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Abstract. The introduction of a set of intrinsic coordinates to give an explicit construction
of the intrinsic states of vector-coherent staie theory has greatly simplified earlier attempts
to peneralize this theory to include operators lying outside the group algebra. Very
explicit vector-coherent state constructions of such operators can now be given in terms
of vector-coupled combinations of intrinsic and collective operators. When organized
into tensors which induce specific shifts in irreducible representations these lead to the
reduced Wigner coefficients needed in practical calculations. The SO(5) > U(2) proton-
reutron quasispin algebra is used as an example to give further simplifications of earlier
results. All Wigner coefficients needed to give the n, T-dependence of matrix elements
in the seniority scheme can now be given through a few terms expressed solely through
angular momentum recoupling coefficients and the K'-matrix elements of vector-coherent
state theory.

1. Introduction

Vector-coherent state {vCs) theory [1-6] and its associated K -matrix technique
[1,2,7,8] are now well established as powerful tools for the evaluation of the matrix
representations of higher-rank Lie algebras and their non-compact generalizations.
VCs theory gives a very explicit method for the construction of the irreducible
representations of a full group algebra from the irreducible representations of a ‘core’
subalgebra by an inductive process [9], in the language of quantum theory by a vector-
coupling process which couples the ‘intrinsic’ or ‘internal’ (or ‘spin’) states with the
‘collective’ (or ‘orbital’) states whose excitations are realized in vCs theory in terms of
polynomials in a set of complex Bargmann space variables, z;. Matrix elements of the
group generators then follow directly from a knowledge of the subgroup recoupling
(Racah) coefficients and the matrix elements of the intrinsic components of the
generators. The latter follow from a knowledge of the generator matrix elements
of the core subalgebras. Like the electron-spin matrix elements, they do not require
a knowledge of explicit ‘spin’ or ‘intrinsic’ or ‘internal’ degrees of freedom. In order
to determine the full Wigner—Racah calculus of higher-rank algebras, recent interest
in this field has focused on the problem of finding the vCs realizations of operators
lying outside the group algebra. In a recent attempt to generalize vCs theory [10-12],
coherent state realizations of such operators have also been given in terms of a set of
intrinsic operators which are vector-coupled to collective z-space operators. In this
method, the intrinsic operators are again defined through their actions on intrinsic
states, that is through an evaluation of their matrix elements. Unlike the well known
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matrix elements of an ‘intrinsic spin’ operator or an intrinsic generator of an arbitrary
core subalgebra, the matrix elements of the intrinsic components of operators lying
outside the group algebra are now much more complicated for two reasons: such
intrinsic operators will connect an intrinsic state of an irreducible representation, w,
to (i) intrinsic states belonging to different irreducible representations, «’; and (ii)
a set of (collective x intrinsic) states, since the action of such an intrinsic operator
on an intrinsic state can now induce collective excitations as well as a change in
irreducible representation, Despite these difficulties, the intrinsic components of
simple operators were defined through their non-zero reduced matrix elements in a
number of examples. Many of the simple Wigner coeflicients wete evaluated by this
method for the neutron-proton quasispin group [10], SO(5) D U(2), for the Sp(6)
> U{3) branch of the fermion dynamical symmetry group [11] and the canonical
subgroup branch of the unitary group [12], U(3) > U(2) x U(1). However, the
generalized Vs method described in [10-12] is quite cumbersome.

A better method was recently proposed by LeBlanc [13] who was guided by the
work of Bouwknegt et al [14] on two-dimensional conformal field theories. In this
newest generalization of vCs theory, a set of intrinsic coordinates ¢;,j = 1,...,£=
rank of the full group, is introduced. These q; are used to construct the highest
{or lowest) weight components of the intrinsic state, the remaining intrinsic states
being generated through a set of Bargmann variables for the core subalgebra. A
very explicit construction can now be given for the intrinsic components of operators
lying outside the group algebra through the intrinsic g;, their conjugates p;, and the
subgroup Bargmann variables, z;, and their conjugate derivative operators. The vcs
realization of an arbitrary operator can then be given by vector-coupled combinations
of intrinsic and collective tensor operators. These are organized into operators of
irreducible tensor rank for the full group with specific shift properties, that is they
induce very definite shifts in the irreducible representation when acting on a generic
state of arbitrary w. The matrix elements of these tensor operators, when suitably
normalized, lead at once to the necessary reduced Wigner coeflicients of the full
group, where these are expressed entirely in terms of recoupling coefficients of the
core subgroup and the K-matrix elements of vcs theory.

The new vCS method was applied to the standard canonical group chain U(n) O
U{n—1)xU(1) in {13} (for an introduction, for the special case n = 3, see [15]). Since
the U(n) group chain is special, it may be instructive to apply the new generalization
of vcs theory to another example. The simple rank-2 group SO(5) with its U(2)
subgroup, as realized by the neutron-proton quasispin group of nuclear spectroscopy,
is ideal for this purpose since its subgroup recoupling coefficients are readily available.
The earlier generalization of vcs theory has already achieved the desired result for
some of the simplest SO(5) O U(2) reduced Wigner coefficients [10]. That is, these
have been expressd very simply in terms of SU(2) recoupling coefficients and the K-
matrix elements of SO(5). For some more challenging Wigner coefficients, however,
the expressions in [10] involve some intermediate state sums. The power of the new
technique can, therefore, be used to achieve further simplifications and leads to a
truly viable Wigner-Racah calculus for the neutron-proton quasispin group.

In an aiternate approach, A Klein has recently called attention to the connection
between the quantized Bogoliubov transformation [16,17] and the problem of
constructing the vCs realizations of operators lying outside the group algebra. The
SO(5) neutron-proton quasispin algebra, or its isomorphic Sp(4) algebra, was used
by Klein et af [18] to explore this connection through a boson—quasifermion mapping



A new generalization of vector-coherent state theory 331

{19,20] of the neutron-proton shell model algebra. It is interesting to note that the
quasifermion creation and annihilation operators of this approach share some of the
properties of the isospin-} operators which can be used as the basic building blocks
for the intrinsic operators in the new generalization of the vcs method [21].

2. The new vC$ realization of the neutron—proton quasispin algebra

The generators of the SO(5) algebra can be split into
(i) a set of three commuting raising generators, the J = 0, T = 1 pair creation
operators of the single j-shell,

1
Al(Mp) =333 (-1 ek, ol i, (3, dm, [1M) (12)

w m;,

T . »
where a; .. are single-nucleon creation operators

(ii) a set of conjugate lowering operators
A(Mq) = (AN(Mp))! (1b)

(iii) the generators of the SU(2)xU(1) core subalgebra made up of the isospin
generators T and the number operator

1
= el 1
Tyr= :F\/jzajmi%“jmxé
1
= t
T - Ez(agm-{-la.?m'i-g Jm_la_;m-:) (15)
SHY
- ajmm,ajmm,
m my

with standard Cartan SO(5) operators

Hy=jiN,-Q H,=T,. (1)
A generalmanon to multi-j shell configurations merely requxres the inclusion of a j-
sum in ail summations and a replacement of & = (5 + 5 ) by the full pair-degeneracy
number.

