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Peter A. Ward and Alex B. Lentsch
Department of Pathology, University of Michigan, Ann Arbor, MI, USA

Abstract

The acute inflammatory response has been triggered in rat lungs by deposition of IgG immune complexes. The inflammatory
reaction triggered is highly tissue damaging and requires activation of NF-κB with ensuing generation of chemokines and
cytokines. Endogenous generation of IL-10 and IL-13 as well as secretory leukocyte protease inhibitor (SLPI), significantly
regulates this inflammatory response. IL-10 and IL-13 attenuate NF-κB activation by interfering with breakdown of IκBα,
while SLPI likewise suppresses NF-κB activation, but by interfering with breakdown of IκBβ. Antibody induced blockade of
IL-10, IL-13 or SLPI enhances NF-κB activation in lung and exacerbates the lung inflammatory response and injury. These data
indicate that endogenous IL-10, IL-13 and SLPI are important regulators of the inflammatory response by reducing gene activa-
tion with resultant generation of peptide mediators/cytokines and chemokines. (Mol Cell Biochem 234/235: 225–228, 2002)
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Introduction

The inflammatory response in lungs of rodents has been
extensively studied and the pathways leading to critical pro-
duction of inflammatory mediators elucidated. The intrapul-
monary deposition of IgG immune complexes in rats induces
an intense inflammatory response that is characterized by
alveolar edema and hemorrhage and an intense accumulation
of neutrophils [1]. Tissue injury is attributable to products of
both neutrophils and lung macrophages and involving the
generation of toxic oxygen products and release of proteases.
These inflammatory reactions are known to be neutrophil and
complement dependent and also require the participation of
cytokines (IL-1, TNFα) and chemokines (the CXC chem-
okines, MIP-2 and CINC and the CC chemokines, MIP-1α

and MIP-1β) [1–6]. The pathways by which products of
stimulated alveolar macrophages and alveolar epithelial cells
activate vascular endothelial cells are shown in Fig. 1. TNFα

generated by each type of cell can activate nearby vascular
endothelial cells, causing upregulation of adhesion molecules
(ICAM-1 and E-selectin), while other products (MIP-2) can
cause chemoattraction of blood neutrophils into the intersti-
tial and alveolar spaces. These inflammatory reactions are

tightly regulated. In fact, the influx of neutrophils and the
vascular leak peak at 4 h and then promptly diminish. This
review will discuss some of the endogenous mediators that
regulate these acute inflammatory responses.

Regulation of activation of NF-κB and IL-10 and IL-13

The dimeric (chiefly heterodimeric) complex of NF-κB is
well-known to be important in bringing about gene activa-
tion and generation of the cytokines and chemokines men-
tioned above [7, 8]. NF-κB is located in the cytoplasm of a
variety of cell types and is linked to the inhibitor, IκB, which
prevents the translocation of NF-κB to the nucleus where it
has access to DNA promoter sites. When IκB undergoes hy-
drolysis by the 26S proteasome, NF-κB is then free to trans-
locate to the nucleus and initiate gene activation.

In the IgG immune complex model of acute lung injury,
two waves of NF-κB activation occur, one at 0.5 h involv-
ing lung macrophages, and a second wave peaking at 4 h and
involving other lung cell types [9, 10]. While it is well es-
tablished that in vitro incubation of macrophages with TNFα

or airway instillation of TNFα involves activation (nuclear
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translocation) of NF-κB, we have found that IL-10 and IL-
13, which are produced during the induction of lung injury
as described above, induce powerful inhibition of NF-κB ac-
tivation [9, 10]. The mechanism of this inhibition has been
linked to the preservation of IκBα, which fails to undergo
hydrolysis in the presence of either IL-10 or IL-13. Con-
versely, if either IL-10 or IL-13 is blocked in vivo by the air-
way instillation of antibody, NF-κB activation is intensified,
and lung levels of mediators such as TNFα and MIP-2 are
elevated above those found in otherwise unmanipulated lungs
undergoing IgG immune complex damage [11, 12]. The pre-
cise mechanisms by which IL-10 and IL-13 are able to sup-
press hydrolysis of IκBα are under intense investigation.
Both IL-10 and IL-13 have been shown to prevent the DNA-
binding of NF-κB [13, 14]. In addition, IL-10 is thought to
prevent IκBα degradation by suppressing activation of IκB
kinase (IKK) activity [13]. Utilizing these mechanisms, en-
dogenous production of IL-10 and IL-13 powerfully regu-
lates the inflammatory process, preventing excessive tissue
damage and providing a balance that allows lung repair af-
ter this intense inflammatory response.

