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Abs t r ac t  When elastic structures are subjected to dynamic 
loads, a propagation problem is considered to predict structural 
transient response. To achieve better dynamic performance, it is 
important to establish an optimum structurM design method. Pre- 
vious work focused on minimizing the structural weight subject to 
dynamic constraints on displacement, stress, frequency, and mem- 
ber size. Even though these methods made it possible to obtain 
the optimal size and shape of a structure, it is necessary to obtain 
an optimal topology for a truly optimal design. In this paper, the 
homogenization design method is utilized to generate the optimal 
topology for structures and an explicit direct integration scheme is 
employed to solve the linear transient problems. The optimization 
problem is formulated to find the best configuration of structures 
that minimizes the dynamic compliance within a specified time 
interval. Examples demonstrate that the homogenization design 
method can be extended to the optimal topology design method 
of structures under impact loads. 

1 I n t r o d u c t i o n  

In the past, most efforts in the field of optimal design of 
structures have focused on solving optimum structural prob- 
lems for static loads. Many problems, however, require a 
dynamic analysis to predict the displacement and stresses 
in the structure. Compared to static load problems dealing 
with the steady state response, the dynamic load problem 
is concerned with the transient response, which depends on 
an additional parameter--time. The optimal design problem 
of elastic structures under dynamic loads has received little 
attention due to complexities associated with the dynamic 
load. However, many techniques developed for the static load 
problems can be used to solve the dynamic load problems. 

When elastic structures are subjected to dynamic loads, 
their shape and topology determine the dynamic character- 
istics of structures such as dynamic displacement and stress 
concentration. Thus, it is important to establish an optimal 
design method to generate structures which produces better 
dynamic performance. Therefore, the challenge is to apply 
the homogenization design method to a structural topology 
design problem subjected to dynamic loads. 

One of the earliest works on structural optimization un- 
der dynamic loads can be found in the paper by Fox and 
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Kapoor (1970). They formulated the minimum weight de- 
sign problem of frame structures subject to base motion and 
constraints on dynamic stresses and displacements, and ob- 
tained the solution by using a mathematical programming 
approach. A literature survey of optimal structural design 
under dynamic constraints was presented by Pierson (1972). 
In this review, dynamic constraints are classified as con- 
straints on structural frequencies and on quantities directly 
related to the dynamic response. The optimal design of struc- 
tures subjected to dynamic loads was undertaken by Cassis 
and Schmit (1976) for minimum weight design of orthogo- 
nal planar frames. In this work, time-dependent dynamic 
response quantities were included in the problem using the 
approximation concepts, and the disjoint nature of the feasi- 
ble region in the design space was discussed. The optimum 
structural design for dynamic response constraints was pre- 
sented by Yamakawa (1984), in which the dynamic response 
peaks were considered as the objective function. To deal 
with large-scale mechanical and structural systems subjected 
to dynamic loads, Chahande and Arora (1994) applied the 
multiplier method to a large-scale dynamic response struc- 
tural optimization problem. An augmented Lagrangian was 
constructed to treat all the constraints and the cost func- 
tion as one equivalent functional to be minimized, which re- 
sults in significant savings in computational efforts. Previous 
work focused on minimizing the structural weight subject to 
dynamic constraints on displacement, stress, frequency, and 
member size. Even though these methods made it possible 
to obtain the optimal size and shape of a structure, it is 
necessary to obtain an optimal topology for a truly optimal 
design. 

In this paper, the homogenization design method is uti- 
lized to generate the optimal topology of structures subjected 
to impulsive-type dynamic loadings. A finite element model 
of the structural response is employed to solve the linear dy- 
namic problem since analytical methods for dynamic analy- 
sis and design are impractical. An explicit direct integration 
scheme with the central difference method is implemented to 
solve the linear transient structural analysis because the in- 
terest lies in the dynamic response within a very short period. 
The optimization problem is formulated to find the material 
distribution that minimizes the mean dynamic compliance 
of a structure within the specified time interval subject to 
the total mass constraint, size and orientation design vari- 
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Fig. 1. Design domain and microstructures 

Fig. 2. Unit cell of a two-dimensional microstructure 

able constraint, and the equilibrium equation. The optimal- 
ity conditions are derived based on the optimality criteria 
method associated with the sensitivity analysis. The two- 
dimensional as well as the three-dimensional plate and shell 
design problems are illustrated to substantiate this approach. 

