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Abstract
Using conformal field theory, we derive several new crossing formulae at the
two-dimensional percolation point. High-precision simulation confirms these
results. Integrating them gives a unified derivation of Cardy’s formula for
the horizontal crossing probability �h(r), Watts’ formula for the horizontal–
vertical crossing probability �hv(r) and Cardy’s formula for the expected
number of clusters crossing horizontally Nh(r). The main step in our approach
implies the identification of the derivative of one primary operator with another.
We present operator identities that support this idea and suggest the presence
of additional symmetry in c = 0 conformal field theories.

PACS numbers: 64.60.Ak, 64.60.Cn, 64.70.−p

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Percolation in two-dimensional systems remains under very active current study, despite a
long history. The 2D percolation point has been explored with a wide variety of methods,
including conformal field theory (CFT) [1, 2], modular forms [3], computer simulation [2],
other field-theoretic methods [4], Stochastic Löwner Evolution (SLE) processes [5] and other
rigorous methods [6]. (We cite only a very few representative works since the literature is so
extensive.)

Crossing probabilities are of great interest in studies of the percolation point in two
dimensions. In geometries with edges, these conformally invariant quantities give the
probability that percolation configurations cross between some specified set of intervals on
the boundary of the system. Perhaps the best known example is Cardy’s equation for the
horizontal crossing probability �h(r) [1] (which was later proven rigorously for a particular
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realization of percolation [7]). This, the probability that a percolation cluster connects the two
vertical sides of a rectangle of aspect ratio (width/length) r, is given by

�h(λ) = Cλ1/3
2F1(1/3, 2/3; 4/3; λ), (1)

with C = 2π
√

3/�
(

1
3

)3 = 0.566 046 68 . . . . The cross-ratio λ is related to r by conformally
mapping three consecutive corners of the rectangle to 1,∞ and 0 so that the fourth corner lies
on the point λ, with 0 � λ � 1. The interior of the rectangle maps to the upper half-plane.
Cardy used arguments of conformal field theory; primarily that the (boundary) operator which
changes free to fixed boundary conditions on an edge of the system is ψ1 := φ1,2 in the c = 0
Kac table (the notation ψn := φ1,n+1 simplifies the expressions for the boundary operator
product expansion coefficients considered below [8]).

The probability �hv(r) that all four sides of the rectangle are connected by a single
percolating cluster was determined by Watts [9], using an extension of Cardy’s arguments (see
also the recent rigorous proof of Dubédat [5]). This may be written as

�hv(λ) = �h(λ) − �hv(λ), (2)

where �hv denotes the probability of a horizontal crossing without a vertical crossing,

�hv(λ) =
√

3

2π
λ3F2(1, 1, 4/3; 5/3, 2; λ). (3)

To derive this result, Watts made use of a higher-order null vector in the c = 0 = h Verma
module.

Finally, the expected number of clusters crossing horizontally, Nh(r), has also been
determined by Cardy [10, 11] (and later via rigorous methods [12]). This calculation involves
identifying percolation as the q → 1 limit of the q-state Potts model and taking a derivative
with respect to q at q = 1. Maier [13] pointed out that the result may be expressed as

Nh(λ) = �h(λ) − 1

2
�hv(λ) +

√
3

4π
ln

(
1

1 − λ

)
. (4)

The motivation for this paper is the remark by Maier [13] that the fifth-order differential
equation which arises from the null vector used by Watts [9] to determine �hv has, among
its additional solutions [3], both �h and Nh. This mathematical observation has, to our
knowledge, eluded explanation. In this paper, using a simple adaptation of Cardy’s method,
we give a unified derivation of all three formulae. In section 2 we calculate �h, based on a
physical interpretation of the ψ3 := φ1,4 operator. Section 3 extends this method to three new
crossing formulae. Numerical verification of these results is given in section 4; by integrating
them, the three known crossing quantities are reproduced in section 5. Our derivation makes
use of primary operators only, avoiding higher-order null vectors and does not require reference
to the Potts models to obtain Nh. Then, in section 6, we point out that our method implies
proportionality of ψ3 and the derivative of ψ1, and explore some further consequences of this
identification.

2. Cardy’s equation revisited

In this section, we briefly review Cardy’s derivation of the horizontal crossing probability
�h(λ), and then present the approach used to derive it here, as an introduction to the more
interesting results below.

In [1] Cardy determined �h(λ) via the four-point function 〈ψ1(0)ψ1(λ)ψ1(1)ψ1(∞)〉.
Here, adjacent pairs of operators mark the intervals (0, λ) and (1,∞) between which the
crossing occurs.
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Figure 1. Effects of ψ3(α)-configurations contributing to �h;α . Crossing path shown in red, dual
path in grey. Thick (thin) boundary lines represent fixed (free) edges.