In the vcs formalism state vectors are mapped onto their z-space functional

realization
) — 1, (2) = (wlem4 ) (2a)
with

(2+A) =) 2y Ay (M =Mrp) (2b)
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where we have used the standard spherical tensor form for the pair annihilation
operators,

A, B (=1)MT A= M), (3a)

Note also that it is the 2}, which transform as standard spherical tensors of rank 1,
spherical component M, whereas the z,, are related to standard spherical tensors
Zy pp Via

Zype = (D" M2y, (3b)

so that in terms of the Cartesian z;, 24, 23
Zygg==z —:I:l(z:I:iz) Zip=~2pg=—2 (3c)
L1 F1 VoA 2 Lo = =

In equation (2z), |w), the so-called intrinsic state, is a state of an ireducible
representation of the U(2) core subgroup

jwY=[n = vt m,) 4

with nucleon number = seniority number, n = v; and with isospin = reduced isospin,
given by t. Note that lw) is a (2t + 1)-dimensional vector which is annihilated by the
J =0, T =1 pair annihilation operators, A, .

In vcs theory operators, O, are mapped into their z-space realizations, I'(O),
via

Of) — T(0)#, (2) = (w]e* 4 Ol) = (w|(e*4 Oe™* 4 )e>4|3)
={w|{O+[z:-4,0] + 1[z- A, [z- A, O]] + -- Je= A ) )

where the I'(O) for the generators are given in Cartesian form through equations
(9) in [10]. For present purposes, it may be useful to give the needed commutators
in standard spherical tensor form

[A+1,T_1] = -4 [A+1’Tu] = —A+1 [A+1»T+11 =0
[Ap, Tl =-A_, [Ay, Ty] =0 [Ag: Tl = Ay (6a)
[A_,, T ,}=0 [A_, Tyl = A, [A_laT+1] = Ay
[T_,T41=0 [T_, Tl =T, [T-iaT+1] =Ty
and, with A%, = A(My),
[An, ALl =0 [Ay, Al =Ty (A, Al =1,- 1,
[Ag, AL = =Ty, (A, Al] = H, [Ag, ALl =T,
(6b)

[A—UAL] =-Ty - H, [A-lﬂAL] =-T, [A_: AL} =0
(T_,, Al)] = A] [Ty, Al =4, (T, AL 1 =0
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The SO(5) basis vectors of ordinary Hilbert space are mapped into the vector-
coupled coherent state basis

[(wiwn)niT My} — |v, p[T, x )T M7} (7

where (wyws) = (Q — Lv,1t) are the SO(S) irrep labels, n is the nucleon number
given by n = v+ 2p, with p = number of J = 0, T = 1 coupled nucleon pairs which
are combined with the v-nucleon configuration entirely free of such pairs. The vCs
basis vectors are given by

v, p[T, x t|TMyz) = [Z2"(z) x o )], ®)

where Z{*%)(2) is a z-space solid harmonic of degree p (see equation (15) in [10]),
with isospin T, = p, p—2, ..., 0 (or 1), the isospin of the p symmetrically coupled

J =0, T = 1 pairs. (Note that Zﬂ? = Z;,,) In equation (8), the square
bracket denotes the vector-coupling (in a right-to-left coupling order convention) of
the intrinsic ¢ with the collective Tp to resultant total isospin T. The label, ¢, in
equation (7) stands for the fourth quantum number of SO(5). In vCs theory, it is
given naturally through the unitarization K-matrix; see, in particular, equations (22)—
(24) and appendix A in [10]. This K -matrix also converts the reduced matrix element
of an arbitrary operator of spherical tensor rank  to the VCS matrix elements in the

simple vector-coupled basis of equation (8) through
(i) n ¥ T O7 |[(wywn)niT)

= 3 (K Wy (v, P [Ty x ¥1T|ID(O) ||w, pIT,, X TN K)gyie  (9)
T:,Tp

In the new generalization of vCs theory, a seemingly backward step is made
first. The core subalgebra of vCS theory is replaced by the simpler Cartan
subalgebra H,, H,; and the (2t 4 1)-dimensional intrinsic state |v; tm,} is replaced
by the one-dimensional lowest-weight (LW) state |v;im, = —t). The vcs factor
(z - A) must then also be replaced by a new vCs factor involving all the lowering
operators of the full Cartan lowering type with a new set of (primed) vcs variables

z,—a = (zl.[.l 3 269 3;_13 C’);

+1 +1
2 A= Z Ay =2 - E= Ez'_aE_& = E (2 Ap)+ T, (10)
M=w1 « M=-1

where the lowering operators E_, with roots —a = —(e; — e,),—e;,—(e; + e,),
and —e,, are A, A, A_), and T_,, respectively. Note that the primed vcs variable
associated with the SU(2) subgroup operator 7_, is ramed ('; ie. zL, = ¢’. This
apparent retrogression in the new approach leads to a more complicated form of the
vCs realizations I'’(O) for the generators since the lowering operator T__; does not

commute with the full set of lowering operators, A,,. It is useful to write e*"E in
both a right and left subgroup form by making repeated use of the Campbell-Baker—
Hausdorif relation

eAaB — olA+B+3[A,B]+4(A[A,Bll+(B,LB, A4} (11)
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to yield
ez“E = ez:HA'H e(zﬁ+ iz:{-l (')Aﬂefzf_l"' % 26('1- %2;;('!)A_1e('T_l (]2)

and
i

"B = el' -1 At ool 1240V oglsli= it + 4 ¢ Ay (13)

These lead to

ez’ EA--I - 33 lez'-E

¢ o 1 8 4

z EA — {2 ! z' K
& (azg T3¢ 62’_1)

(14)

ex' EA—H (3 _,‘_zcta , ) % E

y o) 1 a 1 J 1 g :
B — | = 2 iV z-E
© T-l‘(acl 27 B ~ 27057, T 12wl azf_l)e

and
’ a J.

A_,e* E= —azile‘ E

‘ 3 1 8 4
z-E _ [ Y = B
Ape” T = (32[, 2caz'_1)e

8 1,8 1. @ (1)
2B __ 1. O S 4 B
Ay (82“ ‘et 32‘_1) ¢

¢ a 3 1 3 1 6 r

2B _ iy | L z B
Toe (acr +2 gy T3R5 T e azgl)e .

Equations (14) lead at once to the vCs realizations of the lowering operators. For
example

a

8
IM(Ay) = EP +
[}]

1 [
35 (16)

The remaining generators follow from the commutator expansion of equation (5)
including triple and quadruple commutators, together with equations (15); leading,
e.g., to

1 o)
I'(Tyy) = ~t¢" + C 3(’ (ZB—EC'ZM)@

' o 1,,, i 1, a
(0t 502 g+ (5004 55¢75) o (a7)
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Note the entanglement between the collective z},, and the subgroup operator, (.
The collective and intrinsic variables can be disentangled to lead to the original
vCs realization for the generators, see equations (9) in [10], via the nonlinear
transformation to new z,, ¢,

— I | )
Z+1 = Z+1 zZy = 2y — ic z+1 (18)
- 1 1.7 —
2y =2l =3¢+ 3¢ 2y ¢=¢

In addition, it is possible to introduce a set of intrinsic coordinates ¢, g,, With a set
of canonically conjugate py, p,,

[p;,qx] = —i6;4- (19

The lowest-weight (LW) state can then be written explicitly in terms of the g;
LW} = |v; ¥, m, = —t) = e" 19290} (20)

with w, = t, and with an intrinsic space inner product defined such that {LwlLw} = 1.
The intrinsic ¢;, p; can therefore be viewed as internal angle-action variables defined
over the angle "interval 0 to 1. Note also that P;|LW) = —w; |LW).

