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On Vibrational Stabilizability of Nonlinear Systems 1 
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Abstract. Conditions of vibrational stabilizability for trivial solutions 
of nonlinear systems are derived. Several examples based on the classical 
equations of the theory of oscillations are given. 
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1. Introduction 

Is it possible to stabilize an equilibrium point of a nonlinear finite- 
dimensional system by zero average oscillations of its parameters? This is 
a question addressed in the present paper. A similar question regarding 
linear systems was discussed in Ref. 1. It was shown that, if A is a constant, 
nonderogatory matrix, the necessary and sufficient condition of vibrational 
stabilizability of  d x / d t  = A x  by zero average oscillations introduced in the 
elements of  A is T r (A)<0 .  Obviously, the stabilization of d x / d t  = A x  by 
any type of  additive zero average oscillations is impossible. Both of these 
statements are not true, in general, for nonlinear systems. References 2 and 
3 gave examples of vibrational stabilizability when the linearized system 
had Tr(A) > 0. Moreover, as it was shown in Ref. 3, even additive vibrations 
might cause vibrational stabilizability in a specific type of  nonlinear systems. 
These examples indicate that there are important differences between the 
phenomena of  vibrational stabilizability in linear and nonlinear situations. 
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The goal o f  this paper  is to clarify some of  these differences and to give 
condit ions o f  vibrational stabilizability for several classes o f  nonl inear  
systems. 

2. The Problem 

Consider  a system of  the form 

dx/d t=X(x ,A) ,  X : R n x R m ~  R n, (1) 

where x e R n is the state, t is dimensionless time, and )t 6 R m is a parameter.  
Assume that  (1) has an equil ibrium point  x = xs if A = )to = const. 

In t roduce  vibrations in A according to the law 

A =Ao+af(t/e), 

where Ao=COnSt, f ( t /e )  is a periodic vector-valued function with zero 
average, and e, 0 < e << 1, and a are scalars. For  technical  reasons, we assume 
that 

a = ~ /e ,  t~ = const. 

This does not  necessarily imply that the ampli tude o f  oscillations is large. 
Indeed,  for  any given e, a can be chosen in such a manner  that a is not  a 
large number .  However ,  a is not  an asymptot ic  parameter ,  whereas e is. 
Thus, we consider  oscillations o f  the form 

A = Ao + (c~ /e ) f ( t / e ) .  (2) 

Definition 2.1. An  equilibrium point  x~ of  (1), with A = Ao, is said to 
be vibrat ionally stabilizable if, for every S > 0, there exists 0 < Eo<< 1 such 
that (1), with A as in (2) and 0 < e -< Co, has an asymptotical ly stable periodic 
solution x*(t), -0o < t < ~ ,  characterized by 

II~*(t ) -x ,  ll < 8, (3) 

where 

ff*(t) = l !m ( 1 / T )  x*(t) dt. (4) 

Thus, if xs is vibrationally stabilizable, there exists a zero average 
oscillation o f  A which causes a bifurcation o f  this equilibrium point  into 
an asymptot ical ly  stable periodic solution x*(t) ,  the average value o f  which 
is arbitrarily close to xs. 
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Assume that (1), with A as in (2), has the form 

dx/dt=X(x,  Ao)+(a/e)X~(t/e,x), X~:R+xR'-~R", (5) 

where X~(t/e, .) is a periodic function. Equation (5) describes a large class 
of  nonlinear systems with vibrations. Indeed, several examples of  X~ (t/e, x) 
can be given as follows. 

(i) Xl(t /e ,x)=L(t /E),  where L(t/e) is a periodic average zero 
vector. In this case, the vibrations will be referred to as vector additive. In 
a specific case when all but the last components  of  L(t/e) are zero, the 
vibrations will be referred to as periodic forcing. 

(ii) X~(t/e, x)= B(t/e)x, where B(t/e) is a zero average periodic 
matrix. In this case, the vibrations will be called linear multiplicative. 

(iii) Xl(t/e, x) = B(t/e)F(x), F: R'-~ R'. Here, the vibrations are 
nonlinear multiplicative. 

In what follows, conditions of  vibrational stabilizability of  trivial sol- 
utions for nonlinear systems by linear multiplicative and vector additive 
vibrations as well as by periodic forcing are derived. In Section 3, the 
method of analysis is described. In Sections 4-6, conditions of  vibrational 
stabilizability are formulated and corresponding examples are given. In 
Section 7, the optimal shape of vibrations is discussed. 

3. The Method 

In the fast time r = t/e, Eq. (5) can be rewritten as 

dx/d~" = eX(x) + aX,(r, x), X(x) =- X(x, ho). (6) 

Introduce an equation 

dx/ d.r = aX,(r, x), (7) 

and assume that there exists a unique solution of  (7) defined by every initial 
condition Xo~ f~ C R',  for all z_> 0. Denote the general solution of (7) as 

x(z) = h(z, c), c = const. 

