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On Tight Immersions of Maximal Codimension 

JOHN A. LITTLE (Ann Arbor) '~ and WILLIAM F. POHL (Minneapolis)** 

I. Introduction 

Let f :  M"--+ E" be an immersion of a compact  differentiable manifold 
of dimension n into a Euclidean space of dimension m. The immersion f 
is called tight if there exists no immersion of M" with smaller total 
Lipschitz-Killing curvature [3] in any Euclidean space. The immersion f 
is called substantial if f(M") is not contained in any hyperplane of E =. 
Kuiper [4] has shown that if f is both tight and substantial, then 
m<=N=�89 In case m=N and n = 2  (so that N=5) ,  he has shown 
that i f f  is tight and substantial then M z must be diffeomorphic to the 
real projective plane and f must be an embedding onto a real algebraic 
variety, in fact onto a Veronese surface. In this paper we prove the 
corresponding result in higher dimensions. 

Our hypothesis is, in fact, weaker. The immersion f is said to have 
the two-piece property if every hyperplane divides it into at most  two 
pieces, or more  exactly, if for every hyperplane HOE", f - l ( H  0 and 
f - l ( H 2 )  are both connected sets, where H~ and H 2 a r e  the two open 
half-spaces which make up the complement of  H in E'. A tight immersion 
has the two-piece property, but not  necessarily conversely (cf. [-6,9]). 
However, for the case of  curves and surfaces the two properties are 
equivalent. 

Let A be a real vector space of dimension n + 1 and consider the map 
v~-, v| from A to A| Take a metric in A and restrict the map to the 
unit sphere centered at the origin. Since ( -v ) |174  this map 
takes each pair  of antipodal points to the same point. Hence it induces 
a map  of the real projective n-space into A | A. As we shall see, this last 
map is an embedding, and the image Vlies substantially in an affine sub- 
space of dimension N = �89 n (n + 3). W e  call any submanifold projectively 
equivalent to V and lying in an affine or projective space a Veronese 
n-rnan~)ld. Any Veronese manifold is tightly embedded [4]. We can 
now state our  main result. 
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Theorem 1. Let M" be compact, n> 1, and f :  M " ~  E N, N=�89  3h 
an immersion which is difflerentiable of class C 4, substantial, and which has 
the two-piece property. Then M" is diffeomorphic to a real projective n-space, 
f is an embedding, and f (M")  is a Veronese n-mani[old. 

Our proof  of Theorem I depends on our main local result, Theorem II, 
the proof  of which depends in turn on Theorem III. These last two 
theorems, which we will state in due course, generalize theorems of 
Segre characterizing the Veronese surface [10, 11]. A number of other 
characterizations of Veronese manifolds follow from Theorems II and 
lII. For  further information we refer the reader to [2] and [8]. 

We have tried to make the present paper  essentially self-contained. 
For  further information on the rich literature on tight immersions, 
most of it the work of Kuiper, we refer to [5] and [6]. The importance 
of the two-piece property seems first to have been realized by Banchoff [1]. 

The results of this paper were discovered and proved by the first- 
named author, who circulated a preprint " O n  smooth convex maps in 
the top dimension". Later, under the stimulation of Kuiper, both authors 
working together discovered the more geometric proof  of Theorem II 
presented here. We now know a number  of different proofs of these 
theorems, which we discuss in w 7. 

2. The Veronese Manifold and the Curvature Indicatrix 

Let A be as in the last w and let g: A -+ A | A be the mapping g (v) = 
v | v. Let g' denote the restriction of g to the unit sphere centered at the 
origin, S". The image of the map g, and therefore the Veronese manifold V 
defined by g, lies in the space of symmetric tensors in A | A. If we take 
an or thonormal  basis of A, e 1 . . . . .  en+l, and let 

e i �9 ej = �89 (e i | e; + e~ | el), 

we can write the map g as 

n+l  
g(E  x, ei)= E x2 e iOe~+2 Z XjXkej�9 (2.l) 

i=1 l < j < k < n + l  

so that by taking the e~Oe k as a basis for the space of symmetric tensors, 
we can write down the parametrization of the Veronese manifold as 

(X 1 . . . . .  Xn+l)--~(Xl 2, . . . , X 2 + l ,  2 X l X  2 . . . . .  2 X I X n + I ,  2XeX 3 . . . . .  2XnXn+t)  , (2.2) 

where the x~'s are subject to the relation 

2 - 1 (2.3) X 2 + " ' - ~ - X n + I  - , 
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showing that V lies in a hyperplane in the space of symmetric tensors. 
It is useful to have a parametrization of a Veronese manifold in homo- 
geneous coordinates. In fact, regarding x l , . . . , x , +  1 as homogeneous 
coordinates in the real projective n-space P", we get such a parametriza- 
tion from (2.2), in terms of the homogeneous coordinates of pN, N = 
in(n+3) ,  where now we ignore (2.3). (Note that N is one less than the 
dimension of the space of symmetric tensors.) Call this map g": P " ~  pu. 

This homogeneous representation has several easy consequences. 
First, since the quadratic monomials  in (2.2) satisfy no linear relation, 
the Veronese manifold lies substantially in pN. Secondly, the Veronese 
manifold must have the two-piece property. For, the intersection of this 
Veronese manifold with a hyperplane in pU is, by (2.2), a hyperquadric 
of P". But the complement of a hyperquadric in P" has at most two con- 
nected components, as may be seen in the following way. Given three 
points in the complement, pass a plane through them. This plane meets 
the hyperquadric in a conic. Two of these points may certainly be 
joined by a curve in this plane which does not meet the conic. 

Another  consequence of the homogeneous representation is that a 
Veronese manifold is equivariantly embedded. We explain this as follows. 
If R: A-+ A is a linear transformation, then there is an induced linear 
transformation R | 1 7 4 1 7 4  such that R|174174 
g is equivariant with respect to these maps, which is to say that g o R = 
(R |  Since the linear transformations of A give the projective 
transformations of P", this implies that given any projective transfor- 
mation R' of P", there is a projective transformation R" of pN such that 
g" o R' = R" o g". In particular R" takes the image of g" onto itself. Using 
the equivariance it is easy to show that g" is an embedding. For  suppose 
g' (v) = 2 g' (w). We may assume that v = el. Then ifw = ~ xi e/it follows that 

e I |  ~ x ix je i |  

from which we conclude that x i = 0, i > 1, so that v -  w. Hence g" is one- 
to-one. Now by the equivariance, g" must have constant rank, which 
can only be n. The equivariant embedding property implies, finally, that 
given points p, qeP" and a frame in the tangent space at either point, 
there exists a projective transformation of pN taking the Veronese 
manifold g"(P") onto itself, taking p to q, and taking the given frame at p 
to the given frame at q. 

The Veronese manifold enters into general differential-geometric 
considerations in the following way. Let X: M"-*  E m, be any immersion 
of class C 2 of a differentiable manifold. Let p ~M  n, and u 1 . . . . .  u, local 
coordinates valid in a neighborhood of p, with u~ . . . . .  u, = 0 at p. Let 

c~X oa x 
Xi= ?~ui, X~j-  ~?ui 3u~, 

13" 
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the derivatives being evaluated at p. By the osculating space of X at p we 
mean the linear space through p spanned by the X i and Xo.. If the osculat- 
ing space at p has dimension N = � 8 9  n(n+3),  the maximum possible, we 
say that X is non-degenerate at p. It is not hard to see that these notions 
are independent of the choice of the local coordinates u 1, ..., u,, and that 
they are of a projective nature in the geometry of the ambient space. 

Let Tp and Np denote respectively the tangent and normal spaces of 
X at p. For any vector V in E" let V • denote the orthogonal projection 
of Vinto Nv. Now let x(t) be a curve on M" such that x(0)=p.  Then the 
orthogonal projection into Np of the second derivative of X(x(t)) at 0 
depends only on the first derivative of X(x(t)) at 0, as is well known 
(at least in the case of curves on surfaces in ordinary space, and as is 
proved in the same way in higher dimensions). Thus we have a map 
J~: Tp~Np which assigns to each w Tp the orthogonal projection in 
Np of the second derivative vector of a curve on M" through p whose 
tangent vector at p is v. To find an analytic expression for ./g" we consider 
the curves 

ui=xi t  , l <_i<_n. 

Then x'(0)= ~ .,q x~, and X"(O) 1 = ~ xi x i X~. Hence 
i , j = l  

y(Ex x,)=  ,xjx . (2.41 
i , j=l  

Now assume that X is non-degenerate at p. It follows that X~, i<j, 
are linearly independent, and we may identify X~ with X~ �9 Xj. Thus ,/~ 
is identified with the map g such that g(v)=v| Letting Sp denote the 
sphere of tangent vectors of unit length to X at p, we find that JV'(Sp) is a 
Veronese (n-1)-manifold,  which we call the curvature indicatrix, It lies 
in a hyperplane in Np (coming from the condition x 2 +---  + x~ = 1), which 
we call the indicatrix plane, Ip. The mapping .A r is two-to-one (except at 0), 
identifying v and - v ,  and the image ,g(Tp) is a half cone consisting of 
rays from the origin through the points of the curvature indicatrix. We 
call this cone the curvature indicatrix cone. The indicatrix plane, I o, does 
not contain the origin, so there is no immersed curve on M R with zero 
curvature at p. Since Ip c Np, Ip and Tp are in general position and their 
linear span is all of E ~. 