The intrinsic state construction of the full (Zt + 1)-dlmen51onal intrinsic space
now proceeds via the SU(2) coherent state construction

lvjt,m, = ~t+ k) = r]Lw) (21a)

with an SU(2) unitarization K -operator which collapses to a simple one-dimensional
normalization factor

e
Ky = (2t — k)12F (215)

with £ =0, ..., 2t form, = —-¢, ..., +1%
With the shorthand notation (in the new variables)

8 a

5o =0 =% (22)

the vcs realization of the generators can be put in the form

T(Ap) = 8py =0

I(Ty) = Ty +V2[Z, x 8]}, = Tj2& 4 T

[(H)=H+(z-8) = 715i1m' + H{.‘o!l.

F(A}W) =-Z,uM + ‘/EIZI X Ty~ 32 z)8y p = Zy,y(2+ 9)

(23)

which is the spherical tensor analogue of the Cartesian form in [10]. (Note
that the 9, 5, are standard spherical tensors of rank 1, spherical component M;
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whereas the z,, are related to the spherical tensors Z, 4, via equations (3); so that
(z+8) = +v3[2Z, x 8]0 whereas (z-z) = —v/3[Z; x Z;]% The square bracket
will denote vector-coupling in a right-to-left coupling order convention throughout.)
The U(2) subgroup generators are written as sums of purely intrinsic and purely
collective operators. Now, however, the intrinsic components of these generators can
be given in very specific form in terms of a set of intrinsic operators (to be written
in calligraphic letters)

Hi=p
7,= 3( Ty=p + Cac T+1 (py + %CZBC.

All operators, including those lying outside the group algebra, can now be defined in
terms of a set of intrinsic operators constructed from the intrinsic

24)

91> % P P2 ¢ 9

and a set of collective operators constructed through the collective
2152052 8,156y, O_;-
Moreover, if these are expressed in terms of vector-coupled combinations of the form

[(Tcoll.(z, 3))71 x (Tinu'(QH Pis C!a())ﬁ];‘tr

their matrix elements can be expressed in terms of standard recoupling coefficients
in the vector-couplcd basis of equation (8).

3. Irreducible shift tensors

The aim of the new vCSs method is to organize operators outside the group algebra
not only into sets of irreducible tensor operators with definite weights but into sets
of irreducible tensor operators which induce very definite shifts in the irreducible
representation when acting on a generic state of arbitrary SO(5) irrep (wy, w,) =
(Q— v, t). The singie-nucleon creation and annihilation operators serve as a simplest

example. With fixed jm, the four operators a;mmg=ﬂ;%’i( 1)/-ma & mmi=th

span the four-dimensional irrep (11) of SO(S), with weight points +1,+2; and
-3+ %, respectively. That is, these operators shift the weights H\, H, by +1,£1;
or —5 + 1 when acting on generic states of arbitrary weights. Each one of these
will induce sh;fts in the irrep (wl,wz) — (w,w}) = (w; + Ay,wy + Ay), with
AA, = +3+ 1, +3 -1, -3+ 1, —1 -1 when acting on generic states of
(wl, wy); e, the shifts range over the same set of numbers as the weights. A nucleon
creation (or anmihilation) operator will, in general, induce all four of these shifts,
whereas an irreducible shift tensor is to select one specific shift, A;A,, out of the
four possibilities. Operators will thus be labelled by their irreducible tensor rank,
(A A7), by their shift, A, Ay, and by their subgroup labels, hy; 7h, = m,, so that
TN 0, |(wywy) Hid T Mp)

hlﬂ'mr

= |(wy + A, wy + 8;)(H + hl)'i’T'(MT + m, )} (25)



A new generalization of vector-coherent state theory 337

It will be assumed that the irreps (A;A,) are simple enough so that the SU(2)xU(1)
subgroup labels h,; 7m  are sufficient to label the tensors. This would be true, for
example, for the irreps (33),(33),(10),(11),(20),(21),(22), of greatest interest in
nuclear spectroscopy. Irreps, such as (31), (11),(20), (21),(22), with multiple weight
points will lead to multiple solutions for the shift tensors of the corresponding A, A,
which will require additional upper-index shift labels.

To construct the shift tensors of definite A,A, , it will be usful to introduce a
set of ‘screening charges’, (the language comes from the field theory applications in
[14]). For these we need the left vCs realizations for the Cartan lowering operators,
en( E_g)- Recall that

I(E_, (2" = Lme® FE_,_|¥). (26)

Now, define I'y,(E_, ) by

Pt g, )¥(2) = LW(-E_,, )e* F|w) @7
After transformation from the 2z’ = z%,,¢’ t0 z,,,{ via equations (18), these are

Pen(A_y) = -8_4 Tiea(T_1) = =8¢,
Fen(Ap) = (85— ¢8_,) (28)
Tien(A4r) = —(841 — ¢y + $¢%0_y)-

Note that the minus sign in the defining equation (27) is needed to preserve the
generator commutation relations among the I, ( E_,). The screening charge for
the root « is now defined by

Sy = U\ (E_,) (29a)
that is

Seyme; = _ei(qu—qz)(3+1 — (B, + %C23_1)

S, = —€1(8,~¢d_y) (296)

SE1+ez — _ei(¢l+qz}3_1 Sez — _eiqza(.

Note, that the commutator [S, , S,.] = 0 if & + @, is not a root, and that

Q)

[Segi Se;—e:] = Se; [Sezvse,] = Se,-i-ez‘ (30)

The screening charges have the following properties. The screening charge for

o = ve; + 1,e, in its left action on an intrinsic state (wyw,) not only shifts the

intrinsic state to (w; + v4.wy + ;) but also leaves the subgroup labels H,T M,

invariant since S, is a U(2) subgroup scalar. The construction of the irreducible shift
tensors T( A X,)21%2  now proceeds in three steps.

hy, T,

Step 1. Construction of the maximal-weight, maximal-shift tensor.
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Step 2. Construction of the maximal-weight, lesser-shift tensors through the use of
screening charges.

Step 3. Construction of arbitrary-weight, specific-shift tensors by repeated application
of commutator-taking with the raising generators F(A;‘W).

In step 1, it is most natural to choose the Lw, as the maximal-weight, since our
irreps are induced from states with the minimum number of particles, » = v, and
m, = —t. The maximal-shift Lw tensor follows from our state construction in terms
of specific intrinsic g,, g,,

T(A]Az)il‘:},z = e~ iMgr—itaqr (31

The Lw tensors of arbitrary shift, A;A,, are then built through the screening charges
from linear combinations of the form

e~ iMqi—ideg H S, (32)

The basic relation which is used to construct the Lw lesser-shift tensors is given
by [13,14]

SEZ(W"Q)/(G'C*)}+1] T(A ), f{df-}z =T )‘1’\2)?;135ng(u.a)/(a.a))ﬂl (33)

where « is one of the simple roots, e; — e, Or ey; (Wiwy) = (w; + A, w, + Aj);
and AJAj is obtained from A A, by a Weyl reflection in the plane normal to o;
ie. fora=e,: AJA, = A, -A,; while for a =e; —e,: AJAL = A,A,.