Role of secreted leukocyte protease inhibitor (SLPI) in
lung inflammatory responses

SLPI was originally identified as a serine protease inhibitor
secreted by cervical epithelium, but it is now evident that this
inhibitor can be produced in a variety of tissues and by a
variety of cell types [15–20]. SLPI is a 12 kDa single chain
protein containing two domains, one of which contains Leu72

which is a critical binding site for susceptible serine proteases
(chymotrypsin, elastase and trypsin) [21, 22].

When exogenous human recombinant SLPI is instilled into
the airways of rats undergoing immune complex-induced
injury, there is inhibition of the inflammatory response as
defined by increases in the lung permeability index, in num-
bers of neutrophils recruited into lung, and by levels in
bronchoalveolar (BAL) fluids of TNFα, MIP-2 and CINC
[23]. This inhibition is dose-dependent on the amount of SLPI
used. Most importantly, the presence of exogenous SLPI
markedly reduces the level of NF-κB activation, whereas
another endogenous protease inhibitor, tissue inhibitor of
metalloproteases-2, has no protective effects [24]. In addi-

Fig. 1. Possible pathways by which products of activated alveolar macrophages and alveolar epithelial cells activate endothelial cells and cause neutrophil
accumulation.
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tion, these studies demonstrated that the exogenous addition
of SLPI in amounts that are protective in the animal model
employed fail to demonstrate any inhibition of p42/p44 iso-
forms of mitogen activate protein kinases (MAPK). In the
inflammatory lung model employed, SLPI is endogenously
produced and can be detected by Western blot analysis in
BAL fluids [25]. Under these experimental conditions, im-
munostaining has revealed the induction of SLPI in alveo-
lar epithelial cells, in lung macrophages and in vascular
endothelial cells. Thus, in the activated lung, there appear
to be many sources of SLPI. If antibody to SLPI is instilled
into the airways of rats undergoing inflammatory injury,
NF-κB activation is intensified, in concert with enhanced
injury of lung [24, 25]. Thus, endogenous SLPI also appears
to be an important natural regulator of the inflammatory
response.

The mechanism by which SLPI impairs NF-κB activation
in the lung is distinctly different from the manner by which
IL-10 and IL-13 inhibit NF-κB activation. SLPI does not af-
fect the breakdown of IκBα in these lung inflammatory re-
actions; rather, SLPI prevents by an unknown mechanism the
breakdown of IκBβ, another important regulator of NF-κB
activation [24]. As might be expected, TIMP-2 fails to show
similar functionality.

The availability of mutant forms of human SLPI has pro-
vided additional structure-function information related to
SLPI. The substitution of Leu72 of SLPI with Gly or Phe at-
tenuates the protective effects of SLPI in the lung injury
model (as defined by the vascular permeability index or by
BAL neutrophil numbers), while Lys72 SLPI is at least as pro-
tective as Leu72 SLPI (the wild-type form of SLPI) [26]. In
parallel, Phe72 SLPI suppresses NF-κB activation in lung,
similar to wild-type SLPI. Precisely what serine protease in
the inflamed lung is being inhibited by SLPI is unclear, and
it is also uncertain if SLPI is interacting with an extracellu-
lar or intracellular serine protease. Another serine protease
inhibitor (PI), α

1
PI, which is known to be abundantly present

in both serum and in lung BAL fluids, does not when instilled
into lungs similar to the use of SLPI lead to inhibition of NF-
κB activation or protection from immune complex-induced
acute lung injury. Why under these circumstances α

1
PI is not

protective is unknown. It is possible that α
1
PI, which is con-

siderably larger (53 kDa), may not have access to the intra-
cellular compartment of cells, if this is indeed the manner by
which SLPI is functional. These data indicate that SLPI is
another important endogenous regulator of NF-κB activation
during the acute inflammatory response.

In summary, regulation of the acute inflammatory re-
sponse in lung occurs in part by increased endogenous pro-
duction of IL-10, IL-13 and SLPI. Each of these mediators
function as inhibitors of NF-κB activation. Thus, NF-κB
appears to be critical for the induction of the acute inflam-
matory response in the lung and the expression of IL-10,

IL-13 and SLPI is necessary for intrinsic control of this re-
sponse.
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