = 24.5, 
C~ = 4, T~ = 2.75 and Cu = 5.8 (all used as 
absolute values in kg m m  -2) we find: 

H + G = +0.0102 
F + H = +0.0627 (15) 
K= = -0 .209  
Ku = +0.191 

From Equation 14, 

--0.209 
tan20 - = + 1.095 

0.191 
thus, 

tan 0 = 1.046 so 0 = 46 ~ 17 ' .  

As this angle is so close to 45 ~ and as the 
accuracy of K~ and Kg is a little dubious because 
of difficulty in accurately establishing the 
various "yield stresses", we will for simplicity 
use the 45 ~ value to determine 2(N - H). From 
Table I, the equivalent value of tensile yield is 
4.5 and it must, of course, be assumed that this 
same absolute value applies to the compressive 
yield which was not actually measured. 

Now referring to Equation 10 using (r = 4.5, 
0 = 45 o, and the values listed in Equation 15, one 
finds, 2 ( N -  H)  = +0.133. Thus, from these 
data, Equation 10 may be rewritten as, 

cr2[(0.0102)cos~0 + (0.0627)sin40 (16) 
+ (0.133)sin20 cos20] 

+ a[(0.191)sin20 - (0.209)cos20] = 1 . 

By substituting various values for 0 into Equa- 
tion 16, each of which provides a positive 
(tensile) root and a negative (compressive) root, 

the predicted variations of  these yield stresses as a 
function of 0 result. The solid lines of  Fig. 1 
show these plots where absolute values are 
utilized. Actual experimental data from Table I 
are included and the agreement is seen to be 
excellent. 

From the paper by Rawson and Rider [10], 
which involved oriented polyvinylchloride, their 
Fig. 5 must be consulted as individual stress 
strain curves were not included. Using the same 
approach as before, and estimating T~ = 10.4, 
C~ = 8.4, T~ = 8.4, and C~ = 9.6 we find, 

H + G - +0.0114 
F + H = +0.0124 (17) 

K= = - 0.0229 
K~= +0.0149 

Also, from Equation 14, 

- .0229 
tan20 . . . . .  + 1.535 

+ .0149 

thus 
t a n 0 =  1.24 s o 0 = 5 1  ~  

From the reference figure in [10] it can be seen 
that the tensile and compressive yield stresses 
at an angle of  51 ~ 7' are very close to equality; 
for our purposes a stress of 8.2 was chosen. The 
computed value of 2 ( N -  H)  is found to be 
+0.036 so the proper form of Equation 10 for 
these data is found to be, 
cr 2 [(0.0114)cos40 - (0.0124)sin40 

+ (0.036)sin20 cos20] (18) 
+ ~r[(0.0149)sinZ0 - (0.0229)cos20] = 1. 

! 

2 0  ~ ~ predicted using Eq'n. {16) 

�9 - tensile yield ] 

'~i _ ~  �9 - compressive yieJd I seeTable I 
=0 

o I0 

v 

j. �9 �9 
-a 
�9 

0 ib ' 20 3b 4b 50 ' 60 70 8b " 9b 

e ~ - orientation angle. 

Figure 1 Tensile and compressive yield stress of oriented polypropylene as a function of orientation angle. Solid 
lines show theoretical predictions while the indicated points were determined experimentally by Shinozaki and 
Groves [11 ]. 
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Figure 2 Tensile and compressive yield stress of oriented polyvinylchloride as a function of orientation angle. 
Solid lines show theoretical predictions while the indicated points were determined experimentally by Rawson and 
Rider [10]. 

Fig. 2 shows the predicted variations of  yield 
stress as a function of  0 with the actual experi- 
mental points f rom [10] superimposed. Again 
excellent agreement is found. 

4. Discussion 
Shinozaki and Groves [11 ] have suggested that  a 
" three-par t"  criterion (owing to Kelley and 
Davies and used in composite work) might be 
appropriate  for their findings in connection with 
tensile yield stress. However,  they did not  
suggest how one could handle the prediction o f  
compressive yield stress. We suggest that  the 
excellent correlation seen in Fig. 1 supports our 
content ion that  the criterion expressed by Equa- 
t ion 4 as reduced to Equat ion 10 is quite adequate 
for the type o f  pressure-dependent solids being 
considered here. 

Similar comments  apply regarding the cor- 
relation seen in Fig. 2. Al though in the paper by 
Rawson and Rider [10] they show a good 
correlation o f  experiment with prediction, we 
would point  out  that  the equation they use for 
predictive purposes uses a value for a ~  which 
seems incorrect according to their own defini- 
tions. N o  such parameter  enters into our  analy- 
sis. 

5. C o n c l u s i o n s  
A yield criterion for use with anisotropic 
polymeric solids has been shown to provide 
excellent correlation with published experimental 
data. Since it accounts for pressure dependency 
of  yield behaviour,  it seems to be more  fun- 
damentally sound than those proposed in earlier 
studies. 
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