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Background: Clinical flow cytometry typically involves the sequential interpretation of two-dimensional
histograms, usually culled from six or more cellular characteristics, following initial selection (gating) of
cell populations based on a different subset of these characteristics. We examined the feasibility of
instead treating gated n-parameter clinical flow cytometry data as objects embedded in n-dimensional
space using principles of information geometry via a recently described method known as Fisher Informa-
tion Non-parametric Embedding (FINE).
Methods: After initial selection of relevant cell populations through an iterative gating strategy, we

converted four color (six-parameter) clinical flow cytometry datasets into six-dimensional probability den-
sity functions, and calculated differences among these distributions using the Kullback-Leibler diver-
gence (a measurement of relative distributional entropy shown to be an appropriate approximation of
Fisher information distance in certain types of statistical manifolds). Neighborhood maps based on Kull-
back-Leibler divergences were projected onto two dimensional displays for comparison.
Results: These methods resulted in the effective unsupervised clustering of cases of acute lympho-

blastic leukemia from cases of expansion of physiologic B-cell precursors (hematogones) within a set of
54 patient samples.
Conclusions: The treatment of flow cytometry datasets as objects embedded in high-dimensional space

(as opposed to sequential two-dimensional analyses) harbors the potential for use as a decision-support
tool in clinical practice or as a means for context-based archiving and searching of clinical flow
cytometry data based on high-dimensional distribution patterns contained within stored list mode
data. Additional studies will be needed to further test the effectiveness of this approach in clinical
practice. q 2008 Clinical Cytometry Society

Key terms: flow cytometry; statistical manifold; information geometry; immunophenotyping; immunopheno-
type clustering

How to cite this article: Finn WG, Carter KM, Raich R, Stoolman LM, Hero AO. Analysis of clinical flow cytomet-
ric immunophenotyping data by clustering on statistical manifolds: Treating flow cytometry data as high-dimen-
sional objects. Cytometry Part B 2009; 76B: 1–7.

Clinical flow cytometric analysis usually involves the
interpretation of individual two-dimensional scatter plots
culled from sets of simultaneous analysis of up to eight
measurements (two light scatter measurements and up
to six fluorescence channels or ‘‘colors’’) for routine clin-
ical grade analyzers. However, the multidimensional
power of flow cytometry may be instead more effec-
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tively realized by systems that treat single muticolor anal-
yses as individual high-dimensional datasets (1–8).

The analysis of high-dimensional datasets has become
more common in the age of applied genomics and pro-
teomics. However, the fact that all measured characteris-
tics of a given analysis can be traced to each individual
cell gives the dimensionality of flow cytometry a
uniquely spatial characteristic not shared by other pro-
teomic platforms (7,9). Each individual tube analyzed in
a routine n-parameter flow cytometry study can be rep-
resented conceptually as a single object embedded in n-
dimensional space and formed in aggregate by thousands
of analyzed cells, each of which displays a unique n-
dimensional signature. Just as an ordinary object is bet-
ter described by its shape and overall appearance than
by the measuring of its individual dimensions, one could
consider the possibility that flow cytometry data could
be better represented by the general shape of a cell pop-
ulation over all of the dimensions analyzed (5). Since we
live in three-dimensional space, direct visualization of a
four color (six dimensional) flow cytometry dataset as a
six-dimensional object is not feasible. However, rather
than utilizing the interpretation of sequential two-dimen-
sional projections of this six-dimensional object (as is
the current norm), analytical methods can be devised for
the comparison of separate datasets embedded as unique
objects in six-dimensional space.

The analysis of high-dimensional datasets often
involves characterizing the manifold within which the
data are assumed to be embedded. In layman’s terms,
the mathematical concept of a manifold could be defined
as a smooth space or surface (of any dimensionality) that
is nearly ‘‘flat’’ on small scales, and within which geomet-
rical objects may be embedded. Examples could include
a sphere, a torus, Euclidean space in general, and indeed
our three-dimensional universe. The field of manifold

learning involves the discovery of lower dimensional
manifolds for objects embedded in higher dimensional
space and is often applied to dimensionality reduction of
high-dimensional datasets (10).

