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Inapparent infections and cholera dynamics
Aaron A. King1,2, Edward L. Ionides3, Mercedes Pascual1,4 & Menno J. Bouma5

In many infectious diseases, an unknown fraction of infections
produce symptoms mild enough to go unrecorded, a fact that
can seriously compromise the interpretation of epidemiological
records. This is true for cholera, a pandemic bacterial disease,
where estimates of the ratio of asymptomatic to symptomatic
infections have ranged from 3 to 100 (refs 1–5). In the absence
of direct evidence, understanding of fundamental aspects of chol-
era transmission, immunology and control has been based on
assumptions about this ratio and about the immunological con-
sequences of inapparent infections. Here we show that a model
incorporating high asymptomatic ratio and rapidly waning
immunity, with infection both from human and environmental
sources, explains 50 yr of mortality data from 26 districts of
Bengal, the pathogen’s endemic home. We find that the asympto-
matic ratio in cholera is far higher than had been previously sup-
posed and that the immunity derived from mild infections wanes
much more rapidly than earlier analyses have indicated. We find,
too, that the environmental reservoir5,6 (free-living pathogen) is
directly responsible for relatively few infections but that it may be
critical to the disease’s endemicity. Our results demonstrate that
inapparent infections can hold the key to interpreting the patterns
of disease outbreaks. New statistical methods7, which allow rig-
orous maximum likelihood inference based on dynamical models
incorporating multiple sources and outcomes of infection, season-
ality, process noise, hidden variables and measurement error,
make it possible to test more precise hypotheses and obtain unex-
pected results. Our experience suggests that the confrontation of
time-series data with mechanistic models is likely to revise our
understanding of the ecology of many infectious diseases.

Cholera is a diarrhoeal disease caused by enteric infection with the
bacterium Vibrio cholerae. Six of the seven cholera pandemics that
have swept the globe since 1817 originated in the low-lying, densely
populated regions north of the Bay of Bengal, where the disease is
endemic. Although much attention has been focused on cholera1,8,
unsolved puzzles remain about its mode of transmission and the role
of host immunity in its dynamics. This is largely because, in regions
where cholera is endemic, most cholera cases are mild or asympto-
matic but the true extent of asymptomatic infection has been difficult
to assess. Estimates of the ratio of asymptomatic to symptomatic
cases vary greatly, and the importance of inapparent infections in
the dynamics of cholera outbreaks is unknown. To determine what
role is played by inapparent infections, we used an approach that
allows indirect inference about unobserved variables.

A remarkably rich data set on the pattern of cholera epidemics
exists in the form of mortality records kept by the sanitary commis-
sioners of the former British East Indian province of Bengal9. The
data consist of monthly cholera death counts in each of 26 districts
over the period 1891–1940 (Supplementary Fig. 1). To analyse these
data, we formulated a series of models incorporating known
or hypothesized mechanisms of transmission and immunity. A

parsimonious model for cholera dynamics is of susceptible–
infectious–recovered–susceptible (SIRS) form (Fig. 1a). A novel fea-
ture of this model is that it incorporates both transmission tied to
human prevalence (using a traditional mass-action term) and trans-
mission from an environmental reservoir (where the pathogen is
commonly living in aquatic environments)5,6,10–12. This model is a
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Figure 1 | The mechanistic models used. a, SIRS model; b, two-path model;
c, environmental-phage model. Births, related to the total population size H,
are assumed to feed the pool of susceptibles, S. Individuals are susceptible to
infection when born. Exposure to the pathogen occurs at time-dependent
rate l(t). c is the probability that an exposure leads to a contagious infection
(class I). Note that when c 5 1 and r 5 ‘, the two-path model (b) reduces to
the SIRS model (a); when c , 1, some exposures result in short-term
immunity (class Y). Infected individuals die at an excess rate m and recover
at a rate c; the time an individual spends within the I class is exponentially
distributed. We assume that an individual remains immune to reinfection
for a duration gamma-distributed with mean 1/e and variance 1/ke2. Once
immunity has waned, an individual re-enters the susceptible pool (S). The
measured variable is monthly deaths, M. The mean duration of short-term
immunity is 1/r. Individuals in each class are subject to constant
background mortality at rate 0.02 yr21. The force of infection, l(t), includes
terms for environmental and human sources of infection and is assumed to
vary seasonally. Because the seasonality of cholera dynamics in Bengal is
complex, we used a semi-mechanistic approach: transmission was modelled
by a flexible periodic function of time. In the environmental-phage model
(c), as infected hosts shed pathogen, phage W builds up in the environment
and reduces transmissibility. The equations specifying these models are
given in the Supplementary Equations.

