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Activation of Nitric Oxide Signaling by the
Rheumatoid Arthritis Shared Epitope

Song Ling,' Angela Lai," Olga Borschukova,> Paul Pumpens,” and Joseph Holoshitz'

Objective. Susceptibility to rheumatoid arthritis
(RA) is closely associated with HLA-DRBI alleles en-
coding a shared epitope (SE) in positions 70-74 of the
HLA-DRf chain. The mechanistic basis for this asso-
ciation is unknown. Given the proposed pathogenic role
of nitric oxide (NO) in RA, this study was undertaken
to examine whether the SE can trigger NO signaling
events.

Methods. The intracellular levels of NO were
measured with the fluorescent NO probe 4,5-
diaminofluorescein diacetate and by the 2,3-
diaminonaphthalene method. NO synthase activity was
determined by measuring the rate of conversion of
radioactive arginine to citrulline. Levels of cGMP were
measured with a commercial enzyme-linked immu-
nosorbent assay, and the cytolytic activity of T cells was
measured using a standard *'Cr release assay.

Results. Lymphoblastoid B cell lines carrying
SE-positive HLA-DR alleles displayed a higher rate of
spontaneous NO production compared with SE-negative
cells. L cell transfectants expressing SE-positive DR
molecules on their surface also generated higher levels
of NO. Tetrameric HLA-DR molecules containing a
DRp-chain encoded by the SE-positive DRB1*%0401 al-
lele stimulated fibroblast cells to produce higher levels
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of NO compared with cells stimulated with a control
HLA-DR tetramer. Multimeric hepatitis B core pro-
teins engineered to express region 65-79 encoded by the
DRBI1%0401 allele, but not the same region encoded by
the control allele DRB1%0402, stimulated NO produc-
tion in fibroblasts. Similarly, synthetic 15-mer peptides
corresponding to the region 65-79 encoded by SE-
positive alleles triggered increased NO levels when
incubated with class II major histocompatibility
complex—negative cells. The signaling pathway was
found to involve NO synthase activation, followed by
increased production of cGMP. SE-triggered increased
NO levels inhibited cytolytic elimination of target cells.

Conclusion. The SE can trigger NO-mediated
signaling events in opposite cells, and may thereby
contribute to RA pathogenesis.

Rheumatoid arthritis (RA) is strongly associated
with HLA-DRBI alleles encoding a 5—amino-acid se-
quence motif that is commonly referred to as the shared
epitope (SE), in residues 70-74 of the DRB-chain (1).
The mechanism by which the SE increases susceptibility
to RA is unknown. On the basis of the known role of
class II major histocompatibility complex (MHC) mole-
cules in antigen presentation, several hypotheses have
been put forth to explain the mechanisms of action of
SE-associated disease susceptibility, including presenta-
tion of arthritogenic self peptides (2), molecular mimicry
with foreign antigens (3), and T cell repertoire selection
(4). Although all of these hypotheses are plausible, they
are difficult to reconcile with the fact that the supporting
evidence for antigen-specific responses as the primary
cause of RA is scant and inconsistent.

In addition to RA, several other human diseases
have been shown to be associated with SE-encoding
DRBI alleles, including polymyalgia rheumatica (5),
giant cell arteritis (5), autoimmune hepatitis (6), erosive
bone changes in psoriatic arthritis (7), and early-onset
chronic lymphoid leukemia (8), among other diseases.
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Furthermore, the SE has been shown to be associated
with spontaneous RA-like disease in dogs (9) and to
facilitate collagen-induced arthritis (10) and experimen-
tal encephalomyelitis (11) in HLA-DRBI*0401-
transgenic mice. Thus, the promiscuous association of
SE-encoding DRBI1 alleles with pathogenically diverse
diseases, with no apparent antigen or species specificity,
suggests that in addition to its known role in antigen
presentation, the SE may have non-antigen-specific
effects.

In this study, we have undertaken to investigate
the role of nitric oxide (NO) as a potential mediator of
the SE effect, based on the following reasoning. NO is a
ubiquitous signaling molecule with versatile effects in
the immune system (for review, see ref. 12). Its proin-
flammatory effects in RA have been noted (13), as
indicated by the significant correlation observed be-
tween increased NO levels and inflammatory markers of
the disease (14). Furthermore, antirheumatic agents
have been shown to suppress NO production (13,15).
Excessive levels of NO, either alone or in conjunction
with intercurrent oxidative challenges, can cause muta-
tions (16), increase the risk of lymphoma (17), and
accelerate telomere shortening (18), all of which are
events that have been found in association with RA
(19-21) or with the SE (22). Thus, multiple lines of
evidence suggest that NO may be an important factor in
RA and its association with the SE.

The findings of the present study indicate that
cells carrying SE-positive HLA-DRBI alleles display
increased constitutive NO production. Increased NO
levels can also be seen in class II MHC-negative murine
cells expressing human SE-positive DR molecules
through complementary DNA (cDNA) transfection, in-
dicating that the effect is not due to linkage disequili-
brium with another gene. Synthetic proteins and pep-
tides expressing the SE motif can mimic the signaling
effect of the native DR molecule. We further show that
SE-triggered NO signaling impedes cytolytic elimination
of target cells. Thus, SE-positive HLA-DR molecules
possess a unique ability to activate a biologically conse-
quential, NO-mediated signaling pathway.