Our figures herein are shown as rectangles, while our formulae are given in terms of upper
half-plane variables, e.g., λ. These two geometries are equivalent under a conformal mapping.
One visualizes crossings in rectangles for consistency with common usage (e.g. ‘horizontal
crossing’), but takes parameters to lie on the real line for mathematical simplicity. Thus ‘the
(0, λ) edge of the rectangle’ in fact indicates the interval on the real axis that maps into the
corresponding side of the rectangle. Figure 1 illustrates how the four points (0, λ, 1,∞) on
the real axis map to the rectangle.

Cardy’s derivation (see [1] or [10] for more details) focuses on the comparison of the two
possible fixed boundary condition assignments: either the same or different. For percolation, a
fixed boundary either allows clusters to touch it or not; thus a rectangle with two fixed vertical
edges and free horizontal edges either includes all clusters or excludes horizontally crossing
clusters. Therefore, by inserting a ψ1 (which changes the boundary condition from fixed to
free) at each of the four corners of the rectangle, and considering the second-order differential
equation implied by their null vector, one finds two solutions, which may be taken to be 1 and
�h(λ). Thus,

�h(λ) = 〈
ψ

af

1 (0)ψ
f a

1 (λ)ψ
af

1 (1)ψ
f a

1 (∞)
〉 − 〈

ψ
af

1 (0)ψ
f b

1 (λ)ψ
bf

1 (1)ψ
f a

1 (∞)
〉
. (5)

Here, the superscripts indicate the boundary condition change; f denoting free and a or b fixed
boundary conditions, with a �= b. Thus, the first term includes all configurations, and is a
constant, independent of λ, while the second removes those configurations with no horizontal
crossing. If we normalize our (boundary) operators so that 〈ψi(0)ψi(x)〉 = x−2hi , it follows
that the two sides of (5) are equal, with no multiplicative constant, and (5) becomes

�h(λ) = 1 − �h(1 − λ), (6)

which may also be derived using duality (see [1, 10] for more details on these matters).
Our method modifies the standard derivation as follows. Consider the probability density

�h;α that the crossing connects the interval (α, α+ dα) but not the interval (0, α) to the interval
(1,∞), where 0 � α � λ � 1. This is

�h;α dα = �h(α + dα) − �h(α) ⇒ �h;α = ∂α�h(α). (7)

The configurations that will contribute to this probability are those which have a percolation
cluster connecting the point α to the interval (1,∞) and also have, on the fixed boundary side
of that percolation cluster, a dual path from α to (−∞, 0), as illustrated in figure 1. Here, the
fact that the small interval is not connected to (0, α) ensures the presence of the dual path;
and the differentiation in (7) removes the constant term in (5), so that a crossing cluster must
attach to α.

At first sight, it might seem that �h;α should also depend on λ. However, this quantity,
which is specified in the half-plane, can be mapped to a rectangle with any aspect ratio r,
as mentioned. When this is done, the length of the image of the interval (0, α) will vary
according to λ, which also determines r.
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Now the operator expected [6, 8] to generate a percolation cluster and dual path should
have dimension h = 1. This suggests that it is ψ3 := φ1,4. For the moment we simply assume
this and explore its consequences. In section 6, we give a better justification (and consider its
implications).

Note that ψ3, since it arises in the operator product expansion of three ψ1 operators, must
sit at a fixed-free boundary change, as shown in figure 1.

Therefore, we have

�h;α = K〈ψ1(0)ψ3(α)ψ1(1)ψ1(∞)〉, (8)

where K is a constant. If we set

K = 31/4

2
√

π
, (9)

it turns out that (8) will be properly normalized, as shown below. In section 6, we justify (9)
directly, without reference to percolation, by means of the operator product expansion. Note
that K2 is exactly 1/2 the constant appearing in (3).