Step 3 in the shift-operator construction procedure is achieved by repeated
application of the commutator relation
[T(AL) T(AA)R22, ]

hAprm,

= 3 T i, sar AR L, T+ M Al (A A hyrm )
-,-f
(34)

where the matrix elements of the generators are known from the VCS construction.
It should perhaps be emphasized that these T(A);)5'52, are the VCS realizations

of the shift tensors; ie. they are ['(T"). For simplicity of notation, we shall dispense
with the symbol I

4. The fundamental SO(5) spinors

The shift-tensor construction process will be illustrated first with the simplest
irreducible tensors, T'(34), spanned by the single-nucleon creation and annihilation
operators with m, = +4. The Lw shift tensor with A\A, = +1,+1 is given by

equation (31). The Lw shift tensor with A;A, = +1,-1 is obtained from this
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maximal shift tensor by a simple Weyl reflection in the plane normal to e, by an
application of equation (33} with o = e,. A second reflection, now in the plane
normal t0 e, — e,, gives the LW shift tensor with A;A, = —3,41, while a final

1 2> 8 1 i=2 = za+2’w € a fhna
reflection in the plane normal to e, gives the LW tensor with A A, = —1, -1, where
the application of equation (33) requires repeated use of the cormutator relations
of equation (30). The results are

T(%%)Ié{rﬂ = e-in/2-ig/2

T(%%)Iéﬁ'_% - e—iq1/2+iqu23c

T(%%)EI%V+% = f"-Hq'/z—i'nlz{(a+1 ~ {8y + 1¢%0_1)8, + (8y— ¢B_)(py — p, — 1)}
TADIEH = etn/Hinl2(a,, - (9, + §¢0_1)8}

+ (8y~ €8_1)8,(py — P, — 2) — 8_1p,(2p, — 3)}. (35)

The simplest shift tensors are those with A, = +1. For these the full set of tensors,
(all weights as obtained through equation (34)), can be expressed in terms of two
intrinsic spinors A and B

+5+ -i +44+3 -

T(%%)_g;%;‘ =e /iy T(§§)+§;é;’ =e m/z\@[zle%],i“ (36)
+ [ 1 + - -

T(%%)_g;%i! = emin/2g T(%%)é%n’{“ = ein/2, 312, x B 11, (37)

where the purely intrinsic spin-1 operators 4 and B are given by

A+% = \/iic—iqzﬂc A_% = g~/ (38)
B_',% = \/ie+iq2/2(pz + %Cac) B_% = e+i92/23C' (39)

We note also that
[.4% XB%]}\ar:[Bi XA%]}WzTM (40)

that is the intrinsic 1sost operator 7 is obtained through a vector-coupling of the two
basic intrinsic isospin-3 tensors. The shift operators in equations (36) and (37) have
been put in a form Wthh has achieved our basic aim. They are expressed through
vector-coupled simple collective and intrinsic Operators. In this case the collective
operator is Z; ,, and the intrinsic operators are given as very simple functions of the
intrinsic operators 91,92, P2 ¢, 9¢- The full matrix element of a shift operator is thus
reduced to an exercise in vector coupling. For example

|
(@ t+ D+ UTy x t+ HTITED T iEn)alT, x 4T)

t T, T
=/2 { Poor }«wl)ﬂnzlnﬂp)«wﬁ%, t+ 114y [l(w;))
(t+4) T T

(41)



340 K T Hecht

with a similar relation for the AjA, = +1,—1, shift tensor. The reduced matrix
elements of the intrinsic .4 and B follow at once from the definition of the intrinsic
operators and the explicit construction of the intrinsic states through equations (21a,
). These lead to

(w1 + 3,14 DIy li(wrt) = 1

(w0 + 1t = DIIBylICwyt)) = VaZEF D).

In equations (41), the [ J-coefficient is the unitary form of the standard 9 coefficient.
The reduced matrix element of the collective Z, is given through an SU(3) > SO(3)
Wigner coefficient by equation (19) in [10]; see also table 2 in [10]. When properly
normalized, the reduced matrix elements of the shift tensors lead at once to the
SO(5) > U(2) reduced Wigner coeflicients, If these normalized or unit shift tensors
are designated with the subscript, u, they must satisfy

(42)

Z Z {{wr + By, wy + A)LM[T(AA, ';31 2| (wwq  H i T = (43)
har HyiT

Here, the reduced matrix element is to be taken in ordinary Hilbert space, so that
equation (9) must be used together with a relation such as equation (41). For the
T{11)%142 tensors with A, = +J, the purely intrinsic states of the left-hand side of
equation (43} can be connected only to pureiy intrinsic states on the right-hand side
via the purcly intrinsic operators with ~, = —5 in equations (36), (37). In this case,
therefore, the T, are obtained from the T by division by the intrinsic reduced matrix
elements of equations (42). This then leads to the SO(5) > U(2) Wigner coefficients
in the form given in table 4 in [10].

The more complicated shift tensors with A, = —1 can also be expressed in terms
of vector-coupled collective and intrinsic operators, where the intrinsic operators now
include pieces built by vector-coupling .A or B with 7. In this form the shift tensors
with LW components are

TGHZE = et (V3o x [y x T, - V3[8 x At (- 1o, - 1)
@)

TUDZW = et/ 2(v20, x 1By x T, — V310, x Byt ( + dp - D).
5)

The matrix elements now lead to two terms of the form of equation (41). (The
necessary reduced matrix clements of 8, and intrinsic operators such as [A x T)?
or [B x T)} are given in section 5.) Some simplification can be achieved by a
generalization of the Philadelphia-Toronto trick [21] whereby these can be reduced
to matrix elements of operators [8, x A%]i or [9 x B%]%. For example

o R | L
TR = A, V38 x 4121 (46)
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where

— _(Tinlr. A Tco[l.) _ %(Tmll. . Tco!l.) _ (Tinh'. _Tinr.r.) + (z . 3)(?’1 _ % -+ %(z . 8))
é7

is an operator which is a subgroup scalar with simple eigenvalues. For the higher-
weight components this process becomes more of a challenge since these operators
consist of an even larger number of terms. For example

TUHTETE = Vi - (o1 - p) Ay,
} 1
— 713 [[ZI x 31]1 x [.A% x 'fl]g];r + \/%[[Zl x 81]2 % [.A% Xgi]%]:nf

+{\/§ [(Z, % &]° x A%]if = V3|12 x )" x A%]i,} (p1=3p2~1)
(48)

leading to matrix elements with five terms of the form of equation (41). Such
complicated terms can be avoided by an even simpler trick, however. Reduced matrix
elements of unit shift tensors with A; = —-21- follow from those with A, = -[-% by a
1+~3 interchange symmetry property of the SO(5) O U(2) reduced Wigner coefficient,
This symmetry property was used to give the expressions in table 4 in [10] for the
shifts with A= —%.