PATIENTS AND METHODS

Study subjects. Lymphoblastoid B cell lines from a
total of 81 blood donors, including 11 pairs of RA-discordant
monozygotic (MZ) twins (22 subjects) and 59 unrelated indi-
viduals, were used in this study. Twenty-seven donors had a
diagnosis of RA, while 14 had other autoimmune diseases
(including 6 patients with juvenile RA, 5 with type I diabetes,
and 3 with autoimmune thyroiditis). Another group of 40
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blood donors comprised the healthy control group. The RA
group did not differ significantly from the healthy group
demographically (no differences in the male-to-female ratio or
mean age). Of the 81 donors, 52 carried 1 or 2 SE-positive
HLA-DRBI1 alleles. The remaining 29 donors were SE-
negative.

Cell lines, HLA-DR typing, and culture conditions. B
lymphocyte lines, prepared from peripheral blood by Epstein-
Barr virus transformation, were grown in supplemented RPMI
1640 medium. The cell lines were HLA-DR typed using
commercial polymerase chain reaction-based, low—-medium
resolution DRBI typing kits (Dynal Biotech, Brown Deer,
WI), followed by high-resolution DRB1 allele-specific typing
when indicated. The murine L cell transfectants expressing
human HLA-DR«/B heterodimers were generated as de-
scribed previously (23) and maintained in Dulbecco’s modified
Eagle’s medium (DMEM) supplemented with 10 mM HEPES,
2 mM glutamine, 1% penicillin/streptomycin, 10% fetal calf
serum, and 500 pg/ml G418. Human M1 fibroblasts were
grown in DMEM containing 10% fetal bovine serum (FBS),
penicillin/streptomycin, and 10 mM HEPES buffer solution.
Synovial fibroblastoid cells were prepared from the synovial
tissue of 1 RA patient, and then propagated in supplemented
DMEM and used in passages 3-5. Human /86 T cell clones
Tcc54 and Tec62 were isolated and cultured as previously
described (24). Human /6 T cell leukemia PEER cells were
grown in RPMI 1640 medium supplemented with 10% FBS,
penicillin/streptomycin, and 10 mM HEPES buffer solution.

Synthesis and solid-phase immobilization of peptides.
Peptides were synthesized at the University of Michigan
Protein Structure Facility (Ann Arbor) on a Rainin PTI
Synphony automated peptide synthesizer. Each residue was
coupled twice with 200 mM HOBt plus HBTU and 400 mM
N-methylmorpholine for 60 minutes, and capped with 50%
acetic anhydride in dimethylformamide. The resins used were
Fmoc-PAL-PEG resins from Applied Biosystems (Foster City,
CA). Peptides were purified to >90% by high-performance
liquid chromatography. All peptides were C- and N-terminally
blocked. The sequences of the four 15-mer peptides used,
along with their corresponding DRBI1 alleles, are shown in
Table 1.

To immobilize peptides on a solid phase, cyanogen
bromide-activated Sepharose 4B beads were washed with 1
mM HCI and incubated overnight at 4°C with peptides in
buffer containing 0.1 NaHCOj; and 0.5M NaCl (pH 8.0). Five
milligrams of peptide was mixed with 1 ml of Sepharose 4B
beads. Free Sepharose groups were blocked with 0.2M glycine
(pH 8.0) for 2 hours at room temperature. Columns were
washed at 4°C with buffer containing 0.1M NaHCO; and 0.5M
NaCl (pH 8.0), followed with 0.5 CH;COONa (pH 4.0)
buffer, and finally with phosphate buffered saline (PBS) at pH
7.5. The efficiency of binding was determined by quantification
of the residual concentration of peptides in buffer, after
overnight incubation with the beads.

NO quantification. To determine the rate of NO
production in lymphoblasts, cells were first loaded with 20 uM
of the fluorescent NO probe 4,5-diaminofluorescein diacetate
(DAF-2DA) and then incubated in the dark at 37°C for 1 hour,
washed, and plated at a density of 1 X 10° per well in 96-well
plates (OptiPlate; PerkinElmer Life Sciences, Wellesley, MA)
in 100 ul of DMEM/phenol red—free medium. The fluores-
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Table 1. Peptides used in the study
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Designation Amino acid sequence Encoding HLA-DRBI alleles

65-79*0401 KDLLEQKRAAVDTYC *0401; *0413; *0416; *0421; *1419; *1421

65-79*0402 KDILEDERAAVDTYC *0402; *0414; *0103; *1102; *1116; *1120; *1121; *1301; *1302; *1304;
*1308; *1315; *1317; *1319; *1322; *1416

65-79*0403 KDLLEQRRAEVDTYC *0403; *0406; *0407; *0417; *0420

65-79*0404 KDLLEQRRAAVDTYC *0404; *0405; *0408; *0410; *0419; *0101; *0102; *1402; *1406; *1409;

*1413; *1417; *1420

cence level was recorded every 5 minutes over a period of 500
minutes, using a Fusion o«HT system (PerkinElmer Life Sci-
ences) at an excitation wavelength of 488 nm and emission
wavelength of 515 nm. The NO production rate is expressed as
the mean = SEM fluorescence units per minute.