2 H o m o g e n i z a t i o n  des ign  m e t h o d  

The homogenization design method (e.g. Bendsoe and 
Kikuchi 1988; Bendsoe 1989) entails finding the optimal ma- 
terial distribution within the elastic design domain while the 
criterion and constraints are satisfied. As shown in Fig. 1, 
the design domain ~ is composed of a porous material con- 
taining infinitely many microstructures, and the amount of 
material available is specified. In the design domain, bound- 
ary conditions are given and loading conditions, including the 
body force f and the traction t on the boundary c9s are ap- 
plied. The porosity of a microstrueture is represented by a 
rectangular hole in a microstructure. A microstructure is 
classified as the void which contains no material (hole size = 
1), the solid medium which contains isotropic material (hole 
size = 0), and the generalized porous medium which contains 

orthotropic material (0 < hole size < 1). The distribution of 
void, solid, and porous microstructures indicates the shape 
and topology of a structure. 

A unit cell of a two-dimensional microstructure shown in 
Fig. 2 includes a rectangular hole of width 1 - a and height 
1 - b. The orientation of the material axes represents the 
rotation of the mierostructure. The design variables are the 
size of the hole D = {a,b} and the orientation of O = {0} 
the mierostructure. The mass density of a microstructure is 
defined as p = PO (a  + b - ab) where P0 is the mass density of 
the isotropic material. Figure 3 illustrates a unit cell of three- 
dimensional plate and shell microstructures. The unit cell 
consists of an isotropic base plate of thickness h 0 and two or- 
thotropic reinforcement plates of thickness h 1 - h 0 with rect- 
angular holes. The size and rotation angle of the holes in the 
two reinforcement plates should be the same to avoid the cou- 
pling effect of bending and membrane deformation. The plate 
and shell model is developed using classical lamination the- 
ory which does not consider transverse shear deformations. 
Also, the structure of this element is approximated to be flat 
by means of projection onto the x -  y plane, in order to avoid 
the curvature effect. Thicknesses h 0 and h 1 are specified and 
the design variables are the same as in the two-dimensional 
problem under the plane stress assumption. If P0 is the mass 
density of the isotropic material, the mass density of a mi- 
crostructure is defined as p = p0[h0 + (a + b - a b ) ( h  1 - h0) ]. 

Since the porosity is different over the design domain, 
the theory of homogenization is employed to evaluate equiv- 
alent elastic material properties of microstructures (Guedes 
and Kikuchi 1990). In homogenization theory, a structure 
is assumed to be composed of periodic microstructures, and 
the equivalent material properties are estimated by a limit- 
ing process that involves diminishing the microscopic size. In 
addition, the orientation of material axes must be considered 
to define materiM properties. Thus, elastic material prop- 
erties of a structure can be defined by the dimensions and 
orientation of microstruetural holes. During the optimiza- 
tion process, microstructures are changed between the void 
and the solid. This implies that  material can be moved from 
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Fig. 3. Unit cell of a three-dimensional plate and shell microstructures 

one part of the structure to another if the total amount of 
material available is specified. Thus, the optimal shape and 
topology design of structures can be regarded as finding an 
optimal material distribution within a prescribed admissible 
structural domain. 

3 L inea r  d y n a m i c  p r o b l e m  

The equations of equilibrium governing the linear dynamic 
response of a system of finite elements can be written as 

M i i §  C u  + K u  = F( t ) ,  ( i) 

where M, C and K are the mass, damping, and stiffness 
matrices, respectively; F(t)  is the time-varying external load 
vector; and u, u, and ii are the displacement, velocity, and 
acceleration vectors of the finite element assemblage, respec- 
tively. The procedures for the solution of the linear dynamic 
system can be divided into two methods: direct integration 
and mode superposition. In direct integration, the problem 
is solved by integrating the system of ordinary differential 
equations directly based on the appropriate finite difference 
approximation using a numerical step-by-step procedure. In 
mode superposition, the problem is solved by using eigenval- 
ues and eigenveetors of the generalized free vibration problem 
defined by a reduced set of the basis functions. There is a 
concern about the reduced basis approximation since the re- 
sponse depends on the number of modes included in the mode 
superposition method. In this work, impact phenomena on 
structures are of interest and the linear transient response is 
obtained by using the direct integration method even though 
this method requires large computational effort. 