It is often assumed that high-dimensional datasets can
be appropriately represented on Euclidean manifolds
(manifolds comprised of points or coordinates embedded
within Euclidean space). However, there are many prob-
lems in which the data cannot be appropriately repre-
sented by a Euclidean manifold, and the model parame-
ters are unspecified and must be learned through the
data. In such cases, it may be helpful to assume that the
data lie in a manifold composed not of individual spatial
coordinates, but of probability density functions. The
term statistical manifold has been used to describe
such manifolds composed of probability density func-
tions rather than spatial coordinates (11,12).

The emerging field of information geometry involves
the analysis of probability distributions as geometric
structures within non-Euclidean space and can be
applied to the study of statistical manifolds (13). The dis-
tance between points or objects on a statistical manifold
can be measured by a distance function known as the

Fisher information metric (12). However, calculating
the Fisher information metric requires knowledge of the
underlying parameterization of the assumed manifold,
knowledge that is generally not available or feasible in
the analysis of flow cytometry datasets.
Recently, Carter et al. described a nonparametric

approach to clustering and classification on statistical
manifolds using a similarity measurement known as the
Kullback-Leibler divergence (commonly referred to as
the relative entropy of a probability distribution) as an
estimate of the Fisher information distance for statistical
manifolds for which parameterization is unknown, and
for which individual data points lie in reasonably close
proximity (as would generally apply to immunopheno-
typic analysis of distinct cell populations by multipara-
meter flow cytometry) (12,14). As a given manifold is
more densely sampled, the Kullback-Leibler divergence
converges to the Fisher information distance. This
approach has been termed Fisher Information Non-

parametric Embedding (FINE) (12).
In this study, we attempted to apply these principles to

the interpretation of flow cytometry datasets as high-
dimensional objects generated by probability density func-
tions embedded on a statistical manifold (as opposed to
sequential groups of individual light scatter characteristics
or surface antigens). As an initial test of this approach, we
chose to compare the immunophenotypic patterns of leu-
kemic B-precursor lymphoblasts against the immunophe-
notypic patterns of physiologic B-cell precursors (hemato-
gones), since distinction between these often similar cell
types is an important and sometimes challenging task that
often confronts practicing hematopathologists on the day-
to-day diagnostic service (15).

MATERIALS AND METHODS

Case Selection

The use of previously analyzed clinical flow cytometry
data for cluster analysis was approved by our Institu-
tional Review Board. The files of the clinical flow cyto-
metry laboratory at the University of Michigan were
searched for cases coded as B-precursor acute lympho-
blastic leukemia (ALL) based on complete diagnostic
assessment including morphologic assessment of mar-
row, flow cytometric immunophenotyping, and cytoge-
netic analysis where indicated per World Health Organi-
zation diagnostic criteria (16). From this list, cases were
selected that had sufficient available list mode data and
sufficient cells for analysis, searching back from the most
recent cases available. Thirty-one cases of ALL were
retrieved for analysis, spanning an approximately 18-
month period. For comparison, the flow cytometry data-
base was manually screened for the presence of cases
with hematogone hyperplasia, and from this screen 23
cases were retrieved showing prominent hematogone
populations, again based on a combination of morpho-
logic assessment, clinical correlation, and flow cytomet-
ric immunophenotyping based on previously published
descriptions of hematogone immunophenotypes (15).
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Data Retrieval