The rate of NO production in adherent cells was
determined in the same way as that for lymphoblasts, with the
exception that cells were first plated overnight at a density of
3 X 10* per well in flat-bottom, 96-well plates (Costar,
Cambridge, MA). The resultant subconfluent monolayer cul-
tures were loaded with DAF-2DA. The NO production rates
were then determined as described above.

To quantify NO levels directly, cell culture medium
was changed to NO assay buffer (20 mM Tris, 100 mM NaCl,
0.1 mM EDTA [pH 7.6]). At different time points, superna-
tants were collected and spun down to remove cell debris.
Nitrate was first transformed to nitrite by incubation with
nitrate reductase for 60 minutes at room temperature. Subse-
quently, 2,3-diaminonaphthalene was added, and fluorescence
of 2,3-naphthotriazole was measured using the Fusion aHT
system, with an excitation wavelength at 375 nm and emission
wavelength at 415 nm.

Measurement of NO synthase (NOS) activity. NOS
activity was determined in intact M1 cells by measuring the
conversion of radioactive L-arginine to radioactive L-citrulline.
M1 cells were incubated in 6-well plates at 10° cells per well
with HEPES buffer (10 mM HEPES, pH 7.4, 145 mM NaCl, 5
mM KCl, 1 mM MgCl,, 10 mM glucose, with or without
L-N®-nitroarginine methyl ester) for 20 minutes at 37°C. Five
minutes prior to cell stimulation with peptides, 2 uCi/ml
radioactive L-arginine was added. The NOS reaction was
stopped at different time points thereafter by adding ice-cold
PBS with 4 mM EDTA and 5 mM L-arginine. Cells were then
subjected to freeze-thawing once on dry ice, and 100% cold
ethanol was added for extraction. Cells were left to evaporate
before addition of 1 ml of 10 mM HEPES (pH 5.5). Fifty
microliters was withdrawn to check the total incorporation of
radioactive L-arginine. The remaining volume was loaded on
the cation retention column AG50WXS to separate radioac-
tive L-citrulline from radioactive L-arginine. The radioactive
L-citrulline was then quantified by scintillation counting.

Measurement of cGMP. The levels of cGMP were
measured using an enzyme-linked immunosorbent assay kit
(Amersham Biosciences, Uppsala, Sweden) according to the
manufacturer’s instructions. Cells were cultured in 96-well
plates, and then lysed by addition of 5% dodecyltrimethyl
ammonium bromide.

Cytotoxicity assays. Cytolysis of B cell targets by y/6 T
cells was performed using a standard °'Cr release assay.
Specific lysis was calculated as described previously (25).

HLA-DR tetramers. Tetramers DRB1*0401/
DRA1*0101 (designated herein as T-DRB1%0401) and
DRB1*1501/DRA1*0101 (designated T-DRB1*1501) con-
taining the class II-associated invariant chain peptide in the
antigenic groove were generated at the National Institutes
of Health Tetramer Facility, using previously described
methods (26).

Generation of chimeric hepatitis B core (HBc) parti-
cles expressing the allelic third hypervariable region (HVR3)
of DRB. The vector p2-19, which expresses C-terminally
shortened HBcA (lacking the C-terminal region 145-183 [27]),
was chosen for peptide display between HBc amino acid
residues 78 and 79. The following oligonucleotides were syn-
thesized, annealed, and inserted into the HBc gene after
cleavage with restriction enzymes Eco 721 and Eco 1051: for
HLA-DRBI*040] HVR3 (65-KDLLEQKRAAVDTYC-79),
5'-AAAGATCTTCTAGAACAAAAAAGAGCTGCAGTCG-
ACACATATTGT-3" and 5'-ACAATATGTGTCGACTGC-
AGCTCTTTTTTGTTCTAGAAGATCTTT-3’, and for
HLA-DRBI1%0402 HVR3 (65-KDILEDERAAVDTYC-79),
5"-AAAGATATTCTAGAAGATGAAAGAGCTGCAG-
TCGACACTTATTGT-3' and 5'-ACAATAAGTGTCG-
ACTGCAGCTCTTTCATCTTCTAGAATATCTTT-3'.