The finite difference method for direct integration of a 
dynamic equilibrium equation can be categorized as explicit 
or implicit. In the explicit integration scheme, updated dis- 
placement vectors are determined in terms of completely his- 
torical information consisting of displacements and their time 
derivatives at the previous time step. It needs less core mem- 
ory compared to the implicit scheme, but it is conditionally 
stable so that  a small time step is required. This scheme is 

suitable for transient response problems of a structure rather 
than quasi-static and static problems. In the implicit integra- 
tion scheme, computation of updated displacements requires 
information about the time derivatives of the updated dis- 
placement, which is unknown. It is unconditionally stable 
and has no restriction on the time step size other than as 
required for accuracy. But it is too expensive to solve large 
scale problems since we have to compute all matrices at each 
time step. It is considered that  the explicit scheme is more 
practical in terms of the computational efforts than the im- 
plicit scheme in the case of the impact problem. 

Here the central difference method is adopted as an ex- 
plicit direct integration scheme because we are interested 
in the dynamic response within a very short period (Bathe 
1996). It approximates velocity and acceleration by expand- 
ing Un+ 1 and Un_ 1 in Taylor series about time tn as 

1 
u~ = ~ST (Un+l - U n _ l ) ,  (2) 

and 

1 
iin ---- ~ (Un+ 1 -- 2Un q- Un_ l )  . (8) 

The displacement solution for time tn+ 1 is obtained by con- 
sidering (1) at time tn 

Miin + C u n  + K u n  = Fn( t ) .  (4) 

Substituting the relations for fin and iin in (2) and (3), re- 
spectively, into (4), we obtain 

+ 1 C = 

2 M U n -  1 C Un_ 1 

from which we can solve for Un+ 1 . It should be noted that the 
solution Un+ 1 is based on using the equilibrium conditions 
at time tn. If the Rayleigh damping, which is of the form 

C = a M  + i lK,  (6) 
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Fig. 4. Flow chart of the optimization procedure 

is assumed, (5) can be written as 

1 + ~ - ~  M + ~ - ~  U n +  1 = 

2 M U n -  

[( ]'/~t 2 2~tO~ ) M- ~tK] Un-l' (7) 
where a and fl are constants to be determined from two given 
damping ratios that  correspond to two unequal frequencies 
of vibration. 

Meanwhile, if a lumped mass matr ix  is assumed and the 
damping is neglected, then (5) can be reduced as 

1 M 

f ] 

1 

-X 

t i t f  t 
/ 

(b) case 2: sinusoidal function 

Fig. 6. External force profiles. (a) case 1: step function; (b) case 
2: sinusoidal function 

_ 2 M U n -  1 M U n _  1 F n - ( K  j ) ( ' ~ )  . (8) 

Therefore, the procedure to solve the displacement for time 
t n +  1 will be effective because only matr ix  multiplications are 
required without factorizing a matrix.  

A consideration in the use of the central difference scheme 
is the stability because the integration method is condition- 
ally stable, which means the time step should be smaller than 
a certain value, usually called the stability limit. Here the 
t ime step is determined in a practical sense by 

At ~ Lmin 
Cd , (9) 
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Fig. 7. Optimal structural layouts of case 1 
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Fig. 8. Displacements in the optimization process (tf = 5 ms) 

where Lmi n is the smallest lateral length in finite element 
mesh and C d is the dilatational wave speed of the material 
defined as 

Cd = ,~/A-+ 2~ (10) 
V P 

Here A and ~ are the Lain6 constants, and p is the mass 
density. 

A numerical step-by-step procedure using the central dif- 
ference method ican be summarized as follows. 

�9 Form stiffness matrix K, mass matrix M, and damping 
matrix C. 

