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Abstract

Human umbilical cord mesenchymal stromal cells (hUCMSCs) have recently shown the capacity
to differentiate into multiple cell lineages in all three embryonic germ layers. The osteogenic
differentiation of hUCMSCs in monolayer culture has been reported, while the differentiation in
three-dimensional biomaterials has not yet been reported for tissue-engineering applications. Thus,
the aim of this study was to evaluate the feasibility of using hUCMSCs for bone tissue engineering.
hUCMSCs were cultured in poly(L-lactic acid) (PLLA) scaffolds in osteogenic medium (OM) for
3 weeks, after which the scaffolds were exposed to several different media, including the OM, a
mineralization medium (MM) and the MM with either 10 or 100 ng/ml insulin-like growth factor
(IGF)-1. The osteogenic differentiation was confirmed by the up-regulation of Runx2 and OCN,
calcium quantification and bone histology. Switching from the OM to the MM promoted collagen
synthesis and calcium content per cell, while continuing in the OM retained more cells in the
constructs and promoted higher osteogenic gene expression. The addition of IGF-1 into the MM had
no effect on cell proliferation, differentiation and matrix synthesis. In conclusion, hUCMSCs show
significant potential for bone tissue engineering and culturing in the OM throughout the entire
period is beneficial for osteogenic differentiation of these cells. Copyright  2009 John Wiley &
Sons, Ltd.
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1. Introduction

Bone tissue engineering is a promising interdisciplinary
field, in which cells can be integrated into biomaterials
to provide a substitute for bone grafts. Indeed, human
bone marrow mesenchymal stromal cells (hBMSCs) have
been translated into clinical trials via a tissue-engineering
approach to treat bone defects successfully in a 7 year
clinical trial (Quarto et al., 2001; Marcacci et al., 2007).
However, there are some known disadvantages associated

*Correspondence to: Michael S. Detamore, University of
Kansas, Department of Chemical and Petroleum Engineering,
4132 Learned Hall, 1530 W 15th Street, Lawrence, KS 66045,
USA. E-mail: detamore@ku.edu

with hBMSCs, such as the relative number of hBMSCs in
the marrow, a limited proliferation ability and inferior
differentiation potential in aged individuals (Mueller and
Glowacki, 2001). Moreover, the invasive and painful
harvesting procedure may cause donor site morbidity
and complications (Lee et al., 2007).

Recent evidence has shown that human umbilical cord
mesenchymal stromal cells (hUCMSCs) are a primitive
and multipotent stromal population that shares similar
characteristics with hBMSCs (Can and Karahuseyinoglu,
2007; Troyer and Weiss, 2008). hUCMSCs are isolated
from the Wharton’s jelly of umbilical cords, a tissue
routinely discarded after delivery. They are non-
haematopoietic cells that can adhere to plastic surfaces
for in vitro expansion and have many surface markers
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that are identical to those of hBMSCs, such as CD73,
CD90, and CD105 (Wang et al., 2004; Sarugaser et al.,
2005; Lu et al., 2006; Fu et al., 2006; Karahuseyinoglu
et al., 2007; Campard et al., 2008). They are multipotent,
differentiating along a variety of cell lineages in all germ
layers, such as chondrocytes, osteoblasts, adipocytes,
myocytes, neurons and hepatocytes (Wang et al., 2004;
Sarugaser et al., 2005; Lu et al., 2006; Fu et al., 2006;
Karahuseyinoglu et al., 2007; Campard et al., 2008).
Apart from the similarity to hBMSCs, hUCMSCs have
a number of particular advantages over hBMSCs, such as
extensive availability and supply, no donor site morbidity,
fast proliferation and great in vitro expansion ability,
similar to other fetal stem cells. All of these features
render hUCMSCs attractive for tissue engineering as a
mesenchymal stromal cell (MSC) source.

