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Thermal Error Modelling for Real-Time Error Compensation 
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A modelling strategy for the prediction of both the scalar and 
the position-dependent thermal error components is presented. 
Two types of empirical modelling method based on the multiple 
regression analysis (MRA) and the artificial neural network 
(ANN) have been proposed for the reaLtime prediction of 
thermal errors with multiple temperature measurements. Both 
approaches have a systematic and computerised algorithm to 
search automatically for the nonlinear and interaction terms 
between different temperature variables. The experimental 
results on a machining centre show that both the MRA and 
the A N N  can accurately predict the time-variant thermal error 
components under different spindle speeds and temperature 
fields. The accuracy of a horizontal machining centre can be 
improved through experiment by a factor of ten and the errors 
of a cut aluminium workpiece owing to thermal distortion have 
been reduced from 92.4 Ixm to Z2 lazn in the lateral direction. 
The depth difference due to the spindle thermal growth has 
been reduced from 196 txm to 8 ~m. 

Keywords: Accuracy; CNC machine tools; Error compen- 
sation; Thermal error modelling 

1. Introduction 

Research on thermal error compensation for machine tools by 
both industries and academic institutions has been accelerated 
recently in response to the increasing demand for high-quality 
products. Effective compensation relies on the accurate 
prediction of the time-variant thermal errors during machining. 
Since the thermal errors of machine tools exhibit highly 
nonlinear interactions [1], a precise quantitative prediction is 
difficult to achieve by a theoretical analysis. 

The quantitative prediction of thermal errors is usually 
achieved by empirical modelling approaches which correlate 
machine thermal errors to temperature measurements of the 
machine through experiments and data analysis techniques. 

Correspondence and offprint requests to: Professor J. Ni, Department 
of Mechanical Engineering and Applied Mechanics, University of 
Michigan, 3424 G.G. Brown Building, Ann Arbor, MI 48109-2125, 
USA. 

Most of the previous efforts of predicting thermal errors by 
an empirical modelling approach have focused on solving one 
specific problem such as the spindle growth [2-4] or leadscrew 
thermal expansion [5]. Recently, progress has been made in 
compensating for the thermal planar and volumetric errors 
[6,7]. In Chen et al. [6], the time-variant volumetric error 
(including both geometric and thermal errors) of a 3D machine 
tool was synthesised from 32 error components existing at 
machine elements. The accuracy of the compensation thus 
relies on the modelling accuracy of the error components. 

One problem for a 2D or 3D thermal error compensation 
is that some thermal errors such as the positioning and angular 
errors of a movable slide are not only temperature-dependent 
but also slide-position dependent. The empirical model 
developed should be capable of accommodating both the 
temperature and position changes during machining. 

Another problem is that most previous studies use only 
one temperature variable of the machine to predict a thermal 
error. However, thermal errors are sensitive to varying spindle 
speeds and the temperature history (warm-up or cool-down 
cycles) owing to different thermal time constants of various 
machine components, as shown in Chen et at. [6]. For 
example, the thermal growth of a spindle is contributed to 
not only by the thermal expansion of the spindle itself but 
also by the thermal bending of the machine column. The 
spindle heats up and cools down quickly but the column has 
a relatively sluggish response to generated heat. Therefore, 
an empirical model using multiple temperature variables is 
necessary in order to include the effects of different thermal 
time constants and the interaction between different tempera- 
ture variables. Although a multiple regression model for 
thermal error prediction has been reported in Donmez et al. 
[7] and Kurtoglu [5], there is no systematic algorithm using 
statistical criteria for the selection of positions, orders and 
cross-product terms of the temperature measurements. 

