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Weighted Polynomial Approximation on the Integers 

By 

L. A. RUBEL 1) and B. A. TAYLOR 

We prove here some polynomial approximation theorems, somewhat related to 
the Szasz-Mfintz theorem, but  where the domain of approximation is the integers, 
by dualizing a gap theorem of C. l ~ Y I  for periodic entire functions. In another 
Paper [7], we shall prove, by similar means, a completeness theorem ibr some special 
sets of entire functions. 

I t  is well known (see, for example [l]) tha t  i f E  is the space of all entire functions in 
the topology of uniform convergence on compact sets, then the dual space of con- 
tinuous complex-valued linear functionals on E may  be represented as E0, the space 
of entire functions of exponential type. Now let E (1) b e the space of entire functions 
of period 1. Then it may  be shown that  the dual of E (1) can be represented as E0 (l), 
where E0(1) is the following quotient space of E0: define / ~ g for functions 1, g e E0 
i f / _  g is a multiple of sin z~z, and let E0 (l) be the space of equivalence classes of E0 
modulo this relation of equivalence. Now E0(1) is apparent ly the same space as the 
space of restrictions of functions in E0 to the integers Z. Each such restriction is 
just a two-sided sequence of complex numbers, of at  most exponential growth. Con- 
Versely, it is easy to interpolate any such sequence by an entire function of exponential 
type. Thus, the dual of E(1) is just the space of all such sequences. Actually, we 
establish this identification by  another procedure. 

To any theorem about  periodic entire functions will correspond a theorem about  
the space of sequences described above. In  [6], C. RI~NYI proved an interesting gap 
theorem, reproduced below. We show by means of duality tha t  certain theorems of 
polynomial approximation are equivalent to this theorem. The domain of approxima- 
tion is the integers in one case, and the positive integers in another ease. To our 
knowledge, the problem of polynomial approximation on the integers has not been 
Considered except in the note [3]. We know of no direct proof of our results. Ulti- 
mately, the R ~ Y I  result depends on a simple application of Rolle's theorem. I t  
Would be of interest to have more precise gap theorems than the R~NYr theorem 
and also to have direct proofs of the results we prove by means of it. 

Theorem (C. RI~NYI). Let F(z) be a periodic entire /unction such that F(O)-~ 0 
and F(n) (0) -~ 0/or n ~ N, where N is a set el positive integers o[ lower density exceeding 
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(1) 

where 

1/2, in the sense that lim in f r - lN(r )  > 1/2 as r - +  c~, where N(r) is the number o/ 
elements o / N  that do not exceed r. Then F must be the null/unction F = O. 

We shall use the following notation. Let F be the collection of all two-sided 
sequences b = {bk}, k = 0, ~ 1, J:  2, ... of complex numbers bk of at most exponen- 
tial growth; that  is ]bk] <7. A exp(B ]kl) for some constants A and B. Let if+ be 
the collection of one-sided sequences d ~ {dk}, k ~ O, 1, 2 . . . .  , of complex numbers 
dk of at  most exponential growth. I f  p is any polynomial, then P]z (respectively 
P lz§ belongs to I '  (respectively to/ '+).  We call such elements o f / '  and F+ polynomials. 

By N, we denote any collection of non-negative integers, with 0 adjoined. We shall 
stress throughout the paper that  0 ~ N. By PN (respectively P+,) we denote the 
collection of all polynomials in/~ (respectively F+) with exponents lying in N, that  is 

p ( x ) = ~ a n x  n, a n = 0  for nq~N. 

We shall he concerned with finding conditions on N such that  PN be dense in F 
(respectively that  P+  be dense in 1"+) where F a n d / ' +  are given appropriate topologies. 
The topologies we introduce are familiar from the theory of sequence spaces. Denote 
by F* (respectively F*) the collection of all sequences a = {ax}, k =  0, ~ l ,  ~-2, ... 
(respectively c :  {c~}, k--~ 0 , 1 , 2 , . . . )  such that  ~[akbk l  < oo tbr each b E I  ~ 
(respectively such thut ~[ekdk[ < c~ for each d el"+). I t  is easy to verify that 
a e 1"* if and only if l ak] ~/k --> 0 as I k] -+ 0% with a similar statement for/'*~. For 
each a e 1"*, the mapping l] Ila: i f - +  R of 1' into the real numbers R, given by 

If --  Y. I b ..I 

is a seminorm on F. The collection of all such seminorms, as a varies over F*, 
determines a locally convex topology on F, the so-called normal topology [4, p. 410]. 
A similar procedure gives a corresponding topology on F+, and we shall suppose 
from now on t h a t / '  and F+ are equipped with these topologies. We may now state 
our approximation results. 

Theorem 1. I] N has lower density greater than 1/2, then PN 'iS dense in I'. 

Theorem 2. I f  N contains a set o/ even (respectively odd) integers, o/ positive lower 
density, then P+ is dense in 1"+. 

We prove these results by showing that they are equivalent to l%~Yi'S theorem. 
We shall requirc three well-known preliminary results. 

Proposition 1. There is a linear one:one correspondence between 1"* and the collection 
o/ periodic entire/unctions o/ period 2~ i  given as/ollows. Let F(z) be such a/unction. 
Then 

o o  

F = ak 
~-oo 

(2) 

2hi  

1 / F ( z ) e  ~zdz. 
a k -  2 7 t i  . 