The K802 (hsdR, gal, met, supE, mcrA, merB) strain of
Escherichia coli was used to produce chimeric HBc derivatives.
The cells were lysed by a 30-minute incubation on ice in lysis
buffer containing 50 mM Tris HCI (pH 8.0), 50 mM EDTA,
100 wg/ml phenylmethylsulfonyl fluoride, and 2 mg/ml ly-
sozyme, and then frozen and thawed twice, after which 10 mM
MgCl, and 20 ug/ml DNase were added. After ultrasonication
(22 kHz), protein lysate was centrifuged at low speed, and the
protein was precipitated from the supernatant with ammonium
sulfate at 30% saturation for 12 hours at 4°C. Pellets were
resuspended in PBS buffer, containing 0.5% Triton X-100 and
0.3-0.6M urea. Five microliters of protein was loaded onto a
Sepharose CL4B column (2.5 X 85 cm) and eluted with PBS
buffer with 0.15-0.3M urea. Fractions containing HBc recom-
binant proteins, as confirmed by polyacrylamide gel electro-
phoresis, were pooled and concentrated by ammonium sulfate
precipitation at 50% saturation. Pellets were resuspended in
PBS, dialyzed overnight against 1,000 volumes of the same
buffer, and stored in 50% glycerol at —20°C. The quality of the
capsid preparations was checked by electron microscopy.

Statistical analysis. Unless stated otherwise, Student’s
t-test was used for group comparisons, with statistical signifi-
cance defined as a P value less than 0.05. All results are
expressed as the mean * SEM. Dose-response curves and
calculation of the 50% inhibitory concentration (ICs,) were
determined using PRISM 3.0 software (GraphPad Software,
San Diego, CA).
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RESULTS

To ascertain whether the presence of the SE
affects NO signaling, we compared spontaneous NO
production in B lymphocyte lines from 44 HLA-DR-
typed individuals. Cells were loaded with the fluorescent
NO probe DAF-2DA and were cultured over a set time
course at high density to allow close cell-cell contact.

As can be seen in Figures 1A-C, although con-
stitutive NO production was seen in all lines, SE-positive
cells exhibited a much higher rate of NO production.
Curves for 2 representative cell lines are shown, to
illustrate the difference between SE-positive and SE-
negative cells (Figure 1A). The mean NO production
rate was significantly higher in the SE-positive group
compared with the SE-negative group (P = 0.0008)
(Figure 1B). Direct measurement of NO levels (Figure
1C) confirmed that SE-positive cells produced signifi-
cantly more NO than SE-negative cells (P = 8.7 X 10~°).
No significant difference in NO production was found
between healthy individuals and RA patients within the
SE-positive group, suggesting that the SE rather than
RA is responsible for the accelerated NO production.

To more conclusively determine the relative roles
of RA and the SE, we analyzed 11 pairs of SE-positive,
RA-discordant MZ twins. No significant difference in
the rate of NO production was found between the RA
twins and their healthy cotwins (Figure 1D). Thus,
spontaneous NO overproduction is an SE-associated
rather than RA-associated aberration.

To determine whether NO overproduction could
be attributed to the DRBI gene itself or whether it was
the result of another gene secondary to linkage disequili-
brium, we studied murine L cell transfectants expressing
human HLA-DR«/B heterodimers on their surface (23).
As can be seen in Figure 1E, 1.565.5 cells expressing the
SE-positive allele DRB1*0401 showed higher spontane-
ous production of NO than did L514.3 transfectants
expressing the SE-negative allele DRBI*0402.

To investigate whether the DR molecule is di-
rectly involved, we used SE-positive and SE-negative
HLA-DR tetramers. The assembly of class II MHC
tetrameric molecules depends on the presence of an
antigenic groove peptide, which should conform to a
distinct sequence motif for each allele. To allow com-
parisons between the SE-negative and SE-positive tet-
ramers independent of allele-specific groove peptides,
we used tetramers containing a covalently bound CLIP
peptide (26). To determine the signaling activity of these
tetramers, we used class II HLA-negative human M1
fibroblasts. In contrast to lymphoblasts, these adherent
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Figure 1. Increased nitric oxide (NO) levels in shared epitope (SE)-
expressing cells. A, Representative time-course curves of NO produc-
tion, measured as fluorescence with the NO probe 4,5-
diaminofluorescein diacetate (DAF-2DA) in SE-positive and SE-
negative B lymphocyte cell lines. B, Spontaneous NO production by B
lymphocytes in the SE-positive and SE-negative groups, compiled from
3 consecutive experiments in each cell line. C, NO production rates in
B lymphocytes in the SE-positive and SE-negative groups, compiled
from 3-5 consecutive experiments in each cell line. D, Analysis of NO
production rates in 11 pairs of rheumatoid arthritis (RA)-discordant
monozygotic twins. E, Spontaneous production of NO over time in
murine L cell transfectants expressing cDNA corresponding to either
DRBI*0401 (L565.5) or DRBI*0402 (L514.3). = = P < 0.05 versus
L514.3 cells at the respective time points, by paired 7-test. Numbers in
parentheses in B-D are the number of donors in each group. Values in
B, C, and E are the mean = SEM. Values in D are box plots, with lines
in the boxes indicating the median, the boxes representing the 25th and
75th percentiles, and lines outside the boxes representing the 10th and
90th percentiles. FU = fluorescence units; NS = not significant.

cells are grown sparsely in subconfluent monolayers and
display low rates of spontaneous NO production (results
not shown).