The objective of this paper is to report a new modelling 
strategy developed for both the scalar and the slide-position- 
dependent error components, Two multivariable empirical 
models based on multiple regression analysis (MRA) and an 
artificial neural network (ANN) have been used to fit the 
thermal error components. Both the MRA and the ANN use 
a systematic algorithm to search for the nonlinear and 
interaction characteristics of thermal errors based on statistical 
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criteria. The M R A  approach uses a stepwise regression 
analysis to select the positions, orders and cross-product terms 
of temperature measurements. In the ANN method, the 
nonlinear and interaction characteristics of thermal errors are 
recognised by a backpropagation training procedure. Some 
experiments have been carried out for both model-fitting and 
model-checking purposes. The prediction accuracy of new 
observations, noise resistance robustness, and fault tolerance 
of the M R A  and the ANN methods have also been compared. 

2,, Basic Forms of the Error Component 
Models 

As presented in Chen et al. [6], the thermal volumetric error, 
which is the relative error between the movements of the tool 
and the workpiece, was decomposed into 32 error components 
existing at machine elements. A kinematic model for a 3D 
machine such as a horizontal machining centre was also 
developed to synthesise these 32 error components in order 
to predict the volumetric error at any location within the 
machine working zone. In addition to the well-known 21 
errors which include 3 translational and 3 rotational errors of 
each slide and 3 squareness errors between machine axes, 11 
additional thermal error components were identified. The first 
group of the additional thermal errors accounts for thermal 
drifts at the tool-tip which include three translational drifts 
of the spindle and two inclinational drifts of the spindle axis. 
The second group of the additional thermal errors is due to 
thermal shifts at the references of machine axes which include 
6 translational errors if one axis is selected as the reference 
for two other axes. 

The 32 thermal error components can be classified into two 
types: the scalar errors and the position-dependent errors. 
The squareness errors and the 11 thermal drifts at the spindle 
and at the references of machine axes are regarded as the 
scalar errors, because they can be represented as a time- 
variant but scalar formulation. For every movable slide, the 
three translational and three rotational errors could also vary 
with the travel of the slide. Therefore, these errors are not 
only temperature dependent  but also position dependent. 

2.1 Scalar Thermal Error Component 

The basic strategy for modelling the thermal error components 
is to separate the errors into two parts: 

1. Geometric error part, which exists under an evenly 
distributed reference temperature (20°C or other prescribed 
temperature).  

2. Thermal error part,  which is an additional error to the 
geometric error owing to the change of the machine 
temperature field. 

For the scalar thermal errors the basic form of the model 
is: 

5~(t) = ~g + ft(AT1, AT2 . . . . .  ATn) (1) 

where g~(t) = the time-variant scalar error 

gg = the geometric part of the scalar error 

f~(AT1, A T z , . . . ,  ATn) = the thermal part of the scalar error 
as a function of the machine temperature field 

ATe, AT2 . . . . .  ATn = temperature changes of machine 
structures at points 1, 2 . . . .  , n 

2.2 Position-Dependent Thermal Error Component 

Observations from a variety of experiments have shown that 
although the slide position-dependent errors varied with 
temperatures, their basic profiles along the travels did not 
change drastically and only the slopes differed, as shown in 
Fig. 1. This phenomenon applies to both translational and 
angular errors. The 18 slide position-dependent errors are 
then formulated as the summation of the stationary error 
profiles and time-variant slopes. The stationary error profiles 
(i.e. geometrically induced errors) exist under machine cold- 
start conditions. During operations, the time-variant slopes 
(i.e. thermally-induced errors) are added to the geometrically- 
induced errors. 

Therefore, for the position-dependent errors, the mathemat- 
ical formulation becomes 

5p(p,t) = fg(X, y, z) + kl(t)p + ke(t)p 2 + . . .  (2) 

and ki(t) =~,(AT1, AT2 . . . . .  ATn) (i = 1, 2 , . . . ,  m)(3) 

where ~p(p, t) = the time-variant and position-dependent 
e r r o r  

fg(x, y,  z) = the geometric error part of the position- 
dependent error 

p = position or travel of a slide 
kl(t), k2(t) = the thermal-variant coefficients of the position- 
dependent error 

ft i (AT1, AT2 . . . . .  AT,,) = the coefficients as functions of 
the temperature field 

m = the order of the thermal-variant position-dependent 
error 

Notice that the geometric part of the slide-position dependent 
errors, fg (x, y, z), is not only a function of the coordinate 
of the slide being measured but also a function of the other 
two coordinates. This can, thus, accommodate the non-rigid 
body kinematic effect, Chen et al. [8]. 

