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SUMMARY

Intention-to-treat (ITT) analysis is commonly used in randomized clinical trials. However, the use of ITT
analysis presents a challenge: how to deal with subjects who drop out. Here we focus on randomized
trials where the primary outcome is a binary endpoint. Several approaches are available for including the
dropout subject in the ITT analysis, mainly chosen prior to unblinding the study. These approaches reduce
the potential bias due to breaking the randomization code. However, the validity of the results will highly
depend on untestable assumptions about the dropout mechanism. Thus, it is important to evaluate the
sensitivity of the results across different missing-data mechanisms. We propose here a Bayesian pattern-
mixture model for ITT analysis of binary outcomes with dropouts that applies over different types of
missing-data mechanisms. We introduce a new parameterization to identify the model, which is then used
for sensitivity analysis. The parameterization is defined as the odds ratio of having an endpoint between
the subjects who dropped out and those who completed the study. Such parameterization is intuitive and
easy to use in sensitivity analysis; it also incorporates most of the available methods as special cases. The
model is applied to TRial Of Preventing HYpertension. Copyright q 2008 John Wiley & Sons, Ltd.

KEY WORDS: randomized-controlled trials; binary outcomes; missing data; sensitivity analysis; TROPHY
trial

∗Correspondence to: Niko A. Kaciroti, Center for Human Growth and Development, University of Michigan, Ann
Arbor, MI 48109, U.S.A.

†E-mail: nicola@umich.edu

Contract/grant sponsor: Publishing Arts Research Council; contract/grant number: 98-1846389

Received 17 March 2008
Copyright q 2008 John Wiley & Sons, Ltd. Accepted 14 October 2008



A BAYESIAN SENSITIVITY MODEL FOR ITT ANALYSIS 573

1. INTRODUCTION

Intention-to-treat (ITT) analysis is commonly used when analyzing randomized-controlled trials.
Mainly, because it keeps the between-group balance in patients’ characteristics achieved by random-
ization, yields information about the efficacy of treatments when used in practice, and avoids
possible bias due to treatment-based differential dropouts rate [1]. The ITT approach requires
that all subjects be included in the analysis based on their randomized group regardless of the
actual treatment received or subsequent dropout from the study. A complete ITT analysis is thus
possible when (1) the subjects are analyzed based on their randomized groups and (2) when fully
observed outcome data are available for all randomized subjects. In this article we focus on how
to handle missing data in the ITT analysis when the primary outcome is binary, assuming full
patient compliance with the assigned treatments. For more discussion in ITT analysis, see Little
and Yau [2] and Kleinman et al. [3].

In clinical trials with missing outcomes, analysis based only on the observed data will often
result in inferences that may well not be valid. As a result, models that account for the missing data
are, therefore, increasingly used to adjust for possible bias. Heyting et al. [4], and most recently
Scharfstein et al. [5], review methods for modeling dropouts in randomized-controlled trials. Hollis
and Campbell [6] provide a summary of various methods used for dealing with missing data in ITT
analysis in four major medical journals: British Medical Journal, Lancet, Journal of the American
Medical Association, and The New England Journal of Medicine. They found that 75 per cent
of the trials had some missing data for the primary outcome, and the methods used to deal with
it were generally inadequate. The methods for handling missing data, in the order of most used,
were: (a) complete case analysis, in which all patients with a missing response were excluded; (b)
available case analysis, where all available information on each subject was used; (c) and imputing
values for missing responses. The imputation methods used were last observation carried forward;
explicit allocation of poor outcomes; or implicit assumptions of good or poor outcomes that include
subjects with missing responses in the denominator but not in the numerator. They found only
one paper that examined the effect of missing data using a range of methods for handling missing
outcomes. All the above approaches, explicitly or implicitly, make assumptions about the nature
of the missing data. However, different approaches may be appropriate in different situations,
hence no consensus exists about how the missing responses should be handled in the ITT analysis.
Therefore, it is important that sensitivity analysis be performed over a range of assumptions about
the dropout mechanism [7–12].

