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Methods
Preparation of Pt clusters, hydrogen chemisorption and EXAFS

One gram of carbon was impregnated with 2 ml acetone containing H2PtCl6, drop by drop
with vigorous agitation. The amount of H2PtCl6 in the solution was varied, depending on
the desired metal loading. After being dried in a 60 8C oven, the impregnated carbon
sample was heated in a H2 ¯ow while increasing the temperature from room temperature
to 300 8C over 2 h. The sample was subsequently outgassed for 2 h at 300 8C, for the
desorption of H2 from the resultant Pt clusters. Hydrogen adsorption isotherms were
measured at room temperature, in situ on the Pt clusters, using a volumetric adsorption
apparatus. The hydrogen chemisorption (the number of H atoms per Pt atom) was
determined by the extrapolation of the adsorption isotherm in the range of 10±30 kPa to
zero pressure. For EXAFS, the sample that was outgassed at 300 8C was cooled to room
temperature and exposed to air. About 0.1 g of the powder sample was pressed into a disk
10 mm in diameter, using polyethylene powder as a binder, and subsequently treated with
H2 at 80 8C. The EXAFS was measured at the Pt LIII edge at room temperature under H2

atmosphere26, using the BL 10B facility at the Photon Factory in Tsukuba. Analysis of the
EXAFS data was carried out by standard methods using the UWXAFS2 program package
as in ref. 19.

Preparation of electrodes and electrocatalytic activity measurements

Twenty milligrams of Pt/C powder and 0.40 ml ethanol containing 5.0 wt% Na®on were
ultrasonically dispersed in 100 ml distilled water. A 30-ml portion of the resultant ink
was dropped onto an electrode surface, which was composed of a glassy carbon core,
3 mm in diameter; the surrounding insulation area was 6 mm in diameter. The ink was
carefully dried in a 70 8C oven so that Pt catalysts could be uniformly coated over the
entire cross-section of the 6-mm diameter area. The electrocatalytic current was
measured at room temperature and a rotating speed of 10,000 r.p.m., in 0.10 M HClO4

saturated with O2.
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Direct dating of ductile shear zones and calculation of uplift/
exhumation rates can be done using various radiometric dating
techniques. But radiometric dating of shallow crustal faulting,
which occurs in the crust's brittle regime, has remained dif®-
cult1±4 because the low temperatures typical of shallow crusted
faults prevent the complete syntectonic mineral recrystalliza-
tion that occurs in deeper faults. Both old (detrital) and newly
grown (authigenic) ®ne-grained phyllosilicates are thus pre-
served in shallow fault zones and therefore their radiometric
ages re¯ect a mixture of both mineral populations. Also, the
loss of 39Ar during neutron irradiation in dating of clay
minerals can produce erroneously old ages. Here we present a
method of characterizing the clay populations in fault gouge,
using X-ray modelling, combined with sample encapsulation,
and show how it can be used to date near-surface fault activity
reliably. We examine fault gouge from the Lewis thrust of the
southern Canadian Rockies, which we determine to be ,52 Myr
old. This result requires the western North America stress regime
to have changed from contraction to extension in only a few
million years during the Eocene. We also estimate the uplift/
exhumation age and sedimentary source of these rocks to be
,172 Myr.

Dating of shallow faults is, among other things, critical for our
understanding of crustal evolution, plate interaction and fault
reactivation, but there are two obstacles to radiometric dating of
clay-rich fault rocks: (1) 39Ar recoil in 40Ar/39Ar chronology and (2)
`contamination' of samples from old, detrital material. The momen-
tum transfer that occurs during the 39K�n:p:� !39Ar reaction is
suf®cient to move a produced Ar atom about 0.1 mm from the site of
the original K atom, which, for clay minerals, can be much greater
than the average grain thickness. Thus, one expects massive losses of
39Ar during neutron irradiation, which would lead to erroneously
old ages. Vacuum-encapsulated irradiation has been developed as a
solution to the recoil problem5±8. The second problem, a mixed age
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resulting from the contribution of detrital (old) and newly formed
(authigenic) phases, can be resolved through quantitative X-ray
analysis of clay grain size populations in low-grade samples. Rather
than (erroneously) assuming that little or no detrital material is left
in very ®ne grain size fractions, we quantify the ratio of authigenic
and detrital mica in different clay size fractions9,10. This ratio
typically decreases with increasing grain size. These grain size
fractions are subsequently prepared for Ar dating, which produces
a different apparent age for each grain size population. Combined
with knowledge of the percentage of detrital illite these apparent
ages constrain the age of each end-member phase (that is, of
authigenic and detrital clays).