For the thermal error part,  this new approach monitors the 
slope variations of error profiles and reduces the number of 
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Fig. 1. The thermal variation of the yaw angular errors of the y-axis. 



268 J. S. Chen et al. 

empirical models needed for predicting position-dependent 
errors. In most cases, the position-dependent errors can be 
approximated accurately with only the first-order term. 

Two different methods will be presented in the following 
sections to construct the empirical model f~ (AT1, ATE, . . . ,  
ATn) by multiple regression analysis and by using an artificial 
neural network. 

3. Multiple Regression Analysis (MRA) 
Approach 

3.1. Principle of the MRA for Thermal Error 
Component Modelling 

The proposed multiple regression model for ft  i (AT1, AT2, 
. . . .  aTr,) is: 

f t ,(AT1, AT2 . . . .  , AT,,) = (A1}'{AT} 

+ (AT) ' [A2]{AT)  (4) 

where {A1}, [A2] = coefficient vector and matrix of the 
regression model respectively 

{AT} = temperature rise vector of machine structures 

One of the most difficult problems in regression analysis is 
the selection of the set of independent variables to be used 
in the model. It is important that any key variables that could 
affect the ability of the model to predict a new observation 
should not be neglected. However, a regression analysis with 
a large number of independent variables is costly. It may also 
cause a serious round-off problem in estimating the model 
coefficients using a least-squares method if some highly 
intercorrelated independent variables exist. 

Independent variables were initially screened out based on 
experience and the results of a statistical correlation analysis. 
However, typically, the number of independent variables that 
remained after this initial screening was still large. The 
stepwise regression analysis with a computerised automatic 
search algorithm was used for a second screening. This search 
method develops a sequence of regression models; at each 
step adding or deleting a new variable using an F-test or 
other statistical criteria. 

3.2 Modelling Scalar Errors Using the MRA 

To demonstrate the modelling of the scalar errors using the 
MRA approach, the spindle thermal drifts were considered. 
During experiments, more than 20 thermocouples were used 
to monitor the machine temperatures. Nine temperature 
measurements which had strong correlations with thermal 
drifts of the spindle were selected after the first screening 
(see Table 1). The nine temperature measurements were 
further classified into three subgroups corresponding to the 
three directions of spindle thermal drifts (Table 2). 

A second-order regression model, which included the first- 
and second-order terms of temperature rise and also the 
interaction terms between any two temperature measurements, 
was used to fit the spindle thermal drifts. The numbers of 

Table 1. Selected temperature measurement and thermocouple pos- 
itions. 

Symbol Purpose and position of thermocouples 

AT1 Variation of 
AT2 Variation of 
AT3 Variation of 
AT4 Variation of 
AT~ Variation of 
A T  6 Variation of 
AT7 Variation of 
AT8 Variation of 
A T  9 Variation of 

the environmental temperature 
the spindle housing temperature 
the y-axis nut temperature 
the y-axis bearing temperature 
the average column temperature 
the front-right side of column 
the front-left side of column 
the rear-right side of column 
the rear-left side of column 

Table 2. Subgroups for spindle thermal drift components. 

Spindle thermal Subgroups of monitored temperature 
drifts 

Ax AT1, AT2, AT3, AT 6- AT7, ATs-AT 9 
Ay AT1, AT2, AT3, AT4, ATs, AT6-ATs, AT7-AT9 
Az AT1, ATz, AT3, ATr-AT8, ATT-AT9 

unscreened coefficients were 20, 35 and 20 in the x-, y- and 
z-directions, respectively. The stepwise regression analysis 
was applied to further reduce the number of coefficients. 