A Veronese manifold is itself everywhere non-degenerate. To prove 
this it suffices to check it at any point (xa= 1, x 2 . . . . .  x ,+~=0  is con- 
venient), since the Veronese manifold is equivariantly embedded and 
non-degeneracy is a projective notion. But we can avoid calculation by 
the following geometric argument. 

Let U be a linear subspace of P" of  dimension r; then its image under 
g" is a Veronese r-manifold, as can be seen from (2.2) by taking homo- 
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geneous coordinates  x 1 . . . . .  x,+~ in P" such that U is defined by 
xr+ 2 . . . . .  x,+ 1 =0 .  Let V= g"(P"). We call g"(U) a Veronese submaniJold 
of V N o w  a Veronese manifold of  dimension one is just a non-singular 
conic. Since any two points of P" m a y  be joined by a line, any two points 
of a Veronese manifold may be joined by a conic lying in the Veronese 
manifold. This implies that V is non-degenerate;  for if the osculating 
space at pE V were contained in a hyperplane H, then H would contain 
Tp and ..r by (2.4), and hence the tangent and curvature vectors 
at p of  all curves on V through p, and hence the planes of  the one-dimen- 
sional Veronese submanifolds passing through p, and hence V itself. But 
this contradicts the already proven fact that  V lies substantially in P~. 

In terms of the Euclidean representation (2.2), (2.3), a Veronese 
submanifold is defined in the following fashion. Take a linear subspace 
through the origin of A and intersect with the unit sphere S". The image 
of this intersection under the map g' is a Veronese submanifold. 

Let v " - l c  V " c P  ~ be an (n -1 ) -d imens iona l  Veronese submanifold 
of a Veronese n-manifold. We claim that there is a unique hyperplane J 
of  pN such that J ~ V ~ = V ~-1 and such that J is tangent to V" at each 
point  of V ~-l, which is to say that J contains the tangent space to V" 
at each point of V "-~. To show this it suffices to take V "-~ to be defined 
by x , + l = 0 ,  using our  usual homogeneous  coordinates,  since V" is 
equivariantly embedded. Referring to (2.2) we see that V "-~ then lies 
in the hyperplane J of pU defined by setting the (n+  1)-st coordinate of  
pu equal to zero, and any point of V" for which this coordinate  is zero 
must  lie in V"-~ This coordinate  is 2 V", V" �9 x,+~, on so that lies locally 
on one side of J. This implies that  J is tangent to V" along V "-~, as 
required. This last determines J uniquely. For, referring to (2.1) for 
purposes of notat ion,  we see by differentiating that the tangent  space to g 
at e i is spanned by e i O e l ,  . . . ,  e i Q ) e n +  1 . Since d contains g" (e 0 . . . . .  g"(e,) 
it must  contain all e i �9  j, 1 < i N n ,  1 <=j<=n+ 1. But these are sufficient to 
span J. Our  claim is now established. We call J an e.s. hyperplane of V" 
C e. s." standing for "extremal  support") .  

Let us note here that J must contain the curvature vectors of all curves 
on V" ~. (We assume that V c E  N for a moment.)  Since J contains the 
tangent spaces to V" at the points of  V "-~, it must contain A/'(v) for every 
v tangent to V "-~, where ~,1/" is the curvature  indicatrix cone for V". 

Consider now an r-dimensional Veronese manifold W which happens 
to be contained in V". We claim that  W is a Veronese submanifold of V" 
in the sense defined above. For, choose a point  p on W a n d  let V "-~ be a 
Veronese submanifold of  V", passing through p, whose tangent space at p 
contains the tangent space to W at p. N o w  V"- 1 is contained in an e.s. 
hyperplane J. If we have any conic lying on W and passing through p 
its tangent  vector v and its curvature vector must be contained in J, 



184 J. A Little and W. F, Pohl: 

since J contains T v and ,/V(t,). It follows that  d contains the conic. And 
since any point  of W may be joined to p by such a conic, J ~ W. But since 
Jc~ V"= V "-~, we must  have W c  V "- t .  We can repeat this argument  
until we have a sequence of  Veronese submanifolds 

vr ~ vr+l~  ... ~ Vn-l  ~ Vn 

with W =  V", which establishes the claim. 

The other  properties of Veronese manifolds which we need to prove 
could be established at this point  by algebraic arguments.  But it is more  
convenient to derive them as special cases of more  general results which 
we prove later. 

3. Consequences of the Two-Piece Property 

Throughou t  this w M" will denote a compact  differentiable manifold 
of dimension n, and f :  M" ~ E" a C;  immersion having the two-piece 
property. It is easy to see that  this implies that M" is connected. 

If X c E m is some subset, we say that  a hyperplane H c E m is a hyper- 
plane of support of X if X lies in one of  the two closed half-spaces of  E ~ 
determined by H and if Xc~H+O. Note  that  if X is an immersed sub- 
manifold then H must  contain the tangent  space of  X at each point  of 
X ~ H .  A hyperplane containing the tangent space at a point  of  an 
immersed submanifoid is said to be tangent at that  point. A smooth  
real-valued function Y on M" is said to have a critical point at p ~M "~ if 
dF = 0  at p, and a critical point  p of F is said to be non-degenerate if the 
Hessian, d2F, is non-degenerate  at p. (Let us not  confuse this not ion with 
that of a non-degenerate  immersion, defined in the last w If v is a vector 
in E ~', the inner product  v . f :  M"--.  R is called a height function on M ". 

Proposition 3.1. a) Let H be a hyperplane of E", pcM",  and U a 
neighborhood of p such that H supports f (U)  and f (U)c~H =f(p). Then 
H supports f.(M"). 

b) Any non-degenerate local maximum of a height function on M" is 
a global maximum. 

Proof. a) By making U smaller, if necessary, we can arrange that  H 
does not  meet f(c~ U), where c~ U is the boundary  of  U. Let e denote  the 
distance in E"  from f (gU)  to H. Since M", and hence OU, are compact ,  
~:>0. If H were not  a support  hyperplane o f f ( M " )  we could move H 
parallelly toward f (gU)  a distance of  �89 to obtain a hyperplane cutting 
M" into at least three pieces, which would contradict  the two-piece 
property.  Hence H must  suppor t  f(M"). 

b) Let v . f b e  a height function with a non-degenerate local maximum 
at pEM". Then, by Morse 's  lemma, we can find local coordinates  x~ . . . . .  x,, 
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valid in a neighborhood U of p, such that v . f =  v . f ( 0 ) -  2 2 2 X 1 - -  X 2 . . . . .  X n 

in U. The hyperplane H through f(p) perpendicular to v supports f(U), 
and f ( U ) ~  H = p. Hence by Part a) H is a support plane off{M"), which 
implies that v . /has  a global maximum at p. This completes the proof. 

We call a point p e M  ~ an extreme point of f if there exists a height 
function with a non-degenerate local maximum at p (and hence a global 
maximum at p). 

Proposition 3.2. a) The set of  extreme points o f f  is open and non-empty. 

b) Every extreme point is simple; i.e. if p is an extreme point and 
f(p) = f(q), then p = q. 

Proo[i a) Let n : N -* M ~' be the full normal bundle of/; and let g: N - ,  E" 
be the "Gauss map", i.e. the map which takes each normal vector to 
the same vector bound at the origin of E". It is well known that the 
critical points of a height function v . f  are just the points n(g-l(v)), and 
that if v 'Eg-t(v) and p=rc(v'), then v - f  has a non-degenerate critical 
point at p if and only ifg has maximal Jacobian rank at v'. Now by Sard's 
theorem, the image under g of the critical locus of g has measure zero 
in Em. But for every vector v in E" the height function v . f  attains its 
maximum value, since M R is compact. Consequently there must be an 
abundance of height functions taking non-degenerate maxima, and 
hence an abundance of extreme points. 