hUCMSCs have demonstrated their osteogenic differ-
entiation in two-dimensional (2D) monolayer culture
after exposure to chemical signals containing dexam-
ethasone and β-glycerophosphate (Wang et al., 2004;
Sarugaser et al., 2005; Lu et al., 2006; Karahuseyinoglu
et al., 2007; Wu et al., 2007; Baksh et al., 2007) and
osteoinductive biomaterials such as demineralized bone
matrix (Honsawek et al., 2006). However, most stud-
ies regarding osteogenic differentiation of hUCMSCs are
reported briefly in a qualitative way, with histological
stains such as Alizarin red S and von Kossa (Wang
et al., 2004; Sarugaser et al., 2005; Lu et al., 2006;
Karahuseyinoglu et al., 2007; Wu et al., 2007; Baksh
et al., 2007). In addition, osteogenic differentiation of
hUCMSCs in three-dimensional (3D) biomaterials in vitro
is scarcely explored in the literature, with only one study
using an osteoinductive material, polycaprolactone trical-
cium phosphate (Zhang et al., 2008). In our group, we
have previously shown that osteogenic differentiation can
be achieved in polyglycolic acid (PGA) scaffolds, although
the rapid degradation rate of PGA led to a loss of cells and
construct integrity (unpublished data). Like PGA, poly(L-
lactic acid) (PLLA) has been extensively investigated in
tissue-engineering applications, with good biodegradabil-
ity, biocompatibility and mechanical properties, but is
more slowly degraded. This slower degradation is more
desirable in vitro, although the ideal degradation rate
in vivo may lie somewhere between PGA and PLLA degra-
dation rates. In a phosphate-buffered saline (PBS) solution
at 37 ◦C, quenched PGA demonstrated a rapid decrease in
mass after 10 days (Hurrell and Cameron, 2001), while
in another study (Yuan et al., 2002) PLLA meshes had
almost no loss of mass after 35 weeks in the same buffer.
Therefore, non-woven PLLA meshes were used in the cur-
rent study as support for cell growth and bone formation
during the in vitro osteogenesis of hUCMSCs.

The majority of bone tissue engineering studies using
BMSCs have been conducted with an osteogenic medium
(OM) throughout the entire culture period (up to 6 weeks)
(Yoshimoto et al., 2003; Meinel et al., 2004), although
osteogenic differentiation of BMSCs can be accomplished
in 2–3 weeks, with extensive mineralization (Jaiswal
et al., 1997; Pittenger et al., 1999; Sumanasinghe et al.,

2008). However, the differentiation factors, including
dexamethasone and 1α,25-dihydroxyvitamin D3, may
inhibit cell proliferation (Walsh et al., 2001; Atmani
et al., 2003; Chen, 2004; Kim et al., 2006) for both
BMSCs and osteoblasts. Moreover, it is unknown how
the OM affects differentiated MSCs. Thus, in the current
study, we cultured hUCMSCs with the OM in slowly
degrading PLLA scaffolds for 3 weeks, and then removed
osteogenic components (dexamethasone and vitamin D3)
to expose pre-differentiated hUCMSCs to a mineralization
medium (MM) and an insulin-like growth factor (IGF)-1-
containing MM for an additional 3 weeks. The negative
and positive controls were none or continued exposure
to osteogenic components, respectively. The goal of this
study was to examine in vitro osteogenesis with both
qualitative and quantitative data and to determine the
effects of the medium shift on osteogenically induced
hUCMSCs.

2. Materials and methods

2.1. Isolation and culture of hUCMSCs

IRB approval was obtained for human umbilical cord
collection and hUCMSC isolation from KU-Lawrence (No.
15 402) and the KU Medical Center (No. 10 951). In
this study, two human umbilical cords (both female, 15
and 23 cm long) were first cut into 3–5 cm segments,
from which vessels were then removed. Cord segments
were cut into 1–2 mm3 pieces and incubated at 37 ◦C in
0.75 mg/ml type II collagenase (298 U/mg; Worthington
Biochemical; Lakewood, NJ, USA). A 5 h incubation
yielded a homogeneous gelatinous solution, which was
then diluted (1 : 8) in sterile phosphate-buffered saline
(PBS). hUCMSCs were obtained by centrifugation and
then resuspended in an expansion medium containing
low-glucose Dulbecco’s modified Eagle’s medium (DMEM-
LG; Invitrogen, Carlsbad, CA, USA), 10% MSC-qualified
fetal bovine serum (FBS; Stem Cell Technologies,
Vancouver, BC, Canada) and 1% penicillin/streptomycin
(PS; Invitrogen). Cells were plated in cell culture flasks
at 8000 cells/cm2, expanded to 80–90% confluence
(recorded as P0 cells) and detached by 1 × trypsin
(Invitrogen). Following a previously described procedure
(Wang et al., 2008a), P0 cells were cryogenically stored
in liquid nitrogen at −196 ◦C for future use.