Introduce in (6) a substitution, 

x(~-) = h(T, y(T)), y ~ R". (8) 

Assuming that Xl(r, x) is differentiable with respect to x, for all r_> 0, and 
recognizing that 

det[Oh(~,y)/Oy]=det[Oh(O,y)/Oy]exp{foTr[OXl(~',y)/Oy] dz}, 
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we obtain the following equation for y(r) :  

dy/ d'r = e[Oh/Oy]-lX( h(r, y)) ~= EY(,r, y). 

Introduce, finally, the averaged equation 

dz/dr = eZ(z), 

where 

Z(y)= lrim(1/T) [oh/Oy]-lX(h(r,y)) dr. 

(9) 

(1o) 

(11) 

Lemma 3.1. Assume that: 

(a) h(r, c) is periodic with respect to r;  
(b) [IY(r,y)ll<-N, Vr~[O, oo) ,Vyef~CR" ,  

l[ g( r ,  y ' ) -  Y(r,y")II~KIIy'-y"H, Vr~[O,~) ,Vye f~CR";  

Z(y) is continuously differentiable for all y ~ fL (c) 
Then, 

(i) 
stabilizable if there exists an equilibrium point z~ of (10) such that 

lim (1/T) h(r, Zs) = x,, 
T ~ o o  

Q = [,gZ/oz] . . . .  is a Hurwitz matrix; 

the equilibrium point x~ of (1), with h =ho, is vibrationally 

(12) 

(13) 

(ii) the equilibrium point x~ of (1) with h = ho is not vibrationalty 
stabilizable if either condition (12) is not met or Q is an unstable matrix 
having no pure imaginary eigenvalues. 

Proof. Under the Assumptions (a)-(c) of Lemma 3.1, the conditions 
of the second theorem of the averaging principle (Ref. 4, p. 497) are satisfied. 
Thus, for every ~/> 0, there exists eo(~) such that (9), with 0 <  e < - Co, has 
a unique periodic solution y*(z) characterized by 

][y*(z)- z~ll < ~7, (14) 

where z~ is an equilibrium position of (10); y*(¢) is asymptotically stable 
if Q is Hurwitz; y*(~-) is unstable if Q is an unstable matrix without 
imaginary eigenvalues; the period of y*(r) is equal to the period of h(z, • ). 

Now, since h(z, c) is a solution of (7) defined for all ~-c[0, oe), there 
exists a Lipschitz constant M such that 

Ilh(r,y*(r))-h(T,z~)ll<_MllY*(~-)-z,[I, Vrc[O, oe),Vy*,z,~a. 
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Consequently, choosing ~ in Eq. (14) as 8/M, we obtain 

J'? I/ II ( l /T )  h(%y*(r))d~'-lim ( l /T )  h('sz,)d~" 
T-~oo 

f0 <- lim (M/T) lly*(~')-z, ll dr<_8. (15) 
T ~ o o  

If condition (12) takes place, from condition (15) it then follows that 

!lim(1/T) jfrhO-,y*(.c))d~-x, ll<& (16) 

Due to Assumption (a) of Lemma 3.1 and due to (8), h(% y*(~')) is a 
periodic solution of (6), 

x*(r) = h(T, y*(r)). 

This means that condition (16) coincides with Ineq. (3). Thus, under 
Assumptions (a)-(c), vibrational stabilizability of xs takes place if z, is 
asymptotically stable. This proves proposition (i) of Lemma 3.1. The equilib- 
rium point x~ is not vibrationally stabilizable if either no z, satisfy condition 
(12) or Q is an unstable matrix having no eigenvalues with zero real part. 
This proves proposition (ii). [] 

Lemma 3.1 constitutes the basis for the investigation of conditions of 
vibrational stabilizability. Theorems 4.1-4.3 below are proved by reducing 
the problem at hand to Lemma 3.1. These reductions do not present serious 
difficulties; therefore, the proofs are not included in the paper. 

4. Linear Multiplicative Vibrations 

This case constitutes a bridge between the linear and nonlinear situ- 
ations. Namely, only in this case do the conditions of vibrational stabilizabil- 
ity for linear and nonlinear systems coincide. 

Theorem 4.1. Assume that X(x, Ao) is analytic around x = 0 ,  
X(0, A0)= 0, and there exists F~ C R'(O c f~) such that 

ltX(x, Ao)tl N, Vx a, 
IIX(x', A0)-X(x",  Ao)ll--< K(Xo)l[x'-x"ll, Vx', x"~ ~. 