�9 Initialize displacement u0, velocity riO, and acceleration 
ii 0 . 

r 

10 4 , 

10 3 

102~ 

101 
0 

-----o-- l m s  
+ 5 ms 

10ms 

0 0 0 0 ' 0 O 

i 

2 '* 6 8 10 
Number of iterations 

Fig, 9. Convergence history of the 2D problem 

�9 Select the time step At. 

�9 Calculate u_  1 = u 0 - At/t 0 + At2ti0/2. 

�9 Calculate the right-hand-side of (5) at time tn. 

�9 Solve (5) for displacements at time tn+ 1. 

4 Opt imiza t ion  problem 

The design goal of the optimization problem is to find the ma- 
terial distribution that minimizes the mean dynamic compli- 
ance of the structure under the dynamic loadings. The mean 
dynamic compliance of the structure during the time interval 
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Fig. 10. Optimal structural layouts of Case 2 
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Fig. 11. Design domain of the plate problem 

from the initial time t i to the final time t f  can be defined as and the side constraint 

tf 
Cd =/uTF(t) dt. 

ti 

(ii) 

Thus, the optimization problem can be formulated using the 
finite element notion as follows. 

Determine D and 69 for a prescribed amount of material 
~2s that 

Nt Ndof 
man f = E E u T F i A t  
D,O i=1 i=1 

(i2) 

subject to the total mass constraint 

N 

= E p i [ 2 i  - 22s <_ O, g 

i=1 
(la) 

o < 4 -< < d? < (14) 

including the equations of equilibrium. The design domain is 
discretized by N finite elements which result in Ndo f degrees 
of freedom and the number of time steps Nt is determined 
for the given time interval. Based on the finite element for- 
mulation, F i (the load vector of nodes in the i-th element) 
can be derived, and u i (the displacement of nodes in the i-th 
element) can be obtained by the linear dynamic analysis; Pi 
and l? i stand for the mass density of a microstructure and 
the volume of the i-th element, while d~ and d u represent 
the lower and the upper values of the size design variable, 
respectively. 

Introducing a shift parameter p, necessary conditions for 
the optimality of design variables in the described optimiza- 
tion problem can be derived by defining the Lagrangian func- 
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Fig. 12. Optimal structural layouts of the plate problem 
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Fig. 13. Convergence history of the plate problem 

tion 

-AT d 

L = ( f -  #g)+ F g + E [e~[ (dgi- di) + a u (d i - d~)] ,(15) 
i=1 

where the shifted Lagrange multiplier/~ implies/~ =/~+_P; F, 
c~f, and c~ are Lagrange multipliers of the constraints, and 
N d stands for the number of size design variables (N d = 2N 
for 2D, plate, and shell problems). Stationarity of L with 
respect to design variables requires that 

cOg ) - cOg g u cOL cO f - #-6<{ + + o 

for i =  1 , . . . , N d ,  (16) 

OZ Of 
COOl -- O0 i - -0 ,  for i =  1 , . . . , N 0 ,  (17) 

Fig. 14. Design domain of a box structure reinforcement 

where N o stands for the number of orientation design variable 
(N o = N for 2D, plate, and shell problems), and complemen- 
tary conditions. If the side constraint is inactive, that is, the 
size design variable belongs to the region between the lower 
and upper bounds, the multipliers cY! and ct u should be zero 
to satisfy the KKT conditions. Thus, (16) can be rewritten 
a s  

1 ( 0f/0g  e 
e l =  ~ ] z - ~ / / , ~ / / ]  = 1 ,  for d i <_d i<_d?, (18) 

where e i is the effectiveness of the /-th design variable, and 
if the structure is not in the optimal stage, the effectiveness 
will be not equal to one. Here, the shift parameter is chosen 
to make the effectiveness positive, and multiplier/~ is deter- 
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mined by making the total  mass constraint active. Therefore, 
the size design variables can be updated based on the modi- 
fied optimality criteria method as follows: 

{ df if < _ d f  

= if 4 < _< 
d? if _< 

(19) 

where d/k is the design variable in the k-th iteration, d/k+l the 

updated design variable, and r] a weighting factor; e/k is the 
effectiveness of the i-th design variable in the k-th iteration. 
Finally, the angle of rotation O should also be updated, using 
that  the axes of or thotropy should align with the axes of 
principal stresses (Pedersen 1989). 

