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Abstract
In this study, we show that beam model differences play an important role
in the comparison of dose calculated with various algorithms for lung cancer
treatment planning. These differences may impact the accurate correlation
of dose with clinical outcome. To accomplish this, we modified the beam
model penumbral parameters in an equivalent path length (EPL) algorithm
and subsequently compared the EPL doses with those generated with Monte
Carlo (MC). A single AP beam was used for beam fitting. Two different
beam models were generated for EPL calculations: (1) initial beam model
(init fit) and (2) optimized beam model (best fit), with parameters optimized
to produce the best agreement with MC calculated profiles at several depths
in a water phantom. For the 6 MV, AP beam, EPL(init fit) calculations
were on average within 2%/2 mm (1.4 mm max.) agreement with MC; the
agreement for EPL(best fit) was 2%/0.5 mm (1.0 mm max.). For the 15 MV,
AP beam, average agreements with MC were 5%/2 mm (7.4%/2.6 mm max.)
for EPL(init fit) and 2%/1.0 mm (1.3 mm max.) for EPL(best fit). Treatment
planning was performed using a realistic lung phantom using 6 and 15 MV
photons. In all homogeneous phantom plans, EPL(best fit) calculations were
in better agreement with MC. In the heterogeneous 6 MV plan, differences
between EPL(best fit and init fit) and MC were significant for the tumour. The
EPL(init fit), unlike the EPL(best fit) calculation, showed large differences in
the lung relative to MC. For the 15 MV heterogeneous plan, clinically important
differences were found between EPL(best fit or init fit) and MC for tumour
and lung, suggesting that the algorithmic difference in inhomogeneous tissues
was most influential in this case. Finally, an example is presented for a 6 MV
conformal clinical treatment plan. In both homogeneous and heterogeneous
cases, differences between EPL(best fit) and MC for lung tissues were smaller
compared to those between EPL(init fit) and MC. Although the extent to
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which beam model differences impact the dose comparisons will be dependent
upon beam parameters (orientation, field size and energy), and the size and
location of the tumour, this study shows that failing to correctly account
for beam model differences will lead to biased comparisons between dose
algorithms. This may ultimately hinder our ability to accurately correlate dose
with clinical outcome.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Conventional dose calculation algorithms are typically based on parameterizations of dose
measurements in a water phantom. These methods usually employ analytical models with
various parameters that can be adjusted to ‘optimize’ the agreement with depth dose and
profile measurements over a range of field sizes. However, in clinical treatment planning,
and particularly in regions with inhomogeneous tissues, these algorithms—which employ
simplistic radiological path length type corrections for inhomogeneities—have been shown
by Arnfield et al (2000) (among many others) to be inaccurate. With physics-based methods,
such as Monte Carlo (MC), beam models may be developed from explicit particle simulation
of the treatment head (phase space), or by characterization of information from the phase
space, and in some cases may be empirically based (Rogers et al 1995, DeMarco et al 1998,
Deng et al 2000, Schach von Wittenau et al 2000, Fix et al 2001, Heath and Seuntjens 2003).
Measurements are used mainly for the purposes of verification of the beam models. An
important consideration in the comparison of MC with conventional methods is to be able
to distinguish issues related to differences in the beam model (i.e., in the characterization
of radiation from the treatment head) versus those due to calculational differences in the
heterogeneous patient tissues (i.e., algorithmic differences due purely to the inhomogeneity
correction methods). Although in practice it is difficult to separate these two issues, testing
can be designed to emphasize beam model versus algorithmic differences and vice versa.
For example, beam model differences may be best elucidated using larger field sizes in
water phantoms, where differences in the energy spectra caused by increased scattering from
structures, such as the flattening filter, are accentuated. On the other hand, algorithmic
differences may be better tested using small field sizes, higher energy beams, in heterogeneous
media, where lateral electronic disequilibrium becomes important.