As shown in Figure 2A, M1 fibroblasts stimulated
with the SE-positive T-DRB1%*0401 tetramer generated
significantly more NO compared with cells stimulated



RA SHARED EPITOPE ACTIVATION OF NITRIC OXIDE SIGNALING 3427

A B
Foca =324x10"
5 l pmRaits L — u T-DRB1°0401
T . g O T-DRB1*1501
75 6000 - 5 E
‘g ‘gg 200
E
8
= 8000 g& -
Q -+ T-DRB17°0401 o
= z
-o—-T-DRB1"1501
od S — 0+
0 20 40 60 80 24 12 6

Time (min)

Tetramer (ug/mi)

Figure 2. Triggering of NO production by SE-expressing HLA-DR
tetrameric molecules. A, DAF-2DA fluorescence (in FU) was deter-
mined over time in human M1 fibroblasts incubated with 24 ug/ml of
corticotropin-like intermediate lobe—containing tetramers of the SE-
positive allele DRB1%0401 (T-DRB1*0401) or a control, SE-negative
allele DRBI1*1501 (T-DRB1*1501). Values are the mean = SEM
fluorescence in triplicate wells. B, Dose-response of T-DRB1*0401-
triggered NO production in M1 cells. Values are the mean = SEM
FU/minute above control levels in triplicate wells. * = P < 0.05 versus
control tetramer at each dose. See Figure 1 for other definitions.

with the SE-negative T-DRB1*1501 control tetramer
(P = 3.24 X 107'). Because T-DRB1*0401 and
T-DRB1%1501 share identical DRB-chains and groove
peptides, their differential signaling activity can only be
attributed to their distinct DRB-chains. Results of the
dose-response analysis with the 2 tetramers are shown in
Figure 2B. The ICs calculations for T-DRB1*0401 (not
shown) revealed an ICs, value of ~3.0 X 10~ *M. Thus,
tetramer T-DRB1%0401 is a specific and potent stimu-
lator of NO production.

The DRB-chains encoded by the DRBI %0401 and
DRBI*1501 alleles differ from each other by 13 amino
acid residues, spread throughout the molecule. There-
fore, we proceeded to better map the active region on
the DRB-chain. Given the promiscuous association of
the SE with pathogenically diverse diseases and with no
apparent antigen or species specificity, we hypothesized
that the “naked” SE-carrying o-helical loop, indepen-
dent of any antigenic groove peptide, is responsible for
the aberration. To generate a protein expressing the
naked a-helical SE-positive region in its native confor-
mation, we genetically engineered the HVR3 (residues
65-79) encoded by SE-positive or SE-negative DRBI
alleles into the spikes of a recombinant HBc protein
capsid. HBc capsids are efficient nonreplicative and
noninfective carriers of foreign epitopes (28). Impor-
tantly, the tips of each spike form «-helical structures,
thus mimicking the native conformation of the HVR3.

Oligonucleotides encoding residues 65-79 of ei-
ther the SE-positive allele DRBI*0401 or the SE-
negative allele DRB1*0402 were inserted into the p2-19
vector between codons 78 and 79, at the tips of the HBc
spikes (Figures 3A-C). As can be seen, SE-positive HBc

chimeric capsids (designated HBc*0401), but not the
SE-negative capsids (HBc*0402), triggered rapid NO
production (Figure 3D). The HVR3 encoded by these 2
alleles differs by 3 amino acid residues, thus suggesting
that the active site can be mapped to the HVR3 region.

HBc*0401 HK DLLE";‘KRAAV DIYCVDPISR
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Figure 3. Triggering of NO production by third hypervariable region—
expressing chimeric hepatitis B core (HBc) capsids. A, A radiograph-
ically based, 3-dimensional (3-D) presentation of the HBc*0401 shell,
calculated on the basis of the HBc carrier radiographic data (T = 4,
resolution 3.3A) using the 3-D JIGSAW and VIPER programs. The
inserted sequence is in green. B, A radiographically based, computed
presentation of the fold of the HBc*0401 (left) and HBc*0402 (right)
monomers, as predicted by the 3-D JIGSAW program. The amino acid
sequences at the HBc monomer tips are presented by 1-letter codes.
Arrows denote amino acid differences between HBc*0401 and
HBc*0402. C, A linear presentation by 3-D PSSM prediction analysis
of the fold containing the SE insertions (gray-shaded areas) with the
immediately adjacent HBc residues. The a-helices are in red, coils are
in white, and B-turns are in blue. Arrows denote amino acid differences
between HBc*0401 and HBc*0402. D, NO levels over time in human
/6 T cell leukemia PEER cells incubated with 2.5 ug/ml of either
HBc*0401 or HBc*0402 or with medium alone. Values are the mean
and SEM. * = P < 0.05 versus HBc*0402 and medium alone at the
respective time points. See Figure 1 for other definitions.
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Figure 4. Triggering of NO production by SE-expressing 15-mer
peptides. A, NO production rates (in FU/minute for DAF-2DA
fluorescence) in M1 fibroblasts stimulated with 50 pg/ml of soluble
15-mer synthetic peptides. B, NO production in human fibroblast M1
cells incubated with Sepharose bead-immobilized peptides 65—
79*%0401 or 65-79*0402. C, NO levels in human RA synoviocytes
incubated with Sepharose bead-immobilized peptides 65-79*0401 or
65-79*0402. D, NO synthase (NOS) activity (measured as the percent
of L-arginine [L-Arg] conversion) in human M1 fibroblasts at different
time points following incubation with Sepharose bead-immobilized
peptides 65-79*0401 or 65-79*0402. E, Levels of cGMP in M1 cells at
different time points following exposure to Sepharose bead-—
immobilized SE-positive peptide 65-79*0401 or control SE-negative
peptide 65-79*0402. Levels in untreated cells at time 0 are indicated by
an open bar. Values are the mean * SEM in triplicate cultures. * = P
< 0.05 versus comparator peptide(s) at the individual time points. See
Figure 1 for other definitions.