0 
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Furthermore, 

.so that the series in (1) converges absolutely and uniformly on every compact set. Conversely, 
/or each sequence {ak} such that (3) holds, the expression (1) defines an entire function 
o/period 2 r~ i. 

Proposition 2. The pairing o /1"  and 1"* de/ined by 

(4) <b, a t = ~ bka~, b ~ F, a e 1"* 

establishes F *  as the topological dual space o / F .  

Proposition 3. The pairing of I'+ and 1~ * defined by 

(5) <d,c>=~dkek, deP+, ceF*+ 
establishes 1~* as the topological dual space o/1 '+.  

Proposit ion 1 m a y  be found in [8, p. 361]. Proposit ions 2 and 3 are easy to verify 
and are given as an example in [4, p. 424]. We shall now prove tha t  Theorem 1 is 
equivalent to R~NY~'S theorem. From Proposit ion i, we know t h a t  an entire func- 
tion F of  period 2~ri is of  the form F(z)  - - - ~ a k  exp(kz) for some a = {ak} in F* .  
Hence 

F(~) (0) = ~ ak k'~, n = O, 1 ,2  . . . . .  
- -oo  

Using the convention t h a t  0 ~ = 1. Consequently,  R~NYI'S theorem is equivalent  to 
the tbllowing result. 

Proposition 4. Suppose that N has lower density greater than 1/2 and that 0 c N.  

o o  
l /  a = {ak} ~ F *  and if  ~ ax k"  = 0 /or each n ~ N 

- - c o  

then a k ---- 0 for k ~ O, ~ 1, :~: 2, . . .  . 

Now it  is easy to see tha t  Theorem 1 is also equivalent  to Proposi t ion 4. For  by  
the H a h n - B a n a c h  theorem, PN is dense in I" if and only if the only continuous linear 
functional o n / "  which annihilates PN is the zero functional.  B y  Proposi t ion 2, each 
continuous linear functional  L on F is of  the form L (b) ~--~ <b, a> for some a e ~* .  
Moreover, the continuous linear functional  determined by a e I ' *  annihilates P~v 
if and only ff ~ a k / c  ~ 0 for each n e N. However  a e F*  represents the zero 
functional if and only if  ak ~ O, lc = 0, _+_ 1, • 2 . . . . .  and the proof  is done. 

We shall now show tha t  Theorem 2 is equivalent  to g~z<yI 's  theorem. Our first 
Step is to deduce the following two results fl'om ~z~Yz ' s  theorem. 

Proposition 5. I1 F is an even periodic entire function and if F (n) (0) -~ 0 for every n 
in a collection N o/ even nonnegative integers, with 0 e N,  such that N has positive 
tower density, then F must be the nu l l /unc t ion  F = O. 

Proposition 6. I l F is an odd periodic ent ire/unct ion,  and i / F ( n )  (0) = 0 for each 
n in a collection N of odd nonnegative integers, such that N has positive tower density, 
then F must be the nul l /unc t ion  F -~ O. 
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These results follow easily f rom the R ~ Y I  theorem since the union of  the odd 
(respectively even) positive integers with a set of even (respectively odd) integers 
of  positive lower densi ty mus t  have lower densi ty exceeding 1/2. Now Proposi t ion 5 
und Proposit ion 6 together  imply  R]~NYI'S theorem as we see on writing F ~ F1 -~ F~ 
where Fl (z)  ~- �89 + F ( - - z ) ) ,  F2(z) • �89 (F(z) - -  F ( - - z ) ) .  We now prove tha t  
Proposit ion 5 is equivalent  to Proposit ion 7 below and t h a t  Proposit ion 6 is equi- 
valent  to Proposi t ion 8 below. 

Proposition 7. I / c  ~ (Ck} belong.s to F+ and i/ ~ cklc n ~ 0 /or n in a collection N,  
with 0 ~ N,  el even nonnegative integers, and el positive lower density, then Ck ~ 0 
/or k - ~ O ,  1,2 . . . . .  

Proposition 8. I /  c ---- (cz} belongs to 1"+ and i] ~ ck]~ n = 0 / o r  n in a collection N 
o] odd positive integers, except that 0 ~ N,  and el positive lower density, then ck ~- 0 
/or k : O ,  1,2 . . . . .  

To prove tha t  Proposit ions 5 and 7 are equivalent,  let c ~ (ck} belong t o / ' +  and 
define oo 

F (z) = ~ cz (ekz + e-kz). 
k = O  

Then F is an even periodic entire function. Fur thermore ,  if n is even and positive, 
then oo 

F(n) (0) = 2 ~ ek ~n , 
k - - |  

so t h a t  the equivalence is clear. A similar proof  shows tha t  Proposit ions 6 and 8 
arc equivalent.  

I t  remains only to prove tha t  Theorem 2 is equivalent  to  Proposit ions 7 and 8 
together.  This follows from the Ha hn -Ba na c h  Theorem, by  the same a rgument  as 
t ha t  given after Proposit ion 4. 

An interesting question is whether  the hypothesis  on the par i ty  of  the elements 
of  N can be dropped f rom Theorem 2. (I t  is easy to construct  sets of  nonnegat ive 
integers of  positive lower densi ty whose even and odd par ts  have lower densi ty zero.) 
An invest igation o f  this question could perhaps lead to a new proof  of  R~NyI ' s  
theorem. 
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