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Abstract. The evolution of two mitochondrial genes, 
cytochrome b and cytochrome c oxidase subunit II, was 
examined in several eutherian mammal orders, with spe- 
cial emphasis on the orders Artiodactyla and Rodentia. 
When analyzed using both maximum parsimony, with 
either equal or unequal character weighting, and neigh- 
bor joining, neither gene performed with a high degree of 
consistency in terms of the phylogenetic hypotheses sup- 
ported. The phylogenetic inconsistencies observed for 
both these genes may be the result of several factors 
including differences in the rate of nucleotide substitu- 
tion among particular lineages (especially between or- 
ders), base composition bias, transition/transversion bias, 
differences in codon usage, and different constraints and 
levels of homoplasy associated with first, second, and 
third codon positions. We discuss the implications of 
these findings for the molecular systematics of mam- 
mals, especially as they relate to recent hypotheses con- 
ceming the polyphyly of the order Rodentia, relation- 
ships among the Artiodactyla, and various interordinal 
relationships. 
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Introduction 

The mitochondrial cytochrome b (COB) and cytochrome 
c oxidase subunit II (COII) genes have been used in 
several recent molecular systematic studies of rodents 
(DeWalt et al. 1993; Ma et al. 1993; Thomas and Martin 
1993), ungulates (Irwin et al. 1991; Irwin and Wilson 
1992; Miyamoto et al. 1994), marine mammals (Irwin 
and Arnason 1994), primates (Ruvolo et al. 1991; Diso- 
tell et al. 1992; Adkins and Honeycutt 1994), and euthe- 
rian mammal orders (Adkins and Honeycutt 1991, 1993; 
Honeycutt and Adldns 1993). The COB gene, in partic- 
ular, has been used extensively in the investigation of 
systematic relationships among vertebrates, and the COII 
gene studies have focused primarily on primates and 
their presumed relatives. In this paper we examine pat- 
terns of nucleotide sequence variation in the COB and 
COII genes, with an emphasis on determining relation- 
ships within and among mammalian orders. New nucle- 
otide sequence data for the COII gene are combined with 
existing information from both COB and COII, and the 
similarities and differences among resultant gene phy- 
logenies are evaluated. In addition, rates of nucleotide 
substitutions, differences in codon usage, and base com- 
position bias are examined for both genes, using repre- 
sentative taxa from the mammalian orders Rodentia and 
Artiodactyla. 
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Materials and Methods 

Mitochondrial Genes Examined. A total of 35 COB genes and 37 COIl 
genes were examined for six orders of eutherian mammals as well as 
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one metatherian order (Table 1). In the case of the new COII sequences 
reported in this paper, mitochondrial DNA (mtDNA) was isolated using 
cesium chloride/propidium iodide gradient centrifugation (Brown 
1980), and the entire COII gene was amplified with primers H8320 and 
L7553 (see Adkins and Honeycutt 1994) by the polymerase chain 
reaction (PCR) using the parameters 95°C denaturation (1 rain), 45°C 
annealing (i rain), and 72°C extension (1.25 rain) for 30 cycles. The 
amplified COII genes were either sequenced directly using single- 
stranded PCR products (Allard et al. 1991a) or the double-stranded 
product was ligated into the pBluescript plasmid and then sequenced. In 
both cases sequencing followed that of Kraft et aL (1988). Because of 
the inherent error rate of Taq polymerase (Saild et al. 1988; Tindall and 
Kunkel 1988; Keohavang and Thilly 1989), at least two clones were 
sequenced for each taxon. In two cases (Geomys, Perognathus) a single 
sequence discrepancy was found. A third clone was sequenced in each 
case, and the base present in two clones was assumed to be correct. 

Data Analysis 

Phylogenetic analyses were performed by two methods--maximum 
parsimony as implemented by PAUP 3.1 (Swofford 1993) and neigh- 
bor-joining (Saitou and Nei 1987) as implemented by the MEGA pro- 
gram (Kumar et al. 1993). Maximum-parsimony analyses were con- 
ducted using both equal and unequal character weighting. Equal 
weighting consisted of all substitutions regardless of codon position 
being given equal weight. Unequal weighting schemes included the use 
of transversions only as well as a procedure whereby differential 
weights were assigned to each codon position (e.g., transversions only 
at third position, all substitutions at second position, and all substitu- 
tions at first position with changes involving leucine at the first position 
recoded as Y, the generic symbol for a pyrimidine). Neighbor-joining 
analyses were conducted using pairwise distance estimates based on 
several models (Jukes and Cantor 1969; Kimura 1980; Tajima and Nei 
1984; Tamura and Nei 1993). In addition, gamma distances were es- 
timated using MEGA (Kumar et al. 1993) for all the above models 
except Tajima and Nei (1984). We chose to examine relationships 
using these various distances in an effort to circumvent assumptions 
specific to any one model (e.g., rate of nucleotide substitution assumed 
to be the same for all sites, all nucleotide frequencies equal to 0.25, and 
no transition bias). 

Support for individual nodes on a phylogenetic reconstruction was 
evaluated using both the bootstrap option (Felsenstein 1985) and the 
Bremer support index (Bremer 1988), the number of extra steps re- 
quired to break up a clade, Tests for rate heterogeneity among divergent 
taxa were evaluated using a relative rate test (Mindell and Honeycutt 
1990). Codon usage and base composition values were obtained by the 
sequence analysis program MacVector 3.5 (International Biotechnolo- 
gies, Inc.) and MEGA (Kumar et al. 1993). 