In this work, we show that beam model differences (found when comparing algorithms
in homogeneous media) may substantially influence the algorithmic comparison in the
heterogeneous setting. These differences are especially important in the consideration of
dose/volume/response correlations; if the beam models are not ‘matched’ in the homogeneous
case, then the doses may be significantly different in low-density patient tissues, resulting
in inaccurate estimation of the dose to such normal structures. The quantification of the
differences resulting from beam model effects versus those from inhomogeneity effects is
therefore essential part of performing an unbiased comparison of the algorithmic differences
in the inhomogeneous setting. This type of analysis will place the various inhomogeneity
correction methods on an equal footing to ultimately perform accurate correlations of the
different dose distributions with lung cancer patient outcome (local failure and normal tissue
complications, e.g., radiation pneumonitis).
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2. Methods and materials

2.1. Dose algorithms

The MC dose algorithm used in this study is the dose planning method (DPM) originally
developed by Sempau et al (2000). DPM has been optimized for coupled photon/electron
beam radiotherapy class calculations—the transport package employs several features for
calculations as such. Some of these transport schemes include (a) the use of a step size
independent multiple scattering theory, (b) the use of a ‘random hinge’ scheme in transporting
charged particles from point to point in the medium, (c) the use of large electron steps
which affords the ability to traverse many voxels before sampling a multiple scattering angle
and (d) the use of Woodcock tracking to reduce the overheads associated with transporting
photons across boundaries. Other details of the electron/photon transport model used in
DPM along with electron beam accuracy and efficiency comparisons are provided in the paper
by Sempau et al (2000). DPM has been integrated within our in-house treatment planning
system (UMPlan) using a virtual source model to characterize the radiation phase space, and
is currently being used for a variety of treatment planning applications (Chetty et al 2003,
2004). The MC virtual source model used for patient-specific treatment planning is similar to
that previously developed by Chetty et al (2000), and is described at length in that paper. A
brief description of the source model is provided here. The treatment head components of a
Varian 21EX linear accelerator (Varian Associates, Palo Alto, CA) were simulated using the
BEAMnrc MC code (CNRC, Ottawa, ON). A virtual source model was reconstructed from
the phase space distribution to sample the source particle’s position, energy. Direction is
determined from the particle’s sampled starting position assuming the particle emerged from
a point. Arbitrary field shapes are simulated by multiplying the uncollimated fluence map by
a matrix describing the multi-leaf collimator (MLC) configuration. In order to account for
the finite width of the target and leaf edge penumbral effects, the shaped-beam fluence map
is convolved with a Gaussian kernel as described previously (Chetty et al 2000). There are
several other approaches towards particle simulation in the treatment head for the purposes of
treatment planning. A comprehensive review of these various implementations can be found
in the recent paper by Verhaegen and Seuntjens (2003).

Monte Carlo (DPM) calculations were compared against those in the conventional
UMPlan system, which uses the edge/octree algorithm (Fraass et al 1987). The edge/octree
algorithm is based on a parameterization of the measured depth–dose curves and profiles at
different depths in water using analytical models (Fraass et al 1987). The effect of tissue
inhomogeneities is accounted for using an equivalent path length (EPL) correction, which
performs a ray-trace from the source to the calculation point and scales the depth with the
radiological density along that ray. The EPL correction applies only to primary photons;
lateral electron transport and the distribution of scattered photons are ignored. The octree/edge
algorithm with EPL inhomogeneity-correction algorithm as implemented in UMPlan will be
referred to as the EPL algorithm throughout the rest of this paper.

2.2. Beam model adjustments and phantom geometries

A phantom, illustrated in figure 1, was simulated for the purposes of dose calculations in this
study. The simulated phantom, consisting of uniform density water equivalent (ρ = 1.0 g cm−3)
and lung equivalent (ρ = 0.3 g cm−3) materials with an embedded uniform density tumour
(ρ = 1.0 g cm−3), was designed with dimensions similar to those that one might encounter
in an actual patient. For the purposes of beam fitting, single AP field calculations were initially
performed in the phantom using the DPM and EPL algorithms. The phantom densities for
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Figure 1. Phantom set-up for the treatment planning study. The tumour size was changed from
6 cm (side of cube) for the 6 MV calculations to 2 cm for the 15 MV treatment plans.

these AP field calculations were set to 1—the intent here was to test the agreement between
the beam models in the homogeneous situation. These calculations were subsequently
analysed using 1D profiles and dose difference maps to quantify the differences in the beam
models (see results, section 3.1). The EPL model parameters were then modified in the
beam penumbral and low-dose regions to optimize the agreement with DPM. Adjustments
were performed using 1D profiles at depths of 5, 10, 15 and 20 cm in the homogeneous
phantom, and the optimized fit represented the best trade-off in the agreement between
DPM and EPL in the penumbral and low-dose regions at these various depths (see results,
section 3.1).