The updating scheme for design variables requires the 
sensitivity information. The following sensitivity analysis is 
based on the hypothesis that  the damping is neglected and 
a lumped mass matr ix  is considered. The sensitivity of the 
objective function at t ime tn can be written as 

0 (UnTFn) = 0 (unTMun + U n  T g u n )  : 

OuT T O M  .. u T  Ofin 
Od i M i i n + U  n od~Un + n M ~ /  + 

(20) Oun T OK unTKOUn 
Od i K u n  d- UnT~/Un + Od i . 

Once the acceleration sensitivity te rm is obtained by differ- 
entiating the equations of motion at t ime tn with respect to 
design variable as 

Ofin OM .. OK OUn (21) 
M - u n  - - I (  

the sensitivity of the objective function at t ime tn can be 
reduced as 

(22) 
0 OuT 

- -  = Od i ~ i  K u n  , 

and the displacement sensitivity becomes the only unknown 
variable in the sensitivity analysis. 

The displacement solution for t ime can be written as 

a 0 M u n +  l = Fn - (K - a l M ) U n  - a l M U n _ l  , (23) 

where a 0 = 1~At 2 and a 1 = 2a 0. Differentiating (23) with 
respect to design variable d i yields 

OUn§ 1 OM 
a0M ~ /  - a 0 - ~ / ( - U n + l  d- 2Un - Un_l )  - 

OK SUn OUn_ 1 (24) 
- ( g  - a l M ) - ~ /  - a0M Odi un Od----~ 

Thus, the sensitivity of the objective function can be evalu- 
ated by plugging the solution of (24) into (22). 

The overall procedure for the design optimization is illus- 
trated in Fig. 4. In the optimization process, equations of 
motion and the sensitivity equations need to be integrated 
over time. This is an important  step because most of the 
computat ional  t ime is spent in numerical integration of these 
equations. 

Table 1. Design improvement 

Initial design Reinforcement design 

Internal energy 2 0.5 
(kN mm) 
Kinetic energy 0.7 0.3 
(kN ram) 

5 N u m e r i c a l  e x a m p l e s  

The optimal  topology design method which considers dy- 
namic loadings is applied to the simple two-dimensional plane 
and three-dimensional plate problems to demonstrate the fea- 
sibility of this method. For the practical application, the rein- 
forcement design problem is considered for a box-type struc- 
ture under the drop test. In these examples, the material 
properties of the isotropic material  are assumed as follows: 
Young's modulus E = 100 N / r am 2, Poisson's ratio u = 0.3, 
and density P0 = 7.85 • 10 - 6  k g / m m  3. 

5.1 Example 1: two-dimensional plane problem 

In this simple example, the rectangular area f2 shown in Fig. 
5 is considered as the structural  design domain in which the 
material  will be distributed. The design domain is discretized 
by 16 x 10 QUAD4 finite elements and the impulsive-type 
dynamic loading is applied at the centreline of the top end. 
Two different kinds of dynamic load cases shown in Fig. 6, 
the step function and the sinusoidal function, are applied 
to investigate the difference. Using the amount of material  
S2s = 0.4Y2, the optimization algorithm converges to the dif- 
ferent solutions according to the different integration times 
(1 ms, 5 ms, 10 ms, respectively). When the dynamic loading 
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(a) f2 s = 0.25f2 (b) ~s  = 0.30f2 

Fig. 16. Optimal reinforcement design (t s = 5 ms) 