Resul t s  a n d  D i s c u s s i o n  

Interordinal Phylogenetic Comparisons 

A total  o f  18 species  o f  eu the r i an  m a m m a l s  were  used  in 

the  in te ro rd ina l  com pa r i s ons ,  w i th  a m a r s u p i a l  ou tg roup  

(e i ther  Didelphis or Monodelphis). T h e s e  18 species  rep-  

r e s e n t e d  six e u t h e r i a n  o rde r s  i n c l u d i n g  (1) P r i m a t e s  

(Homo and  Galago); (2) C a r n i v o r a  (Phoca); (3) Lago-  

m o r p h a  (Oryctolagus): (4) Ce tacea  (Balaenoptera); (5) 

R o d e n t i a  (Geomys, Cratogeomys, Sciurus, Cavia, Mus, 

Rattus, and  e i the r  Hystrix or Georychus); and  (6) Ar t io-  

dac ty la  (Bos, Capra, Odocoileus, Antilocapra, Sus, and  

e i the r  Cervus or Dama). 

Table 1. Specimens examined 

Taxa COW COIP 

Infraclass Eutheria 
Order Artiodactyla 

Family Antilocapridae 
Antilocapra americana 10 13 

Family Bovidae 
Bos gaurus 18 
Bos grunniens 18 
Bos indieus 18 
Bos javanicus 18 
Bos taurus 3 3 
Boselaphus tragocamelus 13 
Bubalus depressicornis 18 
Capra hircus 10 13 
Damaliscus dorcas 18 
Gazella spekei 18 
Syncerus c. caffer 18 
Syneerus c. nanus 18 
Tragelaphus imberbis 18 
Ovis aries 10 

Family Camelidae 
Camelus dromedarius 10 

Family Cervidae 
Cervus unicolor 13 
Dama dama 10 
Odocoileus heminous 10 
Odocoileus virginianus 18 

Family Giraffidae 
Giraffa camelopardalis 10 

Family Tragulidae 
Tragulus napu 10 

Family Suiidae 
Sus scrofa 10 18 
Tayassu tajacu 10 

Order Carnivora 
Phoca vitulina 5 5 

Order Cetacea 
Balaenoptera physalus 4 4 

Order Lagomorpha 
Oryctolagus cuniculus 9 17 

Order Primates 
Family Galagidae 

Galago crassicaudatus 16 
Galago senegalensis 1 

Family Hominidae 
Homo sapiens 2 2 

Order Rodentia 
Suborder Sciurognathi 
Family Geomyidae 

Cratogeomys c. castanops 7 18 
Cratogeomys c. tamaulipensis 7 
Cratogeomys fumosus 7 
Cratogeomys goldmani 7 
Cratogeomys gymnurus 7 
Cratogeomys merriami 7 
Geomys bursarius 7 18 
Pappogeomys bulleri 7 

Family Heteromyidae 
Perognathus flavus 18 

Family Sciuridae 
Marmota flaviventris 15 
Sciurus caroliensis 15 18 
Spermophilus columbianus 15 
Spermophilus lateralis 15 
Spermophilus richardsoni 15 
Spermophilus tridecemlineatus 15 
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Table 1. Continued 

Taxa COB a COIP 

Family Muridae 
Acomys willsoni 
Apodemus sylvaticus 
Malacothrix typica 
Meriones shawi 
Microtus pennsylvanicus 
Mus domesticus 6 
Peromyscus banderanus 
Rattus norvegicus 8 

Suborder Hystricognathi 
Family Bathyergidae 

Georychus capensis 
Family Caviidae 

Cavia apera 
Cavia porcellus 12 

Family Hystricidae 
Hystrix africaeaustralis 12 

Infraclass Metatheria 
Didelphis virginiana 
Monodelphis domestica 12 

18 
18 
18 
18 
14 
6 
18 
8 

18 

18 

11 

a Numerical designations for sequences used: 1. Adldns and Honeycutt 
1991.2. Anderson et al. 1981.3. Anderson et al. 1982. 4. Amason et 
al. 1991.5. Arnason and Johnsson 1992. 6. Bibb et al. 1981.7 DeWalt 
et al. 1993. 8. Gadaleta et al. 1989. 9. Irwin and Arnason 1994. 10. 
Irwin et al. 1991. 11. Janke et al. 1994. 12. Ma et al. 1993. 13. 
Miyamoto et al. 1994. 14. Pumo et al. 1992. 15. Thomas and Martin 
1993. 16. Anne Yoder, pets comm. 17. Genbank X64107. 18. This 
paper 

The resultant COB and COII gene phylogenies, de- 
rived from the maximum parsimony and neighbor- 
joining analyses, had several features in common regard- 
less of the weighting scheme and distance estimate 
chosen (Fig. 1 and Table 2). These features are pertinent 
to several recent issues concerned with ordinal-level re- 
lationships among eutherian mammals. First, several re- 
cent molecular studies (Graur et al. 1991; Li et al. 1992; 
Graur 1993; Ma et al. 1993), using both amino acid and 
nucleotide sequence data for a limited number of taxa, 
have not supported the monophyly of the order Rodentia, 
with the hystricognath rodents (especially the South 
American caviomorphs) representing a separate lineage 
from the sciurognath rodents (e.g., mice, rats, squirrels, 
etc.). We attempted to avoid the pitfalls of many earlier 
studies by increasing the number of rodent taxa in the 
analyses. The COB and COII gene phylogenies, how- 
ever, have complicated the issue of rodent monophyly 
even further, with as many as four independently evolv- 
ing lineages observed (Fig. 1). These molecular findings 
are totally incongruent with the morphological data, 
which strongly support rodent monophyly (Allard et al. 
1991b; Luckett and Hartenberger 1993). 