To show that the set of extreme points is open, suppose that p is an 
extreme point and let v be a vector such that v - f  has a non-degenerate 
maximum at p. Then, regarding v as lying in Np, g must have maximal 
rank at v, and hence must have maximal rank in some connected neighbor- 
hood U of v in N. The determinant of the Hessian matrix of v' . f  cannot 
vanish at rc(v') for v'e U; hence for each v' in U v' - fhas  a non-degenerate 
maximum at ~(v'). Hence z(U) is a neighborhood of p consisting of 
extreme points. 

b) Suppose pe M"  is an extreme point of f and that f (p)=f(q) ,  
p4=q. Let v be a vector such that v . f  has a non-degenerate maximum at 
p, and let H be the hyperplane of M" through f (p)  and perpendicular to v. 
By Morse's lemma, we can find a closed neighborhood U ofp in M" such 
that H supports f (U)  and f -~(H)c~ U=p.  Let r, denote the distance, in 
E m, from H to f(~ U). Let H'  be a hyperplane parallel to H at a distance 
�89 toward f((~U). Then H' divides M" into at least three components, 
one containing p, one containing q, and one containing ~?U. Hence the 
assumption that p 4 = q is false, which completes the proof. 

Proposition 3.3. Let p~M ~ be an extreme point and let H be a hyper- 
plane in E" tangent to f at p. Then H supports f (M")  if and only if ,4/'(Sp) 
lies in one of the closed ha!f-spaces determined by H. 
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Proof. Let v be a vector perpendicular to H. Then v is normal to f 
at p, so that the function v . f  has a critical point at p. Let x(t) be an 
immersed curve on M" such that x (0 )= p  and let w denote the tangent 
vector to x at 0. Then 

d 2 V" (fo x) d 2 (fo x) 
dt 2 (O)=v �9 dt 2 (0)=v.  ,~U(w). (3.1) 

Now if sV(Sp) lies on both sides of H, then 13.1) will be positive for some 
curves on M" through p and negative for others. Hence v . f  witl have a 
non-degenerate local minimum along some curves at p and a local 
maximum along others. Hence H is not a support hyperplane o f f (M ' ) ,  
and the Proposition is proved in one direction. Note that we have not 
yet used the two-piece property. 

If H does not meet .A/'(Sp), which implies that ./ff(Sp) lies on one side 
of H, since JV'(Sp) is connected, (3.1) will have the same sign, no matter 
what curve x(t) we take. Hence the Hessian of v - f  is definite. Assume 
that v points into the half space determined by H and not containing 
Y(Sp). Then v . f  takes a non-degenerate local maximum at p. Hence 
by Proposition 3.1 b) it takes a global maximum at p, which implies that 
H supports f(M"). 

Finally, suppose H meets and supports ~4/'(Sp). We may assume that 
v points into the half-space not containing o4/'(Sp). Since p is an extreme 
point there exists a vector v' such that v ' - f  has a non-degenerate local 
maximum at p, and hence a global maximum at p. Hence the hyperplane 
H'  through f(p) and perpendicular to v' supports f(M"). Now H'  cannot 
cut ~4~(Sp), by the first paragraph of this proof. Hence ~4"(Sp) lies in the 
intersection of two closed half-spaces, one determined by H and the 
other by H'. Now turn H '  about  H ' m  H till it reaches H, so that all the 
intermediate hyperplanes do not meet ~/(Sp). By the last paragraph, 
these all support  f(M"). Hence so does the limiting and final one, namely 
H. (To understand these last arguments, project everything ortho- 
gonally into the plane spanned by v and v'.) This concludes the proof. 

Corollary 3.4. Assume that f is differentiable of class C 3. Then any 
hyperplane which supports f ( M  n) to the second-order supports f ( M  ~) 
to the third order. By this we mean that if H is a hyperplane in E" tangent 
to f at p which supports dV(Tj,), and if X( t )= f(x(t)) is any curve on M" 
such that x (0 )=p  and X"(O) lies in H, then X'"(0) lies in H. 

Proof Suppose there is such a curve with X"(0)  not in H. Expand 
X(t) as a finite Yaylor's series: 

X(t) = X(Oi + t X'(O) + �89 t 2 X"  (0) + ~ t s (X'"(O) + t R(t)), 
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where R(t) is cont inuous in t. I fv  is a non-zero vector in E"  normal  to H, 
then 

v. (X( t l -  X (0))= ~ t 3 (v. X'" (0)+ tv.  g(t)), 

which takes both positive and negative values near zero, so that H does 
not support  f(M"). But this contradicts Proposi t ion 3.3. Hence the 
corollary. 

Proposition 3.5. Let pcM" be an extreme point. Then f(M") is con- 
tained in the osculating space to J~ at p. 

Proof If the osculating space to f at p is all of  E m, there is nothing 
to prove. Suppose then that the osculating space to f at p is a linear 
space J of  dimension r <  m. Since p is an extreme point, there is a vector v 
in E" such that v. f has a non-degenerate  maximum at p; let H be the 
hyperplane through f(p)  perpendicular  to v. Now H does not meet 
,JU(Sp); otherwise there would be a curve on M" through p such that the 
second derivative of  v . f  a long it would be zero, as we see from (3.1); 
but this contradicts the fact that  the Hessian of  v . f  at p is negative 
definite. Since J contains ,~/'(Sp) by (2.4), it follows that H does not  
contain J, so that H ~ J is a linear subspace of dimension r -  1 ; call it K. 
Since,  4:'(Sp) is connected and does not  meet K, it must lie in one if the 
half-spaces of  J determined by K, call it J +. Hence any hyperplane of  E m 
containing K but not J supports  ,A:'(Tp), and hence, by Proposi t ion 3.3, 
supports  f(M"). It follows that  f ( M  n) lies in the intersection of  all closed 
halfspaces containing o r+ determined by hyperplanes cutting J in K. 
But this intersection is just J+ .  It follows that f (M") lies in J. 

Corollary 3.6. I f  f:  M"-~ U" is substantial, then m<= N=�89 n(n + 3). 

Proof The osculating space at p has dimension < N. 

Corollary 3.7. I f  f :  M"-~ E N is substantial, then f is non-degenerate 
at every extreme point. 

Proposition 3.8. Let f:  Mn--,E ~. Then every non-degenerate point 
is an extreme point. 

Proof Let f be non-degenerate  at p and let H be a hyperplane con- 
taining the tangent plane Tp and parallel to the indicatrix plane Ip. Let v 
be a non-zero  vector perpendicular to H and pointing into the half- 
space determined by H and not  containing Ip. Then v . f  has a non- 
degenerate max imum at p, as we see from (3.1). 

4. The Dual Manifold 

The results of this w are of a local nature. Let M" be an arbitrary 
connected differentiable manifold of dimension n, and let f :  M"--.  E N, 

_ 1 n(n+ 3), be an  immersion which is differentiable of class C 3, non- N - g  
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degenerate, and which has the property that any hyperplane which 
s u p p o r t s  , f (M n) to  the second order supports f(M") to the third order. 
By this we mean, as we said before, that if H is any hyperplane tangent 
to f at p which supports ,Jf'(Tp), and if x(t) is any curve on M" such that 
x (0 )=p  and X"(0) lies in H, then X"'(O) lies in H. By Corollary 3.4, f 
has this property if it has the two-piece property. Veronese n-manifolds 
must therefore have this property, since they have the two-piece property. 
We now state the main local result of this paper. The first part of the 
proof  will be given in this w and the completion in w 6. 

Theorem II. Let n>=2 and suppose f:  M ~-~ E N is differentiable eft" 
class C 4, non-degenerate, and has the property that any hyperpfcme which 
supports f(M") to the second order supports f (M)  to the third order. Then 
f (M") is contained in a Veronese n-manifold. 

Remarks. The condition that any hyperplane which supports to the 
second order supports to the third is equivalent to the condition that 
"the characteristic curves are degenerate" [7], Later on, following 
Proposition 4.9, we will put this condition in another form. Theorem II 
was proved by Segre [10, 11] for n=2 ,  and from it follow many of the 
classical characterizations of the Veronese surface. 

Let us consider a non-degenerate immersion g: M"--~ E u, without 
assuming any other special properties. Let p~M", and let H'  be an c s. 
hyperplane of M(Sp) in the indicatrix plane lp. Since lp and Tp are in 
general position, H'  and Tp together span a hyperplane H, which we 
call an e.s. hyperptane ofg at p. We claim that this agrees with the previous 
definition in case g is a Veronese manifold, at least for n > l .  For Jf 
V ~ E  N is a Veronese manifold and H an e.s. hyperplane of V in the 
sense ofw 2, with p~ V~ H, then H supports V locally and hence globally, 
since V is connected. Therefore, by Proposition 3.3, H supports ~3~(Tp}. 
Now V " - I =  Vc~H is a Veronese submanifold and hence H contains 
the curvature vectors of all curves on V"- 1. Since H contains Tp it must 
therefore contain ~+~(S'p), where S'pcSp is the set of unit vectors at p 
tangent to V "-1. It follows that H n l p  supports ~+"(Sp) and contains 
the Veronese submanifold sg'(S'p), so that H c~ Ip is an e.s. hyperplane of 
..~/'(Sp) in lp, from which it follows that H is an e.s. hyperplane in the 
sense of this w On the other hand, if H is an e.s. hyperplane of V at p 
in the sense of this w it must contain T r and the Veronese submanifold 
,~+~(S'p), for some great (n-2) -sphere  S'p of S r. If V "-~ is a Veronese 
submanifold of V through p whose tangent space contains S'p, then H 
must contain the tangent and curvature vectors at p of all curves on V " - I  
through p, in particular those of the conics on V"-1 through p. Hence H 
contains all such conics, and since each po im of V "-~ may be joined 
to p by such a conic, H contains V" ~. Since H supports K by Propo- 
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sition 3.3 (applicable in this case because V has the two-piece property) 
H must be an e.s. hyperplane of V in the sense of w 2. This establishes the 
claim. 