For the stepwise regression analysis, 810 data sets containing 
spindle thermal drifts and temperature fields mentioned in 
Table 1 were collected. The 810 observation sets were 
measured from 5 different tests with spindle speeds at 600 
r.p.m., 1000 r.p.m., 1500 r.p.m., 2100 r.p.m, and 2600 r.p.m. 
In each of the above tests, the machining centre was run for 
6 hours to warm-up and then stopped for 10 hours to allow 
the machine to cool down. 

Figure 2 is an example of the output results of the spindle 
thermal drift model in the x-direction using a commercial 
stepwise regression analysis package, SYSTAT 5.0. After the 
regression analysis, the number of coefficients was reduced 
to 7. The fitted model for the thermal error in the x-direction 
is: 

&v = -0.586"AT2 + 7.527"AT3 - 36.966* 

(AT6 - AT7) + m.S09*(aT8 - AT9) 

- 0.149"(AT3) 2 - 18.119"(AT6 - ATT) 2 

+ 2.499*AT2*(AT6 - AT7) (5) 

The spindle thermal drift models in the y- and z-directions 
were determined similarly and the numbers of coefficients 
were reduced to 15 and 7, respectively. Figures 3-5 compare 
the experimental results and the predicted results. They show 
that the three regression models can fit the thermal drifts of 
the spindle closely. 

3.3 Modelling Position-Dependent Errors Using the 
MRA 

To demonstrate the method of modelling position-dependent 
thermal errors by MRA, the positioning errors of the y-axis 



STEPWISE REGRESSION WITH ALPHA-TO-ENTER= ,001 AND ALPHA-TO-REMOVE= .015 

STEP= I ENTER AT2 R= .751 RSQUARE= .564 
STEP= 2 ENTER AT5*AT5 R= .781 RSQUARE= .609 
STEP= 3 ENTER (AT6-ATS) R= ,852 RSQUARE= ,726 
STEP= 4 ENTER AT'3 R= .929 RSQUARE= .862 
STEP= 5 ENTER AT5 R= ,947 RSQUARE= .897 
STEP= 6 ENTER (ATT-ATg) R= .953 RSQUARE= .908 
STEP= 7 ENTER AT2*AT5 R= .955 RSQUARE= .913 
STEP= 8 ENTER AT3*AT3 R= ,972 RSQUARE= .946 
STEP= 9 REMOVE AT5 R= .972 RSQUARE= .946 
STEP= 10 ENTER AT2*AT2 R= .974 RSQUARE= ,948 
STEP= l 1 ENTER AT2*AT3 R= .975 RSQUARE= .950 
STEP= 12 ENTER AT3*(AT7-AT9) R~ .976 RSQUARE= .953 
STEP= 13 REMOVE AT3*AT3 R= .976 RSQUARE= .952 

,STEP= 4 ENTER AT4*(AT6-AT8) R= .976 RSQUARE= .953 
STEP= 15 ENTER AT4*(AT7-AT9) R= .978 RSQUARE= .956 
STEP= 16 REMOVEAT3*(ATT-ATg) R= .978 RSQUARE= .956 
STEP= 17 ENTER AT4*AT4 R= .980 RSQUARE= .961 
STEP= 18 ENTER AT5 R= .981 RSQUARE= ,963 
STEP= 19 ENTER AT4 R= .983 RSQUARE= ~965 
STEP= 20 ENTER AT4*AT5 R= .983 RSQUARE= .966 
STEP=- 21 ENTER (ATt-ATS)*(AT6-AT8) R= ,983 RSQUARE= .967 
STEP= 22 ENTER (ATt-AT8)*(AT7-AT9) R= .985 RSQUARE= .970 
STEP= 23 ENTER (AT7-AT9)*(AT7-AT9) R= .986 RSQUARE= .973 
STEP= 24 REMOVE AT5*AT5 R= .986 RSQUARE= ,973 
STEP= 25 ENTER AT2*AT3 R= .986 RSQUARE= .973 
STEP= 26 REMOVE AT4*AT4 R= .986 RSQUARE= ,973 
STEP= 27 REMOVE AT4*AT5 R= .986 RSQUARE= .973 