There are three general approaches for analyzing trials with missing data. For example,
Scharfstein et al. [5, 13] and Rotnitzky et al. [14, 15], adopted a selection model approach; Little
[16] and Little and Rubin [17] used a pattern-mixture design; while Wu and Carroll [18] and Wu
and Bailey [19, 20] use a shared-parameter model. The selection model and the pattern-mixture
model approaches arise from different partitions of the observables y and the missing-data
indicator R. Selection models partition the joint distribution of Pr(Y, R) as the product of Pr(Y )

and Pr(R|Y ) [21]. They require explicit modeling of the missing-data mechanism where the
probability that a subject would drop out may depend on the observed and unobserved values.
Pattern-mixture models, on the other hand, express the joint distribution as the product of Pr(Y |R)

and Pr(R) where the data are stratified by the dropout patterns with distinct model parameters for
each stratum [22]. The marginal estimates in pattern-mixture models can be derived as a weighted
average across pattern specific estimates [23] or by using multiple imputation [24]. Regardless
of which model is used, additional assumptions or data are needed to identify the parameters in
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the joint distribution. These assumptions rely heavily on expert opinions about plausible ranges
for non-identifiable parameters and are usually followed with sensitivity analysis. For example,
Baker [25], Kenward [26] and Scharfstein et al. [5] made assumptions about the selection model
to identify the parameters. In a pattern-mixture setting, Little and Wang [27], Daniels and Hogan
[28], and Kenward et al. [29] identified parameters using constrains. Lastly, the share-parameter
models are identified by using common random effects to relate the response with missing-data
indicator Follmann and Wu [30], Hogan and Laird [31], and Guo et al. [32]. For detailed literature
review on analyses with missing data, see Little [23], Kenward and Molenberghs [33], and Thijs
et al. [34].

Here we propose a Bayesian pattern-mixture model for ITT analyses of binary outcomes in
randomized trials with dropouts. Pattern-mixture models are increasingly used for such analysis as
they do not require specific modeling of the dropout mechanism, and the estimates of the identified
parameters are not affected by the nature of the dropout. We believe it is easier for an investigator
to quantify the differences between the dropouts and the completers than to decide what can be
quantified from a selection model or share-parameter model (Kaciroti et al. [35, 36]). Thus, we
propose a new Bayesian parameterization that identifies the pattern-mixture model by comparing
the dropouts with completers. The parameterization is defined as the odds ratio of having an
endpoint between the subjects who dropped out and those who completed the study. It is easy to
use in sensitivity analysis; accommodates modeling of different types of missing data, including
ones missing not at random (MNAR); and contains other available methods as special case. It is
also intuitively appealing to an expert, who could provide a practical range for such a parameter,
which otherwise cannot be estimated from the data. Because the sensitivity parameter is unknown
it is appropriate to provide a range rather than a point estimate [13, 37]. We incorporate a range on
the sensitivity parameter by introducing a prior distribution (probabilistic range) and then applying
Bayesian modeling strategies to derive inferences [38]. From a Bayesian perspective the inferences
are derived using the Markov chain Monte Carlo (MCMC) [39, 40] simulations where values of
parameters of interest are drawn multiple times from their posterior distribution. The new model
is applied to the TRial Of Preventing HYpertension (TROPHY).

This paper is organized as follows. In Section 2, we describe the TROPHY study, which
motivated and provided the context for the methods discussed throughout. In Section 3 we develop
the Bayesian approach used for sensitivity analysis. In Section 4 we apply the proposed models.
Conclusions are given in Section 5.

2. MOTIVATION: TROPHY STUDY

The TROPHY [41] was an investigator-initiated study to examine whether early treatment of
prehypertension might prevent or delay the development of subsequent hypertension. Our primary
objective was to determine whether for patients with prehypertension, 2 years of treatment with
candesartan (at a dose of 16mg daily) will reduce the incidence of hypertension for up to two
years after active treatment is discontinued.