An e.s. hyperplane at p~M" is determined by giving a Veronese 
submanifold of dimension n - 2 of JV'(Sp). Such a Veronese submanifold 
is determined by giving a great (n-2)-sphere  of Sp. This in turn may be 
determined by giving an ( n -  1)-plane through the origin of Tp. Note that 
an e.s. hyperplane H supports A'P(Se) and contains g(p), from which it 
follows that H supports the curvature cone ,Ar(Tp). I fh  is an (n - l)-plane 
through the origin of Tp such that ~+J'(h c~ Se) = ,/V(Sp) c~ H, then H must 
be tangent to .~(Tp) along JK(h). 

Lemma 4.1. Let p e M  n, U a neighborhood of p in M ~, and H a hyper- 
plane of E 'v such that g - l ( H ) ~  U is an embedded submanifold of co- 
dimension one. Suppose that H contains Tp, and that H supports ./V(Tp) 
or that H supports g(M"); then H is an e.s. hyperplane of g at p. 

Proof If H supports g(M"), H must support JV'(Tp), as can be seen 
from the proof  of Proposition 3.3. Hence it suffices to assume that H 
supports JK(Tp). Now H must contain all curvature vectors of curves 
on g-l(H)c~ U. It follows that H contains the Veronese submanifold 
,/~/~ where hpc Tp is the tangent space to g - l ( H ) ~  U. Hence Hc~lp 
is an e.s. hyperplane of ~+~(Sp) containing ,h~(hp c~ Sp), from which the 
lemma follows. 

These preliminaries out of the way, let us consider the map f again. 
The next considerations will lead to the definition of the dual manifold. 
Let p~M", and h =  Tp an (n-1)-dimensional  linear subspace. Let H'  be 
the e.s. hyperplane, in I v, of .~ff(Sp) which contains .Ar(h c~Sr). Let q~(h) 
be the e. s. hyperplane of f a t  p spanned by Tp and H'. Then qo is a mapping 
whose domain is the bundle of linear subspaces of dimension n -  1 of 
the tangent spaces of M". We denote this bundle by ~: G,_ 1 T(M") ---' M". 
The range of q0 is the space of hyperplanes of E N. It is convenient to add 
the hyperplane at infinity to this space, obtaining thereby the dual 
projective space pN,.  Thus (p: G,_~ T(M ~) ~ pN,. The mapping qo may 
also be defined in purely projective terms. In fact, ~0(h) is the unique 
hyperplane which supports f to the second order at p e M  ~ and which 
contains the osculating planes at p to all curves lying on M" tangent to 
hatp .  

Proposition 4.2. q~ has everywhere Jacobian rank n. The restriction of 
~p to any fibre G, ~ Tp is one-to-one and has rank n -  1, i.e. is an embedding. 

Proof We assume n>2 .  The assertion that (p restricted to G,_~ Tp is 
one-to-one is essentially the assertion that each e.s. hyperplane of the 
Veronese manifold Jl"(Sp) meets ,.M(Sp) in an unique Veronese (n -2 ) -  
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dimensional submanifold. But this we know already. From this, and 
the equivariant embedding property of,,u it follows that q? restricted 
to G,_~ T v has constant rank n - 1 .  We proceed, then, to show that CO 
has rank n, and we accomplish this by representing ~0(h) as an exterior 
N-vector, differentiating CO in 2 n -  1 independent directions, and showing 
that the resulting N-vectors, together with c0(h), span a space of di- 
mension n + 1. 

Let h e G ,  ~ T(M") be arbitrary and let p=Tr(h)eM".  Introduce local 
coordinates u~ . . . . .  u, on M" in a neighborhood ofp such that h is spanned 
by (j~/~cu 1 , . . .  , c3/~u,_ 1. Let hi(t ) denote the linear span of 

q-t 
cgu 1 ?,ui_ ~ ~u i ~u. ~u._ 1 

and let us compute co(hi(t)). We use the notation ofw 2, so we will consider 
f :  M"---, E N as a position-vector function, which we write as X:  M" ~ E N. 
Now 

a ~ x~ J~/" E X j - -  kj' 43ttj ] = E XkXj (4.1) 

so that 

aXk -- 2 ~ Xj Xk~. (4.2) 

Hence the tangent space to the whole curvature cone ,A," at ~/?~x~ is 
spanned by Xk~, 1 =<k=<n, and the tangent space to ~g" at ~/~ui+t~?/~u , 
is spanned by X~Ci + t X x ,  1 < k < n. Hence ~p (h i(t)) must contain X 1 . . . . .  X,, 
X~k (j<=k,O',k)+(i,n),(i , i) ,(n,n)),  X u + t X ~ , ,  and X , i + t X , , .  These 
vectors are linearly independent, since f is non-degenerate, and they are 
sufficient in number to span r 

In order to represent co(hi(t)) as a multivector, we introduce homo- 
geneous coordinates in E N, say r ..., ~-~', such that y j=  ~j~-o are ordinary 
coordinates in E N. In these coordinates we may represent f by the vector 
function 

Y=(I ,  y~ of , . . . ,  yN of) ,  

and hence we may represent co(hi(t)) as 

~p(hi(t))= Y A  Y1A ... A Y,A I-[ YJkA(Yii+t  Yin) A(Yni+t  Yn,)' 
j<=k 

(j,k)~:(i.n),(i,i),(n,n) 
where 

r g a y  
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It is easy now to differentiate with respect to t. The  derivative of  q~(h~(tt) 
at t = 0, we call q~i- 

dq)oh~ 
(Pi- dt ( O ) = Y A Y 1 A " ' A Y " A  ~YjkAYi iAY""=+EJi" '  

] < k  
(I, kt :* (i, n), (i, O, (n, n) 

where by f2~k we unders tand  the produc t  of Y, Yt, Y~.,, 1__<1, m<n, l<m,  
in some order  with only Yjk left out. Clearly p ( h ) =  f2.., ~0i, 1_<iN n - 1 ,  
are linearly independent .  The  r are direct ional  derivatives of tp along 
a maximal  independent  set of  fibre directions of  G._~ T(M"), which 
shows again that  ~0 restricted to G._ t Tp has constant  rank n -  1. 

To  differentiate qo along the base directions, we write 

rpth)= + Y A  YtA .-. A Y,,A ] ]  Y~k= -4-~J,,. 
j<-k 

( j ,k)* (n,n) 

Hence 

' t < , n  j__<k  
(Lm)*(n .n )  ( j . k )* (n ,n )  

(j,k) # (Lm) 

for i < n, and 

(p,,,= ~(P ( h ) = + Y A Y ,  A. - .AY, ,_ ,AY, , ,A  U rig 
(;Ltn j<=k 

+ Y A Y 1 A - . . A Y ,  A(-..). U,k~*t,.,, 

Clearly (p(h), q)l . . . . .  q~,_~, q~, are linearly independent .  We claim that 
(?,,, is a linear combina t ion  of (p(h), (h . . . . .  ~o,_~, for all i<n. 

To prove  this claim we recall the e lementary  fact that  any homo-  
geneous cubic po lynomia l  of  several variables is a linear combina t ion  
of cubes of  homogeneous  linear polynomials .  F r o m  this it follows that 
any homogeneous  linear differential opera to r  of order  three is a linear 
combina t ion  of cubes of  linear differential opera tors  of order  one with 
constant  coefficients. This implies that  Y,m(P), where i, l, m < n, is a linear 
combina t ion  of third derivatives of  Y along curves on M" through p 
tangent  to h. But all such third derivatives must  lie in (p(h), by the hypo-  
thesis that  a hyperp lane  suppor t ing  to the second order must  suppor t  
to the third order. Hence  Y,t,,(P), i , l ,m<n is a linear combina t ion  of 
Y,, Y1 . . . . .  Yn, Yjk, (J, k)#(n,n). Substi tut ing these linear combina t ions  
into the expressions (Pu,, we find that, for i < n, q),, is a linear combina t ion  
of ~Jjn, j= 1 . . . . .  n, and hence of (p(h) and (Pi, i<n. This shows that  all the 
directional derivatives of  q~ at h are linear combina t ions  of (p(h) and n 
such directional derivatives. Hence  the rank  of (p is n, which is what  was 
to be proved.  
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It follows from this proposition that the image of q~ is an immersed 
submanifold of dimension n in pU,.  More precisely, let us say that 
x, y e G . _  1 T(M") are equivalent if there is a curve C joing x and y in 
G,_ 1 T(M") such that (p(C)=c#(x). The equivalence classes form a dif- 
ferentiable manifold M* and q) induces an immersion ~p': M * - ~ P  u*. 
We call q0', or M* itself, the dual manijold o i l :  M ~--, E N. Clearly the image 
of a fibre under qo, o(G,_I  Tp), is an algebraic variety; hence the dual 
manifold contains a family of algebraic varieties, We shall see later that 
these are in fact Veronese manifolds. But our immediate aim is to show 
that the dual manifold contains a family of conics. 