Vol 454 | 14 August 2008 | doi:10.1038/nature07084

877

 ©2008 Macmillan Publishers Limited. All rights reserved

www.nature.com/doifinder/10.1038/nature07084
www.nature.com/nature
www.nature.com/nature


partially observed, nonlinear, stochastic dynamical system in con-
tinuous time and as such is not amenable to analysis by standard
statistical techniques. Inference for such systems has recently been
facilitated by a new likelihood maximization procedure7 which
allows for measurement error, non-stationarity, irregular sampling
intervals and the mechanistic inclusion of covariates (see Methods).
We fitted the SIRS model to each district’s data, assessed its explan-
atory power using log likelihood and the Akaike information cri-
terion (AICc) and compared it with a semi-mechanistic time-series
model for cholera13 and two non-mechanistic time-series models.

The SIRS model explained the data dramatically better than the
previous best fit13 (DAICc . 58; Supplementary Table 1). Parameter
estimates reveal some surprises. A prediction of the model, robustly
consistent across districts, is that immunity must wane on a timescale
of weeks to months (Fig. 2 and Supplementary Table 3). This is in
stark contrast to the widely held belief that infection-derived immun-
ity to cholera wanes on a timescale of 3–10 yr (refs 13–17). The model
also robustly predicts low case fatality (0.004 6 0.002, mean 6 s.d.
across 26 districts). Because fatality among hospitalized cases was
historically in excess of 50%18, this implies a very large asymptomatic
ratio. The implication is that most exposures result not in severe
cholera, but in mild or asymptomatic infection, the immunological
memory of which is short-lived. This prediction of a high asympto-
matic ratio is consistent with the only intensive field studies of inap-
parent infections of which we are aware3,4. However, because in this
model all infected individuals are equally infectious, the prediction is
that the vast majority of infectives are ‘silent shedders’—infectious
but without symptoms. The evidence for such a conclusion is mixed
but weak at best2. Moreover, because in this model all infections are
alike, it is unclear whether the improved dynamical description
afforded by the SIRS model over the previous best fit is due to the
higher proportion of asymptomatic infections or to the shorter dura-
tion of immunity.

To tease apart the immunological consequences of exposure to the
pathogen from the degree of infectiousness induced, and to allow for
heterogeneity in infectiousness, we formulated a second mechanistic
model in which exposed individuals can follow an alternate pathway,
deriving immunity to infection while shedding a negligible quantity
of vibrio and suffering a negligible disease-induced mortality
(Fig. 1b). In essence, this model allows for the possibility that expo-
sure to the pathogen effectively vaccinates against reinfection. We
leave it to the data to determine how frequently such natural vac-
cination occurs and how long the resulting immunity lasts.

Under the two-path model, the timescale of short-term immunity
(9.9 6 4.7 weeks, mean 6 s.d. across 26 districts) agrees with that of
the SIRS model. The estimated case fatality under this model is
0.34 6 0.21—consistent with conditions during this period1—and
survivors of severe infections receive longer-lasting immunity

(1.5 6 0.7 yr), consistent with experimental evidence14,15,19.
Although in some districts the evidence strongly favours the two-
path model, the data taken as a whole are equivocal on the subject of
which model is better (see Supplementary Table 2). The implication
is that it is the short-term immunity and high asymptomatic ratio
predicted by both models, and not a large fraction of silent shedders,
that accounts for the dramatically improved description afforded by
our models.