This 4-year, multicenter, randomized study involved untreated participants aged 30–65 having
blood pressure in the high normal range, according to the classification developed by the Joint
National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure
(JNC VI) [42]. The run-in period consisted of three consecutive weekly clinic visits where blood
pressure readings were obtained. Participants were considered eligible for the trial if they were not
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being treated for hypertension, their blood pressure at the first visit was lower than 160/100mmHg,
and their average of the three blood pressure readings at the three visits was a systolic pressure
130–139mmHg and a diastolic pressure 89mmHg or lower, or a systolic pressure 139mmHg or
lower and a diastolic pressure 85–89mmHg. Participants who met these criteria were randomized
to double-blind treatment, with candesartan (at a dose of 16mg daily) or a matching placebo. The
study consisted of, first a 2-year double-blind, placebo-controlled phase; followed by a 2-year phase
in which all study patients received placebo. Subjects were examined every 3 months, as well as 1
month after the randomization, and 1 month after the first 2-year period. At each clinic visit, three
sitting, resting blood pressures were obtained with an automated device (HEM-705 CP, Omron
Healthcare) and averaged. Throughout the second 2-year phase, study investigators continued to
remain blind to each patient’s initial treatment assignment. No goal for the blood pressure was set,
and a participant’s treatment regime could be changed only if hypertension developed. For further
details about the TROPHY study see Julius et al. [41, 43].

All study participants received individualized, lifestyle modification counseling at each clinic
visit. Consequently, every participant had at least two lifestyle modification training sessions prior
to initiation of pharmacological treatment. Thus, the TROPHY study protocol was consistent with
the JNC 7 [44] recommendation: that lifestyle modification comprises the initial management of
prehypertension without compelling indications, and that it precedes pharmacotherapy for onset
of hypertension.

2.1. Primary endpoint

The development of hypertension was chosen as the primary study endpoint. It was defined as
the first occurrence of one of the following outcomes: (i) an average of three measurements of
systolic pressure of 140mmHg or higher and/or diastolic pressure of 90mmHg or higher at any
three visits during the four years of the study; (ii) an average of three measurements of BP >160
and/or >100mmHg at any visit during four years; (iii) an average of three measurements of
BP >140 and/or >90mmHg at the end of the study; and (iv) patients requiring pharmacological
treatment as decided by the attending physician. After an endpoint was reached, antihypertension
treatment with metoprolol (Troprol XL, AstraZeneca), at a dose of 50mg daily, or hydrochloroth-
iazide (Microzide, Watson), at a dose of 12.5mg daily, was offered at no cost. However, study
physicians were allowed to prescribe other medications, with the exception of angiotensin-receptor
blockers.

The ‘three times in 4 years’ definition of hypertension has been criticized [45, 46] because
this definition of treatment-requiring hypertension differs from widely accepted guidelines for
initiation of pharmacotherapy. In the original report [41] we were committed to use this pre-
specified definition. Later, we reanalyzed the data using the contemporary definition of hypertension
based on the guidelines published in the Seventh Report of the Joint National Committee on
Hypertension [44]. Following the new guidelines, patients with an average clinic reading of systolic
140mmHg or higher and/or diastolic of 90mmHg or higher on two consecutive clinic visits are
now considered to need treatment for hypertension. In addition, as in the initial definition, the
endpoint of hypertension could also be declared if an average pressure during a single clinic visit
was >160mmHg systolic and/or >100mmHg diastolic, or if a clinical investigator decided to
initiate pharmacological treatment. Previously, an average blood pressure >140 systolic and/or >

90mmHg diastolic at the last study visit (4 years) had been also considered hypertension. This
category was automatically eliminated by the new ‘two consecutive high readings’ definition.
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TROPHY results are published under both definitions [43, 47]. We will focus here on the sensi-
tivity analysis following the ITT principle for the endpoint definition of hypertension, following
the JNC 7 guidelines (as described at the beginning of Section 2.1).