Lemma 4.3. Let pa and pb be linear subspaces of P "+b+l which are in 
general position, i.e. which do not meet, and let S~ ~ be a one-parameter 
.family of hyperplanes of P~ which form a non-singular conic in the dual 
space P"*. For each t, let St +b be the linear span of S~ - t  and pb. Then the 
family of hyperplanes S~ +b forms a non-singular conic in pa+b+l,. 1f Q 
is the hyperquadric of P" enveloped by S~-a and Q' the hyperquadric of 
p,+b+l enveloped by S'/+b, then Q' consists of linear spaces o[" dimension 
b + 1, each of  which is spanned by pb and a point of Q, and every such linear 
space lies in Q'. 

Proof Choose homogeneous coordinates x o . . . . .  X~+b+ ~ in p~+h+~ 
such that P" is defined by x~+~ . . . . .  x~+b+t=O, P~ is defined by 
x o . . . . .  x,  = O, and S~- ~ consists of hyperplanes 

0~0 X0 + . . .  +~..aXa.~-O 

such that - ~ 2 + e 2 + c r  and ~3 . . . . . .  ~.~=0. Then the family S~ '+h 
consists of hyperplanes 

~0 X0 -[- " '  -{- ~ a + b + l  Xa+b+l = 0 

such that -c~+cr and % . . . . .  c~,+b+t=0. But this is clearly 
a non-singular conic in p , + b + ~ ,  which proves the first assertion of the 
lemma. 

Now the equations of Q in p,+b+~ are 

-x~,+x~+x~=o, X~ . . . . .  x~  

The equation of Q' is just -xZo+x 2 +x  2 =0,  so that Q' consists exactly 
of the linear spans of pb and points of Q. This completes the proof  of the 
lemma. 

Lemma 4.4. a) Let V" ~ ps  be a Veronese manifold and V"- 2 ~ Vn a 
Veronese submanifold of codimension 2. Then the set of all e.s. hyperplanes 
of V" which contain V "-2 is a one-parameter jamily S t which fi)rms a non- 
singular conic in the dual space pu , .  The hyperquadric enveloped by S~ 
contains V". 
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b) Suppose n> 2 and g: M"--~ E u a non-degenerate C 2 immersion (we 
assume no other special properties). Let  pcM",  I a linear subspace o f  
dimension n -  2 through the origin of  T~,, and h, the family q f  hyperptanes 
o f  T v containing I. Let  H t denote the family of  e.s. hyperplanes o [ g  con- 
taining the , U(ht). Then Hf forms a non-singular conic in P~r H~ envelops 
a hyperquadric which contains all tangent and curvature vectors at p to 
curves on M" through p. 

Prooj~ a) We prove this by induction on n. For  n =  1, V" is a non- 
singular conic and S~ is just the family of its tangent lines. The truth of 
Part a) is clear. Let us assume Part a) for n - 1 > 1. Choose a point p~ V"- 2 
and let m denote the tangent space to V"- 2 at p. Then S t consists of the 
linear spans of the tangent space to V "-~ at p, T v, with the e.s. hyper- 
planes S'~ of ~'~;(Sr,) containing ,~+~(m c~ Sp). By the induction hypothesis. 
S', forms a non-singular conic in the dual space of the indicatrix plane Iv. 
Hence by Lemma 4.3 S, forms a non-singular conic in p u ,  Again by 
Lemma 4.3 the hyperquadric Q' enveloped by S, contains the linear 
spans of T o and the points of the hyperquadric Q' of Ip enveloped by S' t. 
Q'=.~+~(Sv), by the induction hypothesis. Hence Q contains all tangent 
and curvature vectors at p of curves on V" through p. It follows that Q 
contains all conics on V" passing through p. Since any point of V" may 
be joined to p by such a conic, Q must contain v". This proves Part a). 

The proof  of Part b) is very simple. H~ consists of the linear spans of 
/ff Tp and the e.s. hyperplanes of ,. (Sp) containing JV(lc~Sv). These last 

form a non-singular conic in the dual space of lp, by Part a). Hence by 
Lemma 4.3 H, forms a non-singular conic in p U ,  Ht envelops a hyper- 
quadric which contains the linear spans of T v with points of,.+~(Sp). This 
completes the proof. 

Let us suppose n > 2  and consider again the dual manifold p ' :  
M*--~P ~'*. If H~q~'(M*) and H=~p(h), where h~G,_  1T;, then choose 
an ( n -  2)-dimensional linear subspace h ' ~  h through the origin of T v. By 
construction ~p'(M*) contains the linear spans of Tp and the e.s. hyper- 
planes, in Ip, of ,~4'~ which contain ,3~(h'c~Sp). But by Lemma 4.4b) 
these hyperplanes form a non-singular conic in pN,. Hence given any 
point x e M * ,  there exists a closed embedded curve C on M* passing 
through x such that ~p'(C) is a non-singular conic in PU*. Such a curve 
we call an s-curve on M*. Given x e M * ,  we call the set of all points of 
M* which can be joined to x by an s-curve the wedge of x, W:~. We have 
just seen that W~ contains points of M* other than x, for every x. 

Proposition 4.5. Let n >- 2. For every x ~ M * there is an (n - 1)-parameter 
family o f  s-curves pa~sing through x. W ~ -  {x} is open in M*. The tangent 
lines at x to the s-curves through x ji'll out an open set in T~. 
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We first prove the converse of Lemma 4.1 under the assumption that 
every hyperplane which supports to the second order supports to the 
third order. 

Lemma 4.6. I f  H e P  N*, then n((o-l(H)) is an embedded submanifold 
of codimension one in m". I f  Co (h) = H, n (h) = p, then n ((o ~ t(H)) is tangent 
to h at p. 

Proof. Since q~ has rank n, q~-t(H) is an embedded submanifold of 
G,_ t T(M") of dimension n -  1. q~-l(H) cannot have a tangent vector in 
common with any fibre of G,_ t T(M"), since cp restricted to any fibre has 
rank n - 1 .  And ~o-l(H) cannot meet any fibre in more than one point, 
since q~ maps each fibre in a one-to-one fashion. It follows that n((o- I(H)) 
is an embedded s ubmanifold of dimension n - l of M R. I f p ~ n (cp - 1 (H)), 
then H contains the curvature vectors to all curves on n(~p- ~(H)) through 
p at p, since H~n(q~-t (H)) .  It follows that H~,~U(h), where h is the 
tangent space to r~(q~-~(H)) at p. Hence H=q~(h). This completes the 
p roof  

Proof of  Proposition4.5. Let x~M*,  H=q0'(x). Let B denote the 
restriction of the bundle G._ 1 T(M") to 7r(~p-t(H)); that is to say, let 
B=~z-t(n(q~-t(H))). Then by definition ~p'(Wx)=q~(B 1. To show that 
W~-{x} is open in M* it suffices therefore to show that ~o has rank n 
on B-~p-~(H).  

To show this, let y e w  x, y#=x, be arbitrary, L =  C0'(y). Then there is 
an l~B such that r (l)= L. Let p=n(l) ,  and let h c  Tp be the tangent space 
to n(q~-~(H)) at p. Then h~=l, since ~p(h)=H by Lemma4.6  and x#:y. 
Hence h and I intersect transversally. Choose local coordinates u~ . . . . .  u, 
on M" in a neighborhood of p such that n(~p-l(H)) is defined in that 
neighborhood by u , _ l = 0 ,  (so that h is spanned by ~/3u 1 . . . . .  ~/~u,_ 2, 
?~/gu.), and such that l is spanned by c3/Ou~ . . . . .  ~/Ou,_ t. Let h~(t) denote 
the linear span of 

4-t 
(~Ul . . . . .  ~ U i _  1 ' 0/g i gU n ' (~b/i+ 1 . . . . .  ~ U . _  1 ' 

the derivatives being evaluated at p. To show that C0 has rank n on B at y 
it suffices to show that 

d~ooh l dq~oh,_t (0), 3cp 
~o(h), d--T-- (o),..., dr a~,, (p) 

are linearly independent. But these were computed and shown to be 
linearly independent in the course of the proof  of Proposition 4.2. Hence 
W~- {x} is open as asserted. 