Using these two different beam models, the initial fit (init fit) and the optimized fit
(best fit) parameters, realistic treatment plans were designed for the phantom study. Beam
arrangements consisted (in addition to the AP field) of PA and right lateral fields, along with
two segmental fields (total of five beams) to produce a dose homogeneity of approximately
100 ± 5% within the tumour in the homogeneous setting (with densities set to 1). Calculations
were also performed in the heterogeneous phantom (using the actual tissue densities) for the
init fit and best fit cases and compared with DPM. Additionally, calculations were carried
out in phantoms with two different tumour sizes (cubes with sides 2 and 6 cm) using 6 and
15 MV photon beams, respectively. The field size for the 6 MV, 6 cm tumour plan was 8 ×
8 cm2, while that for the 15 MV, 2 cm tumour case was 4 × 4 cm2. Finally, a patient
treatment plan was included in the study to illustrate the influence of differences in the
beam models on clinically realistic dose indices. As with the phantom study, calculations
for the patient plan were performed in both the homogeneous (densities set to 1) and
heterogeneous cases. It should be pointed out that, for all comparisons in this study, field
shapes were defined by the MLC with the x and y jaw positions set to the most protruding
leaf/leaves.

Transport parameters for the DPM calculations were as follows: the low-energy electron
and photon cut-off values were 200 and 50 keV, respectively, and the step size was 2 mm. DPM
calculations were carried out with sufficient particles (of the order of 1 billion) to produce
a statistical uncertainty (1σ ) of less than 0.5% in the region of maximum dose. Dose was
calculated in cubic voxels of sides 3 mm for both DPM and EPL algorithms.
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Axial Sagittal Coronal, 10 cm depthAxial Sagittal Coronal, 10 cm depth

Figure 2. Experimental verification of the MC source model used in the planning study (from
Rosu et al (2003a)). The comparison shows ion chamber measurements (dashed lines) versus
Monte Carlo (solid lines) for a ‘C-shaped’, MLC-defined field in the axial and sagittal planes.
Measurements for the coronal comparison were obtained using film. The photon beam energy
was 6 MV.

2.3. Beam fit comparison metrics

Differences in the dose distributions amongst the various EPL beam models (init fit and
best fit) were compared against DPM using the following dose metrics: dose volume
histograms (DVHs) for the tumour and normal lung tissue, mean lung dose (MLD), normal
tissue complication probability (NTCP) for the normal lung tissue and dose in the EPL(init fit
and best fit) plans to produce the same NTCP as in the DPM plan. MLD is the mean physical
lung dose, calculated from the normal lung physical DVHs, as follows: MLD = ∑

iVi · Di ,
where Di is the physical dose in bin i, of volume Vi . NTCP was calculated using the Lyman–
Kutcher–Burman (LKB) model (Kutcher and Burman 1989) with fit parameters (n = 0.97,
m = 0.33, TD50 = 30.3 Gy) initially derived from our previous lung dose escalation protocol
(Hayman et al 2001), where doses were calculated using the edge/octree (EPL) algorithm.
Normal lung volumes were calculated by subtracting the gross tumour volume (GTV) from
the combined volume of both lungs. Isocentre doses were 84 Gy for the 6 MV plan, 103.0 Gy
for the 15 MV plan and 66.0 Gy for the patient plan—doses were chosen on the basis of the
volume of lung uniformly irradiated (Veff), much like in the protocol (Hayman et al 2001).

3. Results and discussion

3.1. AP beam model comparisons

For the purposes of verification of the Monte Carlo virtual source model used for simulating
arbitrary field shapes, calculations were compared with measurements for a variety of MLC-
shaped fields. Figure 2 provides a comparison for a C-shaped field (6 MV photons) showing
good agreement between measurement (dashed lines) and MC (solid lines) central axis
(CAX) in the sagittal, axial and coronal views (Rosu et al 2003a). Other verification of
the performance of the MC source model used in this study has been previously reported in
studies by Rosu et al (2003a) and Chetty et al (2000, 2003).