Second, the monophyly of the order Artiodactyla was 
not supported by either gene. The COIl gene placed the 
order Cetacea closer to ruminants than Sus, a nonrumi- 
nant artiodactyl, and several COB gene analyses revealed 
a sister-group relationship between cetaceans and Sus 

(Fig. 1 and Table 2). Both genes also suggested a sister- 
group relationship between the order Carnivora and the 
Artiodactyla/Cetacea clade, which included Sus. These 
findings are congruent with several independent studies 
including a detailed analysis by Graur and Higgins 
(1994) that examined both nuclear and mitochondrial 
genes and an examination of several complete mitochon- 
drial genomes of mammals (Arnason and Johnsson 1992; 
Honeycutt and Adkins 1993). Although the placement of 
Carnivora is somewhat incongruent with morphological 
evidence, the association of the cetaceans as sister to 
ruminant artiodactyls to the exclusion of nouruminants is 
not contradicted by morphological evidence (Honeycutt 
and Adkins 1993; Granr and Higgins 1994). 

Third, recent morphological evidence (Novacek 1992; 
Luckett and Hartenberger 1993) and at least one molec- 
ular study of mitochondrial genes from four orders of 
mammals (Pesole et al. 1991) support a monophyletic 
Glires, a superorder containing Rodentia and Lagomor- 
pha (rabbits). The COB and COIl gene trees do not sup- 
port these findings and are consistent with a large num- 
ber of other molecular studies that find no support for the 
monophyly of Glires (reviewed by Honeycutt and Ad- 
kins 1993). In fact, several of these molecular studies, 
including one total evidence tree for COB and COIl 
(transversion only analysis), support a closer relationship 
between rabbits and primates. The difference between 
these findings and the study of Pesole et al. (1991) could 
relate to the number of taxa examined and the methods of 
analysis chosen. 

The COB and COII gene phylogenies also revealed 
somewhat different relationships among several taxa, 
and the differences depended upon the gene, character 
weighting scheme, and method of analysis chosen (Fig. 1 
and Table 2). For example, the COB gene did not support 
the monophyly of the Artiodactyla family Cervidae (rep- 
resented by Dama and Odocoileus), whereas the COII 
gene (represented by Cervus and Odocoileus) did. Most 
analyses (equal weighting, transversion only, and neigh- 
bor joining) of the COB gene failed to support mono- 
phyly of Primates, while the COII gene consistently sup- 
ported monophyly.  The COB gene supported the 
monophyly of the rodent suborder Hystricognathi (rep- 
resented by Cavia and Hystrix) and the COII gene (rep- 
resented by Cavia and Georychus) did not. A total evi- 
dence approach also was used to evaluate phylogenetic 
relationships. In this approach both genes were com- 
bined, using the taxa held in common, in an effort to use 
an unpartitioned set of synapomorphies (Kluge 1989; 
Eernisse and Kluge 1993). The overall results from this 
analysis were similar to those seen for the two genes 
analyzed separately, with neither gene having a stronger 
influence over the other (Table 2). However, unlike the 
two genes analyzed separately, the monophyly of the 
artiodactyl/cetacean clade (most analyses), rodent super- 
order Hystricognathi, and order Primates was supported. 
The monophyly of Cervidae was not supported. Again, 
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Table 2. Phylogenetic relationships derived from either neighbor joining (N J) using Kimura (1980) corrected distances or maximum parsimony 
(MP) using total substitutions with equal weighting (equal), transversions only (TV), and differential weighting (unequal) at each codon position 

M P  equal  M P  T V  on ly  M P  unequaI  

Phy logene t i c  conc lus ions  a C O I I  C O B  C O I I  C O B  C O I I  C O B  

M P  total b 

Equa l  T V  U n e q u a l  

NJ 

C O I I  C O B  

Pr imate  m o n o p h y l y  + - + - + + + + + + - 

Roden t  m o n o p h y l y  . . . . . . . . . . .  

Hys t f i cogna th i  - + - + - + + + + - + 

Sc iu rogna th i  . . . . . . . . . . .  

Mur idae  + + + + + + + + + + + 

G e o m y i d a e  + + + + + + + + + + + 

Ar t iodac ty l  m o n o p h y l y  . . . . . . . . . . .  

B o v i d a e  + + + + + + + + + - + 

Cerv idae  + - + - + - ? - - + - 

S u s  D i v e r g e n t  + + + + + + + + + + + 

Cetacean  sister  g roup  

R u m i n a n t s  only  + - + - + - ? + + + - 

Carn ivores  and ar t iodactyls  . . . . . .  ? . . . .  

S u s  - - - + - + ? - - - + 

Carnivora - + . . . .  ? . . . .  
Carnivora sister group 

Antiloeapra + . . . . . . . . . .  

Cetacea - + . . . .  ? . . . .  
Artiodactyla and Cetacea + - ? + + + ? + + - + 
Sus . . . . . .  ? - - + - 

Lagomorpha sister group 
Rodentia +/- +/- ? - +/- - +/- - +/- - - 
Primates - - - +/- - + - + - - +/- 

a The p lus  (+) means  re la t ionsh ip  supported,  m i n u s  ( - )  indica tes  no support ,  + / -  impl ies  a re la t ionship  wi th  some but  not  all  taxa in  an order, and 

? indica tes  that  the re la t ionsh ip  is un re so lved  

b Each  gene  was ana lyzed  separately  and c o m b i n e d  as total  ev idence  (MP total)  

the order Rodentia was found to be polyphyletic (four 
independently evolving lineages), with the geomyoid  
genera G e o m y s  and C r a t o g e o m y s  being the most diver- 
gent eutherian taxa (Fig. 1). 