The success of our approach is demonstrated in a suite of gouge
samples from the Lewis thrust in the southernmost Canadian
Rockies (Gould dome near Crowsnest pass)11±13. This site was
selected because faulted mudstone and bentonite units produce
excellent outcrops of clay-rich gouge and the geologic age of faulting
is reasonably well de®ned. The oldest age for motion on this fault is
de®ned by the age of the youngest footwall sediments, which are
Maastrichtian in age (,65 Myr). The youngest age for thrusting in
the area is based on stratigraphic and structural characteristics of
early Eocene deposits and is limited by the age of normal faults that

cut the thrust and associated middle Eocene epoch (,48 Myr)
deposits11±13. To the south, in the Rocky Mountain foreland of
Wyoming, the latest foreland thrusting is also considered to be early
Eocene in age13,14.

Three grain size fractions from two sites of the Lewis thrust near
Crowsnest pass were prepared15. The properties of the samples are
listed in Table 1 and the corresponding Ar spectra are shown in
Fig. 1. Two samples were prepared from the ®nest grain size fraction
and show excellent repeatability. X-ray diffraction analysis shows
the Lewis thrust gouge samples to be mixtures of authigenic illite in
illite/smectite and discrete detrital illite (mica). Transmission elec-
tron microscopy shows that smectite away from the contact is
replaced by illite-rich mixed-layer illite/smectite and occasional
discrete illite near the contact16. The Ar data similarly display
features that are characteristic of mixed-layer illite/smectite age
spectra. Ages start at approximately zero for the room temperature
`recoil' gas fraction, indicating that there was virtually no loss of
radiogenic 40Ar (ref. 17). Thus, the degree of 39Ar loss due to recoil is
based on the sample's structure and is not due to heating from
neutron irradiation. After the recoil fraction, ages climb gradually to
a level above the total gas age. 39Ar recoil may produce point defects
in the clay crystal structure, and is therefore likely to induce
enhanced diffusional loss18,19, which accounts for both the rise of
ages from zero and an `overshoot' in apparent ages in what might
normally be considered a plateau segment. Plateau ages can there-
fore only be used with well crystallized (epizonal grade) illite, where
the net loss of 39Ar due to recoil is trivial. We also see evidence in the
Ar spectra of increasing detrital mica with increasing grain size
fraction. Gouge samples show distinctive high age zones at the high-
temperature part of the age spectra, which is a feature also noted in
synthetic mixtures of clay components8 and Gulf coast shale
samples17.

Using modelling of X-ray spectra18, we determined the percentage
of discrete (detrital) illite (of total illite: %detrital � %authigenic �

100%) in each grain size population. Our previous efforts indicate
that these estimates have a 1±3% error; in our analysis we have
therefore used an average 62% error. Table 1 lists the data from
three size fractions of the two gouge samples. In Fig. 2 we plot
percentage detrital illite against the total gas age of the eight analyses
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Figure 1 Representative Ar age spectra of clays in samples at the Lewis thrust for three

grain size populations. The ®rst fraction in each run is the gas released when the quartz

capsule is broken, and represents the gas lost by the sample during neutron irradiation.

This `recoil' gas fraction is always nearly zero in apparent age, meaning that 39Ar is

released during irradiation due to recoil, but radiogenic 40Ar is not. The amount of recoil
39Ar varies from about 10% to 30% of the total, with the ®ne-grained samples having a

higher percentage loss. This is expected, owing to their higher surface area to volume

ratios, which tends to control the recoil loss mechanism. Apparent ages tend to increase

at higher-temperature steps, especially in the coarse-fraction samples. We interpret this

as representing the outgassing of relatively well crystallized mica from the host rocks. Fine

fractions are ,0.02 mm (black boxes), medium are 0.2±0.02 mm (grey boxes) and

coarse are 2±0.2 mm (white boxes). Errors are 61j. Sample numbers correspond to

data in Table 1.

Table 1 Lewis thrust gouge data

Sample I in I/S
(%)

Detr I
(%)

Ar/Ar(total)
(Myr)

.............................................................................................................................................................................