5. The (10) and (11} tensors

Irreducible tensor operators transforming according to the five-dimensional irre-
ducible represention, (10), are needed to evaluate the matrix elements of pair creation
and annihilation operators and multipole operators coupled to odd J-values (see ta-
ble 1 in [10]). The Lw shift tensors with A; A, = 0,+1,0, -1, and -1, 0 follow from
the maximal shift tensor with A; A, = 41,0 by Weyl reflections in the planes normal
10 e, — e;,e,, and again e; — e, by an application of equation (33), while the fifth
shift tensor with A;4A, = 0,0 is based on equation (32). The results are

T(10)1 L = e~ (49)
T(10)7 = (8- 14, x Ay]") (50)
T(lO)LW ={&g-7) (51)
T(10)25 = (3-[8y x By]Y) (52)

:mor”—ew{Z(—l)f“{a.xa.limmxmm(a-a)(( —1)~1p, pz—m}

(53)
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The fifth shift tensor with A;A, = 0,0 has been built by a linear combination of the
form (see equation (32))

e_iql(se;-—egseg + Sel ¢(p1’ pZ))

where the operator function, ¢(p,, p;)}, follows from equation (33). With o = e,—e,
and e, this leads to the relations

{8, St (p— (w) —wy + 1)) = S, ¢SI-2 Y w) = 0 (54a)

e —e;

{8, 529 2wy 4 14+ @) + S, 4, 5242w, + 1)(wy + ¢) ~ S, 6SZ 1} Lm) = 0
(54b)

where we can use o(p;, pz)S;'_‘;‘;z“ = S:’_“e“;”'qb(pl-{-wl—wz-i- 1, py—witwy,~1)
and @(py, p,) S22+ = S2+lg(p), p; + 2w, + 1), S0 that equations (54a, b) are
both satisfied by

&{p1Pz) = Py (54¢)

This leads to the LW shift tensor of equation (51), where an overall change of phase
has been made to bring this operator into line with the phase conventions of the
shift operators of equations (50) and (52) with A,A, = 0,%1. We note again that
the most complicated shift tensor is that with A, = -—1. Since the SO(5) D U(2)
Wigner coefficients for the shift A;A, = —1,0 can be obtained from those for
the shift A;A, = 41,0 via the 13 interchange symmetry property of the Wigner
coefficients, it will be sufficient to consider only the shift tensors with A; = +1 and
0 in detail. The construction of arbitrary-weight shift tensors follows from repeated
application of equation (34). For the simple (10) tensors, the necessary commutators
can be carried out directly. For more complicated tensors, it may also be useful to
put the required commutator relation into more general form in terms of the coupled
commutator relation

HT::)U. % T.,i,‘;"']m, [T:_:;:\ll. x Til:tr- m]};f

T T2 Tz ) .
= > |7 o T [T T ™ x [T x TR,
T13: T4 T|3 724 T

+ [[Tﬁf"' % T:;“'In‘ % [T-,i-i“’ , T‘]i-?‘h]n;];f - [[T,?f“',T,?f“']”‘

x [T, T 7Y} (55a)

where the [T, x T, 157 are standard vector-coupled operators, (again in a right-to-left

coupling order), whereas the [T, , T, 15 are vector-coupled commutators defined by

[TT,’TT,II;IJ = Z (TimirjmjITijA!HTmeJvTT.m,]' (SSb)

m,m,
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Ay
hy;rm.

The full set of necessary shift tensors T°( 10) are

’1'“(10)ﬂ;3u = e—int

T = e~ 2,

Ty =e791(z- 2).
T(10)*8%) = —v3[8, x a0
TOO): = ~T{5D™ 140 (a1, p2)

o+ Z(_I)r-i-l 31_(21. + D[[Z, x 8] x Tl(Az)inu'.]}n

T(10)%53, = V3{[Z, x T{*P™ 5@ (p,, p) — 4(2- 2)[8 x T{47™"]9)
with intrinsic operators

Dintr. 0dintr, ~1}intr.
T =y x Al T =T, T =By x Byl

1,m
and functions

f(+1)(Pn Pz) = (PI - ps) f(u)(Pan) = (Pl -1)
FV(py,p,) = (P + 22— 1)

343

(56a)
(565)
(56¢)

(57a)

(57b)

(57¢)

(57d)

(57¢)

In equation (57b), an operator Z,, (8 - T(A™) has been recoupled to put it
into the desired form involving purely collective operators vector coupled with purely

intrinsic operators, thus leading to the 7-sum.
The necessary intrinsic-space reduced matrix elements are

((wr + 1,0l [(wy, 1) = 1

{(wrrt+ DAY x AT, 1)) = 1
(o, DITi Iy 10} = VA1)

((wrst = DII[By x ByT' ey, 1)) = /2 = DL+ 1.

(58)
(59)
(60)
61)

The collective-space reduced matrix elements follow from equation (19) in [10] and

from
, 2T, 41 ,
(2~ DT84 T,) = 5777 ((p = 1O T (10)11(p0) T,) VP
?

= - ((pO)T,; (ON1[[(p — 1,0 T} P +2

(PT,lI1Z, x &]lIpT,) = %p

(62)

(63)
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and, with 7 = 1 or 2,

(T2, x 8 11pT,) = - ZEE2 o0y (1)) (69

{(p+ DT,z 2)PT,) = /(2 + T, + 3= T, +2) (65)

where the necessary SU(3) D SO(3) Wigner coefficents are given by table 2 in [10]
and by

) _ 3TP(T + 1)
((p0) T; (IDL[(pO)T, ) = TpGE:l-T) (66a)
T(T +1
{(p0)T,; (11)2]|(pO0)T,) = —(2p + 3)\/4p(p+ 3)("2(71?_ 1)%2’1‘" ) (66b)
P P
3T, + (T, + 2)(p - T T, +3
(pOT ADAEOT, +2 =\/ SR e e S
P P

3T,(T, - D(p—T, +2 T +1
(PO T (1)2]|(0) T, —2) = \/ P(z;f(pﬁ;?mi 1)35?-:5 : (%6
P r

With these reduced matrix elements the full matrix elements of the operators
(56)-(57) can be evaluated by standard vector-coupling formulae and by the final
application of equation (9). To convert these matrix elements into the required
S0(5) > U(2) Wigner coeflicients, the shift tensors of equations (56), (57) must still
be converted to unit tensors, T, as defined by equation (43). It will be convenient
to label the necessary normalization factors by the double-caret double-bar notation
introduced in {13] and [15]:

(i) HiE T T (A A ot 2 (wiews ) Hyi T
= ((wiewh) Hi# TN T, (A A2) 2223 (wywop) Hyi T)
X «(‘-"’flwtz)”T(A:)‘z)mm“(‘*’]wﬂ»
= ((wywy) Hi T3 (A Ag)hy T ([(wwh) Hi T
X (WA T(A ) 2182 [ (wywp))- (67)

Note that the SO(3) > U(2) reduced Wigner coefficient is the reduced matrix element
of the unir shift tensor, T,,. Since the double-caret double-bar factors can be obtained
from the action of the shift tensors on the LW state, they are relatively easy to
obtain. Note, however, that the operators (57) when acting on Lw states of (wjw;)
can convert these to first collective excitations of the representations (w,w,). The
necessary f{-factors can be read from equation (27) in [10], but are given again here
for convenience

(K2 (e t)TY)y = wy — ¢ for T=t+1
w;+1 forT=1t (68)
w+t+1 for T =1¢~1.
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Note that these are the LW eigenvalues of the functions — f{A2)( P, P2) Of equation
(57¢). With these the normalization factors for the (10) tensors can be calculated.
They are

(o + LOITA0* (w0 = 1 (69)
§w, 4+ DITA0CH (i) = 1/ (wr = D)y~ t+1) (70a)
(Cwr, DT (wrt)}) = 3/ (wy + D)ooy + 22+ 1) (705)

((wrot = DIT0YH[(wit))) = ty/(w; + t+ D)(wy + £+ 2)(2t — 1)(2t +1).
(70c)

Equations (56), (58) and (69) lead at once to the Wigner coefficients for the shift
Ay A, = +1,01n the form given by table 5 (case 1) of [10]. Similarly, the (10)-tensors
with hy; 7 = —1; 0 for shifts A; A, = 0A, give the first entry of case 2 of table 5 in
[10]. The remaining entries in this table were given through a simple intermediate
state sum. Through the present form of the shift tensors these can now be put into
an even simpler form. Again, defining the SO(5) D U(2) reduced Wigner coefficients
through the F-factor introduced in [10]

{(w1t) HyiT; (wlwz)h;r]](wii’)H{i'T')

= Z (K-‘(p'(w;t')T')),.,T; Fhym TT, T'T K (p(rt)T))r, (71)
T, T}

we obtain the SO(5) D U(2) Wigner coefficients for (M A,;) = (10) (wit’) =
(w;,t+ A) through the F-factors given in table 1.