These results also indicate that SE-carrying a-helical
loops, independent of any antigenic groove peptide, can
trigger NO signaling.

NO signals could also be triggered by soluble
synthetic peptides containing the SE sequence (Figure
4A). Cells preincubated with SE-positive 15-mer pep-
tides corresponding to the HVR3 of the SE-positive
DRBI alleles *0401 (designated 65-79*0401) or *0404
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(designated 65-79%0404) triggered significantly higher
NO production rates in M1 cells compared with that by
control peptides corresponding to the HVR3 of the SE-
negative DRBI alleles *0402 or *0403 (designated
65-79*0402 and 65-79*0403, respectively) (Figure 4).
Time-course analysis of the SE peptide-triggered NO
production in human fibroblastoid cells (Figure 4B)
showed a response within 15-30 minutes after incubation.

SE-triggered NO signaling could be seen in di-
verse lineages, including human B lymphoblastoid cells
(Figure 1), human fibroblasts (Figures 4A and B), RA
synoviocytes (Figure 4C), human /8 T cell leukemia
PEER cells (Figure 3D), human neuroblastoma cells
(results not shown), and murine fibroblasts (Figure 1E).
SE-triggered NO production was found to be mediated
by rapid activation of NOS (Figure 4D), followed by
increased levels of cGMP (Figure 4E).

Among its many effects, NO has been previously
shown to inhibit apoptotic target killing by cytotoxic T
cells (29,30). Since impaired apoptotic elimination of
autoreactive cells has been proposed as a triggering
event in RA (31,32), we investigated whether the SE
might be a contributing factor. To that end, we have
studied apoptotic target killing by T cell clones express-
ing the V 9/Vi2 receptors. These very potent, non—
MHC:-restricted killer cells play an immune surveillance
role (33) and it has been previously proposed that they
play a protective role in RA by eliminating autoreactive
cells (34,35).

As can be seen in Figure 5A (HLA typing
information is available from the authors on request),
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Figure 5. Modulation of T cell-mediated cytolysis by the shared
epitope (SE). A, Cytolytic potency of cloned V,9/V:2 T cells against 59
HLA-DR-typed B cell line targets (from 29 healthy subjects [NL], 16
patients with rheumatoid arthritis [RA], and 14 patients with other
autoimmune diseases [AID]). B, Comparison of susceptibility to
cytolysis by V. 9/Vs2 T cells of targets from SE-negative and SE-
positive donors. The numbers of donors are shown in parentheses. C,
Resistance of SE-positive targets to T cell-induced cell death mediated
by nitric oxide. Five SE-positive target cell lines were cultured for 96
hours prior to the assay with or without 5 mM of N°-monomethyl-L-
arginine (L-NMA). At the end of the culture period, cells were washed
extensively and used as targets for V,9/V;2 effector cells at an effector
cell to target cell (E:T) ratio of 10. Values are the mean = SEM.
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analysis of the susceptibility to y/6 T cell-mediated
apoptotic killing of lymphoblastoid B cell targets from 59
individuals (29 healthy subjects, 16 patients with RA,
and 14 patients with other autoimmune diseases) re-
vealed no significant difference between healthy subjects
and those with other autoimmune diseases; however, a
highly significant (P < 10~°) difference was seen be-
tween healthy subjects and RA patients (Figure 5A).
When the SE-negative and SE-positive groups were
compared, a highly significant (P = 1.6 X 10~°) resis-
tance to apoptosis was seen in SE-positive targets (Fig-
ure 5B). Thus, in the presence of SE-positive targets, the
highly potent /8 T cells are rendered completely unre-
sponsive.

Since RA and the SE are closely associated, we
assessed whether the patient groups differed according
to disease status or to SE status. To that end, a two-
factor full-factorial analysis of variance was used. There
was no interaction between diagnostic group and SE
status, and the groups did not differ by diagnosis. In
contrast, the effect of being SE positive was significant
(P = 0.015).

In another approach, hierarchical regression
modeling was used, in which diagnosis was first forced
into the model and then SE status was entered, in order
to account for any remaining variance above what could
be known by diagnosis alone. The prediction model of
susceptibility to apoptotic death based on disease cate-
gory alone was not significant and accounted for only
3% of the variance. However, adding SE status to the
model significantly improved its predictive ability, with
an additional 35% of the variance being accounted for
by SE status (P < 0.001). Taken together, these findings
indicate that the SE status, rather than the diagnosis,
is the main determining factor in susceptibility of tar-
get cells to y/6 T cell apoptotic killing. Resistance to
T cell-induced apoptotic target killing in SE-positive
cells could be reversed by preincubation with the NOS
inhibitor N®-monomethyl-L-arginine, indicating that
the resistance was due to increased NO production
(Figure 5C).