I n t r a o r d i n a l  P h y l o g e n e t i c  C o m p a r i s o n s  

Using the assumption that the order Rodentia and the 
C e t a c e a / A r t i o d a c t y l a  c lade  represen t  monophy le t i c  
groups, relationships among respective rodent and artio- 
dactyl taxa were reexamined. Two approaches were used 
in this investigation. First, phylogenetic analyses on the 
same rodent and artiodactyl taxa, examined in the inter- 
ordinal comparisons, were conducted using both maxi- 
mum parsimony (an exhaustive search with either equal 
or unequal weighting) and neighbor joining. These anal- 
yses were done for each gene separately as well as the 
two genes combined. Second, patterns of  variation in 
artiodactyl and rodent COB and COII genes were exam- 
ined in reference to an independent phylogeny derived 
from an examination of  other characters, including mo- 
lecular and morphological  (Figs. 2 and 3). For  each 
codon posit ion the retention index (Farris 1989), mean 
number of  steps (average number of  changes along each 
branch), and number of  positions that were potentially 
informative in a cladistic sense (positions exhibiting at 

least two states with at least two taxa possessing each of  
the alternate states) were estimated by fitting characters 
on the reference phylogeny. The retention index was se- 
lected because it is insensitive to the number of  taxa in a 

data set (Archie 1989) yet provides a measure of  ho- 
moplasy. Although the COB and COII data sets for ar- 
tiodactyls and rodents were not identical in terms of taxa 
examined, the taxa used in the comparisons spanned ap- 
proximately the same range of  divergence times (Table 
3, Figs. 2 and 3) and represented an overall increased 
number from those examined in the phylogenetic analy- 
ses. We  realize that relationships involving some taxa in 
these phylogenies may be equivocal but the overall  pat- 
terns observed for each order and gene were not influ- 
enced, to any large extent,  by swapping individual  
branches in the tree topologies. 

The COB and COIl  gene trees revealed problems sim- 
ilar to those seen in the interordinal comparisons (Fig. 4; 
see Table 1 for groups examined). In the case of  rodents, 
the COII gene tree was less congruent with morpholog- 
ical data than that seen for COB. For example, the COB 
gene supported the monophyly of  the suborder Hystri- 
cognathi (Cav ia  and Hys t r i x )  and a sister-group relation- 
ship between the Sc iurus  and the G e o m y s / C r a t o g e o m y s  

clade (Fig. 4A). Both of  these results are congruent with 
most ideas based on morphology. The COII gene tree did 
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not support either of  these results, even when maximum 
parsimony with unequal character weighting was used 
(Fig. 4C). Neighbor-joining (not shown) also did not 
alter these results. The total evidence analysis for rodents 
was identical to the COB gene tree, and none of  the 
analyses including the total evidence tree supported a 
monophyletic Sciurognathi (Fig. 4E). While the COII 
gene tree provided less resolution among the rodents, the 
COB gene tree provided less resolution for relationships 
among artiodactyls and cetaceans. The monophyly of  
Cervidae was not supported by the COB gene, and the 
placement of cetaceans relative to ruminants was unre- 
solved (Fig. 4B). Both the total evidence and COII gene 
trees, however, favored a monophyletic Cervidae and a 
sister-group relationship between Cetacea and ruminants, 
with Sus being basal (Fig. 4D and F). 

The level of homoplasy for both the COII and COB 
genes differed with respect to codon position and the 

Didelphis 
Homo 
Galago 

~ Phoca 
Antilocapra 

,~--s Bos 
Capra 

.~"~2~ Odocolleus 
Cervus 
Balaenoptera } 
Sus ) 
Oryctolagus } 

.9....._ Gsorychus 
° Mus 

Rattus 
Cavia 
Gsomys 
Cratogeomys 

3 . . . . . -  Sclurus 

Primates 

} Carnivora 

Artiodactyla 

Cetacea 
Artiodactyla 
Lagomorpha 

Rodentia 

Fig. 1, Phylogenetic relationships 
among eutherian mammals based on 
maximum parsimony (A) of the 
COB gene (length = 1,540, 
retention index 0.311) and (B) COII 
gene (length = 2,557, retention 
index = 0.322). Both trees were 
derived using equal weighting of 
total substitutions. Trees were 
constructed using 100 replications 
of the heuristic 
tree-bisection-reconnection search in 
PAUP, with the addition of taxa 
randomized. Inferred nucleotide 
changes are shown along each 
branch, and bootstrap values 50% 
or greater (derived from 100 
replicates) are enclosed in circles 
with the Bremer support indices 
separated from these values by a 
diagonal line (/). 

taxa examined (Table 4). Rodents showed a higher level 
of homoplasy at the third position of the COII gene than 
that seen for artiodactyls, as well as an overall higher 
number of phylogenetically informative sites at the sec- 
ond position. Both orders showed a low retention index 
at the first position in COII. Artiodactyls showed a 
higher level of homoplasy at all positions in the COB 
gene than seen with rodents, especially at the first and 
second codon positions. The pattern revealed by artio- 
dactyls and rodents did not change when the topologies 
in Figs. 2 and 3 were modified by rearranging individual 
lineages. This suggests that minor modifications of the 
accepted phylogeny do not alter the level of  homoplasy 
seen for each gene tree relative to the presumed species 
trees. There are at least two explanations for these re- 
sults, and they are not mutually exclusive. First, some of 
the differences in overall homoplasy observed between 
rodents and artiodactyls may be the result of  differences 
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S u i r l a  

Fig. 2. Reference phylogenies for artiodactyls used to evaluate ho- 
moplasy in the (A) COB and (B) COU genes. These phylogenies are 
based on several molecular and morphological studies including Janis 
and Scott (1987), Krans and Miyamoto (1991), Allard et al. (1992), 
Gentry (1992), and Miyamoto et al. (1993, 1994). The letters (a-l) on 
branches refer to the divergence dates shown in Table 3. 

in the average divergence time separating taxa used in 
each phylogeny. In this case closely related taxa would 
show less homoplasy than more divergent taxa, espe- 
cially with respect to the degree of saturation effects at 
third position and the overall amount of change at the 
first two positions. This cannot totally explain the obser- 
vations because the patterns of change at the three codon 
positions for both COB and COII differ within orders. 
Second, the different patterns of homoplasy may be the 
result of different levels of selective constraints on the 
artiodactyl and rodent COII and COB genes. This par- 
tially explains differences between genes within orders. 
The phylogenetic differences observed for the two genes 
may be the net result of the overall patterns of homoplasy 
and number of informative characters at each codon po- 
sition seen for rodent and artiodactyl COB and COII 
gene evolution. 