THE SUBSET MODEL INCLUDES THE FOLLOWING PREDICTORS: 

AT2, AT3, AT4, (AT6-AT8), (AT7-AT9), AT5, AT2*AT2, (AT6-ATS)*(AT6-ATS), 
(ATT-A'[9) *(AT7 -ATg), AT2*(AT6-ATT) 

USE THESE PREDICTORS 1N A NEW MODEL SENTENCE TO ESTIMATE THE COEFFICIENTS 

DEP VAR: X N: 810 MULTIPLE R: .994 SQUARED MULTIPLE R: .988 
ADJUSTED SQUARED MULTIPLE R: .988 STANDARD ERROR OF ESTIMATE: 10.628 

VARIABLE COEFFICIENT VARIABLE COEFFICIENT 

AT2 -0.586 AT3*AT3 -0.149 
AT3 7,527 (AT6-ATT)*(AT6-AT7) -18.119 
AT6-AT7 -36.966 AT2*(AT6-AT7) 2.499 
~rs-AT9 10.809 

Fig. 2. The output of the regression analysis from SYSTAT 5.0 
(spindle thermal drift in the x-direction). 

were measured and analysed. Figure 6 shows the measured 
positioning errors of the y-axis under different machine 
thermal conditions. It is shown that the y-axis positioning 
errors depend not only on the machine temperatures but also 
on the y-axis position. 
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The time-invariant geometric component should be separ- 
ated from the time-variant thermal component in order to 
use equation (2) to model these position-dependent thermal 
errors. As described in Section 2.2, the thermal component 
influences mainly the slope variation of the position-dependent 
thermal errors. The thermal status under the cold machine 
condition was taken as the reference status. The positioning 
errors in this thermal status were treated as "pure" geometric 
components. When the machine was warming up, the increase 
in the measured positioning errors, as compared with the 
geometric components, was treated as the contributions due 
to thermal error components. The geometric components, fg 
(x, y, z)  in equation (2), was modelled by a polynomial 
function as follows: 

fg(x,y,  z) = 2.424 z 10 -4 + 3.096 x 10 - 4  

y - 3 . 5 7 1  x 10-6y 2 + 1 . 4 7 4  x 10-Sy 3 

- 2.662 x 10-11y 4 + 1.738 X 10-J4y s (6) 

To model the thermal error components, 51 sets of the 
slope variations of the y-positioning errors associated with the 
5 temperature measurements (AT1, AT3, AT4, AT6-ATs, 
AT7-AT9) shown in Table 2, were collected. A second-order 
regression model with 20 unscreened coefficients was selected 
as the initial empirical model for the slope variations of the 
thermal positioning errors of the y-axis. After the stepwise 
regression analysis, the screened model contained only 4 
coefficients as follows: 

kl(t) = 0.465'AT3 + 2.705"AT4 (7) 
+ 3 . 6 7 5 " ( A T 6  - ATs)  - 5 . 5 8 9 " ( A T 7  - 5 T 9 )  

where kl(t) is the slope of the positioning error curve, as in 
equation (2). Note that the stepwise regression analysis 
suggested that there was no need to use higher-order and 
cross-product terms for modelling the y-axis positioning errors. 

Substituting equations (6) and (7) into equation (2), the 
position-dependent thermal errors of the y-axis positioning 
accuracy were represented by the following model: 
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Fig. 3. The MRA curve-fitted result of the spindle drift in the x-direction. 
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Fig. 4. The M R A  curve-fitted result of the spindle drift in the y-direction. 
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Fig. 5. The M R A  curve-fitted result of the spindle drift in the z-direction. 
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Fig. 6. The thermal variations of the y-positioning error. 
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Fig. 7. The M R A  curve-fitted result of the slope variation of the y- 
positioning error. 