A second robust prediction of both models is that, in typical epi-
demics, relatively few cases are due to the environmental reservoir.
More precisely, though our models cannot speak to the exact route of
transmission (that is, food-borne, water-borne, fomites, etc.), our
results clearly indicate the relative importance of the positive feed-
back associated with the human-associated source of infection over
the human-independent environmental source of infection.
Nevertheless, the seasonally averaged basic reproductive number,
R0, for human-associated transmission is estimated to be quite low
(SIRS model, 1.5 6 0.2; two-path model, 1.5 6 0.2). This contrasts
sharply with the much higher values of R0 recently proposed20 and
suggests, paradoxically, that for V. cholerae, in this the region where
cholera is most persistent and outbreaks most frequent, humans are
potentially a marginal habitat: the persistence of the disease may be
largely due to the environmental reservoir which provides a small
extrinsic force of infection. The strength of this environmental force
of infection varies geographically in a pattern (Supplementary Fig. 2)
that mirrors the earlier suggestion that the coastal regions of
Bangladesh are the native habitat of classical cholera21. Both the
SIRS and two-path models make the simplifying assumption that
the force of infection due to the environmental reservoir has neg-
ligible seasonal fluctuation. To relax this assumption22, we fit a third
model which extends the SIRS model but allows for seasonality in the
environmental reservoir. This model explains the data significantly
better in many districts, but our conclusions about low R0, rapid loss
of immunity and high prevalence of inapparent infection remain
unchanged (see Supplementary Information).

A central challenge in cholera epidemiology is to explain how the
outbreaks can be so explosive at the outset and yet self-limiting to the
point that sizable epidemics can recur twice annually. Our explana-
tion contrasts sharply with those proposed earlier13,17. Simulations of
the various models (Fig. 3) make plain the contrasts between the
explanations. In the previous view, infection-derived immunity
tends to wane over the scale of years, the explosiveness of outbreaks
is controlled by spatial effects, and it is the seasonal drop in transmis-
sibility (presumably related to environmental drivers) that stops the
epidemics. Because in the previous view the ratio of deaths to infec-
tions is comparatively modest, the susceptible population is depleted
only slightly by each epidemic and is continually replenished by
births and the waning of immunity. In the new view, epidemics are
again triggered by rising seasonal transmissibility and the presence of
a reservoir, but the high asymptomatic ratio means that many more
individuals are exposed. The vast majority of these receive short-term
protection from infection so that depletion of the susceptible pool
brings the epidemic to a halt. As immunity wanes, on the timescale of
weeks to months, the susceptible pool is replenished, setting the stage
for the next outbreak. In the new view, severe cases play little role in
shaping the dynamics.

It has been proposed that the seasonality of cholera in this region
may be due to the interaction of free-living vibrio with lytic bacterio-
phage in surface waters23–25. According to this hypothesis, as an epi-
demic progresses, the density of phage in the environment increases
and survivorship of vibrio consequently declines, which in turn leads
to attenuation of transmissibility. To determine whether such an
effect might explain the data, we formulated a fourth model, which
extends the SIRS model by allowing for phage to build up in the
environment (as infected individuals shed pathogen into surface
waters) and ultimately interrupt transmission (Fig. 1c and
Supplementary Equations). Using the same methods, we estimated

0.02

–3,840

–3,820

–3,800

0.05 0.20 0.50 2.00 5.00
Immune period (yr)