Table 1. F-factors for the coupling {w1¢) x (10) — (wi#') == (w1, ¢+ A3z).

hiorp' Flam TTe T'TOUC (o))l + (K2 wit) )]
01 (-0 TUTI T T b, 1y [(fs’Z(uwIt)t'nu-;—’]

(—1)7 t T, T
+ 20 S+ e+ o 1 (PO T (07PN T)
¢ T T

=12

y , QT+ D{p+ 1}
$10 p+1 —U(tITTp;tTP){(I(Z(I(wIt)t))11\/T—+1)_

X ((PO)T5 WOUI(p + LOT3 + 3\/p(p+ Ty +D(p = Tp+ 1)

x {{p- I.O)T;;(IO)III(PO)TP)}
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Irreducible tensor operators transforming according to the ten-dimensional
irreducible representation, (11), are needed to evaluate the matrix elements of pair
creation and anaihilation operators and multipole operators coupled to even J-
values (with J # 0). It will again be sufficient to calculate operators for shifts
AA; = +1,41; +1,0; +1,-1; 0,+1; and 0,0; and use symmetry properties for
the remainder. There are now two independent shift operators with A;4A, = 0,0
since the weight point 0,0 is a double weight point. The necessary Lw shift tensors
are (except for the A; A, = 0,0 tensors which will be treated later)

T = emin-in

T(11)fy = e”ing,

TN = eminting]

TG = e72{(8,, - (8, + 1¢20_1)8; + (8~ (8_1)(py — b — 1)}

The simplest shift tensors are thosc with A, = +1. The full set of shift tensors with
Aq = +1 are

(72)

T(Il)t}:‘ﬁ; - e-—iq:’}"l(“:nz)!'ntr. (730)

TDFA = Ve 0|z, x T4 (73b)

TG = V3ema [z, x T4 (73¢)
1,82 _ ami 1 (20} po(As)intr. 10 (0 Ap)intr.

T = {%Z%,immf "y FlzEhx T ”“‘“Iln} (734)

where the purely intrinsic operators, Tl(f:,;:‘)m"', are again given by equation (574).
The quadratic z-space functions of equation (73d) are expressed in terms of the
normalized z-space solid harmonics of equation (8) (see equation (15) in [10] for
their full definition). Note also that

(z-2) =V6ZEL = -V3Z,x Z,))  V2ZP0 =2, x Z)]%,. (74)

The unit shift tensors with A; = +1 are related to the above by the reduced
matrix elements of the purely intrinsic operators; i.e.

{lwy + 1, £+ AT [y 1)) = (g + 1t + A e 0 TP | (05, )).
(75)

Equations (73) and (75) thus lead at once to the SO(5) o U(2) Wigner coefficients
in the form given in table 6(a) (case 1) in [10]. (Note, however, there is a phase
error in the last entry of this table: the numerical factor —1/2+/3 should be replaced
by +1/2v/3.)

The shift tensors with A;A, = 0,41 are somewhat more complicated. With
intrinsic tensors defined by

TER™ = A x Al TEDM S [La x A < T (76)
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they can be put in the form
T 0 = 30, x TED™ ), Va8, x T L (py ~ 1, - 1) (TT0)

T(11)3;6I-01 =V5[[Z, x 8,]* x Tz(-i-l)inu-.]g
= VE[[2, x 8] x T{*™)(p, — {p, ~ 1) (77)

. 2 .
T = {5 " {2y~ P2)(py - 1) + {—ﬁnzl x 8y x T
intr, 5 intr.
~Zx X T 317 x T oy

- ﬁ (2% &' x T + \/guzl X I x TV (%)
T 3iam = V22, x TN () - p2)(er - 1)

+ { _ \/i[[Zm) % 3(01)1gm) % T1(+I)inu']11-n

~ V5[ 20 x 3(01)];21) x T}"‘I)i“"']}n}(pl —lp,—1)

+:}_5[[2(20)x3(u1}1521)XT2[+1}inu.13n_\/guzfzg)xa(m)]gznxT2(+z)inu.}1n

/52 x 8ODE) 5 FHOeL (774)

In the last term the [Z() x 80U]*#) are SU(3)-coupled collective tensors. Their
isospin reduced matrix elements follow from SU(3) coupling technology and are given
by

(2 + DT [Z% x 2| |pT,)

= }-pV(p + D){(PO)T; (10)1|(p + 1,0)T}) (78)
and, with 7 = 1,2, or 3,
{p+ DHTNZ x 8NN T,y

= —1Ve(p+ )2 + H{(pO)T,; 217 l(p + 1,0)T7) (79)
where the necessary SU(3) > SO(3) Wigner coefficients for (Ay) = (21) are given by

(T, + 1)(p+ T, +3)
Sp(p+ 1)(p + 4)(2T, + 3)

((PO)T,; (21)(p + 1,0)T, + 1) = fp—ZT,,)‘/ (802)

T(p~T,+2)
Sp(p+ D(p+ 42T, - 1)
(80)

(PO T, CDUI(p + 1,007, ~ 1) = —(p + 2T, + 2)\/
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, T, T 0T, D+ T, +3)
T _ -
(POVTy @0l + 1,007, — 1y = — (2 DA 5D a)

3p(p+ I(p+ (2T, - 1)
and with 7= 3
{(pO)T,; (21)3|[(p + 1,0)T,)

_ AT AT +2(T, +3) e~ T)(p+ T, +3)(p+ T, + 5)
(e + D(p + 92T, +3)2T, + 52T, +7)

for T;, = TP +3
_ \/2?,,(9}, -)(T,-D(p+ T, + N p-T,+2)(p-T, +4)

p(p + 1)(p+ 4)(2T, - 1)(27, - 3){2T, - 5)
for T;; = Tp -3

2T,(T, + (T, + D(p + T, + 3)
~Gp-T,+ 5)\/1sp(p ¥ {)(pp+ 4)(22{, —1)(2T, + 3)(2T, +5)

forT;=TP+l

2T, - DT,(T,+ 1){(p-T, +2)
Gr+ T+ 6)\/ (o + D7 + DT, ~ (T, - DT, 73)

for T, =T,-1. (80¢)

Equations (62)-(66) give the remaining necessary collective-space reduced matrix
elements. The necessary intrinsic-space reduced matrix elements are given by equation
(59) and by

(ot + DAY x AT x TPt} = /322 +2). (81)

In this case the double-caret double-bar normalization factor has the value

{(wyat + DT () = \/(Wl = (wy =i+ D{wy + D{w+2). (82)