Thus,

�h(λ) =
∫ λ

0
�h;α dα

= K

∫ λ

0

〈
ψ

f a

1 (0)ψ
af

3 (α)ψ
f b

1 (1)ψ
bf

1 (∞)
〉
dα. (10)

Therefore, we must determine the correlation function (8). Now we may write

〈ψ1(x4)ψ1(x3)ψ3(x2)ψ1(x1)〉 = (x4 − x1)(x4 − x3)

(x3 − x1)(x4 − x2)2
F

(
(x2 − x1)(x4 − x3)

(x3 − x1)(x4 − x2)

)
. (11)

Since ψ1 is, as mentioned, a level-two operator, the space of possible solutions for (11) is
two dimensional. However, in the operator product expansions of ψ1ψ1 and ψ1ψ3, the only
common term is ψ2 := φ1,3, so only one conformal block enters, i.e. the solution space is one
dimensional. To determine it, we apply the null state condition to two different ψ1 operators
in (11). This gives two different second-order differential equations for F. Subtracting them
so as to cancel the highest-order term gives

0 = F ′(α) +
2(1 − 2α)

3α(1 − α)
F (α). (12)

This equation fixes the single conformal block as

F2
13,11(α) = (α(1 − α))−2/3, (13)

where the superscript 2 refers to ψ2 := φ1,3 which appears in the operator product expansion
of ψ1, both with itself and with ψ3. (Our conformal blocks are normalized so that
Fn

ij,kl(x) ∼ xhn−hi−hj .) This leads to〈
ψ

f a

1 (0)ψ
af

3 (α)ψ
f b

1 (1)ψ
bf

1 (∞)
〉 = C123C112(α(1 − α))−2/3, (14)

where the usual superscripts (indicating the boundary conditions) on the boundary operator
product expansion coefficients Cijk [14] have been suppressed, as a consequence of duality
[8]. Inserting this correlation function into (10) then reproduces (1)

�h(λ) = KC123C112

∫ λ

0
α−2/3(1 − α)−2/3 dα

= 3KC123C112λ
1/3

2F1(1/3, 2/3; 4/3; λ)

= Cλ1/3
2F1(1/3, 2/3; 4/3; λ), (15)
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(A) (B) (C )

Figure 2. Configurations consistent with 〈ψ1(∞)ψ3(β)ψ3(α)ψ1(0)〉.

where we have made use of (9) as well as C123 = 2
√

2π/3�[1/3]3/2 and C112 =√
2π31/4/�[1/3]3/2 [8].

The function πh;α := ∂α�h(α) is a simple example of what we call a first-crossing density.
The term ‘first’ indicates a probability density for configurations that, when we start at the
origin and move towards the point λ, first contain a crossing cluster in the neighbourhood
of α. Herein, the lower case (π ) distinguishes crossing probability densities from crossing
probabilities, represented with upper case (�).

With only one ψ3 in the correlation function we reproduce Cardy’s result for �h(λ).
However by inserting an additional ψ3 operator we can generate more complicated first (and
other) crossing densities. These then give a new derivation of Watts’ equation for �hv [9],
and Cardy’s expression for the mean number of horizontal crossing clusters Nh(λ) [10, 11],
as well as �h.

3. New crossing formulae

In order to find new results, we consider the correlation function 〈ψ1(∞)ψ3(β)ψ3(α)ψ1(0)〉
with 0 < α < λ, and 1 < β. By a simple extension of the argument above, one sees that there
are three configurations consistent with this function, illustrated in figure 2.

Let πb
h (α, β)

(
πb̄

h (α, β)
)

denote the first-crossing probability density for configurations
of type A (B); first crossings from α to β that also make (do not make) contact with the bottom
edge of the rectangle.

Similarly, νh(α, β) denotes the crossing density of configurations of type C. Now νh(α, β)

is not a first crossing density; rather it includes configurations with crossings from α to β that
are not the first crossing, but are distinct from previous crossings—hence the notation ν in
place of π . Thus configurations with multiple crossings contribute to νh(α, β) for each pair of
values α and β spanned by a new cluster. Integrating it therefore counts configurations with
n horizontal crossings n − 1 times. We use this below to calculate Nh(λ).

Now the correlation function

〈ψ1(x4)ψ3(x3)ψ3(x2)ψ1(x1)〉 =
(

x4 − x1

(x4 − x2)(x3 − x1)

)2

F

(
(x2 − x1)(x4 − x3)

(x3 − x1)(x4 − x2)

)
. (16)

It follows that

〈ψ1(∞)ψ3(β)ψ3(α)ψ1(0)〉 = β−2F(α/β). (17)

Utilizing the second-order null vector for ψ1 we find

0 = F ′′(x) +
2(1 − 8x)

3x(1 − x)
F ′(x) − 2(1 − 6x2)

3x2(1 − x)2
F(x). (18)

Solving and selecting the appropriate conformal blocks gives
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F2
13,31(x) = 1 + x

(1 − x)5/3x2/3
(19)

F4
13,31(x) = 5(1 + 2x − (1 − x2)2F1(1, 4/3, 5/3, x))

6(1 − x)2
(20)