P
ro

fil
e 

lo
g 

lik
el

ih
oo

d

Figure 2 | Profile likelihood of the duration of immunity, 1/e, in the SIRS
model for the data from Dacca district. Dacca (now spelled Dhaka) is the
only district for which comparable analyses have been performed13,27.To
compute the profile likelihood, e is fixed and the likelihood is maximized
over the remaining parameters. The vertical dashed lines embrace the
approximate 95% confidence interval (2–12 weeks).
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the strength and timescale of this effect; the results are presented in
the Supplementary Information. In brief, the main conclusions
described above are robust to the inclusion of the environmental
phage effect: the estimated duration of immunity remains short
(9.3 6 8.3 weeks), fatality low (0.004 6 0.002, compare the corres-
ponding value for the SIRS model) and R0 small (1.6 6 0.3).
Overall, the historical mortality data are not strong evidence in
favour of the environmental-phage hypothesis. Furthermore, a crit-
ical implication of the environmental-phage hypothesis is that the
phage cycles must lag behind cholera cycles, but not too far: the initial
drop in cholera cases is predicted to be roughly coincident with high
levels of ambient phage. In the one instance where concurrent data on
cholera cases and ambient phage densities are available, however, the
phage appear to lag approximately 180 degrees behind cholera
cases24. Thus cholera cases begin to fall while phage concentrations
remain small, and cholera cases begin to climb again while phage
densities remain high. This is further, independent, evidence against
the notion that phage–vibrio interaction in the environment is
responsible for cholera seasonality.

The models presented here make several testable predictions. In
particular, our results suggest that population surveys using sensitive

techniques to detect the presence of V. cholerae, cholera-specific bac-
teriophage and/or coproantibodies in stools of healthy and mildly
symptomatic individuals should reveal a much higher prevalence of
inapparent infection than is currently understood to be the case. Such
inapparent infections are predicted to be associated with reduced sus-
ceptibility to infection. Studies that centre on cholera patients, on the
other hand, because they focus on the tail of the distribution of disease
severity, can be expected to yield severely biased results when extra-
polated to the population level. Further implications of our results for
public health are discussed in the Supplementary Information.

In all models of epidemiological dynamics, critical quantities
include the fraction of individuals susceptible to infection, immune
from infection and asymptomatically infected. Yet it is almost never
the case that available data include direct measurements of these
quantities. Moreover, it is frequently true that many asympto-
matic—or merely unrecorded—infections exist for each case that is
recorded. Our results demonstrate that conclusions about the bio-
logical mechanisms underlying a pattern of disease outbreaks can
depend sensitively on the prevalence of inapparent infections. New
modelling approaches that allow indirect inference in the face of
hidden variables and incomplete information are therefore likely to
revise our understanding of the ecology of many infectious diseases.

METHODS SUMMARY

All models were formulated as stochastic differential equations, which were

integrated using the Euler–Maruyama algorithm. Details of the equations and
simulation methods are given in the Methods. The iterated filtering algorithm7

was used to fit the models to the data. This algorithm is described in detail in the

Supplementary Methods and is implemented as part of an open-source package,

pomp, within the R statistical computing environment26. All codes will be made

available by the authors on request.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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Figure 3 | Typical model simulations versus data for the district of Dacca.
a, Simulated susceptible fraction (S/H) from our SIRS model with seasonal
reservoir (blue) and from the time-series SIRS (TSIRS) model of Koelle et
al.13,17 (red). The estimated susceptible fraction of the population is much
lower under the TSIRS model, and grows with time. By contrast, under the
models introduced here, rapid waning of immunity allows the susceptible
fraction to return seasonally to high levels. The predicted high prevalence of
inapparent infection implies that the susceptible pool is rapidly depleted
during an outbreak. b, Simulated monthly deaths from the TSIRS model.
Despite the low susceptible fraction and that model’s non-mass-action
transmission assumption, the relatively low prevalence of inapparent
infection leads to overly explosive outbreaks and overly deep crashes.
c, Simulated monthly deaths from the SIRS model with seasonal reservoir.
d, Cholera death data from Dacca district. Parameter estimates for the
seasonal-reservoir SIRS model are reported in the Supplementary
Information; parameters for the TSIRS model are from K. Koelle (personal
communication). The semi-parametric regression used to fit the TSIRS
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METHODS
Inference for dynamical systems. A stochastic dynamical system is generated by

a suitable function f(x, s, t, h, W). Here, W is a stochastic quantity that is drawn

independently each time the function is evaluated and h is a vector of parameters.