In order to show that the tangent lines to the s-curves through x fill 
out an open subset of T~, we observe first that an s-curve through x is 
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constructed by choosing an (n-2)-plane h' through the origin of Tp, 
for some point pe~r(qo-l(H)), with h ' c  h, where h is such that ~0(h)= H, 
and then taking the image under q0 of all h ~ h ' ,  h e B .  Let us call the set 
of all such h', B'. So given such an h', we compute the tangent line at h' 
of the corresponding s-curve, call it z, differentiate the resulting expression 
along n - 1  independent directions in B', and show that z and these 
derivatives are linearly independent. 

Let h' be arbitrarily chosen as above, h ' c  Tp, h D h '  so that q~(h)=H. 
Choose local coordinates xl, ..., x, on M n in a neighborhood of p, so 
that rc(rp-t(H)) is defined in that neighborhood by x , = 0  (so that h is 
spanned by tV/~x I . . . . .  ~/Oxn_ 1, by Lemma 4.6), and so that h' is spanned 
by O/c?x 1 . . . . .  c~fiVxn_ 2 . Now let h'dr ) denote the linear span of 

F r - -  
~ X  1 . . . . .  ~ X i _  1 ' ~ X  i OXn_  1 . . . .  , ~ X n _  2 ' 

and let hi(r, t) denote the linear span of 

h'i(r) and t-t 
~x,_ 1 3x. 

Note that h'~(r)eB', and for fixed r, h~(r, t) is an s-curve through x with 
qo(hi(r,O))=H. This s-curve corresponds to hi(r). We call the curve 
q~(h~(r, t)), for fixed r, Ci,. The tangent vector to C~ at H, z~,, is spanned 
by q~(hi(r, 0)) and d/a t  q)(hi(r, 0)), which we proceed to compute. 

From (4.1), (4.2), and using the notation of the proof of Proposi- 
tion 4.2, we find that q~(hi(r, t)) must contain 

and 
Y,,Y1 . . . .  ,Y~,Yjk ,  ( j q = i , n - - l , n ) ,  

~, +r~~ Y,._, + t~ . ,  

L_,,+rY._I._,, Y._l._l+t L_,., 

Y,i + r  u  r , . - t  + t  Yn." 

These vectors are linearly dependent. However, with allowance made for 
the symmetry Xjk = Xkj, if we leave out 1I._ 1 i + r ~ _  1 n -  1, the remaining 
are linearly independent for r, t = 0, and hence certainly for small values 
of r, t. These vectors, with the indicated one left out, are sufficient in 
number to span qo(hi(r, t)). If we multiply them together and calculate 
the derivative of the resulting expression, we obtain 

d ( p ~  (r, 0 ) =  - t - Q . _ l . + r f 2 i ,  ,. 
dt 

We also find that 
t t=qo(hi(r ,  0))= -t-a,, .  

14 lnventiones math..VoL 13 
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The tangent line of  C~, at t = 0 ,  r~,  is represented by the wedge product  
of  these last two expressions in A 2 (A s R N+ 1): 

Hence 
"fir = ~ff~nnA~n_ln ~r~'-~nnA~'~in. 

d'c i ,  

Also, if z denotes the tangent to the s-curve determined by h', we have 

Hence 
z =  _+~2.. A ~2._i.. 

8~ 

~Xn - 1 
- _ + [ Y A  Y~ ,~ . - .  ,~ Y, A i . . - ) ]  A o . _ ~ .  

_ + O . . A [ r A r l A .  ~ r . _ ~ A r .  , . A [ I ~  
j<k 

+ y A  Y~ A --. A Y. A(. . . ) ] .  u.~,*~. ~.., 

Hence z ,z  t . . . . .  rn_2, c3r/c~x,_l are linearly independent,  which shows 
that  the tangent lines to s-curves at x fill out  an open set in T x. This 
completes the p roof  of  the proposit ion.  

Proposition 4.7. cp': M* -~ pN,  is non-degenerate. 

The proof  depends on the following lemma and proposit ion.  

L e m m a  4.8. Let X:  M" ~ pN be a non-degenerate immersion of  class 
C 2. Then there is no open set U ~ M" such that the tangent projective spaces 
to X at all points o f  U have a common point. 

Proof. Suppose there is such an open set U. Let P be a point  c o m m o n  
to the tangent  projective spaces at the points  of U. Choose  as hyperplane 
at infinity in pN some hyperplane not  containing P,, and take P to  be 
the origin of  E N c  P~. X(U)  is not  conta ined in the hyperplane at infinity, 
since X is non-degenerate.  Hence there is an open set U ' c  U such that 
X :  U ' ~  E N, and the tangent  spaces to X at the points of U' pass through 
the origin. 

Let U " c  U' be the domain of  some local coordinate  system x~ . . . . .  x n. 
There must  exist smooth  functions %, ..., c~, such that  

gX 
X - ~ I X  1 + . . . + % X .  in U", X i -  ^ 

o x  i 

Differentiating this with respect to x i, we obtain 

8 ~  8~. X 
X i = ~ x i  X l  ~-"'-]---~--(Jxi n~-o~lXli~- " '+~nXni.  
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But since X is non-degenerate, the X~ and X~k, j <  k, are linearly independ- 
ent. Hence ~j -= 0 for j 4: i. But this is true for any i; hence c~j - 0 for allj. But 
this implies that X---0 in U", a contradiction. 

Proposition4.9. Let X: M " ~ P  ~" be a non-degenerate immersion of 
class C 2. 7hen 

a) the e.s. hyperplanes of X have no common point in P~'," 
b) if p~tVl", the intersection of the e.s. hyperptanes of X at p is Tp. 

Proof'. We proceed by induction. If n =  1, we are concerned with a 
non-degenerate plane curve; the e.s. hyperplanes are just the tangent 
lines, tn this case the proposition is well-known. Now assume the pro- 
position for dimensions lower than n. Since the proposition is of a local 
and projective nature, we may assume X: M " ~ E  '~ and apply our 
metric constructions. Consider the e.s. hyperplanes at p. Their inter- 
section certainly contains Tp. If it is larger than Tp it meets the indicatrix 
plane Ip, and hence the e. s. hyperplanes of JV'(S~,) have a common point. 
But this is impossible by the induction hypothesis. This proves Part b). 

To prove Part a) we observe that, by Part b), if all the e. s. hyperplanes 
of X have a common point, then all the tangent spaces of X have a 
common point. But this is impossible, by Lemma 4.8. This concludes the 
proof. 

By Proposition 4.9 b), the condition that any hyperplane which 
supports to the second order supports to the third order may be put 
in the following form: i f p e M  ~, x(t) a curve on M" through p with unit 
tangent vector v at p such that x (0)= p, then X'"  (0) lies in the linear span 
of Tp and the tangent space to o,~V at v, where X(t)=f(x(t)) .  

Proof o] Proposition4.7. Suppose ~0' is degenerate at xeM*.  Then 
there is a hyperplane J c pN, containing all first and second derivatives 
of curves on M* at x. J must then contain the images of all s-curves 
through x. Hence, by Proposition 4.5, J contains the image under ~0 
of an open subset U of G,_~ T(M"). Assume U is the largest such open 
set. Now if U meets a fibre F, it meets F in an open set of F, and hence 
F ~  U, since (p restricted to F is real algebraic. It follows that all the e.s. 
hyperplanes o f f  at the points of n(U), when viewed in pN,,  lie in J. 
Dually, this says that all the e.s. hyperplanes o f f  at the points of 7r(U) 
have a common point in E N. But this is impossible by Proposition 4.9at. 
This completes the proof. 

5. Submanifolds of  E N Containing Many Plane Curves 

IrJ this w we prove the following. 

Theorem IIL Let M be a connected differentiable maniJold o( dimension 
n > l  and f:  M ~ E N, N=�89 3), a non-degenerate immersion dif- 
14" 
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ferentiable of  class C z. Suppose M contains a family of  C 2 curves, which 
we call s-curves, such that each s-curve is mapped by f onto a plane curve 
in E x. For each x ~ M  let W~ denote the set of  points of M which can be 
joined to x by s-curves. Suppose that W x -  {x} is non-empty and open for 
each x and that the tangent lines to the s-curves at x fill out an open subset 
of  the tangent space at x. Then f ( M )  is contained in a Veronese n-manifold 
in px. 

Before beginning the proof, we make a few remarks. By Proposition 4.5 
the dual manifold of  the last w satisfies the hypotheses of the theorem. 
Let us note that the hypotheses imply that i f y e  W x, then x~ W~; and Wx 
has the property that if U is any neighborhood of x in M, then U c~ Wx 
has a non-empty interior. 