With the definition of equation (71) the SO(5) D U(2) Wigner coefficients for
the coupling (w;t) x (11) — (w,,t + 1) are then given in their most economical
form by the F-factors of table 2. The Wigner coefficients for the coupling
(wyt) x (11) — (w,;,t — 1) can be obtained from these through the 1 — 3 exchange
symmetry property. Alternatively they can be obtained from shift tensors T(11)%?
which follow from equations (77} if we make the replacements [A; x Aﬁ”’n —
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[By x Bylhs (pr~p2) — (Pr+ P2~ 1% (py—1) = (py—1); and therefore
(py— %Pz— 1= (g + %Pz— %)i (wy =) > (W +t+ 1) (w +1) = (w +1).
Finally, there remain the shift tensors with A;A, = 0,0. Since the weight 0,0 is a
double weight for the irreducible representation, (11), there must be two independent
shift operators with A A, = 0,0. The basic relations, equation (33), must lead to
two independent solutions for the Lw shift tensors with A; A, = 0,0. The simplest
solution has the form
TAD = =e-in-ing, = _3_,. (83)

eyjtez =

Note that this satisfies equations (33) automatically for both o = e;— e, and a = e,.
Except for sign, this is I'(A_;} so that the first 00-shift tensor, (all weights), can
be chosen as the vcs realization of the generators. This first 00-shift tensor will be
denoted by p = 1. Note, however, that equation (34) dictates the following phases

TN = -T(4,)
T()ee=! = +T(T,,)  Toul ™ =-T(Hy) (84)
TG = +T(AlL)

with normalization factor given by the quadratic Casimir invariant for SO(5),

{len DI O TAD =) = \/[wl(w1 +3)+ i+ )] =1/N,. (85)

The most general form for the Lw 00-shift tensor can be obtained from the linear
combination, see equation {32),

e_iqj_iqz{sel-ezsgg + Selsequ(pl’ pZ) + Se|+g;»_X(p1$ Pz)} (86)

where the operator functions ¢(p,, p,) and x(p,, p,) are to be determined from the
basic relation, equation (33). For a = e; — e, and « = e, this leads to the two
relations

{SermertlS, 8., [6(p1,p2) —2(w) —w, + 1) — Py +w; —wyp + 1, pp —wy 4wy — 1]
~ 82172 82 (wy—wp + 1) [wy —wp— (P +wy —wy+ 1, pp—wi+wy—1)]

=1—a7
+ S;'—_e":ZHSeﬁeZ[X(IJan) —(wy~wy+ 1)
~x(py+w —wy+1,p; —w; +w, = 1)]}w) =0 (87)

{SE:Q“SB, S, [é(p1.pa) + (2w; + 1) = &(p1, P2 + 2w, + 1)]
+ SE:JZHSeI-;-eZ[X(Pth) = (2w + D{{w; +1) = $(p1y Py + 2w, + 1)}

= x(p1s P2 + 2w, + 1)) }ew) = 0. (38)
These have the solution
#(pp) =-p+p+2 (89)

x(p1.pz) = “%[(PI + Pz)z —3p; — 5p,y] (%0)
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Table 2. F-factors for the coupling (uwnyt) x (11) —» {wy, t + 1).

F(hyri T T'T3) f (w1 = th{wt = t+ 1wy + 1) (w1 + 2)

(2w —t+2} t I, T
+ =11 1 1
V2 3! T;; T

by v p

¢ T, T
~10 p-1 1}”“:”[2 11
¢ T, T

22T+ 1) (o - 1,00 T (101 j(p0) )

(27;-!-1)
t T, T
00 p —\/p(p+3){1/§“‘3—”)[2 2 0]((p0)Tp;<11)2||(po)T;.
T, T
t T, T
+(2w-t+2)|1 1 0:'{(;70)7},;{]1)1”(130)'1";}
¢ T, T
At T T
01l p [(w1—t)(u1+1)-—(2w1-—t+2)§] [1 0 1:[
t T, T

t T, T
_(zw,_:+z),/f"—f’:—3i{[1 { 1]((p0)Tp;t11)ill(p0)T;>
t T, T
[t T T
+4/=11 2 1
\/;[r T T

t T, T
4yt IUED) —1{2 i 1}((1:0)7‘;::(11)1!!(1:0)7‘;)
5] \/‘.')T oy T.; o

[:TPT

{(p0) T (11)2]1(p0) T7} }

702 1]{(p0)Tp:(11)2H(P0)T$>}
¢ T, T
t Tp T]

+1 1 p+1 \/2(p+1)((P0)Tp:(1O)IIE(P+1.0)T£>{1 11
¢ T, T

X {(w1 ~ tHwy + 1) = E(zwl - t+2)}
t T, T

—i\fSP(P"f'1)(p+4)((PO)TP;(21)2”(P+I,U)T:;)[l 2 1](2“’1"“2)
T

t Ty T]

+\/pfp+1)(P+4)t(t+2){_%((PO)TP;(ZI)IH(I"{'I,O)T;z>[2 11
¢ T T

t Tp ’I‘J

+i\/g((PU)Tp;(ZI)2II(p+1,0)715}[2 2 1
v T T

1 [7 o[ 51
_i\/;((pG)Tp;fﬂ)f"“(P'*I'O)T”>[t2: 1%}; ’1‘1"‘]}
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However, this second solution for the 00-shift tensor does not lead to a set of SO(5)
D U(2) Wigner coefficients orthogonal to the first, given by unit tensors of type p = 1
(equations (84) and (85)). To achieve orthogonality a linear combination of the p = 1
tensors and the second tensor given through equations (86), (89) and (90) is required.
That is the Lw component of the p = 2 00-shift tensor can be chosen as

T(11)70, =% = ae"1-ing, 4 ﬁe“”' S e mer S
8, S.,(p1 ~ Py — 2} — 18, 40,[(p1 + P2)* ~ 3p1 — 5pal} (91)

where & and J are determined to make the p = 2 00-shift tensor a unit tensor whose
reduced matrix ¢lements lead to a set of SO(5) D U(2) Wigner coefficients orthogonal
to those with p = 1. This can be achieved by letting the tensors with p = 1 and 2
act on the Lw state so that the arithmetic is relatively simple. The results are

a = N, [wi(wy + 3)% 4 6w (w, + 3)t(t + 1) + 12(t + 1)* + 81(1 + 1)] (92a)
B = Nylw{w; +3) + (1 +1)] (92b)

with normalization factor

-N
N 1
27 St Do+ Don - Do+ L+ Do + 2 an +2- D(en £ 3+ 1)
(92¢)
with Ny = /1/[wy(wy +3) + t(t + 1)
This then leads to the p = 2 00-shift tensors given by
T(u)”‘{,ﬁ; = Nz{al,m%t(t + D)[-5w,(wy +3) + H{t + 1) - 12]
e+ 3)+ (2 4+ D] [VEO, x Tl + D
+/Boux i x 77| (930)

T(ll)g;gu"’:z = Nz{t(t + D w; + D{w; = t)(wy + 14+ 1)

+ s+ DIZy x Bgff-Sen(en +3) 4 (¢ + 1) - 12

~Loyteo +3) (4 1] [VBILZy x 3 x T (1 + 3

V12, % 0 x (7 x Tl | (535)
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T(1)g0=% = Nz{ = (wy + 1wy + 3w — )y T+ DT,

+ Y2400 4 DSy + )+ 10+ 1) - 120[Z, x BT,

+teon +3) 414 D] (w0 ) { Stz x o8,
- 112 % 01 x Ttk - /12, x 8 x T}, |
/312 x 8! x 7 % TS - V302, x 0 x (7 < T | |
(930)
AL = Nof e+ Doy — e + Do + 1+ D2y