Raw flow cytometry data for this study were gener-
ated by analysis on a Beckman-Coulter FC-500 flow cy-
tometer using Beckman-Coulter CXP acquisition software
(Beckman-Coulter, Hialeah, FL) and stored as list mode
data in standard fcs format. Within our routine acute leu-
kemia flow cytometry panel, we include a single four-
color (six-parameter) tube including CD45 (ECD conju-
gate), CD10 (phycoerythrin-cyanin 5 conjugate), CD19
(phycoerythrin conjugate), and CD38 (fluorescein iso-
thiocyanate conjugate) (all antibody reagents obtained
from Beckman-Coulter/Immunotech, Hialeah, FL), de-
signed for the isolation of hematogones and aberrant
lymphoblast populations, based on known differential
patterns of these markers in these cell types. Although it
may take additional markers to render fine distinctions
in practice, this tube was selected for analysis since the
methods being tested in this study require single high-
dimensional datasets acquired in a single analysis, and
since this marker combination is highly useful in distin-
guishing these cells subsets in most cases.

List mode data were prepared for analysis as follows.
First, the cell population of interest (either hematogones
or lymphoblasts, depending on the case) was selected
by manually examining the datasets using an iterative
gating strategy to evaluate for the presence of distinct
cell clusters based on the most effective discriminator
for that particular case. In most cases, the initial evalua-
tion was of a CD10 versus CD19 histogram or of a CD10
versus CD38 histogram (depending on the separation of
cell clusters), due to the tendency for lymphoblasts and
hematogones to coexpress these markers. From here,
data were projected onto CD45 versus side angle light
scatter histograms to exclude higher side scatter events
that could potentially represent nonspecific binding of
antibodies to nonlymphoid cells. Data were then repro-
jected onto CD10 versus CD19 and CD19 versus CD38
histograms to assure the appearance of well-distributed
clustered data without evidence of artificial ‘‘shelves’’ or
cut-off thresholds for any given marker, and without evi-
dence of inclusion of extraneous cell clusters that would
represent nonlymphoblast (or nonhematogone) cell pop-
ulations. Care was taken during this approach to target
the selection of the cell subpopulation of interest (either
hematogones or leukemic lymphoblasts) based on differ-
ential cell clusters on histograms, without being artifi-
cially restrictive as to the exclusion of cells beyond a
prescribed level of light scatter or marker expression.

Once the gated data for the cells of interest were iso-
lated via this iterative approach, the data were converted
from standard flow cytometry list mode format to tab-
delimited text using WinMDI software, version 2.8
(Scripps Research Institute, La Jolla, CA).

Data Analysis

The gated data files were analyzed using the three-step
FINE process, described in more detail by Carter et al.
(12,14).

Briefly, in the first step the gated tab-delimited list
mode files were smoothed by converting from sets of
individual points into probability density functions using
kernel density estimation. Kernel methods are nonpara-
metric techniques used for estimating probability den-
sities of data sets and involve the conversion of discrete
data points into the normalized sum of identical den-
sities centered about each data point. In essence, each
data point is converted into a probability distribution
and the aggregate of these distributions is summed and
normalized to form a single smooth distribution. Kernel
methods have been used in previous work on the analy-
sis of flow cytometry data (3). For our data, we chose a
Gaussian kernel, essentially converting each discrete data
point into a Gaussian probability function, the total of
which were summed and normalized to form a non-
Gaussian distribution corresponding to the overall
‘‘shape’’ of the cloud of individual cellular events meas-
ured in each six-dimensional analysis (Fig. 1). The
derived distribution for each six-dimensional flow cytom-
etry analysis would be represented as follows:

fiðxÞ ¼ 1

ðNi 3hÞ 3
XNi

i¼1

K
ðx � xiÞ

h

� �

where KðxÞ ¼ 1
ð ffiffiffiffi

2p
p Þ e

�x2

2 is the zero mean unit variance
Gaussian kernel, h is the bandwidth or smoothing pa-
rameter around each data point, and fiðxÞ is the resulting
probability density function for the ith patient sample
based on the normalized sum of distributions centered
on the Ni cells in the sample. The bandwidth parameter
is very important to the overall density estimate. Choos-
ing a bandwidth parameter too small will yield a peak
filled density, whereas a bandwidth that is too large will
generate a density estimate that is too smooth and loses