DISCUSSION

Our results demonstrate that the SE can trigger
NO-mediated signaling events in opposite cells. The NO
pathway is constitutively active in cells carrying SE-
encoding DRBI alleles and in class I MHC-negative L
cells transfected with SE-encoding DRBI cDNA. The
pathway can also be activated in class I MHC-negative
cells by SE-expressing HLA-DR tetramers, by multi-

meric recombinant proteins engineered to express the
SE sequence, and by short synthetic peptides expressing
the SE motif.

The SE has long been known to have an associ-
ation with susceptibility to RA. However, due to the
paucity of experimental evidence of direct SE-mediated
biologic effects, a recurring question has been whether
the SE-RA association is due to the DRBI itself or is
secondary to putative linkage disequilibrium with an-
other gene (36). By using L cell transfectants that are
expressed on the surface of different DRBI-encoded
molecules, we have herein demonstrated that the DRBI
gene is directly responsible for a signaling aberration in
an allele-specific manner. To the best of our knowledge,
these findings provide the first direct evidence that the
SE itself exerts an allele-specific functional aberration
independent of antigen presentation.

Our data indicate that conformationally intact
SE-positive HLA-DR molecules can activate NO-
mediated signaling in their cell surface—expressed and
tetrameric cell-free form. It should be pointed out that
in 2 experiments, SE-negative tetramers triggered some
NO production (Figure 2), and SE-negative Sepharose-
immobilized peptides triggered weak NOS responses
(Figure 4D) in M1 cells. Importantly, however, these
responses were significantly lower than those triggered
by the respective SE-positive ligands and were likely
nonspecific. Consistent with this assessment, MHC tet-
ramers have been previously shown to display nonspe-
cific binding activity (37). Furthermore, our recent data
strongly suggest that these rare and weak responses are
biologically nonconsequential. Neither the T-DRB1*1501
tetramer nor the Sepharose bead-immobilized SE-
negative peptides were able to activate functional down-
stream signaling events that SE-bearing reagents char-
acteristically trigger (Ling S, Holoshitz J: unpublished
observations). Thus, although SE-negative molecules
can trigger some nonspecific NO responses in rare
experimental circumstances, these responses differ both
quantitatively and qualitatively from those triggered by
SE-positive ligands.

The effect of the native SE could be reproduced
by recombinant multimeric protein particles engineered
to express the SE motif in its a-helical conformation,
and by short synthetic peptides corresponding to the
HVR3 of the DRB-chain (residues 65-79). It is note-
worthy that synthetic peptides corresponding to the
region 65-79 of the DQa-chain have been previously
reported to exert signaling events in lymphoid cells (38).
However, that effect was non-allele-specific and was
dependent on intracellular interference with the cell
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cycle machinery. In contrast, the SE peptides operate at
the cell surface and their effect is allele-specific.

In this study, we investigated 2 SE-positive 15-
mer peptides expressing a core sequence of QKRAA or
QRRAA. These sequences correspond to at least 19
HILA-DRBI alleles (see Table 1), which are found in the
vast majority of RA patients. A small minority of RA
patients carry allele DRB1*1001, with a core sequence of
'RRRAA’*, Using another experimental system to
assess SE-mediated signaling aberrations, we recently
confirmed (Ling S, et al: unpublished observations) that
synthetic peptides expressing the DRBI*1001-encoded
SE motif share functional activities with the peptides
described herein. In addition, among the 44 B cell lines
used for NO production studies, there was 1 cell line
carrying the DRB1*#1001. This B cell line showed one of
the highest NO production rates (results not shown).
Thus, the findings described herein with peptides corre-
sponding to the 2 common SE sequences, QKRAA and
QRRAA, suggest the presence of a functional property
that is shared by the entire array of DRBI SE-positive
alleles.

Short synthetic peptides are generally expected to
assume a random conformation in solution. Therefore, it
is likely that only a small minority of the peptidic
molecules in our studies presented the native SE
a-helical conformation at any given time. Consistent
with this assessment, T-DRB1*0401 tetramers, which
preserve the native conformation of the DR molecule,
and HBc*0401 capsids, in which the inserted SE region
assumes a stable a-helical conformation, were both at
least 200-fold more potent, on a molar basis, than the
corresponding soluble SE-expressing 15-mer peptide
(Ling S, et al: unpublished observations). More impor-
tantly, our experiments with intact cells indicate that the
SE is acting as a ligand in physiologic settings.