Proof of Theorem III.  Let x e M  and let j be a linear subspace of 
dimension n - 2  of T x. By Lemma 4.4b) the e.s. hyperplanes o f f  at x 
which contain ~4r(j) enveIop a hyperquadric Q which contains the 
tangent and curvature vectors of all curves at x, in particular the s-curves 
through x. But the plane of an s-curve is spanned by the tangent and 
curvature vector at any point, because f is non-degenerate and therefore 
contains no curves with curvature vanishing anywhere. It follows that 
Q contains all s-curves on M through x and hence Q 3 W~,. In order to 
prove the theorem we will show that any point of M has a neighborhood 
whose image under f lies in a number  of such hyperquadrics, which 
can be chosen in such a way that their intersection is a Veronese surface. 

Let y e M  be an arbitrary point. We work in a neighborhood of y 
which is embedded by f We claim that there is some point Yt ~ W~ such 
that T ~ T is a linear space of dimension < n -  1 in E u. For  if not, let y yl 
re: EN--*Ny denote orthogonal projection into the normal  space at y. 
Then the rank of ~ on f(Wy) must be =< 1, so that n of(Wy) is a curve, 
possibly with singularities. Now if C is any s-curve on M through 
y, rcf(C) is a segment of a generating ray of the curvature cone JV'(~.). 
Hence if q6~f(W,~), then the line segment joining q to y must also lie 
in ~zf(Wx). Hence since ~zf(W~) is a curve, it must tie in a line. But this 
implies that f(W~) lies in the linear span of that line with Ty, contradict- 
ing the non-degeneracy o f f  Let us note here that g ( W 0 c  #/'(T0. 

So let us choose y~W.~ such that Tyn ~,  has dimension less than 
n -  1. Next we choose Y2 ~ Wy ~ W~.,, Y2 4: y, in such a way that ~ c~ ~,  
has dimension < n - 1 and such that Y2 r T~., and Yl r Ty. This is possible 
since W~r~ W~, has a non-empty interior containing points arbitrarily 
close to y. We now choose Y3 . . . . .  y , + ~ M ,  by a recursive process. We 
assume that y~, ... ,  y~, i < n +  1, have been chosen in such a way that 

l i) Y, Yl . . . .  , y , ~  W r ~ Wr, ~ - . .  n Wy,, f(yj) + f(y), al l  j < i; 
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2~) if zc~ denotes  the project ion into the normal  space o f f  at Yi, then 
there exist z2l . . . . .  zii~ ~ which are in general posit ion in ~ ,  and such 

P that  A (Zjk)-- n j f (y , ) ,  for all k < i; 
31) ~ c ~  .-. ~ ,  has dimension <n- i .  
(Let us note  that  for i = 2 ,  the set {Yl,Y2} already chosen satis- 

fies condi t ions ll), 21), 3i).) Let us now consider the interior, U, of  
W v ~ W y n . . . c ~ W y .  If  every point  x of U has the proper ty  that  
T x 2 ~ c ~ . . . m ~ . ,  then the assumed non-degeneracy and L e m m a 4 . 8  
give a contradict ion.  Hence  there is some open set U' c U with the prop-  
erty that  if x~ U', then T x c~ T,, 1 c~-.- c~ 7~, has dimension < n -  i -  1. N o w  
let h~ denote  the linear span, in Try, ofzj. 1 . . . . .  zig. Let  Pj denote  the linear 
span of T,.j and Jg'(hi~S~,). Since :V(hjc~S~.) lies in a linear space of 
dimension �89162  1), ~ must  have dimension < N .  Hence, by the 
non-degeneracy,  Pj can contain no open set of M. It  follows that  U " =  
U ' -  U P~ is non-empty ,  and so we choose y~+I~U". Condit ions 1i+0, 
21+0, and 3i+0 are now easily verified, with the exception of 2~+1) for 
the case j = i + 1. 

But suppose zi+ll .... , Zi+li+l are so chosen that J t / ' ( Z i + l k )  = rCi+lf(yk). 
If these z's are not in general position, then one of them lies in the linear 
span of the others, say Zi+ll lies in the linear span of zi+t2,..., z~+xi+~. 
Call this linear span Q. Let Q' denote  the linear span of  T).,+, and 
_~'(Q ~ Sy,+). Then  Q' contains  f (Y0 . . . . .  f(yi+O. But Q' cannot  contain 
an open set of M. And  everything established so far remains  true if we 
vary Yl slightly. So vary Yl slightly, to get it outside of  Q'. And repeat  
this a rgument  until z~+~l . . . . .  z~+l~+t are in general position. This 
completes  our account  of  the construct ion of Yl, . . . ,Y,+I .  Note  that  
~ ,  c~... c~ ~,+~ is empty.  

Suppose  we have an e.s. hyperp lane  H of f at yj and suppose H 
contains f(Yk)" We claim that  H is also an e.s. hyperplane  o f f  at Yk" TO 
show this, we observe first of all that  since H suppor ts  ~g(Ty,) it suppor ts  
any s-curve th rough  y j, and  hence it suppor ts  W.~,. Hence  it suppor ts  
A/'(T~,~) and contains  Ty k. Let C be an s-curve joining yj and  Yk" nJ(C)  
is a segment  lying on the curvature  cone ~+<(T~),. and this segment is 
contained in Jff(1), where I is the tangent  line to C at yj. Since H contains 
7~j and f(Yk), H contains  f(C) and hence it contains this segment. N o w  
by hypothesis  the tangent  lines to the s-curves through yj fill out  an 
open set in ~ .  Since H c~ A/'(S~,) is, by definition, a Veronese submanifold  
of dimension ( n - 2 )  of  ~f'(Sy,), H must  contain an ( n - 2 ) - p a r a m e t e r  
family of  s-curves containing C. This family sweeps out  an ( n - l ) -  
d imensional  submanifo ld  of  M containing Yk, and hence, by L e m m a  4.1, 
H is an e.s. hyperp lane  at Yk, which establishes the claim. 

Let  i__< n + 1, and pick j < n + 1, j + i. Let  hj~ denote  the linear span of 
Zjl . . . .  , zj ~_ 1, zj~+l . . . .  , zj ,  +1. Let H~ be the e.s. hyperplane  at y~ con- 
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taining ~A~:(h~i). Note that H i contains f(Yk) for all k # i  and is an e.s. 
hyperplane at each of them. Now for each i , j<  n + 1, i # j ,  choose k 4= i,j, 
k < n + 1, and let hki J denote the linear span of {zkl . . . . .  zk,+ 1} - {zkl, zki}. 
Consider the se t / / i  j" of e. s. hyperplanes at Yk containing hk~ j. By property 
2,+1) above, and Lemma 4.4, Hq forms a non-singular conic in P~* and 
envelops a hyperquadric containing Wyk, and hence a neighborhood 
of y. The hyperplanes of Hq are e.s. hyperplanes at each Yk, k:~ i,j. Hij 
and H~ have H/ in  common. 

Now let k < n +  1 and consider the intersection of all hyperplanes 
of the families H~j such that i , j ~ k ,  We claim that this intersection is 
just ~ .  This follows from the fact that if w~ . . . . .  w, are n poims, lying 
on a Veronese manifold V "-~, which are not contained in a proper 
Veronese submanifold, and if Hjj denotes the family of e.s. hyperplanes 
of V "-a which contain {% .. . .  , w,}-{w~, w~}, then the intersection of 
all the hyperplanes of the families H~'~ is void. This, in turn, is proved 
by induction on n -  1, using an argument similar to that of Proposition 4.9. 
The essential step in the induction is the observation that if V' is a 
Veronese manifold of dimension i and Xl , . . . , x i+ ~ are points on V i 
not lying in a proper  Veronese submanifold, then the tangent spaces to 
V i at x~ . . . . .  x~+ 1 have no common point. This, in turn, follows from the 
calculation near the end of w 2. Finally, since Tu, c~... c~ Ty~,+~= 0, there 
is no point common to all the hyperplanes of the families H,/. 

Now draw the tangents to the conic Hq at H~ and H r. They meet in 
a point Hij, and the linear span of all the points H i, Hij is the same as 
the linear span of all the conics H~ i. This has dimension < n + �89 n(n + 1) = N. 
If it is strictly less than N, then all the H~j lie in a hyperplane of pN,,  
which says that all the hyperplanes of the families Hq have a common 
point. Since this is impossible, the dimension above must be N, which 
says that the set of points Hk, Hq, i <j,  is in general position, 

Let us introduce homogeneous coordinates in pU, such that the 
coordinates of H k or Hi; are all zero, but for one. For  convenience 
we call these coordinates ~* * ~ i , ~ k ,  l < i _ < n + l ,  l < = j < k < n + l ,  and we 
require that 

H~ is the point ~* =6,1, ~*k=0, all .j, k; 

Hjk is the point ~*v=bj, ,  5kr, ~*=0 ,  all i. 