FIG. 1. Illustration of flow cytometry list mode data after conversion
by a kernel density estimate. This smoothed the data by converting
individual data points into Gaussian distributions, which were then
summed and normalized to form an overall distribution of the same
shape and density variation of the initial dataset. The conversion was
performed over all six dimensions for each dataset, but the figure
depicts a two-dimensional projection of the kernel density estimate (in
this case CD19 vs. CD10).
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most of the features of the distribution. For this analysis,
the parameter h was chosen separately for each analyzed
patient sample using the maximal smoothing principle
(17) under the assumption that each dimension was in-

dependent (and therefore may have different values in
the kernel width vector). The result of the kernel den-
sity estimation step was conversion of discrete dot-plots
into six-dimensional probability density functions.
In the second step, we calculated the relative differen-

ces among individual six-dimensional datasets for each
case using the Kullback-Leibler divergence

DKLðfijjfjÞ ¼
Z

log
fiðxÞ
fjðxÞ

� �
fiðxÞdx

to form the following similarity matrix between any
given patient samples i and j:

Dij ¼ DKLðfijjfjÞ þ DKLðfjjjfiÞ:
The similarity matrix was constructed to assure symme-
try, since the Kullback-Leibler divergence is not symmet-
ric. The result was a high-dimensional neighborhood
map depicting the relative difference in information (i.e.,
similarities) among the 54 total samples analyzed based
on distributions defined in six dimensions.
Since the similarity matrix represents a high-dimen-

sional neighborhood map, an additional step of dimen-
sionality reduction is included as the third step in the
procedure so that the similarities between cases in the
high-dimensional neighborhood map may be visualized
on a two-dimensional plot. This dimensionality reduction
step was carried out using classical multidimensional
scaling (12). Multidimensional scaling is the term used
for a group of methods by which high-dimensional dis-

FIG. 2. Two-dimensional embedding of neighborhood map data gen-
erated by the comparison of six-dimensional flow cytometry datasets by
Fisher information nonparametric embedding (FINE) using the Kull-
back-Leibler divergence as a distance measurement. Cases of B-pre-
cursor acute lymphoblastic leukemia (ALL) were effectively separated
from benign hematogone hyperplasia (HP) by this method. The circled
points correspond to the density plots illustrated in Figure 3, num-
bered respectively.

FIG. 3. Contour plots of CD38 versus CD10 expression for several data sets. The top row corresponds to hematogone hyperplasia (HP) cases, and
the bottom row represents acute lymphoblastic leukemia (ALL) cases. The selected patients are those most similar between disease classes, the cent-
roids of each disease class, and those with little similarity between disease classes, as highlighted in Figure 2.
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tance matrices may be embedded in lower dimensional
space. Classical multidimensional scaling (cMDS) is a par-
ticular type of multidimensional scaling in which each
point on a matrix of dissimilarities is embedded in Eu-
clidean space, by first centering the dissimilarities about
the origin, then calculating the eigenvalue decomposi-
tion of the centered matrix. This method allows for the
low-dimensional graphic representation of data points
while revealing any natural separation or clustering of
the data (12).

RESULTS

Of patients from whom all samples were obtained, 18
were male and 13 were female, with an average age of
25 years at the time of bone marrow biopsy (range 2–74
years). Of patients from whom hematogone samples
were obtained, 14 were male and 9 were female, with
an average age of 41 years at the time of bone marrow
biopsy (range 9 months to 66 years).

Two-dimensional maps (generated via multidimen-
sional scaling) depicting projections of the relative Kull-
back-Leibler divergences of six-dimensional data among
cases studied are shown in Figure 2. To illustrate the dif-
ferences depicted in Figure 2, traditional plots of CD10
versus CD38 (two of the 6 measured dimensions in each
analysis) are shown in Figure 3 for paired cases from
each cluster (ALL or hematogones) that are relatively
similar, relatively dissimilar, and near the center of each
cluster.