Figure 7 compares  the exper imental ly  measured  slopes of 
the y-axis posit ioning errors  and predicted slopes. I t  shows 
that  the mult iple regression analysis can closely fit the posit ion- 
dependent  errors during both the machine warm-up and cool- 
down cycles. 
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4. Artificial Neural Network (ANN) 
Approach 

4.1 Principle of the ANN for Thermal Error 
Component Modelling 

An artificial neural network consists of two basic elements: 
the artificial neurons which process input information and the 
network which connects the artificial neurons. The artificial 
neuron receives a set of inputs and presents an output to 
other neurons. As shown in Figure 8, each input is multiplied 
by a corresponding weight. All of the weighted inputs are 
then summed and added to a threshold to determine the 
activation level of the neuron. That is, 

NET = XlWl  + x2w2 + .  • • + XnWn + th (9) 

where NET = summation of weighted inputs and threshold 

xl, x2 . . . . .  xn = input signals received by an artificial neuron 

wl, w2, . . . ,  w~ = weights 
th = threshold 

The weighted and combined inputs are further processed 
by an activation function F to produce a nonlinear transform- 
atJion of the inputs into the neuron's output. A "sigmoid" 
(meaning S-shaped) function is chosen as the activation 
function. This function is expressed mathematically as F ( x )  

= 1/(1 + e-x). Thus 

1 
OUT = F(NET) - (10) 

1 + e -NET 

The sigmoid function has the important characteristic that 
it can adjust its gain automatically. For small signals the 
sigmoid function produces a high gain. As the magnitude of 
the signals become greater, the gain decreases. In this way, 
small signals are allowed to pass through without excessive 
attenuation if they are able to produce a usable output, while 
large signals can be accommodated by the network without 
saturation. 

A multiple-layer feedforward network (usually called the 
multi-layer perceptron, MLP) is used to connect the artificial 
neurons. This kind of ANN has the architecture shown in 
Fig. 9. Its input layer is the input buffer for the temperature 
measurements of the machine and the output layer is the 
output buffer for the machine thermal errors. Layers between 
the input and the output buffers are called hidden layers. The 
functions of the hidden layers are to perform feature extraction 
and noise suppression between the input temperature measure- 
ments and output thermal errors. Although there can be more 

threshold. 

~ ~ I A L ~  

Fig. 8. The architecture of an artificial neuron. 

F(NET) 

x . - - - ~ C Y  ~ ~ ouT m 
input layer hidden layer ouput layer 

Fig. 9. A three-layer feedforward ANN for thermal error modelling. 

than one hidden layer of an MLP, it has been shown that 
any nonlinear function between the inputs and the outputs 
can be mapped with one single hidden layer if the number 
of nodes in the hidden layer is sufficiently large. 

For a multiple-layer perceptron ANN, the nonlinear and 
interaction characteristics of the thermal errors were rep- 
resented in the form of connecting weights between neurons 
which were obtained through a supervised backpropagation 
training algorithm [9]. Supervised training requires the training 
pairing of each input vector with a target vector representing 
the desired output. Usually a network is trained by a number 
of such training pairs. The training pairs should include all 
of the patterns of an application if possible. When an input 
vector is applied, the output of the network is calculated and 
compared with the corresponding target vector. The error 
between the network output and the target is then fed back 
through the network to adjust the weights. The training is 
iterated until the error of the entire training set reaches an 
acceptably low level. 

4.2 Modelling Scalar Error Using the ANN 

The spindle thermal drifts mentioned in Section 3 were 
modelled again using the ANN technique. A 9-input 
(temperatures) and 3-output (thermal error components) 
multilayer perceptron ANN was used for the spindle thermal 
drifts in all three directions. 

For network training, two important parameters should be 
determined: the number of hidden nodes and the learning 
rate (i.e. updating rate for the weights at every iteration). 
Too few hidden nodes probably will not allow the ANN to 
be trained well. However, too many hidden nodes will increase 
the difficulty of training and it usually tends to memorise 
everything including the noise. A small learning rate will 
increase the training time, but a large learning rate tends to 
make the training process oscillate or diverge. 