Figure 3 illustrates CAX profiles in the x-direction (cross plane) for the 6 MV AP beam
(8 × 8 cm2) at depths of (a) 5 cm and (b) 10 cm. Note that these calculations were performed
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Figure 3. Central x-axis profiles for the 6 MV (8 × 8 cm2), AP beam in the homogeneous (ρ = 1)
phantom, at depths of (a) 5 cm and (b) 10 cm. Plots are shown for the DPM, EPL(init fit) and
EPL(best fit) calculations. The curves were normalized to a depth of 10 cm along the central axis.

in the homogeneous case. Curves were normalized at a depth of 10 cm along the CAX.
Magnified views of the profile penumbral regions are presented in the inset figures. The
improvement in the EPL beam fit (relative to DPM) using the optimized fit parameters
(best fit) versus the initial parameters (init fit) is evident in the penumbral regions. The
high- and low-dose regions (doses greater than 90% and less than 10%, respectively) were
relatively unchanged. While the init fit consistently overestimates the penumbral dose, the
best fit provides a better tradeoff, and although the best fit profiles show a somewhat sharper
gradient, the overall agreement is better. The largest discrepancy in the init fit profiles (relative
to DPM) is 1.5 mm in the penumbral region (dose level of ∼25% at 10 cm depth), while that
for the best fit profiles is within 1 mm and on average within 0.5 mm. Similar results were
noted for the profiles at depths of 15 and 20 cm as well as for profiles along the y-axis.
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Figure 4. Central x-axis profiles for the 15 MV (4 × 4 cm2), AP beam in the homogeneous
(ρ = 1) phantom, at depths of (a) 10 cm and (b) 15 cm. Plots are shown for the DPM, EPL(init fit)
and EPL(best fit) calculations. The curves were normalized to a depth of 10 cm along the central
axis.

A similar analysis for the AP beam fitting procedure (in the homogeneous phantom) was
performed for the 15 MV. The beam field size was 4 × 4 cm2. Figure 4 shows 1D CAX
profiles along the x-axis at depths of (a) 10 cm and (b) 15 cm. Curves were normalized at
a depth of 10 cm along the CAX. The EPL best fit provides a markedly improved fit over
the init fit relative to the DPM profiles. Due to the relatively small field size (4 × 4 cm2),
modification of the EPL model penumbral parameters also influenced the high-dose shoulder
region of the profile; the largest discrepancies in the init fit profiles (relative to DPM) are 7.4%
at the profile shoulders (dose region between 85% and 95%) and 2.6 mm in the penumbral
region. Agreement for the best fit profiles in the penumbra is within 1 mm and within 2%
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Figure 5. Colour wash dose difference maps for the 6 MV, five-field treatment plan in the
homogeneous (ρ = 1) case shown for: (a) DPM–EPL(init fit) and (b) DPM–EPL(best fit). The
dark (blue) regions along the beam edges represent negative differences. Maximum differences are
−25% (on average within 2 mm distance-to-agreement) along the beam edge in (a), and −10% (on
average within 0.5 mm distance-to-agreement) along the penumbra in (b). Excluding the build-up
region (not included in the beam fitting), the light (red) regions in (b) show positive differences,
which were all less than 3%. Regions in black are within ±1% agreement.

in the high-dose region above 90%. Similar results were found for the profiles at depths of
5 and 20 cm as well as for profiles along the y-axis. Dose difference maps (DPM–EPL) for
15 MV (though not presented here) showed notably improved agreement (relative to DPM) in
the profile and penumbral and shoulder regions when calculations were performed with the
EPL best fit versus the init fit.

3.2. Phantom planning calculations

The EPL beam parameters for the initial fit (init fit) and the optimized fit (best fit) determined
in the above analysis for AP beams were applied to a multiple-beam (five-field) treatment plan.
Illustrated in figure 5 are dose difference maps for the 6 MV plan in the homogeneous case



Beam model differences in the comparison of dose calculation algorithms for lung cancer treatment planning 809

0

20

40

60

80

100

0 15 30 45 60 75 90

Dose (Gy)

V
ol

um
e 

(%
)

DPM

EPL(best_fit) 

EPL(init_fit)Ipsilateral 
(right) lung

Tumor

0

20

40

60

80

100

0 15 30 45 60 75 90

Dose (Gy)

V
o

lu
m

e 
(%

)

DPM

EPL(best_fit) 

EPL(init_fit)Ipsilateral 
(right) lung

Tumor

(a)

(b)

Figure 6. DVHs for the tumour and ipsilateral (right) lung and for the 6 MV, five-field treatment
plan in (a) the homogeneous (ρ = 1) phantom and (b) the heterogeneous phantom. DVHs are
included for the DPM, EPL(init fit) and EPL(best fit) calculations.