2.2. Scaffold preparation, cell seeding and
differentiation

hUCMSCs were thawed and expanded in the expansion
medium to P4 for cell seeding. Cylinder-shaped scaffolds
(n = 83), 5 mm in diameter and 2 mm in thickness, were
cut out of non-woven PLLA meshes (>95% porosity and
45–55% crystallinity; Biomedical Structures, Warwick,
RI, USA). The scaffolds were sterilized in a sterile pouch,
using ethylene oxide, and then placed in a fume hood.
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Before seeding, scaffolds were wetted with sterile-filtered
ethanol followed by two PBS washes, and then immersed
for 1 day in the expansion medium. P4 hUCMSCs were
resuspended in the expansion medium and then seeded
at 25 × 106 cells/ml of scaffold into PLLA scaffolds, using
an orbital shaker at 150 rpm according to a previously
described protocol (Wang et al., 2008b). The expansion
medium was referred as to the control medium (CM)
over the following culture period. After a 2 day seeding
period (week 0), some of the scaffolds were continuously
cultured in the CM and the remaining ones were cultured
in the OM by replacing the CM with 1.5 ml OM, consisting
of the CM supplemented by 100 nM dexamethasone (DEX;
Sigma, St. Louis, MO, USA), 5 mM β-glycerophosphate
(β-GP; Sigma), 10 nM 1α,25-dihydroxyvitamin D3 (VD3;
Biomol International, Plymouth Meeting, PA, USA) and
50 µg/ml ascorbic acid 2-phosphate (AA2P; Sigma). After
3 weeks there were five different culture conditions:
(a) continue culture in the CM; (b) continue culture in the
OM; (c) change culture from the OM to the MM, which
consisted of the OM without DEX and VD3; (d) change
culture from the OM to the MM with 10 ng/ml IGF-1
(I10); or (e) change culture from the OM to the MM with
100 ng/ml IGF-1 (I100). 1 ml medium was changed every
other day, except for the complete replacement at weeks
0 and 3.

2.3. Biochemical assays

Constructs (n = 4) were homogenized in 1.2 ml papain
solution (120 µg/ml) and then incubated at 60 ◦C
overnight. A PicoGreen kit (Invitrogen) was used to
determine DNA contents, according to the manufacturer’s
protocol. A hydroxyproline (HYP) assay was used to
obtain HYP content, using a previously described protocol
(Wang et al., 2008a). A conversion factor of 8.5 pg
DNA/cell was used to convert DNA content to cell number,
and a conversion factor of 11.5 can be used to convert
HYP mass to collagen mass, based on our preliminary
studies.

Calcium content was quantified by an OCPC (ortho-
cresolphthalein complex one) method as described in
the literature (ter Brugge and Jansen, 2002). Constructs
(n = 4) were homogenized and suspended in 1 N acetic
acid (Sigma) overnight. 50 µl of this culture sample or
a standard solution (0–100 mg/ml CaCl2; Sigma) was
added into 250 µl of working solution. The working
solution contained 0.05 mg/ml OCPC solution (1 mg/ml
OCPC, 0.0063 N KOH and 0.0031 N acetic acid; Sigma),
0.74 M ethanolamine/boric acid buffer, pH 11 (Sigma)
and 2% 8-hydroxyquinoline (5 g in 100 ml 95% ethanol;
Sigma). This mixture was incubated at room temperature
for 10 min and then read at 575 nm.

2.4. Histology

Frozen sections (10 µm, n = 2) were used for histological
analysis. Alizarin red S and von Kossa staining were used

to visualize the mineralization. Sections were fixed in
10% phosphate-buffered formalin for 20 min and then
rinsed in ultrapure water before staining. For Alizarin
red S staining, sections were incubated with 2% Alizarin
red S reagent, pH 4.1–4.3 (Sigma) for 5 min. For von
Kossa staining, sections were incubated with 1% silver
nitrate solution (Sigma) under ultraviolet light for 20 min
and then with 5% sodium thiosulphate (Sigma) for 5 min
to remove unreacted silver. Finally, all sections were
rinsed in ultrapure water and dehydrated through graded
alcohols (95% and 100%, twice each).