In its native conformation, the SE occupies ~1.5
a-helical loops in the center of the DRB1 domain and
builds the lateral wall of the fourth pocket of the
peptide-binding groove. Although this region is thought
to be dedicated to antigen presentation, careful review
of the region 70-74 in radiographic crystallography
maps (39) reveals a sizable gap between the collective
electron densities of groove-bound antigenic peptides
and the van der Waals surface at the region 70-74 of the
DRp-chain. Thus, the SE represents a relatively free
protrusion in the DRB-chain, which, depending on the
level of antigenic peptide occupancy and the nature of
that peptide, could allow sufficient room for interaction
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with other molecules. This scenario is reminiscent of the
signaling role played by discrete a-helical loops in the
class I MHC o2 domain (40,41), which is remarkably
similar in its conformation to the DRB1 domain (39).

The class I MHC «2 domain binds, in trans, to
killer immunoglobulin-like receptors and modulates nat-
ural killer (NK) cell activity (41). Similar engagements
exist between the nonclassic human class I MHC mole-
cule HLA-E and the heterodimeric NKG2/CD94 recep-
tor, and between MHC-like proteins, such as MICA and
NKG2D. In addition, an o2 ligand on the human class
I-like molecule HFE binds, in cis, to, and activates signal
transduction through, the transferrin receptor (42), and
a ligand in the a2 domain of murine M1 and M10 class
Ib MHC molecules activates the pheromone receptor
V2R in cis (43). Thus, there is ample evidence that
discrete MHC a-helical loops can act as signal transduc-
tion ligands.

The present study findings suggest that the SE
may be functioning in a manner reminiscent of the
physiologic function of class I a2 domain ligands. How-
ever, unlike class I ligands, which act in an allele-
promiscuous manner, the SE demonstrates exquisite
allele specificity, as exemplified by the failure of 15-mer
peptides corresponding to the HVR3 of DRBI*0403-
encoded DR molecules to trigger NO signaling. Syn-
thetic peptides corresponding to the same region en-
coded by allele DRBI*0404, which differ by a single
amino acid residue (A74 in DRBI1%*0404 versus E74 in
DRBI1%0403) were able to transduce a potent signal
(Figure 4A). Whether SE-encoding DRBI alleles have
preserved an ancestral functional trait that is shared with
class I MHC molecules or whether the SE is an aberrant
motif acquired accidentally during allelic diversification,
and whether that motif mimics a physiologic ligand, is
unknown.

These findings could invoke a new model explain-
ing the events leading to onset of RA. According to
this model, chronically increased NO levels, perhaps
in conjunction with recurrent daily oxidative stresses,
could create an environment conducive to the emer-
gence of disease-initiation events. Consistent with this
concept, a gene—environment interaction between the
SE and smoking has been recently reported, with a
21-fold increased relative risk of RA-specific immune
aberrations in smokers carrying 2 copies of the SE
compared with SE-negative nonsmokers (44).

One potential SE-triggered, disease-initiating
event could be an NO-induced epigenetic drift. Based on
the very high discordance rate of RA observed in MZ
twins (45), it has long been proposed that whereas
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genetic factors play a major role in susceptibility to RA,
disease onset may depend on nongenetic or epigenetic
factors. NO has been previously shown to affect DNA
methylation (46), accelerate telomere shortening (18),
and increase epigenetic events (47). It could therefore
contribute to an accelerated epigenetic drift in SE-
positive individuals, as exemplified in recent telomere
attrition studies (22). The cumulative and stochastic
nature of such putative SE-driven epigenetic drifts could
provide a plausible explanation for the delayed onset of
RA and its seemingly random occurrence among genet-
ically susceptible individuals, as well as the association of
the SE with other diseases.

Beyond its potential role in disease onset, SE-
triggered NO production could also contribute to RA
pathogenesis through its proinflammatory effects. The
roles of NO in the immune system are multiplex. Par-
ticularly relevant to RA are the known immunomodula-
tory effects of NO on dendritic cells, NK cells, and T and
B lymphocytes. Increased NO levels can also lead to T
cell hyporesponsiveness and resistance to apoptosis (for
review, see ref. 12), which are aberrations that have been
previously noted in RA (31,32,48). In this report, we
present data exemplifying one candidate immune aber-
ration caused by SE-triggered NO signaling. We dem-
onstrate that SE-positive cells are conspicuously resis-
tant to cytolytic elimination by V.,9/Vi2 T cells. The
resistance could be overcome by preincubating the tar-
gets with an NOS inhibitor. Statistical analysis revealed
that the resistance was directly related to the SE,
independent of the disease origin of the cells.

Finally, it should be noted that although the
SE-RA association is consistently found across many
ethnic groups, 5-10% of all RA patients, particularly
African Americans (49), are SE-negative. Therefore, the
possibility that NO-mediated, disease-causing aberra-
tions could be triggered by SE-independent mechanisms
merits consideration. It should also be noted that al-
though this study demonstrated direct involvement of
the SE in an RA-relevant functional aberration, whether
and to what extent demographic factors, disease subsets,
or clinical features affect the response, or its conse-
quences, remain unknown. Likewise, this study does not
compare the effect of different SE sequences (i.e.,
QKRAA versus QRRAA or RRRAA) or the effect of
different haplotype contexts, nor does it address the role
of single- versus double-SE gene dose or the effect of
RA-protective DRBI alleles (50). The answers to these
and many other questions await further studies.
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