Processes of Molecular Evolution 

Transition/Transversion Ratios 
A bias toward transitions over transversions, espe- 

cially at lower levels of divergence, has been observed 
for mammalian mtDNA (Brown et al. 1982; Aquadro et 
al. 1984). Nevertheless, as indicated in a recent compar- 

A Hystrix 
Cavia 
Rattus 
Mus 
Spermophilus t. 
Spermophilus I. 
Sciurus 
Geomys 
Pappogeomys 
Cratogeomys 

B Georychus 
I "" Cavia 

I Cratogeomys 
Geomys 

i Perognathus 
Sciurus 
Rattus 
Mus 
Meriones 
Gerbillurus 
Peromyscus 
Tachyoryctes 

Fig. 3. Reference phylogenies for rodents used to evaluate ho- 
moplasy in the (A) COB and (B) COII genes. These phylogenies are 
based on current ideas of rodent relationships. (See references in Car- 
leton and Musser 1984; Luckett and Hartenberger 1985; Catzeflis et al. 
1992, 1993.) The letters (a-i) on branches refer to the divergence dates 
in Table 3. 

ison of the 12S rRNA gene in primates, rodents, and 
artiodactyls, the transition/transversion ratio relative to 
genetic divergence can vary among orders (Allard and 
Honeycutt 1992). A comparison of transition/trans- 
version ratios relative to Jukes and Cantor (1969) dis- 
tances between pairs of taxa revealed differences among 
rodent and artiodactyl COII and COB genes. At similar 
levels of COB gene divergence, rodents showed a higher 
transition/transversion ratio than that seen in artiodactyls, 
whereas artiodactyls revealed a higher ratio with the 
COII gene. The ratio stabilized in both orders at approx- 
imately 20% to 30% divergence for COB gene and 20% 
divergence for the COII gene. The cause of the observed 
taxonomic differences in transition/transversion ratios 
for these two genes is unknown. Either different muta- 
tion biases exist in regions under different structural con- 
straint or a highly biased substitution process, in part due 
to selective constraints on the molecule, may be partially 
responsible (Allard and Honeycutt 1992). The evaluation 
of homoplasy found for each gene relative to an accepted 
phylogeny of rodents and artiodactyls (Table 4) did re- 
veal substitution differences among the three codon po- 
sitions, and these differences are suggestive of variation 
in selective constraint. 

Tests for Rate Heterogeneity 
Rate heterogeneity in terms of nucleotide substitu- 

tions and amino acid replacements has been found for 
both nuclear and mitochondrial genes in mammals, sug- 
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Table 3. Approximate divergence dates for rodents and artiodactyls 

Comparison Node a Divergence time (Myr) b Reference 

Rodentia 
Pappogeomys/Cratogeomys a 4 (3-5) 
Geomys/Cratogeomys b 6 (5-7) 
Gerbillurus/Meriones c 6 
Spermophilus t./S. l. d 10 (9-12) 
Mus/Rattus e 11 (10--12) 
Gerbillinae/Murinae f 15-23 
Geomys/Perognathus g 30 
Sciurus/SpermophiIus h 30 
Hystricognathi/Sciurognathi i 55 

Artiodactyla 
Bos taurus/Bos gaurus a 2 
Capra/Ovis b 5 (4-10) 
Bubalus/Syncerus c 5 
Bos/Syncerus d 10 
Odocoileus/Cervus & Dama e 10.5 (9-12) 
Bos/BoseIaphus f 15 
Bos/Tragelaphus g 20 
Bos/Capra h 20 
Bovidae/Cervidae i 25 
Bovidae/Giraffidae j 25 
Pecorans/Tragulina k 45 
RuminantialSus 1 55 (50-65) 

Russell (1968b) 
Russell (1968a) 
Catzeflis et al. (1993) 
Black (1963) 
Catzeflis et al. (1992) 
Catzeflis et al. (1992) 
Green and Bjork (1980) 
Black (1963) 
Flynn et al. (1986) 

Pilgrim (1947) 
Savage and Russell (1983) 
Savage and Russell (1983) 
Savage and Russell (1983) 
Miyamoto et al. (1990) 
Savage and Russell (1983) 
Savage and Russell (1983) 
Savage and Russell (1983) 
Savage and Russell (1983) 
Savage and Russell (1983) 
Kraus and Miyamoto (1991) 
Savage and Russell (1983) 

a Nodes are identified on Figs. 2 and 3 
b Date not in parentheses used for plots in Fig. 5 

gesting a lack of a global molecular clock for mammals 
(Wu and Li 1985; Britten 1986; Li et al. 1987; Bulmer et 
al. 1991; Holmes 1991; Ma et al. 1993; Martin and 
Palumbi 1993; Adkins and Honeycutt 1994; Irwin and 
Arnason 1994). As suggested earlier, excessive rate het- 
erogeneity may influence phylogenetic results. The new 
sequence data presented here allow for a more extensive 
examination of rate heterogeneity within and between 
several orders of mammals, especially the orders Roden- 
tia and Artiodactyla. Two approaches were used to ex- 
amine rate differences for the COII and COB genes. 
First, both interordinal and intraordinal pairwise compar- 
isons were made, using either total substitutions or third 
position transversions, and deviations from rate homo- 
geneity were tested using the relative rate test of Mindell 
and Honeycutt (1990). Second, the rate of nonsynony- 
mous and synonymous substitutions for both artiodactyl 
and rodent COB and COIl genes was determined in ref- 
erence to known divergence times. 