Bentonitic claystone at fault

104G-c 70 57 129.6 6 0.4
104G-m 83 21 81.3 6 0.4
104G-f 85 12 67.5 6 0.1
104G-f2 85 12 67.2 6 0.2
.............................................................................................................................................................................

Bentonitic claystone 10 cm from fault

102E-c 69 73 133.0 6 0.4
102E-m 80 39 94.6 6 0.4
102E-f 75 18 72.3 6 0.1
102E-f2 75 18 72.0 6 0.3
.............................................................................................................................................................................

The table shows percentage of illite in mixed-layer illite/smectite (I/S), percentage of detrital
(discrete, 2M1) illite (Detr I), and total gas Ar ages in Myr (Ar/Ar(total)) for three size fractions of
fault gouge samples). Corresponding spectra are shown in Fig. 1.
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of gouge and the best ®t line through these data. The line is an error-
weighted least-squares linear regression taking into account mea-
surement errors in both the x and y coordinates. The actual ®t was
done on the function exp�l t� 2 1, which is a linear function of the
radiogenic 40Ar to K ratio.

Whereas we observe a large variation in the detrital illite compo-
nent (ranging from 12±73%) and total gas age (67±133 Myr) in
the samples, the results plot along a well de®ned line with a high
degree of precision (R2 � 0:96, mean of squared weighted deviates
MSWD � 4:8; Fig. 2). The quoted errors are 1j and include both
a priori measurement errors and scatter about the best ®t linear
regression. Including error estimates for both detrital illite deter-
mination and standard Ar analysis error, we derive a lower intercept
age at 0% detrital illite of 51:5 6 3:5 Myr ago (early Eocene), which
agrees well with geologic evidence for late movement on the Lewis
thrust13. The upper intercept of the regression line is calculated
as 171:5 6 6:2 Myr ago, which de®nes a sample containing
100% detrital material; that is, the `age' of detrital micas. This
middle Jurassic period age represents the mean age of uplift of the
source terrain through the ,280 8C isotherm, which occurred
during exhumation of the internal core of the Cordilleran
orogen11. The approximate 52 Myr age of latest contractional fault-
ing in the Canadian Cordillera, combined with geologic evidence
for the onset of regional extension soon afterward13, requires
tectonic processes that allow a dramatic change in stress regime
over a period of no more than a few million years. This supports the
view that the onset of extension in the Cordillera re¯ects a change
in slab-orogenic lithosphere coupling from delamination or a new
subduction geometry20, rather than more gradual deeper mantle or
lithospheric weakening processes.

Radiometric dating of near-surface faulting is possible by
combined X-ray and Ar analysis of clay separates from fault
gouge. X-ray analysis constrains the ratio of authigenic/detrital

material, while modern Ar analysis permits radiometric dating of
sub-milligram grain-size fractions. This approach extends reliable
dating of crustal deformation to near-surface conditions, which
will greatly facilitate the study of crustal evolution and regional
tectonics. Because our method also gives the (cooling) age of
the source area of the detrital material, it further adds the
opportunity to constrain the uplift history and sedimentary
source of continental regions. M

Methods
In the vacuum-encapsulation method of Ar dating, the sample is in a fused silica vial that is
evacuated to high vacuum and sealed. The capsule is then irradiated in a nuclear reactor
and any recoiled 39Ar is trapped within the capsule. In some applications, the whole
capsule is fused and the experiment is functionally equivalent to a K±Ar analysis. In
others, the capsule is cracked under vacuum so that the recoiled gas could be analysed
separately, and the samples are then step-heated. The percentage of recoiled 37Ar
(produced by 40Ca�n;a� !37 Ar) is equivalent to the percentage of 39Ar released6, despite
the fact that 37Ar is expected to travel about 2.5 farther than 39Ar recoils, on the basis of
conservation of momentum arguments (analogous to illite). We then realized that there is
signi®cant redistribution of recoiled Ar atoms from grain to grain, and that nanometre-
scale features determine retention of 39Ar. Illite from shales and bentonites of the Welsh
Basin and New York State7, con®rming earlier ®ndings, show an excellent correlation
between the illite XRD peak width (D2£) and percentage of 39Ar lost due to recoil. The
D2£ value, called illite crystallinity, is a function of the mean illite diffracting domain
thickness (that is, the average number of 1.0-nm illite layers per particle or packet). The
advantages of vacuum-encapsulated 40Ar/39Ar dating over the K±Ar method9,10,21,22 are: (1)
that it signi®cantly reduces the sample size requirements from ten to hundreds of mg to
sample sizes below 1 mg for the 40Ar/39Ar method; (2) that it avoids possible `nugget'
effects, where the two separate aliquots for K and Ar analysis might not be representative of
(sub-)milligram samples, because the 40Ar/39Ar method measures both radiogenic 40Ar
and 39Ar (a proxy for K) on the same sample; and (3) that the precision of analysis for
40Ar/39Ar is signi®cantly better than for K±Ar methods. Some studies have found that for
pure illite or illite/muscovite samples, ages calculated omitting the recoil gas can correct
for 40Ar lost owing to structural defects. However, it was demonstrated that for mixed-
layer illite/smectite this is an overcorrection17, and therefore we use the total gas age that
includes the recoil gas fraction.