F0
33,11(1 − x) = (1 + 2x + (1 − x2)2F1(1, 4/3, 5/3, 1 − x))

3(1 − x)2
(21)

F2
33,11(1 − x) = 1 + x

2(1 − x)5/3x2/3
, (22)

with superscripts defined as in (13). The crossing symmetry relations for these conformal
blocks follow using hypergeometric identities [15] for x → 1 − x, and may be written using
the operator product expansion coefficients C123 and C112 quoted above; we also make use
of C233 = 27/2π3/2/39/4�[1/3]3/2 and C134 = √

2/5 [8] (note that K = C112/3C123, see
(9)). (We have explicitly verified that the hypergeometric identities are consistent with these
values.) Thus,

C2
123F2

13,31(x) = C112C233F2
33,11(1 − x) (23)

C2
134F4

13,31(x) = F0
33,11(1 − x) − C112C233F2

33,11(1 − x) (24)

F0
33,11(1 − x) = C2

123F2
13,31(x) + C2

134F4
13,31(x). (25)

Given these blocks, we may use the boundary conditions to determine which
configurations they correspond to. Fixing both intervals (0, α) and (β,∞) in the same
way determines the conformal block, so that〈

ψ
f a

1 (∞)ψ
af

3 (β)ψ
f a

3 (α)ψ
af

1 (0)
〉 = β−2F0

33,11(1 − α/β). (26)

With the same boundary condition on these two intervals none of the configurations in figure 2
are excluded. Thus (26) is proportional to the sum of all three crossing densities.

Multiplying by K2 (see (9)) again results in proper normalization, as explained below.
Hence,

πb
h (α, β) + πb̄

h (α, β) + νh(α, β) = K2β−2F0
33,11(1 − α/β). (27)

On the other hand, fixing the two intervals (0, α) and (β,∞) differently leads to〈
ψ

f b

1 (∞)ψ
bf

3 (β)ψ
f a

3 (α)ψ
af

1 (0)
〉 = C112C233β

−2F2
33,11(1 − α/β). (28)

In this case configurations of type C are excluded so that

πb
h (α, β) + πb̄

h (α, β) = K2C112C233β
−2F2

33,11(1 − α/β). (29)

Using (24), (27) and (29) we can now find the crossing density

νh(α, β) = K2β−2
(
F0

33,11(1 − α/β) − C112C233F2
33,11(1 − α/β)

)
(30)

= K2C2
134β

−2F4
13,31(α/β). (31)

To separate πb
h (α, β) and πb̄

h (α, β) we fix the boundary conditions on the bottom edge
(−∞, 0) to differentiate first crossings that touch the bottom edge (type A) and those that do
not (type B or C).

The two-point function〈
ψ

af

3 (α)ψ
f a

3 (β)
〉 = (β − α)−2 (32)
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includes clusters connecting α and β, but not touching the bottom edge, since it is part of a
single fixed interval isolated by a dual path. This excludes crossings of type A, so that

πb̄
h (α, β) + νh(α, β) = K2(β − α)−2. (33)

This leads to

πb
h (α, β) = K2

(
β−2F0

33,11(1 − α/β) − (β − α)−2
)

(34)

πb̄
h (α, β) = K2

(
(β − α)−2 − C2

134β
−2F4

13,31(α/β)
)
. (35)

Collecting and simplifying these results gives the formulae

πb
h (α, β) = (β + α)2F1(1, 4/3, 5/3, 1 − α/β) − 2β

4π
√

3β2(β − α)
(36)

πb̄
h (α, β) = (β + α)2F1(1, 4/3, 5/3, α/β) + 2β

4π
√

3β2(β − α)
(37)

νh(α, β) = β2 + 2αβ − (β2 − α2)2F1(1, 4/3, 5/3, α/β)

4π
√

3β2(β − α)2
. (38)

These results are new, to our knowledge. They are sufficient to reproduce all three previously
known crossing quantities, as we now proceed to demonstrate. It is interesting that only a
single (2F1) hypergeometric function enters.

4. Numerical verification

To verify these results, we carried out simulations using hull walks on a square system, for
bond percolation on the square lattice, where pc = 1/2. For this system, a hull walk is a
simple walk at 45◦ to the bonds that turns left or right with equal probability at each step,
except when it encounters a site previously visited, in which case it always turns to avoid
retracing its path. In this way, the walk lays down the adjacent occupied and vacant bonds
of a hull for the percolating system [16, 17]. We tested the functions πb

h (α, β), π b̄
h (α, β) and

νh(α, β) for the half-plane transformed to a square system of side length 1, with α chosen to
correspond to (x, y) = (0, 1/2) (the mid-point on the left-hand boundary), and 1 � β � ∞,
so the corresponding point varies along the right-hand boundary.