for (a) DPM–EPL(init fit) and (b) DPM–EPL(best fit). There is improved overall agreement
with the best fit parameters relative to the init fit, particularly in the penumbral region, where
the negative dose differences (cold spots) are substantially reduced. DVHs for the ipsilateral
(right) lung and the tumour are shown in figures 6(a) and (b) for the homogeneous (densities
set to 1) and heterogeneous phantom, 6 MV, treatment plans respectively. Note that a tumour
with side 6 cm, and field sizes of 8 × 8 cm2 were used in this example. The prescribed dose
was 84 Gy to the isocentre. The homogeneous DVHs (figure 6(a)) show that while the tumour
is relatively unaffected by the difference in beam models, the dose to the ipsilateral (right lung)
is influenced by these differences; the EPL(best fit) DVH is in better agreement with that of
DPM and more so in the region less than 15 Gy. Values for the MLD, NTCP and dose to restore
the NTCP for the DPM calculation (prescribed to 84 Gy at the isocentre) are presented for
the homogeneous, 6 MV plan, in table 1(a). MLD and %NTCP calculated with EPL(best fit)
are in good agreement with the respective DPM values—this is also reflected in the dose
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Table 1. 6 MV treatment plan dose indices: mean lung dose (MLD), normal tissue complication
probability (%NTCP) and the dose to restore the DPM NTCP, for (a) homogeneous phantom and
(b) heterogeneous phantom. The prescribed dose to the isocentre was 84 Gy. NTCP is shown for
the normal lung tissue defined as the sum of the left and right lung volumes excluding the GTV.

MLD NTCP Dose to restore
(Gy) (%) DPM NTCP (Gy)

(a) Homogeneous phantom
DPM 14.64 6.32
EPL(best fit) 14.84 6.60 82.77
EPL(init fit) 15.84 7.96 77.74

(b) Heterogeneous phantom
DPM 15.38 7.23
EPL(best fit) 15.70 7.74 82.12
EPL(init fit) 16.38 8.78 78.76

to restore the DPM NTCP, which is approximately 83 Gy for EPL(best fit). On the other
hand, larger differences are found for the EPL(init fit) values; the dose to restore the DPM
NTCP is now 78 Gy, which represents a 6 Gy difference from the DPM prescribed dose. As
this represents a dose change of more than one fraction (for a typical fraction size of 2 Gy),
we can consider this a clinically significant difference (Ten Haken et al 1997, Lujan et al 1999,
Rosu et al 2003b). The fact that substantial differences are found in the lung doses in the
homogeneous phantom suggests that differences of the order of 2 mm in the penumbral beam
model can significantly impact doses to structures outside the target—these differences must
be considered when comparing the algorithms in the heterogeneous phantoms.

Figure 6(b) shows DVHs for the 6 MV treatment plan in the heterogeneous setting (using
the actual physical densities). For the tumour, the DPM DVH shows a dose underestimation
relative to the EPL DVHs, a well-known effect due to the lateral transport of electrons from
the tumour into the lower density lung. For the lung, it is evident that the DPM DVH
shows an increased volume receiving smaller doses (less than 15 Gy) and a reduced volume
receiving higher doses (greater than 45 Gy) relative to the homogeneous treatment plan. This
is consistent with the ‘smearing’ of dose into the lung as a result of lateral electron transport,
which is correctly accounted for with Monte Carlo. DVHs for the EPL algorithm, on the other
hand, show little change versus the homogeneous plan, as electron transport is not accounted
for. The dose to restore the DPM NTCP in the heterogeneous plan (table 1(b)) is 82 Gy with
EPL(best fit) and 79 Gy with EPL(init fit). A possible reason for this relatively small change
in the EPL(best fit) dose is that the lateral electron transport effect is small given the relatively
large field size (8 × 8 cm2) and the lower photon energy (6 MV). Note also that a large fraction
of the difference in the heterogeneous phantom for the EPL(init fit) calculation is a result of
the difference in the beam model in the homogeneous phantom; had the EPL(init fit) been
better modelled in the homogeneous plan, the differences in the inhomogeneous case may well
have been smaller in this particular example, as in the case with EPL(best fit). This illustrates
that accurate beam fitting and differences in the beam model are important considerations in
the comparison of dose algorithms in heterogeneous tissues.