2.2. Missing data

The ITT population for the study consisted of 772 patients enrolled at 71 centers in the United States,
randomly assigned to one of two groups: candesartan (391) or placebo (381). Among the 772
participants, 109 (54 in placebo) dropped out of the study before having developed hypertension.
The average time in the study for these subjects was 1.1 years in the placebo group, which was
smaller than the 1.75 years in the candesartan group (p-value=0.001). When the new definition of
hypertension is used, 92 subjects classified as having hypertension based on the original definition
did not satisfy the new definition (JNC 7). Following the protocol, these subjects received antihy-
pertension treatment after they become hypertensive (per original definition). Therefore, they are
censored at the time the treatment was initiated and their primary outcome is considered missing
for the analysis using the new endpoint definition. In addition, two subjects who had dropped out
satisfy the new endpoint definition. Thus, the number of subjects with missing endpoint following
the new definition is increased to 199 (101 in placebo). The average time in the study for these
subjects was 1.7 years in the placebo group and 2.1 years in the candesartan group (p-value=
0.005). Because the dropout subjects in the candesartan group were observed for a longer period
and were hypertension free during this whole period, they potentially would be less likely to have
hypertension at the end of the study, compared with the dropouts in the placebo group. Finally,
the dropout subjects did not differ by group with respect to their baseline characteristics except
for triglyceride levels, which were higher for the dropouts in the placebo group; Table I.

Table I. Baseline characteristics of dropout subjects by group.∗

Placebo Candesartan
Baseline measures (n=101) (n=98) p-Value

Age–years 48.0±9.3 47.6±8.4 0.73
Sex male–n (per cent) 60 (61.2) 66 (65.4) 0.56
Race white–n (per cent) 78 (77.2) 72 (73.5) 0.11
Race–n (per cent)
White 78 (77.2) 72 (73.5) 0.62
Black 14 (13.9) 17 (17.4) 0.56
Other 9 (8.9) 9 (9.1) 0.99
BMI–kg 30.1±5.6 29.8±5.1 0.68
Blood pressure–mm Hg
Home SBP/DBP 133.6±8.5/82.9±5.2 134.7±8.3/82.8±5.6 0.36/0.89
Clinic SBP/DBP 133.5±4.4/84.2±4.6 133.6±4.8/85.0±3.8 0.88/0.18
Cholesterol–mg/dl 209.0±44.9 202.0±38.3 0.24
Triglycerides–mg/dl 172.4±132.8 140.6±87.4 0.05
HDL cholesterol–mg/dl 49.1±14.6 47.2±12.8 0.33
Glucose–mg/dl 94.8±10.4 95.4±9.5 0.66
Insulin–IU 12.5±9.7 10.8±7.1 0.17
Insulin:Glucose ratio 16.9±12.8 14.6±9.3 0.16
Creatine 0.87± .20 0.84± .16 0.21

∗Means ± SD or number (per cent).
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Based on these results we have no evidence that at the end of 4 years, dropouts in the placebo
group would have a higher rate of hypertension compared with dropouts in the candesartan group.
If anything, the shorter follow-up period and the higher triglyceride levels for the dropouts in the
placebo group could potentially indicate higher risk for hypertension at the end of the study than
for the dropouts in the candesartan group.

3. THE PROPOSED METHOD

In this section we propose a new parameterization within the pattern-mixture model framework
to analyze binary data in randomized clinical studies with dropouts. This new parameterization
accommodates modeling of different types of missing data, including those that are potentially
MNAR. The parameterization is intuitive, easily used for sensitivity analysis, and contains the other
available approaches as special cases. First, we introduce the complete data model for analyzing
binary data and then extend it to situations with missing data.

3.1. Complete data model

In the TROPHY study, we model the odds of subjects in placebo and candesartan groups developing
hypertension. We use a logistic regression model with random effects to account for clustering
within a center (or physician), and test whether the odds differ for the two groups. Let Yi j be the
binary measure of the primary endpoint, which is 1 if the subject j under the care of physician i
develops hypertension during the 4-year period and 0 otherwise; and let pi j =Pr(Yi j =1) be the
probability of developing hypertension. The distribution of Yi j conditioned on the random effect
bi is Bernoulli with probability pi j , modeled by

logit(pi j |Trti j ,bi )=�0+�1∗Trti j +bi (1)

where bi ∼N (0,�2b) is a random intercept to account for clustering of subjects by physician; and
Trti j is a treatment indicator equal to 1 if subject j under the care of physician i was in candesartan
group and 0 otherwise. Other covariates can be included in the model if needed as additional
predictors for the adjusted analysis. The primary parameter of interest is �1, tested via the null
hypothesis of no treatment effect H0 :�1=0. MCMC simulations are used to construct inferences
based on the values drawn from the joint posterior distribution