Our Illite Age Analysis (IAA) method capitalizes on the inherently variable ratio of
the detrital and authigenic components in different grain size fractions. The detrital
mica component is characterized by 2M1 polytype, whereas the authigenic form is 1M/
1Md polytype (typically mixed-layer illite/smectite) in low-grade shales and
mudstones9. 2M1 mica is considered to be detrital clay as its crystallization temperature
exceeds ,280 8C (ref. 23). The authigenic/detrital ratio is obtained through iterative
modelling of the X-ray diffraction patterns of powdered samples using modi®ed
versions of the programs NEWMOD and WILDFIRE22,24±26. Using standard Stoke's Law
settling techniques, we separate clay grain size fractions of 2±0.2 mm, 0.2±0.02 mm and
,0.02 mm, from which we determine the authigenic/detrital ratio through X-ray
diffraction.
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The Middle Awash study area of Ethiopia's Afar rift has yielded
abundant vertebrate fossils (< 10,000), including several hominid
taxa1±4. The study area contains a long sedimentary record span-
ning Late Miocene (5.3±11.2 Myr ago) to Holocene times. Exposed
in a unique tectonic and volcanic transition zone between the
main Ethiopian rift (MER) and the Afar rift, sediments along the
western Afar rift margin in the Middle Awash provide a unique
window on the Late Miocene of Ethiopia. These deposits have now
yielded the earliest hominids, described in an accompanying
paper5 and dated here to between 5.54 and 5.77 Myr. These
geological and palaeobiological data from the Middle Awash
provide fresh perspectives on hominid origins and early evolu-
tion. Here we show that these earliest hominids derive from
relatively wet and wooded environments that were modulated

by tectonic, volcanic, climatic and geomorphic processes. A
similar wooded habitat also has been suggested for the 6.0 Myr
hominoid fossils recently recovered from Lukeino, Kenya6. These
®ndings require fundamental reassessment of models that invoke
a signi®cant role for global climatic change and/or savannah
habitat in the origin of hominids.

The western rift margin is more than 30-km wide, and drops in
elevation from greater than 2,500 m on the plateau to about 600 m
at the rift ¯oor. It is attenuated, with east-dipping, distinct arcuate
antithetic morphology from fault displacement in a tectonic trans-
fer zone between the NNW- and NNE-trending Red Sea and MER
tectonic domains, respectively7,8 (Fig. 1, inset). Zones of broad
warping along rift margins are typical of transfer zones in exten-
sional regions such as the east African rift system7. The transfer zone
is permeated by dike swarms9, and such magma ¯ux and dike
injection along steep boundary faults during rifting probably
increased geothermal gradient, ductile deformation and crustal
separation in the southern Afar rift margin. The close association
between rifting and development of transfer zones exerts signi®cant
in¯uence on structural patterns and synrift sedimentation7. The
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Figure 1 Location map showing measured sections along the western rift margin of the

Middle Awash region of the southern Afar rift. Map based on Landsat Thematic Mapper

imagery. Complex linear and arcuate NE-trending and transverse faulting is apparent

along the rift margin. The broad rift margin and rift ¯oor are shown by darker and lighter

shades, respectively. Other hominid sites within the Middle Awash study area are

located at Aramis (4.4 Myr; Ardipithecus ramidus), Maka (3.4 Myr; Australopithecus

afarensis), Bouri (2.5 Myr; Australopithecus garhi) and Bodo (0.64 Myr; Homo).
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