Thus, for a sequence of times t0 # t1 # ??? # tN, the recursion

X tnð Þ~f X tn{1ð Þ,tn{1,tn,h,Wð Þ,
together with the initial value X(t0), specifies a Markov process. The unspecified

nature of f(?) reflects the idea that the evolution of the system could correspond

to an essentially arbitrary stochastic simulation algorithm. In the context of this

paper, X(t) is a vector of counts in each disease class and f(?) corresponds to a

(numerical) solution of any of the stochastic differential equation systems in the

Supplementary Equations. The data consist of observations y1, ??? , yn at times t1,

???, tn. We suppose that, conditional on X tkð Þ~xkf gn
k~1,yn is drawn from a

density g(ynjxn, tn, h).

In the Supplementary Methods, we present a pseudocode description of an

iterated filtering methodology (maximization by iterated filtering, MIF) which

has recently been shown to enable likelihood-based inference for this frame-

work7. This procedure allows inference for rather general partially observed,

stochastic, multivariate, continuous-time dynamical systems. The MIF algo-

rithm also accommodates measurement error, non-stationarity, irregular obser-

vation times and the mechanistic inclusion of covariates. It has been

implemented in the R statistical language26 as part of the package pomp. Note

that the algorithmic parameters play a role in the computational efficiency of the

method but do not affect the scientific conclusions once likelihood maximiza-

tion has been confirmed by diagnostic plots7. The package and all other codes

will be made available by the first author on request.

Fitting the Bengal data. Our statistical inference technique is based on simu-

lation of the stochastic dynamical system. To simulate the stochastic dynamical

systems, we used the Euler–Maruyama numerical scheme28 with a timestep of

0.05 months. We fit the parameters of each model to the data from each district

using the algorithm given in the Supplementary Methods. We used J 5 10,000
particles, a fixed lag L 5 60 and M 5 80 iterations with a cooling factor, a 5 0.95.

Using the same algorithm, we then constructed profile likelihoods against the

parameters e and c. This analysis revealed the existence of weak non-identifi-

abilities among the parameters c, c, m, e and r. Despite this, certain combinations

of parameters, such as R0 5 cÆbseas(t)æ/(c 1 d 1 m) and the case fatality m/(c 1 d
1 m), are well-identified. Moreover, although estimates of the durations of

short-term immunity vary considerably among districts, it is the case that, for

all districts, the duration of immunity is predicted to be far shorter than that

derived from severe infections induced experimentally13–17. Construction of the

profile likelihoods also facilitated the location of the global maximum likelihood

estimates, which, after further refinement using the algorithm above with 30,000

particles, are reported in the Supplementary Tables.

Review of likelihood-based inference. We give a review of likelihood-based

inference in the context of this paper. This review focuses on practical considera-

tions; we refer the reader to Casella & Berger29 or Rice30 for a complete intro-

duction, and to Barndorff-Nielsen & Cox31 for a more advanced treatment. For a

discussion of the role of likelihood, profile likelihood ratio tests applied to

stochastic models for biological systems, we direct the reader to Hilborn &

Mangel32. Reasons to use likelihood as a basis for inference include statistical
efficiency (that is, making the strongest conclusions available from limited data),

objectivity (that is, providing a single criterion applicable to a wide range of

models and data) and the availability of useful techniques for comparing rival

hypotheses.