Pr(�,b|y,Trt)=
K∏
i=1

ni∏
j=1

Pr(yi j |Trti j ,�,bi )�(bi )p(�)=
K∏
i=1

ni∏
j=1

e(�0+�1∗Trti j+bi )∗yi j

1+e�0+�1∗Trti j+bi
�(bi )p(�)

where �(bi )=(2��2b)
−1/2 exp(−b2i /2�

2
b). Population average (PA) estimates are derived from the

subject-specific estimates by integrating out the random effects

Pr(�(PA)|y,Trt)=
∫ K∏

i=1

ni∏
j=1

e(�0+�1∗Trti j+bi )∗yi j

1+e�0+�1∗Trti j+bi
�(bi )p(�)db

The integral does not have a closed form. Thus, the �(PA) parameters are calculated by using
either the MCMC computational power or the following approximation: �(PA) ≈a∗�, where
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a=(1+(16
√
3/15�)2�2b)

−1/2=(1+0.346�2b)
−1/2; here a is the attenuation factor that is <1

[48, 49]. For numerical simplicity we used the approximation approach, which works very well.

3.2. Logistic regression with missing data

When a subject in a randomized clinical trial drops out before the study ends with no endpoint at the
time of dropout, excluding that person from the analysis potentially will affect the randomization.
An analysis using the ITT principle includes such subjects in its final inferences to maintain
randomization. The true reasons for dropping out are often unknown, so methods that can handle
missing data for a variety of missing-data mechanisms are useful. We propose here a Bayesian
model using pattern-mixture framework to analyze the data with dropouts potentially generated
from an MNAR missing-data mechanism. MNAR mechanisms imply that the distribution of the
primary endpoint variable for the respondents and non-respondents is systematically different, even
after controlling for all known covariates. In such situations, the inferences based on the likelihood
function of the observed data, while ignoring the missing-data mechanism, would not be valid.
Here we use a proper Bayesian prior distribution to identify the proposed model. In general, under
a pattern-mixture model the parameters are allowed to vary by pattern r . Thus, let �(r) denote
the parameters of model (1) for pattern r , with r =0 corresponding to completers and r =1 to
dropouts, with �(1) �=�(0) for MNAR mechanism. Because there are no data to estimate all the
parameters in the missing pattern r =1, the model is underidentified. Thus, restriction or prior
information about the model is required to fully identify the parameters. Following Rubin [22] and
Little and Rubin [17], we identify the model by specifying a prior distribution p(�(1)|�(0)) on the
parameters of the missing pattern conditioned on the parameters of the observed pattern. Because,
in general, less is known about parameters �(1) of the missing-data pattern than about the missing
data themselves, putting constraints on the missing data will provide an intuitive framework to
perform sensitivity analysis. Kaciroti et al. [35, 36] use between-pattern differences on ordinal
and count outcome variables to characterize different missing-data mechanisms. Here we propose
a similar framework for binary outcomes with data MNAR by relating the distribution of the
missing data to the distribution of the observed data and translating it into a prior distribution of
p(�(r)|�(0)). To identify the model, using a Bayesian approach, we compare the odds of having
an endpoint in the missing-data pattern to the odds of having an endpoint in the observed data
pattern.

Specifically, let p(r) =Pr(Y =1|Trt,�(r),b) for pattern r . Then, there exists some parameter
�̃(Trt), such that for r =0,1:

p(1)

1− p(1)
= �̃(Trt)

p(0)

1− p(0)
(2)

In this case, �̃(Trt) is the odds ratio statistics between the missing-data pattern and the complete
data pattern, and is thus a measure of the departure from missing at random (MAR). We assume
that �̃ has a distribution with mean l and variance c2∗l2, where c is the coefficient of variation. In
this approach, the uncertainty of the relationship between the distribution of the missing data and
the distribution of the observed data is captured by the prior distribution (probabilistic range) given
to �̃. Such uncertainty is incorporated into the estimation of �(1) through a Bayesian approach.
Then in the proposed Bayesian model, �̃(Trt) can be seen as an ignorability index equal to 1 when
the missing data are MAR, and different from 1 when the missing data are MNAR. The advantages
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of this approach are in the simplicity and the clarity of the underling statistical assumption used
to identify the model. It is intuitive and easy to understand for an expert and provides a useful and
practical framework for sensitivity analysis over a range of missing-data mechanisms.