— V2w + 1)(w; +3)(wy — Owy + 1+ D2 x T,
+ 5t(t + 1[50 (wy + 3) + t(t + 1) = 12]
x (-%[z““) x aOV) + ‘/73 (29 x a‘"“lfﬁi)
3
+fwn(wy +3) + 1t + 1)][ (w, + 5) { - VZ{[2@ x 8N x 7)),

- \/3[[2(20} v, 3{01)1(221) X "rl]}'n}

-\@I[Z(z‘”xa”‘}]?”x[ﬂx?'llzllﬁ\/g[[z‘m’xB‘“"I?”X[’flx’ﬂ}"lln
- 2/302% % 8N x [7, % T . (934)

With one new reduced matrix element

(DI, x TPyt = LD DCLES) 54)

these lead to the SO(5) D U(2) Wigner coefficients given through the F-factors of
table 3. The SO(5) D U(2) Wigner coefficients for the coupling (w,t) x (11) — (w,t)
with p = 1 is given by the matrix elements of the generators. These ate given in very
explicit form through equations (64)-(67) in [10]. (Note, however, that the phase of
equation {66} in {10} must be changed (replace H, by —H,) to be in agreement with
the phases of equation (84). Also, in table 7 in [10] change the phase in the first row
for both the p =1 and p = 2 columns. In addition, the sign of the third entry of the
2 =1 column should be changed to a minus sign.)
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The SO(5) (10) and (11) shift tensors of this section give the SO(5) > U(2)
Wigner coefficients needed to calculate the matrix elements of all pair creation
and annihilation operators [e! x a']ify.,., [a x a]3f;,,. and all multipole operators
[a! x a}3far,- The general two-body operators will lead to SO(5) irreducible
representations (22), (21) and (20). Shift operators for these irreps can be constructed
by the build-up process from (11)-tensors (see, e.g., equation (52) of [22]). Multiple
weight points again lead to multiple shift tensors. The three independent 00-shift
tensors of the irrep (22), e.g., can be built by (i) a coupling of two generators; (ii)
a coupling of a generator with a p = 2 00-shift tensor; and (iii} a coupling of two
p = 2 00-shift tensors. The necessary orthonormalization process is relatively simple
since it can be carried out by the simple actions of the (11)-tensors on the Lw states.

6. Concluding remarks

By the explicit introduction of the intrinsic variables g,,q,, and {, the (2t + 1)-
dimensional intrinsic state of vCS theory can be constructed in very explicit form.
Together with the conjugate momenta p;,p, and 8, the intrinsic SO(5) O U(2)
operators

G126z, P11 P26, 3(
can be used together with the collective operators of VCS theory

Zy1s 20, 710 040, 9y Oy
to give very explicit constructions of the irreducible tensor operators which induce
specific shifts A; A, in the irreps (wyw,),

TR niere

hyrm,

in terms of vector-coupled combinations of intrinsic and collective tensor operators
in the form

[(Tcoll.(z’a))n X ('1"imr.(q,z,,pz.,.f_',ac)),2 m.

In the vector-coupled basis, |v, p{T), X t]T My}, of vCs theory this leads to matrix
elements expressed trivially in terms of standard angular momentum recoupling
coefficients and very simple collective-space and intrinsic-space reduced matrix
elements. The intrinsic space operators can be built up through successive vector-
couplings of the two basic isospin-; operators, .4 and B, so that their reduced matrix
elements are easily calculated. The collective-space reduced matrix elements can be
expressed in terms of a few SU(3) D SO(3) Wigner coefficients which can be given in
analytic form. In the case of multiple solutions for shift tensors of a specific A A, the
orthonormal set, characterized by the additional label p, can be constructed through
their action on the lowest weight state, so that the orthonormalization process is
relatively simple.

Very explicit constructions are given for all unit tensors transforming according
to the irreducible representations (41),(10), and (11) of greatest interest in nuclear
spectroscopy; so that the necessary SO(5) D U(2) Wigner coefficients follow simply
from

(i) the angular momentum recoupling coefficients of 9j type; and

(ii) the K'-matrix elements of vCs theory,
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Table 3. F-factors for the coupling (wit) X (11) — (wy?) with p= 2.

1
ki  p F(h;-r'.TT,,;T’T,‘,)F2

. t T, T
-11 (p-1) {gt(t-{*1)[—5w1(w1+3}+t(t+1)—12] [0 1 1]
t T T

t T, T
(w4 3) + 1t + D]\2e(¢ + 1) ((w|+%) [1 z 1}

t T T
sai-De+n |t T T
+f RS 1
t T, T

p(2T, + 1)
@+ 1)
00p t(t+ D{(wr + 1w — tHwy + £+ 1) + Jp[-Sun(ws +3) + 1t + 1) - 12]}

. {2\/(2'1",; + 12t + )p(p+ 3)

x ((p = 1,0)T5; (10) (PO T}

3(2Tp + 1) [Wl(w1+3)+t(t+1)]}

X { (w14 3) VTR TN OV T3 (DHI(OT;)

{2t - 1)(2t +3)

+ 3

U(TtT2 Tot){{(p0) T (11020 (p0) T }

01p i+ 1){ = {wy + D{wy + 3wy = (wr + t +1)

3 3 t T, T
+gp(w1+5)[wszl+3)+t{t+1)]}1 0 1
t T, T

2 t T, T

- Et(t+1)[—5w1(«w1+3)+t(t+1)-12] 0 1 1

t T, T

t T, T
_[ul(w1+3)+t(t+1)](w1+§)\/Zt(t-i-l)[l 1p 1}}

t T, T
V10p(p+3}e(t+ 1)

X {wilwy + 3} + 224 1)] {((POJTP;(H)ZH(PO)T;)
t T, T t T, T
x((wé)[] i ﬂ/u@i‘)[z 7 1])
Ve o 2 t T, T
t T, T
_/(2t—1)6(2t+3)[2 P
t T, T

. N_P;Fi)((pg)Tp;(ll)lllipﬂlT;i)Jr

G

((»0) T (11) 1lI(P0}T,',>}
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Table 3. (continued)

+1 1 (p+1) {f(f+1)((w1—t)(w1+1)(f-'1+t+1)

t T, T
+ Ipf-Swui(w + D+t + ) -1 |0 1 1
t T, T

- a0 ((m + 1)ws o+ 3w - )(wr + t+ 1)

t T, T
-—(u1+ )[ul(w1+3)+t(t+1)]) [1 H 1]}
t T, T

x o/ (p + D((p0) Tp; (10)1])(p + 1,0)T})

V3 t T, T
+ § = —t{t 4+ 1)f-Se{wn +3)+e(t+1)-12]j0 1 1}
2 " T.r T

t T, T
J:(t+1)(2:-1}(2x+3)[w1(w,+3)+t(t+1)]{ i 1]}

t T, T
x 5V/p(p + D0+ T GO +1,0T)

t T, T
+4f5t(t+ 1) [w1(u1+3)+t(t+1)]{(w1+ ) [ 2, 1 ]
t T’ T
1/(2t-1)(2t+3 [2 7 }
t T} T’

Ve(e+ 1{(p + 4){(p0) Tp; (21)2||(p + 1,0) T}

4 VI (e - 1)(;;:: NPV, o +3) + 12+ 1))

t

T3

t Tp T
x[z 3 1]((;;0)T,,;(21)3|[(p+1,0)1“;)
t T, T
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