(a) ~s  = 0.25f2 (b) f~s = 0.30f~ 

Fig. 17. Optimal reinforcement design (tf = 10 ms) 

is assumed as the step function (case 1), optimal layouts of 
the structure are shown in Figs. 7a-c. These layouts are com- 
pared to the one shown in Fig. 7d generated from the optimal 
topology design problem for the static loading. It is noted 
that the optimal layout predicts the propagation of displace- 
ments and stresses in the structural domain. It is also shown 
that as the integration time increases, the optimal layout be- 
comes similar to the one for the static loading, which implies 
the transition of the problem from the transient response to 
the steady state response. Figure 8 shows the history of the 
displacements at the location of A, B, C, D and E during 
the optimization process when the integration time is 5 ms. 
It is seen that the displacements is reduced throughout the 
optimization, which implies the objective function tends to 
be minimized. Figure 9 illustrates the convergence history 
of the objective function, and it is; observed that  very fast 
convergence is achieved in this problem. In the case of the 
sinusoidal dynamic loading (case 2)~ similar optimal layouts 
are generated as shown in Figs. 10a-c. When compared to 
the static loading problem shown in Fig: 10d, it is shown 
that the optimal topology design under the time-varying dy- 

namic loads can produce the structural layout which predicts 
the propagation of the transient response. 

5.2 Example 2: three-dimensional plate problem 

A square plate simply supported at four corners shown in Fig. 
11 is considered to be reinforced under the dynamic loading. 
The design domain ~2 is discretized by 100 (10 x 10) QUAD4 
finite elements and the impulsive load same as Fig. 6a is ap- 
plied at the centre of the plate. The thickness of the base 
plate is assigned to 0.1 and the total thickness is set to 0.5. 
Initially the design domain is assumed as uniform porosity 
of microstructures with 0.8 x 0.8 hole inside and no rotation. 
Using the amount of material ~2s = 0.4~2, the optimization 
algorithm distributes the material to minimize the dynamic 
compliance. Figures 12a-c show that the material distribu- 
tion for reinforcement converges to the different solutions de- 
pending upon the different integration times (1 ms, 5 ms, 10 
ms, respectively), and Fig. 12d shows that  optimal topology 
design for the static loading. It is noted that  the propagation 
of the deformation of a structure under time-varying loads 
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(a) ~ a l  de s i~  Co) reinforcement ~ i g n  

Fig. 19. Practical design based on the topology optimization 

can be predicted based on the optimal topology design. The 
convergence history of the dynamic compliance is illustrated 
in Fig. 13 with different integration times 

5.3 Example 3: box structure reinforcement problem 

A box case structure shown in Fig 14 is reinforced to min- 
imize the dynamic compliance associated with the impact 
loads. The design domain is discretized into 2,326 four- 
node quadrilateral elements and 2,521 nodes. The time step 
is 5.08 x 10 -6  calculated based on the finite element size. 
The drop test is simulated by the commercial software PAM- 
CRASH and the reaction force on the rigid wall with respect 
to time is shown in Fig. 15. These data are used to evaluate 
the response of the linear dynamic system. To deal with such 
a large-scale model efficiently, it is assumed that the inertia 
effect is so small enough to be neglected in the sensitivity 
analysis. Figure 16 shows the optimal reinforcement of the 
structure with different volume constraints considering the 
response during 5 ms. It is seen that the material is dis- 
tributed to the side of the base panel and the left panel, in 
which impact loads are applied, as the amount of material is 
increased. The optimal reinforcement design is proposed as 

shown in Fig. 17 when the integration time is extended to 10 
ms with the same configuration. It is seen that the material 
tends to be concentrated to the part where impact loads are 
applied. The convergence history of both the objective func- 
tion and the constraint in the case of t f  = 5 is illustrated in 
Fig. 18. The optimal layout generated by the homogenization 
design method plays an important role to provide the design 
guideline at the concept initiation stage. Fig. 19 illustrates 
the initial design and the reinforcement design based on the 
optimal topology. Table 1 shows the performance improve- 
ment not only in the internal energy but also in the kinetic 
energy. 

6 Conclusions 

The homogenization design method extends its application to 
the optimal topology design of structures under time-varying 
dynamic loads. To analyze the transient structural response, 
an explicit direct integration scheme is implemented using 
the finite element model. The optimization problem is for- 
mulated to find the best configuration of structural systems 
that minimizes the dynamic compliance within the specified 
time interval, subject to the available material constraint. 



218 

The updat ing scheme for design variables is derived by us- 
ing an i terative algori thm based on the opt imal i ty  criteria 
method. Results of numerical  calculations demonstra te  that  
the s t ructural  t ransient  problem can be incorporated into the 
homogenization design method.  
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