In these coordinates Hij has equations 

ai j~ .+bi . i~*z=O,  ~ * = 0 ,  l :#i , j ,  ~*p=0,  (m,p)+(i , j ) ,  

where i< j  and ai: and b~j are non-zero. We still have the freedom to 
normalize the:coordinates, so we may incorporate the constants glij, b~j 
in ~*. The first equation becomes then 
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If {~, ~jk are the homogeneous coordinates in P'~" dual to the "* ~* ~-~, gjk, then 
the hyperquadric enveloped by H~ has equation 

v2 

Now each of these hyperquadrics, and hence the intersection of all 
of them, contains a neighborhood of y in M. In this neighborhood 
there must be a point whose first n+  1 coordinates, gl . . . . .  ~,+1, are 
all different from zero. For  otherwise this neighborhood would be con- 
tained in a finite union of hyperplanes, contradicting the non-degeneracy 
offi  By reversing the signs of the ~ ,  if necessary, we can arrange that 
~L . . . . .  g.+l are all positive a t , some  point in this neighborhood. We 
must then have all g~j= 1. Our equations thus become 

~i  1 "2 ~j  - -  ~ ~i j  = O. 

In order to solve these equations, we set x~= ]~1 ~. Then gij= 

~= +_x~, {ij= +_2x~xj. 
This is a parametric representation of the various pieces of the inter- 
section of our hyperquadrics, for various choices of the signs. But 
given any of these pieces, we can reverse the signs of{~0 and {~ as necessary 
to get it into the form 

~,=x~,, ~,,=2x~x~. 

But this we recognize as our parametrization of a Veronese manifold. 
Hence there is some neighborhood U of y in M such that f(U) lies in a 
Veronese manifold. 

Now yEM is an arbitrary point. Since M is connected, by analytic 
continuation we conclude that f(M) lies on a Veronese n-manifold. 
This concludes the proof of Theorem III. 

6. Proof of Theorems I and II 

We prove Theorem II as follows. Let f :  M"-*  E x be a non-degenerate 
immersion of class C * which has the property that any hyperplane which 
supports to the second order supports to the third. We may construct 
the dual manifold (p': M* _~pU., which is differentiable of class C 2 and 
which, by Propositions 4.5 and 4.7, satisfies the hypotheses of Theo- 
rem Ill. Hence, by Theorem lI1, q~'(M*) is contained in a Veronese n- 
manifold V*. 

Now let V' be a Veronese manifold of dimension n lying in pN. 
Since it has the two-piece property, by Corollary 3.4 it has the property 
that any hyperplane which supports to the second order supports to the 
third. Also V' is non-degenerate. Hence by the last paragraph its dual 
manifold V ' * ~  pN. lies on a Veronese manifold. This last map is one- 
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to-one by w 2, And it is onto the Veronese manifold, because V' is com- 
pact and any Veronese manifold is connected. New apply a projective 
transformation of pN. which brings V'* to V*. Since the o-mapping 
for V' may be constructed in a projectively invariant fashion, the adjoint 
projective transformation o fP  N brings V' to a Veronese manifold Vwhose 
dual manifold is V*. 

Consider a point p of M" or V,, and consider the e. s. hyperplanes at p, 
q0(Gn_ 1 Tfl. We claim that they form a Veronese ( n -  1)-manifold in pN,. 
For  if we take homogeneous coordinates ~1 . . . . .  ~u+l in pN such that 
Tp is defined by 4,+2 . . . . .  ~N+I=0 and lp, the indicatrix plane, by 
i t  . . . . .  ~,+1 =0,  then if 

N+I 

i=n+2 

is an e. s. hyperplane oLA~(Sp), the cq must satisfy some system of equations 
defining a Veronese ( n -  1)-manifold, since by the last paragraph the e. s, 
hyperplanes of the Veronese manifold JV'(Sp) form a Veronese (n-1) -  
manifold. Now the e.s. hyperplanes ~0(G,_ 1 Tfl are just the linear spans 
of T v and the e.s. hyperplanes of ~ (S f l .  Hence these are hyperplanes 

N+I 

}2 ~i ~, = 0 ,  
/=1 

such that cq . . . . .  c%+1=0, and c%+ 2 . . . . .  ~u+l satisfy the equations 
mentioned above. But these together are the equations of a Veronese 
( n -  D-manifold lying in pU,, which proves the claim. 

Now to each point peM" we can assign the Veronese ( n -  D-manifold 
q~  (p)= q)(G,_ 1 Tfl, and to each point q E V the Veronese ( n -  1)-manifold 
~v (q) = ~o (G,_ 1 Tq). The range space of CM arid q~v is the set of all Veronese 
(n-1)-submanifolds of V*, which may be identified with a projective 
space of dimension n, P". Now q~v must be onto and have constant rank, 
because V is equivariantly embedded and the mapping ~0 is projectively 
invariant. It follows that q~v is also one-to-one, since Vand P" are homeo- 
morphic and the fundamental group is Z 2. 

Consider now the mapping q'v I q~M: M"--~ V. It is differentiable, by 
construction. If ~vl~M(p)=q, then by Proposition4.9 Tp= Tq. If we 
represent f :  M -+ E ~ as a position vector function X, and V by a position 
vector function Y, then we can write 

Yo Ov 1 (I) M =  X - ~  o~I X 1 -t- . . .  "-}- o~nXn, 

where x~ . . . . .  x, are local coordinates on M" and X~=~?/c?x~X. Dif- 
ferentiating, we obtain 

~ i  (to +~' %),= x~+k ~ x~+E ~j x~. 
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But since Tp= T~, and Xii, X, are linearly independent, we must have 
c~j=0, 1 < j <  n. But this implies that f(M")~ K This completes the proof 
of Theorem II. 

Finally we prove Theorem I. Let M" be compact and let f :  Mn---' E N 
be a C 4 immersion which is substantial and which has the two-piece 
property. It is trivial to show that M" must be connected. Consider the 
set of extreme points of f By Proposition 3.2 this set is non-empty and 
open. Let M o be one of its connected components. Then by Corollaries 3.7 
and 3.4, f restricted to M o is non-degenerate and has the property that 
any hyperplane which supports to the second order supports to the third 
order. Hence, by Theorem II, f(Mo) lies on a Veronese n-manifold 
V= pN. Now if M 0 had a boundary point p, then f would be degenerate 
at p, by Proposition 3.8. By continuity, pc  V and V would be degenerate 
at p. But this is impossible. Hence M o has no boundary points, so M o = M R, 
and f ( M " ) =  K Finally, f must be an embedding, by Proposition 3.2. 
This completes the proof. 

7. Alternative Proofs 

We think it might be worthwhile to indicate some other proofs of 
Theorem I. 

1) The original proof  of Little is essentially that of the present 
paper, up to Corollary 3.4. The chief difference between his paper and the 
present one lies in the proof  of Theorem II, which he carried out by 
using the given conditions on the third derivatives to introduce local 
coordinates on the submanifold in which the second derivatives of the 
immersion map vanish identically. This proof  is in some sense more 
straightforward than that presented here, but the calculations involved 
are very complicated. The deduction of Theorem I from Theorem lI 
is essentially that given in the present paper. 

2) A simplified proof of Theorem I, but one which does not yield 
Theorem II, may be given as follows. Proposition 3.3 may be inter- 
preted as saying that if we project f(M") orthogonally into the normal 
space at an extreme point p, then the image will lie inside the convex 
hull of Jl/'(Tp). On the other hand, using the map q0, it may be seen that 
each e.s. hyperplane at p meets M" in a submanifold of codimension 
one through p, and it can be shown that these submanifolds fill up a 
neighborhood ofp. But when an e. s. of f a t  p is projected into the normal 
space at p, it goes onto an e.s. hyperplane of ,/V(Sp). It follows that the 
orthogonal projection of some neighborhood of p must lie on JV'(Tp). 
We can now modify the argument ofw 5 to prove that some neighborhood 
of p is a Veronese manifold, and then use the concluding arguments of 
w 6 to obtain Theorem I. This approach avoids considering the dual 
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manifolds as such, and moreover requires only C 3 differentiability f o r f  
But because of other applications of Theorem II we have gone the 
present route. 

3) Kuiper 's  proof  [4 3 of Theorem I for surfaces uses Morse theory 
to show that a tight surface in E 5 carries a two-parameter  family of 
ellipses. It then appeals, in effect, to what we have proved here as Theo- 
rem III,  which was proved for surfaces by Segre [10, 11]. 

4) An heuristic proof  of Theorem I for surfaces may be given in the 
following way. By an argument essentially due to Banchoff [1], any e.s. 
hyperplane at an extreme point p of an immersed surface in E 5 having 
the two-piece property must meet the surface in more than one point. 
Let us accept that it is a curve. This curve is a top set in the sense of 
Kuiper [4], so it must be a plane convex curve. Accepting that such 
curves fill out a neighborhood of p, it follows that orthogonal projection 
into the normal space at p sends this neighborhood into ,4/(Tp). We now 
proceed as in w 5. 
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