Assume also that the state transition matrix alp(r, 0), ~,c[0, oo), of the 
equation dx/d.c= aB('r)x is periodic. Let dx/dt = Ax be the tinearization 
of Eq. (1) around zero, where A =[0X(x, Ao)/Ox]x=o is a nonderogatory 
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matrix. Then, 

(i) 0 of  Eq. (1), with )t = )t0, is vibrationally stabilizable by linear 
multiplicative vibrations if Tr(A) < 0; 

(ii) 0 of  Eq. (1), with )t = )to, is not vibrationally stabilizable by linear 
multiplicative vibrations if Tr(A) > 0. 

Example 4.1. Consider the Duffing equation, 

x + a x - b x + c x 3 = O ,  a , b , c > O .  

The linearization around x~ = 0 is 

5i + a~ - bx  = O. 

Since a > 0, Tr(A) is negative. Therefore, 0 is vibrationally stabilizable by 
linear multiplicative vibrations. 

Example 4.2. Consider the Ray~eigh equation, 

5 i + p ~ ( 2 2 / 3 - 1 ) 2 + x = O ,  ix>0.  

Obviously, here T r (A)>  0. Hence, 0 is not vibrationally stabitizable by 
linear multiplicative vibrations. 

5. Periodic Forcing 

In this section, we consider a system of the form 

x("~+ a l x ( " - l~+  • • • + a , x + f ( x ,  . . . .  x ("-~) = 0, (17) 

where x is a scalar, x (i) is the ith time derivative of  x, a~ are constant 
coefficients, and f ( x , . . . ,  x ~"-1~) is a polynomial such that 

f ( 0 , . . . ,  0) = 0, grad f ( 0 , . . . ,  0) = 0. 

Adding a zero average periodic forcing ( a / e ) l ( t / ~ ) ,  we rewrite (17) as 

x("~+ a l x ( " - l~+  • • • + a , x + f ( x l , . . . ,  x ~"-1~) = ( a / a ) l ( t / ~ ) .  

Lemma 5.1. An unstable 0 of Eq. (17) is vibrationally stabilizable by 
periodic forcing only if f ( x , . . . ,  x ~ -~ )  has terms of the form 

x(" -°[x (" - l~]  2k, k = 1, 2 , . . . ,  i = 1 , . . . ,  n. 

Theorem 5.1. Assume that a~, i = 1 , . . . ,  n, in Eq. (17) are such that 

a~>0, i ~ s ,  a ~ = k < 0 .  
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Assume also that there exists c* = const such that Eq. (17), with a~-' - k +  c*, 
has asymptotically stable trivial solution. Then, 0 of Eq. (17) is vibrationally 
stabilizable by periodic forcing if 

f ( x  . . . . .  x (n-l)) = Ixx("-S~[x("-l~] 2k, k = 1, 2 , . . . ,  Ix > O. 

Example 5.1. Consider the Rayleigh equation, 

J ~ + t x ( x 2 / 3 - - 1 ) 2 + x = O ,  IX>O. 

Here, 

f ( x ,  2)  = ( / x / 3 ) x ( x )  2, as -~ - l~ ,  c*s > Ix. 

Thus, as it follows from Theorem 5.1, 0 is vibrationally stabilizable by 
periodic forcing. 

Example 5.2. Consider the Van der Pol equation, 

X +  IX(X2-- 1 ) .~+x  = O. 

Here, 

f (x ,  ~) --- ~x2~. 

Obviously, the necessary condition of Lemma 5.1 is not met. Thus, 0 is not 
vibrationally stabilizable by periodic forcing. 

6. Vector Additive Vibrations 

To formulate a condition for vibrational stabilizability by vector addi- 
tive vibrations, consider the Taylor expansion of X ( x )  - X(x ,  ;to) around 
X ~ X~ 

X ( x ) = X ( x * ) +  ~ (1/i!){OX/Ox]x=x,(x-x*)} i®, (18) 
i=1 

where 

[ ( v t , . . . ,  vo)'] r® : [ v ~ , . . . ,  v~]'. 

We will say that X ( x )  is an odd r-algebraicfimction in the vicinity of 
x*, if: 

(i) the expansion (18) has r<oo terms; 
(ii) the expansion (18) has no terms with i = 2k, k = O, 1 , . . . ,  r /2+ 1. 
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The ith te rm of  Eq. (18), with x * =  0 and x = y  + u, can be represented  
a s  

(1/ i [){[OX/Ox]x=o(y + u)} '® = (1 / i  l) v, + [1 / ( i  - 1)!]PLY + h.o.t . (y) ,  
(19) 

where  the elements  of  the vector  vi are a lgebraic  forms of  order  i with 
respect  to the componen t s  of  vector  u and  the elements  of  the matr ix  P~ 
are a lgebraic  forms of  order  i -  1 with respect  to u. The e lement  PJm of  the 
matr ix  P3, for  instance,  is 

P~m = d~,.[(d~lul + " " " + dlnun) 2-  i ~ dliuidljuj], (20a) 
j = l  i=1 

l ,m=l , . . . ,n ,  i#h i~m, j¢m,  (2Oh) 

where  

dt,~ = d~m ( X } = O X , /  dxm, dl,.dlk = dl,.dlk { X } = Oa X , /  Ox,.OXk. 