For time-series data, written as x1:T 5 x1, ??? , xT, a stochastic model consists of

a density function f(x1:Tjh) depending on a vector h of unknown parameters. The

likelihood function arises from considering the density as a function of h, treat-

ing the data as fixed. Thus the log likelihood is defined to be

logL hð Þ~ log f x1:T hjð Þ,
where log is the natural logarithm. Rival hypotheses, labelled H0 and H1, con-

cerning the appropriate structure for a stochastic model can be formalized in

terms of whether h takes a value in H0 or H1 respectively, where H0 and H1 are

subsets of the set H of all possible parameter vectors. We refer to H0 and H1 as

hypotheses or models interchangeably.

Comparison of nested models. Suppose that H0 and H1 are nested, meaning that

H0 is a subset of H1. In practical terms, this is taken to mean that H0 is described

by d0 freely varying parameters, whereas H1 is described by these d0 parameters

together with a number d1 – d0 of additional parameters. Thus H0 can be written

in terms of a vector of length d0 and H1 in terms of a vector of length d1. The

maximum likelihood parameter estimate for model H0 is denoted by ĥh0, and

corresponds to the parameter value giving rise to the largest value of log L hð Þ
among all values of h inH0. A corresponding definition applies to ĥh1. BecauseH1

includes H0, it follows that log L ĥh1

� �
§ logL ĥh0

� �
. Under standard regularity

conditions, twice the improvement in the log likelihood that occurs when mov-

ing from the simpler model H0 to the more complex model H1 can be compared

with a x2 random variable on d1 – d0 degrees of freedom. Thus, Supplementary

Table 1 presents a P-value of the form

P~Prob x2
d1{d0

w2 logL ĥh1

� �
{ logL ĥh0

� �n oh i
: ð1Þ

The P-value given by equation (1) is an approximation. More precise P-values

can in principle be obtained by simulation, but this x2 approximation is a widely

used technique that has been found to be reliable for many practical purposes33.

It is both conceptually and operationally simpler to calculate initially the stand-

ard x2 approximation in equation (1); if this gives rise to an unequivocal answer,

there is little reason to present a simulation study as additional evidence.

Modifications to equation (1) are required when the models under consid-

eration are nested in a non-standard way34. This arises in the context of the

analysis presented in Supplementary Table 1, owing to the non-standard nesting

of the two-path model within the SIRS model. Specifically, the two-path model

reduces to the SIRS model when c 5 1 at which point r is unidentified.

Anisimova et al.35 investigated similar situations and demonstrated that the

chi-squared approximation to the likelihood ratio test is conservative in such

cases. In the caption of Supplementary Table 1, we report the P-value associated

with such a test on three degrees of freedom: r, c and the initial condition Y0.

Non-nested models may still be compared by their likelihood, for example by

the use of Akaike’s information criterion36,37, but formal testing of hypotheses

becomes more awkward. Thus, in Supplementary Table 1, we contrast the best-

fitting SIRS model with the nested SIRS model constrained to match the dura-

tion of immunity found by Koelle & Pascual13. Another consideration motiv-

ating this comparison is that the nested SIRS model has a similar likelihood to the

model of Koelle & Pascual13, while having fewer parameters to estimate.

Additionally, this approach avoids the issue that the comparison with previously

published models might be unfair because the procedure used to fit the models in

this paper may be more effective than that used by previous research.

Profile likelihood. The profile likelihood is a description of the weight of evid-

ence about the value of a single component of the vector of unknown parameters.

Setting h 5 (h1, ???, hd), the log likelihood can be written as logL h1, . . . ,hdð Þ and

the profile log likelihood of h1 is

logLprofile h1ð Þ~ max
h2,���,hd

logL h1, � � � ,hdð Þ:

From equation (1), a 95% confidence region for h1 is given by the range of

values of h1 for which

2 logL ĥh
� �

{ logLprofile h1ð Þ
� �

vc,

where c is defined by Prob x2
1vc

� �
~0:95. This is how the confidence interval in

Fig. 2 was constructed.
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