2.5. RNA isolation and real-time RT–PCR

Total RNA was extracted from cells using 1 ml Tri-
zol reagent (Invitrogen), following the manufacturer’s
instructions (n = 4). Total RNA concentration and purity
were determined on a spectrophotometer (Nanodrop;
Wilmington, DE, USA). The mRNA samples were then
converted to cDNA using a high-capacity cDNA archive
kit (Applied Biosystems, Foster City, CA, USA), follow-
ing the supplier’s procedure. TaqMan gene expression
assay kits (Applied Biosystems) were used for transcript
levels of type I collagen (CI), runt-related transcrip-
tion factor 2 (Runx2), and osteocalcin (OCN), using a
real-time reverse transcriptase polymerase chain reac-
tion (RT–PCR) in an Applied Biosystems 7500 system.
TaqMan gene expression assay kits (Applied Biosystems)
were Hs00164004 m1 for CI, Hs00231692 m1for Runx2,
Hs01587813 g1 for OCN and Hs99999905 m1 for glycer-
aldehyde 3-phosphate dehydrogenase (GAPDH). A 2−��Ct

method was used to evaluate relative the mRNA expres-
sion level for each target gene (Livak and Schmittgen,
2001). Briefly, �Ct values were obtained by the differ-
ence between the Ct values of target genes and the GAPDH
gene. They were then normalized by subtracting the �Ct
value of the calibrator sample, their respective Ct values
in the CM groups, to obtain ��Ct values.

2.6. Statistical analysis

All data were expressed as means ± one standard
deviation (SD) and analysed by one-way ANOVAs,
followed by Tukey’s Honestly Significant Difference post
hoc tests. Statistical significance was determined by a
statistical threshold of p < 0.05.

3. Results

3.1. Cell number

Over the 6 week culture period, cell number decreased
in all groups (p < 0.05) compared to week 0 (Figure 1).
Despite the cell loss throughout the culture period, the
OM groups at weeks 3 and 6 retained 1.67 and 1.50
times more cells in the constructs than the CM groups,
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Figure 1. Cell number per construct (n = 4). CM, control
medium; OM, osteogenic medium; MM, mineralization medium;
I10, MM containing 10 ng/ml IGF-1; I100, MM containing
100 ng/ml IGF-1. Cell number decreased with time, while the OM
group retained more cells than other groups at each time-point.
∗Statistically significant difference (p < 0.05) from week 0.
#Statistically significant difference (p < 0.05) from the OM
group at weeks 3 or 6.@Statistically significant difference
(p < 0.05) in the OM group between weeks 3 and 6. Error bars
represent standard deviation (SD). A conversion factor of 8.55
pg DNA/cell was used to convert DNA content to cell number

respectively (p < 0.05). During weeks 0–3, the cell
number decreased by 46% in the CM group (p < 0.05),
while only decreasing by 10% in the OM group, without
statistical significance. In contrast, during weeks 3–6, the
cell number decreased in the CM group only by 10%
without statistical significance, while decreasing by 19%
in the OM group (p < 0.05). The medium change at week
3 (from OM to MM, I10, and I100) caused a decrease
in cell number (p < 0.05) and there were no significant

differences in cell number between the MM, I10 and I100
groups.

3.2. HYP content

In all groups except the CM group, the HYP content
per construct and per cell increased over time, with a
substantial leap during weeks 0–3 (p < 0.05) (Figure 2A,
B). In the CM groups, the HYP content per construct did
not vary over the 6 week culture period and the HYP
content per cell had a slight increase, without statistical
significance. The OM group had 4.2 and 3.5 times more
HYP per construct than the CM group at weeks 3 and
6, respectively (p < 0.05), and had 2.5 and 2.4 times
more HYP per cell than the CM group at weeks 3 and
6, respectively (p < 0.05). The shift from OM to MM,
I10 or I100 did not affect the total HYP content per
construct, while this change did lead to an upregulation
of HYP synthesis, given that the HYP content per cell
was approximately 50% greater in the MM, I10 and I100
groups compared to the OM group at week 6 (p < 0.05).
Like the cell number, HYP synthesis was not influenced
by the addition of IGF-1 into the MM.