In the simulation, the walk was started on the left-hand side of the square at the point
(0, 1/2). The requirement that the hull borders a first-crossing cluster starting at that point
means that the hull cannot touch anywhere on the entire left-hand side. Similarly, if the hull
crosses the top boundary, then the trial is terminated, since that event corresponds to the vacant
bonds of the hull touching the top, preventing a horizontal crossing. Walks that touch the
lower boundary (indicating the cluster of occupied bonds touches that boundary) were allowed
to continue. Those walks that touch the bottom and continue to the cross to the right-hand
side contribute to πb

h ; those crossing ones that do not touch the bottom were further checked
for crossing clusters below them. To do this, a second hull walk was started from (0, 1/2), to
represent the hull of the dual crossing, as in the shaded dual-lattice paths shown in figure 5.
If this walk intersects the bottom, there cannot be any horizontal crossing clusters below the
first simulated crossing cluster, and the walk contributes to πb̄

h . Otherwise, if it does not touch
the bottom before it crosses, there must be at least one lower horizontal crossing and the event
contributes to νh.
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Figure 3. Hull-generating walk algorithm to check for crossing densities on an 8×8 lattice. (Left)
a hull (solid curved line) corresponding to a crossing cluster that does not touch left or bottom
boundaries and does not cross the top boundary. (Right) second hull walk (shown below the
first) showing that there are no lower crossing clusters. (Left) Upper solid straight line segments:
occupied bonds on the lattice. Lower segments: bonds on the dual lattice, corresponding to vacant
bonds on the original lattice. (Right) An additional set of occupied bonds on the lattice on the
lower left, bounding the second hull walk.

Figure 3 shows an example of a walk on a system of 8×8 bonds. Here, the blue circles are
lattice vertices and the blue edges occupied bonds on the lattice. The red edges are occupied
bonds on the dual lattice, corresponding to vacant bonds on the original lattice. The figure on
the left shows, in black, the walk corresponding to a crossing cluster. The system is prepared
by setting one vacant bond (or a dual-lattice bond, red) immediately below the lattice point
corresponding to (0, 1/2), so that the walk is guaranteed to enter the system and the point
y = 1/2 will be at the boundary between occupied and vacant bonds. (Walks that exit the
system at the entry point are discarded.) The walk then generates the remaining occupied
and vacant bonds of the hull. This particular walk terminated when it intersected the right
boundary. Next, to check if it was a first-crossing cluster, a second hull was initiated, starting
on the vacant (or dual-lattice) bond in the first column. This hull is shown in yellow, in the
figure on the right. To keep the second walk from leaving the system on the left, we added
occupied bonds in the lower first column. This particular walk reached the bottom before
reaching the right-hand side, indicating that there were no additional crossing clusters below
the first-crossing cluster.

Because this method generates only the hull of the cluster, and simultaneously yields the
type of crossing, it is very efficient. In several days of computer time, we were able to generate
3.3 × 1011 hulls on a lattice of 512 × 512 bonds. Only 0.001 6505 of the walks succeeded in
making it across without hitting the top or left-hand sides. Of these, a fraction 0.6456 hit the
bottom and contributed to πb

h , while the remaining 0.3544 crossed without hitting the bottom.
Of the latter, a fraction 0.929 82 did not have additional clusters below them (contributing to
πb̄

h ) and 0.070 18 did (contributing to νh). In all, only a fraction 0.000 1707 of all initiated
walks corresponded to events that contribute to νh.

The above fraction of multiple crossing events, 0.070 18, is somewhat above the predicted
value 0.069 189, which is found by integrating the formulae for νh and πb̄

h and taking the ratio
of the integral of the former to the sum of the integrals of the former and latter. This difference
can be attributed to finite-size effects, which is apparent by considering this quantity for
lattices of side length L = 64(0.076 53), 128(0.072 94), 256(0.071 08), and 1024(0.069 78).
The data fit very well to a straight line when plotted as a function of 1/L, with an intercept of
0.069 28, quite close to the predicted value.