To identify the model [17, 22] we introduce an informative prior p(�(1)|�(0)) that is derived
based on the prior distribution of �̃. Following (2) we have

e�
(1)
0 +�(1)

1 ∗Trti+bi = �̃(Trti )e
�(0)
0 +�(0)

1 ∗Trti+bi (3)

Let �̃k = �̃(Trt=k) be the odds ratio statistic between the missing-data pattern and the observed
data pattern for the subgroup identified by Trt=k for k=0,1 Then

e�
(1)
0 = �̃0e

�(0)
0

and

e�
(1)
0 +�(1)

1 = �̃1e
�(0)
0 +�(0)

1

or

�(1)
0 = log(�̃0)+�(0)

0 (4)

and

�(1)
1 = log(�̃1)− log(�̃0)+�(0)

1 (5)

From (4) and (5) the prior distribution, p(�(1)|�(0)), is defined based on the distributions of �̃0 and
�̃1. Thus, the identifiability of the pattern-mixture model is translated into defining a distribution
on �̃0 for the placebo group and �̃1 for the candesartan group. Giving a distribution to �̃k is easy to
understand and enables us to derive inferences over a class of MNARmissing-data mechanisms. For
instance, �̃0∼ log-normal with mean l0=0.5, and c=0.1 indicates that, on average for a dropout in
the placebo group, the odds of developing hypertension are half (95 per cent CI=(0.41,0.61)) of
that for a subject who completed the study. Inferences derived based on this �̃0 would be true even
when the missing data are MNAR but within the range identified by �̃0. The c parameter captures
any uncertainty related to the missing-data mechanism, that is, the range of �̃0. For instance, in the
above example if c=0.5, the 95 per cent CI of �̃0 would be wider: 95 per cent CI=(0.16,1.16). If
c=0, then the distribution of �̃ is degenerate, which results in a deterministic constraint. Under this
framework, the model is identified using both lk and the c parameters, which then can be used for
sensitivity analysis. Themodel with dataMAR is a special case, where �̃k ≡1, for k=0,1, and c=0.

The log-normal distribution family is an attractive choice for �̃k as it yields a normal prior
distribution for �(r), though other distributions for �̃k are also possible. Then MCMC methods
could be used to construct inferences based on values drawn from the following joint posterior
distribution

Pr(�(0),�(1),b|y, trt) = ∏
i, j∈P0

e(�(0)
0 +�(0)

1 ∗Trti+bi )∗Yi j

1+e�
(0)
0 +�(0)

1 ∗Trti+bi
p(�(0))

× ∏
i, j∈P1

e(�(1)
0 +�(1)

1 ∗Trti+bi )∗Yi j

1+e�
(1)
0 +�(1)

1 ∗Trti+bi
p(�(1)|�(0))�(bi )
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whereP0 is the set of subjects who completed the study,P1 is the set of subjects who dropped out,
and �(bi )=(2��2b)

−1/2 exp(−b2i /2�
2
b). The first factor corresponds to the posterior distribution

of the observed data, assuming a non-informative prior distribution p(�(0)), and is orthogonal to
the second factor. The second factor corresponds to the posterior distribution of the missing data
and assumes an informative prior distribution p(�(1)|�(0)). The p(�(1)|�(0)) is defined from the
distributions of �̃1 and �̃0 following equations (4) and (5).

Finally, the posterior distribution of the overall parameters represents a mixture of distributions
of parameters corresponding to the complete data and dropout patterns. Thus, draws of the overall
parameters are derived using a weighted average of the corresponding draws of parameters for
each pattern, with the weights equal to the proportion of subjects in each (Little [23]). The final
inferences are derived using MCMC method that is implemented using WinBUGS1.4 software
[50]. Finally, an added benefit of the proposed method is that multiple draws are available for
the missing data, which then can be used for any other analysis within the multiple imputation
framework.