In general, the algorithm used in this study was effec-
tive in the discrimination and clustering of cases of ALL
from cases showing hematogone expansions. The hema-
togone cases were more tightly clustered, likely reflect-
ing the greater immunophenotypic variability of leuke-
mic lymphoblasts relative to the more consistent and
uniform immunophenotype typical of hematogones (15).

DISCUSSION

The method outlined in this study represents a novel
approach to the analysis of clinical flow cytometry data
in which multicolor flow cytometry datasets are treated
as virtual objects embedded in high-dimensional space
and compared with one another by approximating infor-
mation distances on statistical manifolds. In the current
demonstration of concept, this system was generally
effective in the unsupervised distinction of patient sam-
ples containing leukemic lymphoblasts from patient sam-
ples containing normal B cell precursors (hematogones).
Formal data on sensitivity and specificity cannot be
derived in this proof-of-principle study since we did not
randomly select cases from our normal workflow, and
therefore the pretest prevalence of each diagnostic con-
dition, which is required for derivation of such statistics,
would not be represented.

In contrast to other proteomic or immunophenotyp-
ing methods, flow cytometry allows simultaneous analy-
sis of numerous surface markers traceable in any combi-
nation to a specific individual cell. In day-to-day practice,
attempts to harness this dimensional power of flow

cytometry are usually in the form of sequential two-
dimensional analyses linked to additional dimensions of
data via previous analytical iterations. Although a useful
practical method for the study of flow cytometry data-
sets, this approach has limited value in unsupervised dis-
covery or in proteomic style analysis.
Analogy may be made to the common endeavor of

face recognition. Individuals recognize other individuals
by interpreting the overall appearance or shape of one’s
face, not by evaluating individual facial measurements in
a step-by-step selection and analysis process. Similarly, in
this study we set out to devise a method whereby the
single high-dimensional object formed by the flow cyto-
metric analysis of a given cell population could be eval-
uated as a whole rather than as sequential parts.
There are numerous potential applications for the

type of analysis outlined here. The ability of this statisti-
cal manifold learning method to adapt as additional cases
are added to the database augments its potential useful-
ness as a clinical decision support tool. Analysis of any
given case could be queried against the known neighbor-
hood maps constructed by previous analyses, and a list
of most probable diagnoses could then be generated to
assist the hematopathologist or flow cytometrist in ren-
dering a final diagnostic impression. One could envision
a role for this type of approach in borderline classifica-
tion issues (such as lymphoma subtyping based on
immunophenotype), issues of minimal residual disease
detection, etc.
Aside from its potential diagnostic utility, a system of

clustering flow cytometry data within statistical mani-
folds could potentially be used as a context-based search-
ing and databasing method for case retrieval or research.
For example, in our laboratory, we currently list cases in
our database according to the final diagnosis assigned to
that case following our interpretation of the flow cytom-
etry data. If we wish to search for cases of, for example,
ALL, we enter the appropriate text code into the search
engine, and it finds cases that we diagnosed as ALL, irre-
spective of the actual immunophenotypic pattern con-
tained within the list mode files. The approach outlined
in this study would potentially allow us to store raw list
mode files of selected cell populations and, subjecting
them to the manifold learning process, search the data-
base not for cases by diagnostic label, but by the actual
similarity of the flow cytometry dataset over the entire
group of markers contained within an individual analysis
tube. The system would adapt, with information distan-
ces across the overall neighborhood map adjusting with
each added case. Such context-based searches have been
proposed for histologic images (18) and would also be
of use in retrieval of flow cytometry data from archives.
Our approach could also have potential value in clus-

tering and classifying disease processes through unsuper-
vised discovery, analogous to approaches used in func-
tional genomic and proteomic applications. Indeed, flow
cytometric immunophenotyping is at its essence a pro-
teomic method, albeit on a relatively small scale (19–21).
Our approach allows a proteomic-style analysis of the
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entire distribution formed by multicolor flow cytometric
analysis of cell suspensions. Our study was performed
using archived clinical four-color datasets. The power of
this approach could be magnified considerably if applied
to higher dimensional datasets (10 color and beyond)
currently deployed in research settings (22).