In figure 4, we compare the numerical results with the theory. The data are plotted versus
the position of the point on the right-hand side corresponding to β, where on the left-hand
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Figure 4. Comparison of simulation (dots) on a 512×512 lattice with theory (equations (36), (37)
and (38)).

side we pick the mid-point, as mentioned above. The continuum coordinate was taken to be
y = (Y + 1/2)/512, where the lattice coordinate Y = 0, 1, . . . , 511. The relative difference
between the two curves is on the order of 2%, except near the corners of the square and where
the functions are small, in which case the difference is somewhat larger. The overall deviation
in νh compared with the theory is also a finite-size effect which extrapolates nearly to zero
when L → ∞. There is also a slight bias to our results reflecting the fact that a finite system
is not perfectly symmetric with respect to the boundary conditions of the walk entering and
leaving the system. We have found that this bias also diminishes as the system size increases.

In conclusion, we find very good agreement between simulations and theory for these
various quantities.

5. Unified derivation of crossing formulae

Next we integrate our formulae, to re-derive the known results for the horizontal crossing
probability �h, the horizontal–vertical crossing probability �hv and the expected number of
horizontal crossing clusters Nh(λ).

Now �b
h(λ), the probability that there exists a horizontal crossing cluster that also touches

the bottom edge of the rectangle (such as the one illustrated in figure 2(A)), is given by

�b
h(λ) =

∫ λ

0

∫ ∞

1
πb

h (α, β) dβ dα

=
∫ λ

0

∫ ∞

1

(β + α)2F1(1, 4/3, 5/3, 1 − α/β) − 2β

4π
√

3β2(β − α)
dβ dα. (39)

(Note that there can only be one such cluster in any configuration, so �b
h(λ) is also the expected

number of this type of cluster.) Next let β → α/ξ , so that

�b
h(λ) =

∫ λ

0

1

4π
√

3α

∫ α

0

(1 + ξ)2F1(1, 4/3, 5/3, 1 − ξ) − 2

(1 − ξ)
dξ dα, (40)

then transform the hypergeometric function with the same identities used in deriving the
crossing symmetries (23)–(25). This gives

�b
h(λ) =

∫ λ

0

C2
112

9α

∫ α

0

1 + ξ

(1 − ξ)5/3ξ 2/3
dξ dα

−
∫ λ

0

1

4π
√

3α

∫ α

0

(1 + ξ)2F1(1, 4/3, 5/3, ξ) + 2

(1 − ξ)
dξ dα. (41)

(The coefficient of the first integral is given in terms of C2
112 for reasons that will be clear

shortly.) The identity

∂ξ (3ξ 2F1(1, 4/3, 5/3, ξ)) = (1 + ξ)2F1(1, 4/3, 5/3, ξ) + 2

(1 − ξ)
(42)
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follows from the integral representation of the hypergeometric function. Using it in (41) leads
to

�b
h(λ) =

∫ λ

0

C2
112

3α2/3(1 − α)2/3
dα −

√
3

4π

∫ λ

0
2F1(1, 4/3, 5/3, α) dα. (43)

By (15), the first term equals �h(λ). To evaluate the second integral we use the identity

∂α(α 3F2(1, 1, 4/3; 5/3, 2;α)) = 2F1(1, 4/3, 5/3, α), (44)

which is easily derived from the series for the hypergeometric function. The final result is

�b
h(λ) = �h(λ) −

√
3

4π
λ 3F2(1, 1, 4/3; 5/3, 2; λ)

= �h(λ) − 1

2
�hv̄(λ), (45)

where we have made use of (3).
The treatment for �b̄

h(λ), the probability of horizontal crossing when the lowest spanning
cluster does not touch the bottom, follows analogously. Integrating πb̄

h (α, β) over α and β as
above, we arrive at the second term in (41). Thus

�b̄
h(λ) = 1

2�hv̄(λ). (46)

Equations (45) and (46) allow us to derive �hv(λ). The configurations that contribute to
�b̄

h(λ) (figure 2(B)) are such that the crossing from α to β is the first and does not touch the
bottom edge. Thus the dual path from α to β must itself touch the bottom edge. Therefore, by
duality, πb̄

h (α, β) is the probability density of a horizontal crossing that touches the bottom but
is separated from the top by a dual cluster from α to β. Thus �b̄

h(λ) = �b
hv̄(λ), where �b

hv̄(λ)

is the probability of a horizontal crossing cluster that touches the bottom, but is prevented
from crossing vertically by a horizontal dual path.

Finally, �hv(λ) is the probability of a horizontal crossing cluster that touches both the top
and bottom. Hence,

�hv(λ) = �b
h(λ) − �b

hv̄(λ) = �b
h(λ) − �b̄

h(λ)

= �h(λ) − �hv̄(λ). (47)

Thus, by integrating and combining our new first-crossing densities, we arrive at Watts’
equation (2) for the horizontal–vertical crossing probability.