Define u in Eq. (19) via vector  addit ive vibrat ions aL(~')  as 

u(r)  a--4 a f L(7") dz, (21) 

and in t roduce  a matr ix  

X&[oX/Ox]x=o+ lira ( l / T )  [ (1 /2! )P3(u(r ) )+(1/4! )Ps(u(r ) )  T c~ 

+ . . .  + ( 1 / ( s -  1)!)P~(uO-))] &, 

where S = r - 1, if r is even, and S = r, if  r is odd.  

(22) 

Theorem 6.1. Assume  that  X ( x ,  ;to) in the vicinity o f  0 is an odd 
r -a lgebraic  funct ion.  Then,  

(i) 0 o f  Eq. (1), with A = )to, is v ibrat ional ly  stabil izable by vector  
addit ive v ibra t ions  if there  exists u ( r )  such that  fi~ is a Hurwi tz  mat r ix ;  

(ii) 0 o f  Eq. (1), with ,~ = Ao, is not  v ibrat ional ly  stabil izable if, for  
any u ( r ) ,  ,4 is an uns table  matr ix,  p rov ided  A has no imaginary  eigenvalues.  

Example  6.1. Cons ider  the Van der  Pol equat ion,  

x2 ] 
= 2 , P" > 0. (23) 

:~2 --Xl + I~X2 -- la, XlX2 
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Introduce vector additive vibrations in Eq. (23), in the form 

= (24) 
X2 --X1 -}- [d'X2 -- ]'l"X lX2 

Obviously, the right-hand side of Eq. (23) in the vicinity of Xl = 0, x2 = 0 is 
an odd 3-algebraic function. Thus, the property of vibrational stabilizabitity 
of Eq. (23) is determined by the matrix 5,. In the case of Eq. (24), the 
matrix A is 

= - ( l  +2/ ,  u2(r)) tz(1-u2(r) )  

where 

u2(z) = lim (1/T) u2(¢) dz. 
T-~co  

Consequently, 0 of the Van der Pol equation is vibrationally stabilizable 
by vector additive vibrations if u20 -) > 1. 

7. Optimal Shape of Vibrations 

Normally, the amplitudes of the stabilizing vibrations are bounded; 
i.e., the zero average oscillations in Eq. (2) must satisfy the inequalities 

N <- af('r) <- M, 

where M and N are m-vectors with positive and negative components, 
respectively. Consequently, it is important to find the optimal (from the 
point of view of ensuring the stability property of equilibrium positions) 
shape of vibrations. In the case of linear systems, the optimal shape of 
vibrations was found in Ref. 1 to be a rectangular waveform. This conclusion 
holds true for the nonlinear systems considered in this paper as well. Indeed, 
assume that 

f ( z )  = ~ k~ sin(st + ~s). 

Then, for ui('r) as defined in Eq. (21), we obtain 

U2('r) = (a2/2) 2 [(k~)2/wRs2]. 

Since, as it follows from Eqs. (21)-(24), the effect of vibrational control is 
proportional to ua(r), and since the effect of higher harmonics in uZ(r) is 
decreasing as 1/s 3, we conclude that the optimal shape of vibrations is the 
one which maximizes the amplitude of the fundamental frequency. Thus, 
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we obtain the following constrained dynamic optimization problem (Ref. 
5): Find a piecewise continuous 27r-periodic function f~(~-) which 
maximizes 

o~f,(r)  cos(~+ ~) dT, 

subject to the constraints 

o~=f(z) dz=O, Ni <-f(z)<- Mi. 

The solution of this problem, based on the methods of Ref. 5, can be stated 
in the following lemma. 

Lemma 7.1. The optimal shape of vibrations is a rectangular 
wave form. 

8. Conclusions 

Thus, in the case of linear multiplicative vibrations, the conditions of 
vibrational stabilizability depend only on the properties of the linear part 
of the system (Theorem 4.1). In the ease of periodic forcing, they depend 
only on the nonlinearity (Theorem 5.1). In the case of vector additive 
vibrations, they depend on both (Theorem 6.1). And, if one happens to 
tremble, there is a way to do it optimally (Lemma 7.1). 
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