The relative rate tests revealed several cases of rate 
heterogeneity, especially with respect to total substitu- 
tions (Table 5). First, primates had a faster rate of total 
substitutions in the COII gene relative to all orders, and 
the primate COB gene was faster relative to muroid ro- 
dents (Mus) and carnivores (Phoca). Within the order 
Primates the rate of total substitutions for both the COII 
and COB genes was higher in anthropoid primates (rep- 
resented by Homo) in comparison to prosimian primates 
(represented by Galago). Although there is little nucle- 
otide sequence data for the primate COB gene, these 
results suggest that the overall pattern of primate COB 

gene evolution may be similar to that seen for primate 
COII. As suggested in previous studies, the rate increase 
in the COII gene observed in primates may relate to an 
increased rate in the nuclear cytochrome c gene of pri- 
mates, and it now appears that the COB gene, which also 
interacts with cytochrome c, demonstrates a somewhat 
similar pattern to COIl (Ma et al. 1993; Adkins and 
Honeycutt 1994; unpublished data). Second, within ar- 
tiodactyls the genus Bos (cow) revealed a slower rate of 
total substitutions than that seen in several other lineages, 
and unlike the correlation between body size and rate of 
COB evolution observed by Martin and Palumbi (1993), 
the Bos rate was slower than that of the whale. In addi- 
tion, both the COII and COB genes revealed a slower 
rate of total nucleotide substitutions in the artiodactyl 
genus Antilocapra relative to cervids. Finally, most stud- 
ies of rodent nuclear gene evolution have suggested rate 
homogeneity among rodent lineages (Bulmer et al. 1991; 
O'hUigin and Li 1992). Nevertheless, both the COII and 
COB genes revealed a faster rate of total substitutions in 
geomyoid rodents, represented by Geomys and Crato- 
geomys, than that seen for muroid rodents, Mus and Rat- 
tus, confirming the observations of DeWaR et al. (1993) 
based on COB. 

In addition to the relative rate tests, substitution rate 
differences for the COB and COII genes were examined 
by plotting the number of substitutions at both synony- 
mous and nonsynonymous sites over a range of diver- 
gence times for pairs of artiodactyl and rodent taxa. Both 
the COB and COII genes of rodents in comparison to 
artiodactyls showed a higher rate of substitution at syn- 
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Fig. 4. Maximum parsimony trees derived using the exhaustive 
search option in PAUP. Trees were constructed using total substitutions 
and equal weighting for the COB genes of (A) rodents (length = 1,005, 
retention index = 0.379) and (B) artiodactyls (length = 622, retention 
index = 0.351) and the COII genes of (C) rodents (length = 590, 
retention index = 0.378) and (D) artiodactyls (length = 382, retention 
index = 0.314). Both genes were combined to construct a total evidence 

83 
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tree for (E) rodents (length = 1,600, retention index = 0.374) and (F) 
artiodactyls (length = 1,020, retention index = 0.313). Numbers along 
branches represent inferred nucleotide changes. Trees B and D repre- 
sent strict consensus trees derived from three and four equally parsi- 
monious trees, respectively. Bootstrap values 50% or greater (based on 
100 replicates) are encircled and separated from the Bremer support 
indices by a diagonal (/) line. 

Table 4. Homoplasy at different codon positions for artiodactyl and rodent COII and COB genes in reference to the phylogenies in Figs. 2 
and 3 

First position Second position Third position 

Informative Mean Informative Mean Informative Mean 
Comparison RI a positions b no. steps RI a positions b no. steps RI a positions b no. steps 

COII 

Artiodactyla 0.30 31 3.32 - -  0 - -  0.41 167 2.76 
Rodentia 0.35 63 3.01 0.67 15 2.33 0.23 190 4.09 

COB 

Artiodactyla 0.33 57 2.74 0.31 18 2.39 0.28 248 3.29 
Rodentia 0.56 104 2.53 0.78 43 1.65 0.34 284 3.34 

a Retention index 
b Only positions informative in a cladistic sense are considered 

o n y m o u s  a n d  n o n s y n o n y m o u s  s i tes  (Fig.  5). T h i s  r e su l t  

is  s i m i l a r  to tha t  f o u n d  fo r  s y n o n y m o u s  a n d  n o n s y n o n -  

y m o u s  ra tes  in  t h e  n u c l e a r  g e n e s  o f  r o d e n t s  a n d  ar t io-  

dac ty l s  (Li  e t  al. 1987;  B u l m e r  e t  al. 1991).  In  t h e  c a s e  o f  

t he  C O I I  g e n e ,  s y n o n y m o u s  s i tes  w e r e  s a t u r a t e d  in  ro -  

den t s ,  a n d  th is  o b s e r v a t i o n  is c o n s i s t e n t  w i t h  the  h i g h  

l eve l s  o f  h o m o p l a s y  at  t h e  t h i rd  p o s i t i o n  o f  t h e  C O I I  

g e n e  f o u n d  in  r o d e n t s  r e l a t i ve  to  a r t i o d a c t y l s  (Tab l e  4). 
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Table 5. Results of relative rate tests 

Total Third position 
substitutions a transversions 

Comparison COII COB COII COB 

Rodentia b 
Mus/Geomys 0.0176" 0.0546* 0.4495 0.1041 

Artiodactyla ° 
Bos/Balaenoptera 0.4668 0.0469* 0.1802 0.3285 
Bos/Tragulus - -  0.0503* - -  0.4050 
Bos/Camelus - -  0.0049* - -  0.0251" 
Antilocapra/Dama - -  0.0363* - -  0.5000 
Antilocapra/Cervus 0.0535* - -  0.4159 - -  