Equations (45) and (46) can also be derived by a duality argument, which is a non-trivial
check of our results. To do this, extend our notation, as shown in figure 5. The b and t
(b̄ and t̄) superscripts denote configurations for which there is a horizontal crossing cluster
which touches (does not touch) the bottom or top edge of the rectangle, respectively. The four
rightmost diagrams in figure 5 include all the configuration types consistent with �hv̄.

Thus,

�hv̄ = �bt̄
hv̄ + �b̄t

hv̄ + �bt
hv̄ + �b̄t̄

hv̄,

�b̄
h = �b̄t

hv̄ + �b̄t̄
hv̄,

and

�b
h = �hv + �bt̄

hv̄ + �bt
hv̄.

But by duality �bt̄
hv̄ = �b̄t

hv̄ and �bt
hv̄ = �b̄t̄

hv̄, from which (45) and (46) follow.
Finally, we derive the expected number of horizontal crossing clusters using νh(α, β).

Recall that this density gives the probability that there is a new cluster spanning from α to β
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Figure 5. The five distinct configurations that contribute to �h. Paths in clusters are red, dual
paths grey.

that is not the lowest crossing cluster in the rectangle. Thus integrating it gives a contribution
of n − 1 for each configuration with n crossing clusters. Therefore,

Nh(λ) − �h(λ) =
∫ λ

0

∫ ∞

1
νh(α, β) dβ dα

=
∫ λ

0

∫ ∞

1

( √
3

4π(β − α)2
− −πb̄

h (α, β)

)
dβ dα

=
√

3

4π
log

(
1

1 − λ

)
− 1

2
�hv̄(λ), (48)

giving (4).
This concludes our derivation of the crossing formulae. As mentioned, by exploiting our

new crossing results, we obtain all three known results without reference to the q-state Potts
model or use of higher-order null vectors. Next, we consider our use of ψ3 above from an
operator point of view and examine some of its consequences.

6. Operator identities

In this section, we first consider our use of the ψ3 operator in sections 2 and 3, and then present
a calculation of the constant K used to normalize our densities (see (8), (9), and section 3).

To begin, consider (8), which, in light of (5) and (7), can be interpreted as replacing
∂zψ1(z) by Kψ3(z). Now, generally, this would not be possible, since the derivative of a
primary operator is not primary itself. However, the derivative of a primary operator of weight
zero (like ψ1) is indeed primary.

Next, (5) gives

∂α�h(α) = ∂α〈ψ1(0)ψ1(α)ψ1(1)ψ1(∞)〉
= 〈ψ1(0)L−1ψ1(α)ψ1(1)ψ1(∞)〉. (49)

Now the weight of L−1ψ1 is 1, the same as for ψ3. More importantly, the null operator for
ψ3 := φ1,4 is

D1,4 = 3L4
−1 − 20L−2L

2
−1 + 24L2

−2 + 24L−3L−1 − 24L−4. (50)
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(Here Dr,s denotes the null operator for the φr,s Kac operator.) Further, by the Lm commutation
relations (for c = 0) one has

D1,4L−1 = (
L3

−1 − 6L−2L−1 + 6L−3
)(

3L2
−1 − 2L−2

)
, i.e.

D1,4D1,1 = D3,1D1,2.
(51)

The right-hand side is exactly the level five null operator used by Watts [9]! Since
D1,2 = 3L2

−1 − 2L−2 is the null operator for ψ1, so is D1,4D1,1 as well.
Therefore, the weight of L−1ψ1 equals that of ψ3, and they both obey the same null

state. Thus correlation functions involving them obey the same differential equations and the
solutions must overlap. Hence we posit

L−1ψ1(x) = Kψ3(x). (52)

In section 7, we discuss implications of this equation. For the moment, consider the question
as to where in the above it actually makes a difference, i.e., if we were to differentiate a
correlation function containing ψ1 instead of substituting Kψ3 for it, what would change? It
is easy to see that the results of section 2 would be the same; however, a crucial difference
occurs for (20). Here, the conformal block F4, which contributes to πb

h , π b̄
h and νh, would not

appear, and our calculations would not be valid.
Now we determine the constant K by comparing leading terms in the operator product

expansions

(L−1ψ1(x))ψ1(0) = ∂xψ1(x)ψ1(0)

= ∂x

(
1(0) +

1

5
x2T (0) + · · · + C112x

1/3ψ2(0) + · · ·
)

= 2

5
xT (0) + · · · +

C112

3
x−2/3ψ2(0) + · · · , (53)

and

ψ3(x)ψ1(0) = C123x
−2/3ψ2(0) + · · · + C134xψ4(0) + · · · . (54)

Thus

L−1ψ1(x) = C112

3C123
ψ3(x) = 31/4

2
√

π
ψ3(x), (55)

so that K is indeed given by (9). Note that it appears as a ratio of boundary operator product
expansion coefficients, rather than the derivative of the weight h1 := h(1,2) with the respect to
the Potts parameter q, as in [10]. In fact our result for K also implies that

h′
1(1) = 1

2

(
h2(1)

C112

C123

)2

, (56)

where the evaluations are at q = 1.