4. APPLICATION

The sensitivity analysis method developed in Section 4 was applied to the data from the TROPHY
study. The effect of a 2-year treatment with candesartan 2 years after stopping such treatment,
compared with a placebo, is estimated based on the logistic regression model (1), including a
random intercept for the physician. Different scenarios for the dropouts, including commonly used
assumptions in ITT analysis, are considered to assess the effect of the dropouts on the final results.
In addition, sensitivity analysis, based on assumptions that make the treatment effect borderline
significant (BS), is also included. Following is a list of six different scenarios for sensitivity analysis
starting from the most favorable for the candesartan group, to the least favorable. We set c=0.1,
except for scenario 2 where c=0, which is equivalent to a MAR missing-data mechanism.

1. l0→∞, l1→0⇒ p(1)
0 →1 and p(1)

1 →0. Here patients in the placebo group who dropped out
are considered as to have hypertension, and patients who dropped out from the candesartan
group are considered hypertension free. In this scenario, the incidence of hypertension in the
placebo group is overestimated, while underestimated in the candesartan group. Hence the
best case scenario (BCS) is in favor of candesartan.

2. lk =1,c=0⇒ p(1)
k = p(0)

k , this indicates that in each group the incidence of hypertension
among the dropouts is the same as for those who completed the study. This is equivalent to
data MAR assumption.

3. lk →∞⇒ p(1)
k →1, this is equivalent to considering the dropouts as endpoints (DAE). Under

this scenario, the incidence of hypertension is overestimated for each group.
4. lk →0⇒ p(1)

k →0, this is equivalent to considering the dropouts hypertension free at the
end of the fourth year. It is often referred to as the last-observation-carried-forward (LOCF)
approach. Here the value of the primary endpoint at the end of the study is set to be the
same as the last observed value. It assumes that in the absence of observed hypertension, a
subject is considered hypertension free. Under this scenario, the incidence of hypertension
is underestimated in each group.

Copyright q 2008 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:572–585
DOI: 10.1002/sim



A BAYESIAN SENSITIVITY MODEL FOR ITT ANALYSIS 581

5. lk = l̄k , where l̄k are chosen in such a way that the effect of candesartan at 4 years is BS where
p=0.05. Such sensitivity analysis is important as it shows how different the dropout subjects
must be from the observed subjects for the candesartan effect to become non-significant.

6. l0→0, l1→∞⇒ p(1)
0 →0 and p(1)

1 →1. Here patients who dropped out in the placebo group
are considered hypertension free and patients who dropped out from the candesartan group
are considered to have hypertension. The incidence of hypertension in the placebo group is
underestimated, but is overestimated in the candesartan group. Hence the worst-case scenario
(WCS).

The incidence of hypertension for each group under the above scenarios and the p-value for group
comparisons are shown in Table II. The results are for PA inferences where the random intercept
is integrated out. The estimate of the variance for the random intercept is �2b=0.33(0.08−0.75).

In Figure 1 we give the ORs of candesartan effect under the different scenarios. An OR less
than 1 favors the candesartan group and an OR larger than 1 favors the placebo group. The
sensitivity analysis shows that the effect of candesartan varies by the assumptions used for the
dropouts, with OR ranging from 0.21 (BCS) to 1.87 (WCS). However, if the same assumptions
are used in both groups (scenarios 2, 3, and 4), the effect of candesartan in reducing the inci-
dence of hypertension is strong 2 years after ceasing of treatment. The effect of candesartan
would decrease if the candesartan dropout patients compared with the completers were at higher
risk of hypertension than those in the placebo group. For example in BSa scenario, when the
dropouts in candesartan group are 4.5 times more likely to develop hypertension than completers,
but in placebo group the dropouts are just as likely as completers, the effect of candesartan
becomes BS. In scenarios BSd and BSe, the assumptions about the dropouts favor the placebo
group to the degree that the effect of the placebo becomes borderline significantly better than
the effect of the candesartan. Specifically in BSc, when all dropouts in the placebo group
are considered non-hypertensive, whereas in candesartan group the dropouts are considered 60
per cent more likely to develop hypertension than completers, the risk of hypertension will be
reduced for the placebo group compared with the candesartan group; OR=1.34 and is BS. Under
the WCS, the protective effect of placebo on reducing the risk of hypertension is strongest;
OR=1.87 (95 per cent CI=(1.44–2.40)).