Primates d 
Homo/Galago 0.0310" 0.0000' 0.3518 0.1841 

Interordinal e 
Homo/Bos 0.0006* 0.0992 0.3101 0.5000 
Homo/Mus 0.0001" 0.0005* 0.1108 0.2376 
Homo/Phoca 0.0018" 0.0419" 0.0103' 0.4234 
Homo/Lagomorpha 0.0033* 0.0686 0.0556* 0.2773 
Galago/Mus 0.0095* 0.0624 0.3974 0.2810 
Galago/Bos 0.0323* 0.3406 0.1528 0.4602 
LagomorphalMus 0.1649 0.0312" 0.4478 0.0878 
Lagomorpha/Geomys 0.4722 0.5000 0.5531 0.0335* 
Phoca/Bos 0.4063 0 .3514 0.0178" 0.3718 
Phoca/Mus 0.2262 0.0540* 0.1358 0.3439 

a Probability values obtained using the binomial distribution of Mindell 
and Honeycutt (1990), with asterisk (*) indicating significant or nearly 
significant values at p = .05. 
b Cavia used as outgroup 
c Phoca used as outgroup 
d Bos used as outgroup 

Didelphis or Monodelphis used as outgroup 

The COB gene of both rodents and artiodactyls demon- 

strated a higher rate of nonsynonymous substitutions 

than the COII gene, and as can be seen in Table 4, the 

overall number of informative sites at the first, second, 

and third positions is higher in the COB gene of both 

rodents and artiodactyls. 

Base Composition and Codon Usage 
Base composition at each of three codon positions 

was calculated from the nucleotide sequence data (all 

rodents and artiodactyls in Table 1), and the index of 

compositional bias (Irwin et al. 1991), which measures 

deviation from an equal (25%) frequency of each nucle- 
otide, was estimated. In general, both the rodent and 

artiodactyl COIl and COB genes showed a similar pat- 
tern, with base composition bias being greater at the third 

and lowest at the first codon positions (Table 6). At the 
second position of both the COB and COII genes, there 
is a bias toward thymine at the expense of guanine, and 

in the COII gene adenine is somewhat higher than cy- 
tosine, with the opposite observed for the COB gene. The 
COB gene shows an overall higher level of composition 
bias at the third codon position, and in both genes the 
greatest asymmetry is between adenine (high) and gua- 
nine (low). In addition, the frequency of cytosine at the 
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Fig. 5. Plots of nucleotide substitutions for the (A) COB and (B) 
COII. Substitutions at both (a,b) synonymous and (e,d) nonsynony- 
mous sites for pairwise comparisons were plotted relative to divergence 
time. Each point represents the average of all possible pairwise com- 
parisons, with the divergence times for these comparisons shown in 
Table 3. Open and closed triangles represent synonymous substitutions 
in rodents and artiodactyls, respectively. Open and closed squares rep- 
resent nonsynonymous substitutions for rodents and artiodactyls, re- 
spectively. 

third position of COII is somewhat lower than that ob- 
served for COB. The overall level of heterogeneity in 

base composition was higher at the third position and 

lowest at second position, as can be seen by the increased 
level of coefficients of variation associated with esti- 
mates of base frequencies. The increased heterogeneity 

has a taxonomic basis in that individual lineages and 
groups of taxa differ in base composition, with rodents 
demonstrating a greater amount of heterogeneity. These 
increased levels of heterogeneity, as a result of taxo- 
nomic variation at the third codon position in the COB 
and COII genes, are similar to patterns reported for pri- 
mate COII (Adkins and Honeycutt 1994) and ungulate 
COB (Irwin et al. 1991), and one would expect to see this 
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First codon position Second codon position 

Comparison a A C G T A C G T 

Third codon position 

A C G T 

COB 
Artiodactyla b 0.295 0.258 0.220 0.218 0.200 0.241 0.135 0.416 

CV ° 4.60 4.91 4.27 5.45 1.82 2.99 1.95 2.01 
Index a (0.077) (0.227) 

Rodentia 0.280 0.248 0.215 0.252 0.204 0.239 0.139 0.415 
CV 3.35 4.09 2.91 3.47 2.30 2.68 3.16 2.40 
Index (0.046) (0.222) 

COII 
Artiodactyla 0.296 0.249 0.235 0.220 0.267 0.242 0.114 0.377 

CV 2.16 3.96 2.41 5.04 0.59 1.05 1.01 0.50 
Index (0.061) (0.192) 

Rodentia 0.298 0.237 0.244 0.220 0.269 0.239 0.114 0.378 
CV 3.26 7.34 4.15 6.85 1.93 3.68 2.39 1.53 
Index (0.064) (0.196) 

0.434 0.358 0.043 0.157 
4.77 6.91 37.32 19.08 

(0.395) 
0.422 0.306 0.032 0.237 

11.05 12.46 37.02 18.49 
(0.321) 

0.468 0.234 0.085 0.213 
4.25 13.02 26.65 14.87 

(0.291) 
0.443 0.247 0.050 0.260 
7.58 20.49 51.66 13.86 

(0.271) 

a All taxa listed in methods section were used 
b Mean frequency for all taxa 
c Coefficient of variation 

Index of compositional bias (Irwin et al. 1991) 

trend continue as more mammalian orders are examined 
in detail. 