Figures 7(a) and (b) show DVHs for the 15 MV treatment plans in the homogeneous and
heterogeneous phantoms, respectively. Curves are plotted for the ipsilateral (right) lung and
tumour. For the 15 MV example, a tumour of side 2 cm was chosen and the field size was 4 ×
4 cm2. The prescribed dose to the isocentre was 103 Gy. In the homogeneous case (figure 7(a)),
the EPL(best fit) lung DVH is in better agreement with that of DPM versus the EPL(init fit)
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Figure 7. DVHs for the tumour and ipsilateral (right) lung and for the 15 MV, five-field treatment
plan in (a) the homogeneous (ρ = 1) phantom and (b) the heterogeneous phantom. DVHs are
included for the DPM, EPL(init fit) and EPL(best fit) calculations.

lung DVH—a similar trend was noted for the 6 MV plan. For the tumour, the DVH differences
between EPL(init fit) and DPM are relatively large; this is because the adjustment of the EPL
model penumbral parameters also influenced the high-dose shoulder region of the profile owing
to the small field size used in this plan (see section 3.1). Dose metrics for the homogeneous,
15 MV plan are shown in table 2(a). Values for the MLD and %NTCP are in relatively good
agreement between DPM and EPL(best fit) with larger differences found for EPL(init fit).
The dose to restore the DPM NTCP was 102 Gy for the EPL(best fit), which compares well
with the prescribed isocentre dose of 103 Gy. For the EPL(init fit) calculation, the 0.57%
NTCP is higher than that of DPM (0.44%) implying that the treatment is more toxic to the
lung in the case of EPL(init fit). As a result, the dose to restore the DPM NTCP for the
EPL(init fit) calculation is lower (85 Gy); it is significantly lower (by roughly 10 fractions)
because, in addition to the very high prescription dose (103 Gy), the NTCP and Veff values for
this particular case fall along the steepest region of the dose response curve.
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Table 2. 15 MV treatment plan dose indices: mean lung dose (MLD), normal tissue complication
probability (%NTCP) and the dose to restore the DPM NTCP, for (a) homogeneous phantom and
(b) heterogeneous phantom. The prescribed dose to the isocentre was 103 Gy. NTCP is shown for
the normal lung tissue defined as the sum of the left and right lung volumes excluding the GTV.

MLD NTCP Dose to restore
(Gy) (%) DPM NTCP (Gy)

(a) Homogeneous phantom
DPM 3.87 0.44
EPL(best fit) 3.93 0.45 101.63
EPL(init fit) 4.76 0.57 85.01

(b) Heterogeneous phantom
DPM 5.54 0.71
EPL(best fit) 4.24 0.49 132.72
EPL(init fit) 4.92 0.60 115.47

DVHs for the 15 MV heterogeneous plan are presented in figure 7(b). Here again, as in the
case of 6 MV, we find a significant reduction in the tumour DVHs with DPM relative to EPL
due to the lateral electron transport into the lung. Note that this reduction is more pronounced
for EPL(init fit) since the init fit model parameters were not optimally fit in the homogeneous
case (see figure 7(a)). The dose to the normal lung tissue (right lung) changes substantially
with DPM in the 15 MV heterogeneous plan. The DPM DVH shows a considerable increase
in the volume receiving a dose less than 20 Gy relative to the homogeneous plan (figure 7(a)).
This is due to the lateral electron transport effect which is exacerbated by the use of small
field sizes (4 × 4 cm2), a small tumour size (2 cm) embedded in low-density lung tissue, and
high energy photons (15 MV). This effect results in an increase in the DPM NTCP and MLD
(as seen in table 2(b)) relative to the homogeneous case; the NTCP, for example, increases
from 0.44% (in the homogenous plan) to 0.71% (in the heterogeneous plan), causing the DPM
dose to the lung to be more toxic versus the EPL calculations. Note also in table 2(b) that
neither the NTCP nor the MLD shows much change with either EPL init fit or best fit models
in the heterogeneous case (relative to the homogeneous plan) because the EPL algorithm
does not correctly account for lateral electron transport in the lung. As a consequence of the
increased toxicity with the DPM doses to lung, the dose to restore the DPM NTCP for the EPL
calculations is increased—the magnitude of the large increase (table 2(b)) is in part due to the
high prescription dose and the steepness of the dose–response curve at which these doses are
calculated. We also see for the EPL(best fit) model that the dose to restore the DPM NTCP,
although in good agreement with the prescribed dose in the homogeneous plan (table 2(a)),
is considerably different (∼30% higher than the prescribed dose) in the heterogeneous plan
(table 2(b)), unlike the case for the 6 MV plan (see table 1). This suggests that, in situations
where lateral electron transport effects are emphasized (such as in the 15 MV example),
inhomogeneity effects may be more significant than the beam model differences found in the
homogeneous setting.