3.3. Calcium content

There was a considerable increase in calcium content per
construct and per cell with time in all groups over the
culture period (p < 0.05) (Figure 2C and 2D). Calcium
deposition was also observed in the CM group, albeit at

Figure 2. Hydroxyproline (HYP) content per construct (A) and per cell (B) and calcium content per construct (C) and per cell
(D) (n = 4). CM, control medium; OM, osteogenic medium; MM, mineralization medium; I10, MM containing 10 ng/ml IGF-1;
I100, MM containing 100 ng/ml IGF-1. (A, B) The OM group had a substantial increase in HYP content per construct and per cell
during weeks 0–3 and the CM group had less HYP content than the other groups. The OM group had a comparable HYP content
per construct (A) to the MM and IGF groups, while it had less HYP per cell than the MM and IGF groups (B). (C, D) The calcium
content per construct and per cell increased over time in all groups and the OM group had more calcium than the CM group. The
MM and I100 groups had more calcium per cell than the OM group, while the calcium per construct was comparable among them.
∗Statistically significant difference (p < 0.05) from week 0. #Statistically significant difference (p < 0.05) from the OM group at
weeks 3 or 6.@Statistically significant difference (p < 0.05) between weeks 3 and 6. Error bars represent SD
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Figure 3. Alizarin red S staining and von Kossa staining at 3 and 6 weeks (n = 2). CM, control medium; OM, osteogenic medium;
MM, mineralization medium; and I100, MM containing 100 ng/ml IGF-1. Both types of staining revealed positive mineralization
with time. Note that the peripheral area in the constructs had stronger staining than the central area. Scale bar = 500 µm

a low level. However, the OM group did exhibit more
calcium per construct and per cell than the CM group
at weeks 3 and 6 (p < 0.05). At week 6, there was no
significant difference in calcium content per construct
among the OM, MM, I10 and I100 groups, while the
MM and I100 groups had 1.32 and 1.29 times more
calcium content per cell than the OM group, respectively
(p < 0.05). No significant differences were observed in
calcium content per cell among the MM, I10 and I100
groups.

3.4. Histology

Alizarin red S staining was consistent with von Kossa
staining, both of which revealed a positive mineral
deposition that increased with time (Figure 3). The CM
groups had weaker staining than the OM groups, which
was consistent with the calcium quantification. It must be
noted that there was a stronger staining at the peripheral
area of the constructs than inside the constructs. There
were no discernible differences among the OM, MM and
I100 groups.

3.5. Gene expression levels of type I collagen
(CI), Runx2 and osteocalcin (OCN)

Runx2 and OCN gene expression was upregulated in
the OM group (p < 0.05) (Figure 4). There were no
statistically significant differences in CI gene expression
among all groups. After a change from the OM, the MM
group had a lower gene expression of CI, Runx2 (p < 0.05)
and OCN when compared to continuing treatment with
the OM medium. The addition of IGF-1 into the MM did

Figure 4. Gene expression (normalized to the CM group)
for type I collagen (CI), runt-related transcription factor 2
(Runx2) and osteocalcin (OCN) at week 6 (n = 4). CM, control
medium; OM, osteogenic medium; MM, mineralization medium;
I10, MM containing 10 ng/ml IGF-1; I100, MM containing
100 ng/ml IGF-1. The OM group had higher Runx2 and OCN
mRNA levels than the other groups. # Statistically significant
difference in Runx2 gene expression between the OM and CM
groups (p < 0.05). &Statistically significant difference in OCN
gene expression between the OM group and all other groups
(p < 0.05). Error bars represent SD

not statistically affect the gene expression level of Runx2,
OCN or CI.

4. Discussion and conclusion

In the field of tissue engineering, it is critical to select
a promising cell source that is easy to obtain and
provides sufficient cell numbers. hUCMSCs undoubtedly
meet these requirements. There is an abundant supply
of umbilical cords, with 4.1 million births in the USA
alone in 2005 (Martin et al., 2007). After cell isolation,
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hUCMSCs can achieve a 300-fold cell increase in
seven passages while maintaining differentiation potential
(Karahuseyinoglu et al., 2007). In vivo transplantation
of these cells has demonstrated their regenerative
effects on brain injuries and retinal disease in animal
models, while immunorejection was not observed in
these studies (Jomura et al., 2007; Lund et al., 2007).
Previous osteogenic differentiation studies with hUCMSCs
have been mainly performed in monolayer (2D) (Wang
et al., 2004; Sarugaser et al., 2005; Lu et al., 2006;
Karahuseyinoglu et al., 2007; Wu et al., 2007; Baksh
et al., 2007). In the current study, we investigated the
osteogenesis of hUCMSCs in vitro in a 3D biomaterial-
based environment, and the effects of different media on
osteogenic differentiation, in order to evaluate the use of
hUCMSCs for bone tissue engineering.