To our knowledge, our study is the first to employ the
principles of information geometry and statistical mani-
fold embedding in the comparison of flow cytometry
results between different patient samples. However, pre-
vious studies have described methods that treat flow
cytometry output as single high-dimensional datasets
rather than as collections of two-dimensional projec-
tions. Roederer et al. described systems based on proba-
bility binning of n-dimensional data, including the use of
an algorithm that identified geographic regions in n-
dimensional space that contain significantly more or
fewer events than other areas (7,23). They termed this
statistical comparison of event numbers in high dimen-
sional space ‘‘frequency difference gating.’’ Zeng et al.
and Zamir et al. described approaches with some con-
ceptual similarity to ours but with different methods
(2,6). Zamir et al. evaluated single four-color (six-dimen-
sional) flow cytometry assays by converting each of
them into a single matrix with the number of rows equal
to the number of cells analyzed, and the number of col-
umns equal to the number of measured flow cytometry
characteristics (in this Case 6), each normalized to a
mean of zero and standard deviation of 1. The matrices
were then subjected to statistical clustering methods for
the classification of different cell populations within the
sample. Although this method was based on the analysis
of a six-dimensional dataset as a single entity, it main-
tained the identity of each cell as a discrete point in the
matrix, without conversion to probability density func-
tions as in our study. Zeng et al. used a kernel density
estimation method similar to ours to convert high-dimen-
sional flow cytometry datasets into probability density
functions, but then used histogram features extracted
from each dimension of the probability density function
to guide k-means clustering as a means to identify dis-
crete cell populations within a given dataset. Pedreira
et al. described a multidimensional classification
approach for automated flow cytometry analysis that,
like our method, treated flow cytometry datasets as
objects embedded in n-dimensional space and did not
require the application of an assumed distribution onto
the flow cytometry dataset, but did not use the specific
principles of information geometry outlined in the cur-
rent study (8).

There are limitations to the treatment of entire flow
cytometry datasets as single high-dimensional distribu-
tions. For example, patients with immunophenotypically
identical abnormal cell populations would likely be clus-
tered separately depending on the nature of the non-neo-
plastic background cells or on the sheer percentage of
abnormal cells in the sample. For this reason, we chose
in this study to purify the cells of interest through an
iterative list-mode selection process before application of

the manifold learning algorithm. One could argue, how-
ever, that the analysis of entire datasets (including both
normal and abnormal cell types) would be of potential
value, since the nature of the host response may be dis-
tinct in a given disease process and may be represented
by the immunophenotypic pattern of non-neoplastic
cells in the sample. Furthermore, the nature of flow
cytometry data allows for the virtual selection of numer-
ous different cell types without preanalytical sorting or
isolation, and subsequent analysis of these subsets via
manifold learning. A caveat, of course, is that any given
process of selection for cell populations of interest could
influence the subsequent clustering algorithm, and
minor differences in cell selection strategies could har-
bor the potential to inordinately affect the clustering
due to potential inconsistencies in initial data selection.
The influence of various preanalytical factors (number of
colors in the analysis, presence of normal cell popula-
tions, cell selection strategies, etc.) on the performance
of this statistical manifold clustering approach will have
to be evaluated in expanded prospective studies.
In summary, this study was an attempted demonstra-

tion of principle for the analysis of clinical flow cytome-
try data as individual high-dimensional datasets using the
principles of information geometry and statistical mani-
folds. Such an approach may harbor potential for the de-
velopment of decision support tools and context-based
search capability in clinical flow cytometry laboratories,
and for the analysis of flow cytometry data as a proteo-
mic discovery tool. Additional studies will be required to
formally assess the potential utility of this approach for
such specific applications.
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