In order to determine the necessary number of hidden 
nodes, several ANNs with different numbers of hidden nodes 
were trained. The results showed that for node number 
greater than 20, the performance of the network did not 
improve further. Therefore, an ANN with a 9-20-3 structure 
(9 input nodes, 20 hidden nodes, and 3 output nodes) was 
selected for the empirical model of the spindle thermal drifts. 
The learning rate was started at a large value of 0.5, but was 
continuously decreased during the iterative training so as to 
achieve a compromise between training speed and conver- 
gence. 
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Because the output value of the sigmoid function is between 
0 to 1, all of the input and target vectors have been normalised 
between 0.1 to 0.9. Normalising input patterns can be done 
in two ways, by normalising all of the input channels to a 
same factor or by normalising each input channel separately. 
The latter has the advantage of fully utilising the signals of 
every channel, but separate normalisation may also distort 
the relationships between inputs and cause more training time 
to be spent for recovering them. The former avoids the 
drawbacks of the later, but may not be trained as well as the 
latter in cases where some usable but small-magnitude channels 
are suppressed by a channel with a large magnitude. 

It was found that normalising each channel separately gave 
better convergence accuracy than normalising all channels to 
the same factor for the spindle thermal drift prediction. The 
reason is probably that among the input temperatures, the 
spindle housing temperature is far larger than the machine 
column and leadscrew temperatures. Therefore, the tempera- 
ture measurement of the spindle suppressed other temperature 
measurements when all channels were normalised to the same 
factor. 

There are also two ways to update the weights: the pattern 
update algorithm (updating the weights per pattern passed) 
or the batch-update algorithm (updating the weights after all 
patterns in a training set are passed). Currently, there is no 
conclusion as to which algorithm is superior. It was found in 
this research that the pattern update algorithm gave a faster 
learning rate and smaller converged errors than the batch- 
update algorithm for the spindle thermal drift prediction. 

The training was done on a Macintosh IIx computer. The 
initial weights of the network were randomised between -0 .3  
and 0.3. A relatively long training time was required to 
converge the errors to an acceptably low level. The averaged 
absolute errors after training were 6.5/xm, 4.2/~m and 6.0/zm 
in the x-, y- and z-directions, respectively. When compared 
with the errors using the MRA (8.9 ~m, 3.8/xm and 6.9 p,m 
in the x-, y- and z directions), the results were very close. 
Figures 10-12 compare the measured experimental data and 
the calculated output from the ANN model. 

4.3 Modelling Position-Dependent Error Using the 
ANN 

The 51 data sets of the y-axis thermal positioning errors were 
analysed again using the ANN technique. An ANN model 
with a 5-8-1 structure was used to establish the empirical 
model of the slope of the y-axis thermal positioning errors. 
Figure 13 compares the experimental results against the 
predictions using the model. It shows that the ANN can also 
fit the position-dependent thermal errors. 

5. Performance Comparisons 

Comparisons of the MRA and the ANN approaches were 
made from the following aspects: 

1. The prediction accuracy for new observations. 

2. Noise resistance robustness. 

3. Fault tolerance. 

5.1 Prediction Accuracy for New Observations 

New observations of the spindle drift in the z-direction were 
collected from two tests. In the first test, the spindle was run 
continuously at a constant spindle speed of 1250 r.p.m, for 
six and half hours until it was thermally stabilised and then 
it was stopped to coot down. In the constant spindle speed 
test, the temperature field of the machine was continuously 
increased and then decreased. This test simulates cases for 
which several hours of continuous machining, inspection and 
set-up time are required, such as in the machining of large 
workpieces. 