The Runx2 gene is known to play an essential role
in osteoblast differentiation and bone formation (Ducy
et al., 1997; Schroeder et al., 2005). The disruption of
Runx2 leads to the termination of intramembranous
and endochondral ossification, due to the maturational
arrest of osteoblasts (Komori et al., 1997). The in vitro
osteogenic differentiation of MSCs is accompanied by
the upregulation of Runx2 gene expression at the early
stage (Tou et al., 2003). The OCN gene is mainly
expressed by mature osteoblasts and is responsible for
mineralization at the late stage of differentiation. Exposed
to the OM, hUCMSCs did show an upregulation of
the gene expression of Runx2 and OCN compared to
the CM group, indicating osteogenic differentiation of
these cells. Compared to the MM, I10 and I100 groups,
the OM is also beneficial for osteogenic differentiation
due to the higher Runx2 and OCN gene expression.
The positive staining of Alizarin red S and von Kossa
confirmed the presence of mineralization, suggesting
that the hUCMSCs were progressing along an osteogenic
lineage. In contrast to mineralization, collagen content
increased mainly between weeks 0–3 and was maintained
between weeks 3–6. In native normal bone, the nucleation
and development of mineral crystals interacts principally
with collagen (Landis, 1999). The abundant collagen
production may have contributed to the boost of
mineralization between weeks 3 and 6.

The OM also promoted cell proliferation and/or
inhibited cell loss compared to other media. This effect
was mainly due to the presence of DEX and VD3 in the
OM, rather than AA2P and β-GP, based on the observation
that the MM group had a comparable cell number range
with the CM group after switching the medium at week
3. A few studies have demonstrated an inhibitory effect
of either DEX or vitamin D3 on cell proliferation (Walsh
et al., 2001; Murata et al., 2004; Campbell et al., 1997),
although they can induce osteogenic differentiation
(Jaiswal et al., 1997; Partridge et al., 1980; Beresford
et al., 1980). In monolayer culture, we also observed in a
previous study that DEX inhibited hUCMSC proliferation
(unpublished data). Thus, the increase in cell number
with the OM group in the current study indicated that
the combination of DEX and VD3 might have a synergistic

effect on hUCMSC proliferation and/or survival. It must
be noted that this stimulation decreased with time, and
might reach a plateau in cell number similar to the CM
group after a longer culture period, which would be of
interest for future investigation.

The MM had no impact on the total collagen and
calcium content in the constructs, although these had
slightly higher collagen and calcium per cell. Moreover,
the shift from the OM to the MM led to a decrease
in osteogenic gene expression, including CI, Runx2 and
OCN. IGF-1 plays an important role as an anabolic agent
in bone development at all stages (Linkhart et al., 1996;
Ross et al., 1993; Kasukawa et al., 2004) and regulates
MSC proliferation and biosynthesis (Jeong et al., 2008;
Koch et al., 2005). In the current study, the addition
of IGF-1 into the MM had no beneficial effects on cell
proliferation, matrix production or gene expression. In
the future, the incorporation of IGF-1 at an earlier stage
and/or in addition to osteogenic signals, as opposed to in
lieu of them, might facilitate the osteogenic differentiation
of MSCs (Koch et al., 2005).

In summary, the results demonstrated the osteogenic
differentiation of hUCMSCs in PLLA scaffolds, with the
upregulation of bone-specific genes and mineral deposi-
tion, thus supporting the feasibility of applying hUCMSCs
to bone tissue engineering. Therefore, given the numer-
ous advantages over adult stem cells and the successful
osteogenesis in 3D biomaterials, hUCMSCs may be a
promising alternative for bone tissue engineering. A side-
by-side comparison between hUCMSCs and fibroblasts or
osteoblasts will be interesting and meaningful to further
evaluate the potential of hUCMSCs in bone tissue engi-
neering. In the current study, there was no advantage to
removing DEX and VD3 after 3 weeks, as in fact the only
group to retain these factors (i.e. the OM group) produced
a greater number of cells and expressed the highest level
of osteogenic genes. Future strategies may include earlier
introduction of IGF-1 and/or extended exposure of DEX
and VD3.
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