7. Discussion

In this section, we discuss a few implications of our calculations above, especially the relation
(52) (see also (55)).

The full consequences of (52) remain to be explored. However, this relation appears to be
supported by representation theory, according to which the highest-weightspaces of a Verma
module are one dimensional [19], so that any two primary operators of the same weight must
be proportional, as in (52). It is also interesting that the integral weights for the c = 0 primary
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operators are exactly the Euler pentagonal numbers [20]. There are indications that relations
similar to (52) hold for all of them. This suggest the presence of some additional symmetry
for conformal field theory with c = 0.

Next, consider the seventh-order null vector, which again factorizes in two ways:

D3,2D1,1 = D1,5D1,2. (57)

Thus, arguing as above, one finds that L−1ψ1 obeys D3,2 as well as D1,4 null vector conditions.
Consider now the fusion rules of an arbitrary Kac table operator with φ1,4 and φ3,2. In

general, one has

[φ1,4] × [φr,s] = [φr,s−3] + [φr,s−1] + [φr,s+1] + [φr,s+3] (58)

[φ3,2] × [φr,s] = [φr−2,s−1] + [φr,s−1] + [φr+2,s−1] + [φr−2,s+1] + [φr,s+1] + [φr+2,s+1]. (59)

The above then implies that only families present in both of these should be contained in the
L−1ψ1 fusion rule. This leads to

[L−1ψ1] × [φr,s] = [φr,s−1] + [φr,s+1] = [ψ1] × [φr,s]. (60)

Since ψ1 and L−1ψ1 belong to the same conformal family, they should transform among the
same conformal families under fusions, in agreement with (60).

Thus, our use of ψ3 to obtain the crossing densities augments the [ψ1] conformal family.
The two additional families present in (58) generate crossing configurations that are more
complicated than those that can be generated by ψ1 operators alone. Specifically, the inclusion
of the ψ3 operator allowed us to make use of the [ψ3] × [φr,s] = [φr,s+3] fusion which gives
configurations of the type shown in figure 2(C).

We can also use the actions of the fifth and seventh level null vectors on the identity
operator to deduce properties of the stress tensor T. Now

D1,21(z) = (
3L2

−1 − 2L−2
)
1(z)

= −2T (z). (61)

Using (51) and (57) then shows that the stress tensor is annihilated by both D3,1 and D1,5.
(Note that when c = 0, T is a primary operator.)

Further, as argued for ψ3 ∝ L−1ψ1, only the conformal families contained in both φ3,1

and φ1,5 fusions should appear in fusions with the stress tensor, which yields

[T ] × [φr,s] = [φr,s]. (62)

This is as expected, since the stress tensor generates conformal transformations of conformal
families amongst themselves.

We hope to explore, elsewhere, the consequences of these remarks, including the ‘overlap’
of T and ψ4 := φ1,5 in analogy with the result for L−1ψ1 and ψ3.

Acknowledgments

This work was supported in part by the National Science Foundation Grants Nos DMR-
0203589, DMR-0536927 (PK) and DMS-0553487 (RMZ).

References

[1] Cardy J L 1992 Critical percolation in finite geometries J. Phys. A: Math. Gen. 25 L201–6 (Preprint
hep-th/9111026)

http://dx.doi.org/10.1088/0305-4470/25/4/009
http://www.arxiv.org/abs/hep-th/9111026


F784 Fast Track Communication

[2] Kleban P, Simmons J J H and Ziff R M 2006 Anchored critical percolation clusters and 2D electrostatics Phys.
Rev. Lett. 97 115702 (Preprint cond-mat/0605120)

[3] Kleban P and Zagier D 2003 Crossing probabilities and modular forms J. Stat. Phys. 113 431–54 (Preprint
math-ph/0209023)

[4] Duplantier B 2003 Higher conformal multifractality J. Stat. Phys. 110 691–738 (Preprint cond-mat/0207743)
Duplantier B 2003 Conformal fractal geometry and boundary quantum gravity Preprint math-ph/0303034
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