3.3. Patient treatment plan

Figure 8 shows dose difference maps (DPM–EPL), for example a lung patient treatment
plan consisting of three, conformal, 6 MV photon beams. The dose difference maps were
generated from treatment plans in the homogeneous case (i.e., with patient densities set to 1)
and are shown (in the central coronal plane) specifically for (a) DPM–EPL(init fit) and
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Figure 8. Colour wash dose difference maps for the conformal three-field, 6 MV treatment plan
in the homogeneous (ρ = 1) case shown for (a) DPM–EPL(init fit) and (b) DPM–EPL(best fit).
The dark (blue) regions represent negative differences and range up to −15% (on average less than
−7%) in (a) and up to −10% (on average less than −3%) in (b). Regions shown in light (red)
indicate positive differences, which are all less than 3% (excluding the surface). Regions in black
are within ±1% agreement.

(b) DPM–EPL(best fit). Results for this patient treatment plan were very similar to those
for the 6 MV phantom study described previously. The EPL(best fit) shows better overall
agreement when compared with DPM; average agreement is well within ±3% (figure 8(b)),
whereas larger negative differences (−10% to −15%) are found in the EPL(init fit) difference
map (figure 8(a)). DVHs for the normal lung tissue and tumour in the homogeneous and
heterogeneous treatment plans, although not shown here, also followed similar trends to those
for the 6 MV phantom study described in section 3.2. To summarize, in the homogeneous
treatment plan, the target DVHs calculated with DPM, EPL(best fit) and EPL(init fit) were all
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Table 3. Conformal, 6 MV patient treatment plan dose indices: mean lung dose (MLD),
normal tissue complication probability (%NTCP) and the dose to restore the DPM NTCP, for
(a) homogeneous plan and (b) heterogeneous plan. The prescribed dose to the isocentre was
66 Gy. NTCP is shown for the normal lung tissue defined as the sum of the left and right lung
volumes excluding the GTV.

MLD NTCP Dose to restore
(Gy) (%) DPM NTCP (Gy)

(a) Homogeneous plan
DPM 5.22 0.65
EPL(best fit) 5.16 0.64 66.59
EPL(init fit) 5.51 0.71 62.53

(b) Heterogeneous plan
DPM 5.75 0.75
EPL(best fit) 5.87 0.79 64.38
EPL(init fit) 6.13 0.84 61.82

in good agreement. For the normal tissue, as expected, the EPL(best fit) DVH was in better
agreement with DPM versus the EPL(init fit) DVH. In the heterogeneous treatment plan, DPM
predicted a lower dose to the tumour relative to EPL, and for the normal lung tissue showed
that the percentage volume receiving lower doses is increased while that receiving higher
doses is reduced compared with the homogeneous plan. Dose indices for the homogeneous
and heterogeneous patient plans are shown in tables 3(a) and (b), respectively. The MLD
and NTCP calculated with EPL(best fit) are in relatively good agreement with DPM in
the homogeneous case (table 3(b)); larger differences are observed with the EPL(init fit)
calculations. The dose to restore the DPM NTCP in the homogeneous case was 66.6 Gy
for the EPL(best fit) and 62.5 Gy for the EPL(init fit) calculations. In the heterogeneous
plan, the dose to restore the DPM NTCP is reduced by close to one fraction for the
EPL(best fit) suggesting that the inhomogeneity differences between DPM and EPL may
be clinically significant in this example.

4. Conclusion

The results of this study indicate that consideration of differences in the beam model
is important in comparing dose calculation algorithms in lung cancer treatment planning.
Differences of the order of 2 mm in the profile penumbral regions in the homogeneous setting
can contribute to the overall differences noted in the heterogeneous patient tissues, leading
to inaccurate dose estimation to these tissues. Even though the magnitude of beam model
differences will be dependent on several factors, such as the beam energy and orientation, field
size, location and size of tumour, etc, we argue that no matter how small, these differences
must be assessed and accounted for in order to perform an unbiased comparison between dose
algorithms in the heterogeneous setting. As MC moves closer to the clinic, the question of how
MC will impact patient outcome becomes increasingly important. Without first establishing
accurate correlation between MC doses and those calculated with conventional algorithms,
such as the EPL model (which have been previously tied to patient outcome), it will be very
difficult to elicit the clinical benefit of MC.
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