Table II. Sensitivity analysis under different dropout mechanisms.∗

Placebo Candesartan
p (95 per cent CI) p (95 per cent CI) p-Value

1. l0→∞, l1→0 (BCS) 78.7 (73.9–83.2) 43.1 (37.9–48.4) <0.001
2. l0= l1=1,c=0 (MAR) 71.4 (64.9–77.4) 57.0 (50.1–63.9) 0.001
3. l0= l1→∞ (DAE) 78.7 (73.9–83.2) 67.4 (62.3–72.6) 0.001
4. l0= l1→0 (LOCF) 52.8 (48.0–57.2) 43.0 (37.9–48.3) 0.001
5a. l0=1, l1=4.5 (BSa) 71.3 (64.8–77.4) 63.9 (57.8–69.9) 0.050
5b. l0=0.35, l1=1 (BSb) 65.0 (58.1–71.6) 56.9 (49.9–63.9) 0.050
5c. l0=0.6, l1=2 (BSc) 68.4 (61.5–74.9) 60.7 (54.0–67.3) 0.050
5d. l0→0, l1=1.6 (BSd) 52.8 (48.1–57.2) 59.6 (52.7–66.4) 0.050
5e. l0=0.17, l1→∞ (BSe) 60.5 (54.1–67.2) 67.6 (62.3–72.7) 0.050
6. l0→0, l1→∞ (WCS) 52.8 (48.1–57.3) 67.4 (62.3–72.7) 0.001

∗Results are in per cent.
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Figure 1. Graphical display of sensitivity analysis varying l0 and l1 and c=0.1.

5. CONCLUSION

In randomized-controlled trials with dropouts, ITT analysis may lead to bias conclusions unless
missing-data mechanism is correctly specified. Without knowledge of the missing-data mechanism
sensitivity analysis is necessary to investigate conclusions over alternatives assumptions about
the dropout mechanism. Both selection-models [10, 25] and pattern-mixture models [51–53] have
been used for sensitivity analysis. In this paper we develop a Bayesian pattern-mixture model
for incorporating dropout patients into an ITT analysis in a randomized-controlled trial where the
primary outcome is binary. We approach the missing-data problem by using a pattern-mixture
model, which is identified by introducing an intuitive and easy-to-use parameterization. The new
parameterization, �̃, relates the odds of having an endpoint among dropouts to the odds of having
an endpoint among completers. Because there are no data to estimate the identifying parameter,
sensitivity analysis is performed using different prior distributions for �̃. Even though the distri-
bution of �̃ is unknown, it is possible for an expert to give a range for �̃ and then explore the
sensitivity of statistical inferences over such a range. The proposed parameterization is flexible
for sensitivity analysis, easy to implement, and contains many of the available methods as special
cases. The new model was applied to the TROPHY study.

Using the data from the TROPHY study, assuming an MAR missing-data mechanism, the
incidence of hypertension at the end of the study showed 71.4 per cent in the placebo group and
57.0 per cent in the candesartan group. Under this scenario, 2 years of candesartan treatment can
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reduce the odds of developing hypertension 2 years later by 46 per cent. The results of sensitivity
analysis displayed in Figure 1 show that inferences on the candesartan effect are sensitive to the
nature of the missing data. The OR of reducing hypertension 2 years after taking candesartan
differs by the assumptions made about the missing data, varying from 0.21 under the BCS, to 0.57
under the LOCF, and to an increase of 1.87 under the WCS. If the same assumptions about the
dropouts are used in both groups (DAE, LOCF), the effect of candesartan is strong in reducing
the incidence of hypertension 2 years after treatment. It would take large differences in the risk
of hypertension among dropouts favoring placebo (BSa, BSb, BSc) for the effect of treatment to
become BS. The placebo would do better than candesartan if the risk of hypertension among the
dropouts strongly favored the placebo group (BSd , BSe, WCS). However, based on analysis in
Section 2.2 such assumptions are unlikely.
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