As expected, the frequency of codon usage among 
twofold and fourfold degenerate codons corresponded to 
the observed base composition bias seen at the third 
codon position (Table 7). For instance, codons with gua- 
nine at the third position of both the COB and COII 
genes were used less frequently than adenine. In addition 
to the similarities in codon usage observed for rodent and 
artiodactyl COB and COII, the two orders differed with 
respect to codon usage at several amino acids. A non- 
random usage of synonymous codons has been noted for 
many organisms (Ikemura 1985; Sharp et al. 1988), and 
several models have considered genetic drift, selection, 
and fluctuating mutation bias as explanations for this 
observation (Li 1987; Shields 1990). In the case of the 
mammalian COB and COII genes, it is unclear what 
processes are involved. There appears to be no general 
pattern across all taxa for a particular gene, and therefore, 
an argument invoking selection would seem unlikely. 

Conclusions 

The detail examination of COII and COB gene variation 
in mammals reveals several examples of incongruence 
involving different gene trees and comparisons of gene 
trees with accepted species trees. If one assumes that a 
single "true phylogeny" exists and that mitochondrial 
genes are linked and inherited as a single locus, how can 
the incongruence seen between the gene phylogenies of 
COB and COII as well as among phylogenies derived 
from independent characters be explained? In some 

cases, such as that seen for the placement of cetaceans as 
sister to ruminant artiodactyls, there may be strong mo- 
lecular evidence with little morphological evidence con- 
tradicting the gene tree results. In other cases (e.g., the 
monophyly of rodents), an explanation for such differ- 
ences may require a detailed examination of both molec- 
ular and morphological character evolution. The COB 
and COII gene data provide evidence in support of this 
idea. For example, heterogeneity in both the overall rate 
of nucleotide substitutions and the types of substitutions 
allowed (transition/transversion ratios, base composition, 
codon usage) has been demonstrated in the detailed com- 
parisons of both genes and orders. This heterogeneity 
probably explains many of the differences in homoplasy 
associated with the first, second, and third codon posi- 
tions seen for the two genes (Table 4), and in the case of 
mammalian ordinal relationships, a consideration of total 
evidence did not resolve some discrepancies. As has 
been suggested by several authors (Felsenstein 1978; 
Holmes 1991; Irwin et al. 1991; Sidow and Wilson 1991; 
Honeycutt and Adkins 1993; Miyamoto et al. 1994), rate 
heterogeneity and differences in the pattern of nucleotide 
substitutions between taxa and genes may affect phylog- 
eny reconstruction, especially among divergent taxa. If 
the order Rodentia is monophyletic, then this heteroge- 
neity may well account for the distribution of several 
divergent rodent lineages throughout the eutherian mam- 
mal phylogeny. Finally, it is clear from this study that a 
detailed phylogenetic examination, using a larger num- 
ber of taxa within orders of mammals and several orthol- 
ogous genes, has the potential to provide insight into 
both the relationships among eutherian mammals and the 
evolution of mammalian genes. Nevertheless, the overall 
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Table 7. 
position" 

Codon usage for COII and COB genes of artiodactyls and rodents, reflecting the frequency of all possible bases at the third codon 

Rodent COII Artiodactyla COII Rodent COB Artiodactyla COB 
Amino 

acid A G C T A G C T A G C T A G C T 

Phe 0.52 0.48 0.53 0.47 
Leu 0.67 0.07 0.07 0.19 0,69 0.12 0.05 0.14 0.69 
Ile 0.40 0.60 0.43 0.57 
Met 0.83 0.17 0.77 0.23 0.87 
Val 0.48 0.07 0.19 0.26 0.43 0.08 0.26 0.23 0.50 
Ser 0.54 0.03 0.22 0.21 0.50 0.04 0.21 0.25 0.58 
Pro 0.53 0.02 0.18 0.27 0.58 0.05 0.23 0.14 0.56 
Thr 0.54 0.02 0.19 0.25 0.62 0.08 0.19 0.11 0.50 
Ala 0.25 0.01 0.32 0.42 0.49 0.09 0.18 0.24 0.36 
Tyr 0.49 0.51 0,48 0.52 
His 0.61 0.39 0~62 0.38 
Gln 0.92 0.08 0.88 0.12 0.91 
Asn 0.55 0.45 0.64 0.36 
Lys 0.95 0.05 0.75 0.25 0.94 
Asp 0.59 0.41 0.54 0.46 
Glu 0.86 0.14 0.79 0.21 0.83 
Cys 0.54 0.46 0.79 0.21 
Trp 0.91 0.09 0,93 0.07 0.97 
Arg 0.47 0.04 0.27 0.22 0.73 0.04 0.06 0.17 0.81 
Ser 0.80 0.20 0.81 0.19 
Gly 0.35 0.16 0.33 0.16 0.42 0.15 0.29 0.14 0,50 

0.58 0.42 0.68 0.32 
0.04 0.13 0.14 0.63 0.07 0.22 0.08 

0.49 0.51 0.62 0.38 
0.13 0.80 0.20 
0.03 0.26 0.21 0.49 0,07 0.33 0.11 
0.02 0.20 0.20 0.53 0,03 0.28 0.16 
0.02 0.23 0.19 0.64 0,03 0.23 0.10 
0.03 0.26 0.21 0.62 0,02 0.25 0.11 
0.02 0.38 0.24 0.57 0.02 0.28 0.13 

0.55 0.45 0.62 0.38 
0.61 0.39 0.75 0.25 

0.09 0.84 0.16 
0.65 0.35 0.76 0.24 

0.06 0.88 0.12 
0.67 0.33 0.75 0,25 

0.17 0.92 0.08 
0.79 0.21 0.89 0.11 

0.03 0.97 0.03 
0.02 0.12 0.05 0.88 0.02 0.06 0.04 

0.70 0.30 0.76 0.24 
0.09 0.23 0.18 0.60 0.10 0.25 0.05 

a Termination codons are not included 

mode l  o f  gene  evolut ion,  in te rms of  rates and the dis-  

t r ibution of  subst i tut ions a l lowed,  may  be more  co mp l ex  

than previous ly  anticipated.  
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