The second test was conducted at a random spindle speed. 
The machine was initially run at a constant spindle speed for 
30 min and stopped for 15 rain. Then, the machine was set 
at another spindle speed and the same test cycle was repeated. 
The test was continued over 8 hours and the changes of the 
spindle speeds were selected randomly. The temperature field 
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Fig. 13. The predicted and experimental results of the slope variation 
of the y-axis positioning errors. 

of the machine fluctuated during the test. This test simulates 
cases with relatively short machining and set-up times. 

Figures 14 and 15 compare the experimental data and 
predicted results using the MRA and the ANN approaches. 
They show that these two approaches are competitive and 
can predict the new observations almost equally welt under 
varying spindle speeds and temperature history. 
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Fig. 14. The spindle thermal drift in the z-direction (1250 r.p.m.). 

5 . 2  N o i s e  R e s i s t a n c e  R o b u s t n e s s  

For the comparison of the noise resistance robustness, a 0.4°C 
noise level was added to all temperature measurements during 
the 1250 r.p.m, constant spindle speed test. This noise level 
was chosen because it included most noise levels of the 
temperature measurement system. Figure 16 shows that both 
approaches can predict well the spindle thermal growth under 
the 0.4°C noise level. 
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Fig, 16. The noise effect in the z-spindle thermal drift (1250 r,p.m.). 

5.3 Fault Tolerance 

To compare the fault tolerance of the MRA and the ANN 
approaches, the temperature rise at the spindle, one of the 
most important temperature measurements, was cut off. 
Figure 17 compares the experimental data and the modelling 
results of the spindle drift in the x-direction using the MRA 
and the ANN approaches. It clearly shows that the ANN has 
better fault tolerance capability than the MRA approach. The 
increased fault tolerance of the ANN is probably due to the 
fact that the output of every neuron in an ANN is the 
combination of various inputs. Therefore, a hardware failure 
in one of the thermocouples is not usually catastrophic, 
because the other inputs can still stimulate a percentage of 
output. 
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Fig. 17. Comparisons of the fault tolerance capabilities of the MRA 
and the ANN approaches. 

6 .  C o n c l u s i o n s  

1. Some thermal volumetric error components are not only 
time-variant but also position-dependent. A strategy for 
formulating both the scalar and position-dependent error 
components is proposed. The major advantage of this new 
modelling strategy is that it greatly reduces the number of 
empirical models needed to predict the position-dependent- 
errors. It can also accommodate the non-rigid body 
kinematic effects and nonlinear properties. 

2. The multiple regression analysis and multiple-layer per- 
ceptron neural network approaches have been applied for 
the real-time prediction of thermal errors. Both approaches 
adopt a multi-input method to accommodate the different 
thermal time constants of the various machine elements. 
The test results have shown that both models can predict 
well the new observations of thermal errors under varying 
spindle speeds and varying temperature history. 

3. Both approaches use a computerised algorithm to automati- 
cally search for the nonlinear and interaction terms of the 
multiple temperature measurements in an empirical model. 
In the MRA approach, the stepwise regression analysis is 
proposed to select the higher-order and cross-product terms 
of temperature measurements based on statistical criteria. 
For the ANN approach, the nonlinear and interaction 
characteristic is recognised by a supervised backpropagation 
learning procedure. 

4. Comparisons of the MRA and ANN approaches showed 
that their prediction accuracy for new observations was 
competitive. They both produced good predictions for new 
observations when a 0.4°C noise level was added to 
temperature measurements. In terms of the fault tolerance 
capability, the ANN was better than the MRA when one 
of the temperature measurements was cut off. 

5. The proposed approaches have been implemented in a 3- 
axis horizontal machining centre [6]. Evaluated by an HP 
laser interferometer measurement system, the machine 
accuracy has been improved by a factor of ten. Also, the 
CMM inspection of a cut aluminium workpiece has shown 
that dimensional errors owing to the thermal expansions 
of the y-axis are reduced from 92.4/xm to 7.2/zm and the 
depth difference of milled surfaces owing to the spindle 
thermal growth is reduced from 196/xm to 8/zm. 
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