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ABSTRACT

p-adic Differential Operators on Automorphic Forms and Applications

by
Ellen E. Eischen

Co-Chairs: Christopher M. Skinner and Nicholas A. Ramsey

We construct certain C∞-differential operators and their p-adic analogues, which

act on (vector- or scalar-valued) automorphic forms on the unitary groups U(n, n).

We study properties of these operators, and we prove some arithmeticity theorems

using them. These differential operators are a generalization to the p-adic case of the

C∞-differential operators first studied by H. Maass and later studied extensively by

M. Harris and G. Shimura. They are a generalization to the vector-valued situation

of the p-adic differential operators constructed in the one-dimensional setting by N.

Katz. They should be useful in the construction of certain p-adic L-functions, in

particular p-adic L-functions attached to p-adic families of automorphic forms on

the unitary groups U(n)× U(n).
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CHAPTER I

Introduction

1.1 Motivation

Though the topic of this thesis is differential operators, the motivation comes

from the study of L-functions, in particular p-adic interpolation of special values of

L-functions attached to families of automorphic forms on the unitary groups U(n, n).

We now give some motivation leading up to an explanation of what these operators

do and why they are useful.

Among the most useful objects in number theory are L-functions. To various

objects X of arithmetic signifcance, one can attach an L-function L(s, X), an analytic

function that encodes arithmetic data. At certain special points, the values of many

L-functions are algebraic, up to a period, a well-determined transcendental factor.

Furthermore, special values of many L-functions satisfy a much stronger property:

their values at special points can be p-adically interpolated (after normalizing by a

period) by p-adic analytic functions, called appropriately enough p-adic L-functions.

These p-adic L-functions not only provide a useful tool for studying special values

of classical L-functions, but they also encode significant arithmetic data.

A useful feature of the p-adic theory is the possibility that the object X lies in a

p-adic family. The philosophy is, roughly speaking, that as X varies in a family the

1
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L-values L(s, X) should vary p-adically. For example, in 1986, H. Hida showed that

certain classical modular forms — specifically, p-ordinary (slope 0) Hecke eigenforms

— lie in p-adic families (Hida families) indexed by weight; that is, the eigenforms

in the family vary p-adic analytically as the weight varies p-adic analytically. Later,

Hida ([Hid93]) showed that given such a family {fk} of eigenforms, there is a two-

variable p-adic L-function that interpolates the values of Lfk
(s, χ) as s and k vary

p-adically. More recently, using techniques from rigid analytic geometry, R. Coleman

and B. Mazur showed that overconvergent positive slope modular forms also lie in

p-adic analytic families indexed by weight. In 2003, by extending the methods used

by Hida, A. Panchishkin ([Pan03]) constructed two-variable p-adic L-functions inter-

polating the values of Lfk
(s, χ) for families of positive slope eigenforms. Both Hida’s

and Panchishkin’s p-adic L-functions have applications to the Birch and Swinnerton-

Dyer Conjecture. In recent years, Hida’s construction has been generalized ([Hid98],

[TU99], [Hid02], [Hid04]) to families of ordinary automorphic forms on more general

groups, and Coleman’s construction has also been generalized to certain more general

groups, such as definite unitary groups ([Che04], [Buz04]). In [HLS06], M. Harris,

J.-S. Li, and C. Skinner initiated a project to attach a p-adic L-function L(s, f) to

Hida families on unitary groups.

Currently, there are limits on the extent to which the above constructions of p-adic

L-functions can be generalized to allow constructions of more general 2- or 3-variable

p-adic L-functions attached to families of automorphic forms. The differential oper-

ators constructed in this thesis are expected to ease these restrictions. Here are some

examples of advances that should be possible with the application of the differential

operators in this thesis:

1. As the introduction of [HLS06] notes (in the subsection titled “Why the present



3

construction is not altogether satisfactory”), they can only interpolate the L-

function at a fixed point s0; removal of this restriction requires the differential

operators that are the topic of this thesis.

2. No one has constructed p-adic L-functions attached to vector-valued automor-

phic forms, only scalar-valued automorphic forms. The differential operators

are expected to make this generalization possible.

3. To date, no one has constructed p-adic L-functions attached to families of non-

ordinary automorphic forms other than modular forms. The differential op-

erators should also make this possible. In fact, this project originated from

my attempt to construct (two- and three-variable) p-adic L-functions attached

to certain families of overconvergent automorphic forms on the unitary groups

U(n, n). This thesis can be viewed as a step in that project, which has turned

out to be more widely applicable.

The L-functions (and p-adic L-functions) discussed above are intimately tied

to certain Eisenstein series. In the one-dimensional case (i.e. Hecke characters),

Damarell’s formula expresses special values of L-functions attached to Hecke char-

acters in terms of a finite sum of special values of Eisenstein series. This is the

approach taken by Katz in [Kat78]. In higher dimensions, one can use the doubling

method1 to construct L-functions; this is the approach taken in [HLS06]. Through

the doubling method, one can express special values of L-functions in terms of a

finite sum of special values of Eisenstein series. Thus, if one can show that each of

the finitely many terms in the sum is algebraic (or p-integral, or lies in a desired

ring) up to a period, then one has shown that the special values of the L-function

are also algebraic (or p-integral, or lie in a specific ring).
1The doubling method – studied extensively by G. Shimura – is a higher-dimensional analogue of Damarell’s

formula and is a special case of the pullback methods discovered by P. Garrett ([Gar84]).
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In [Ser73], J.-P. Serre observed the possibility of using Eisenstein series to p-

adically interpolate special values of the Riemann zeta function and, more gener-

ally, of L-functions attached to totally real fields. Many constructions of p-adic

L-functions since then have also relied on p-adic interpolation of special values of

Eisenstein series, including [Kat77], [Kat78], [Pan03], and [HLS06]. In the case of

holomorphic Eisenstein series, the p-adic interpolation often takes place through p-

adic interpolation of Fourier coefficients. This approach is in general not sufficient,

though, because of the following issue: most special values of L-functions come from

non-holomorphic Eisenstein series, which do not have Fourier expansions. This is

closely related to the reason that the L-functions L(s, f) in [HLS06] are only p-

adically varied at a fixed point s = s0 (as mentioned above).

For the case of the unitary groups U(n, n), I have constructed p-adic differential

operators that can be used to solve this issue.2 These differential operators are a

p-adic analogue of a class of C∞-differential operators first studied by H. Maass

([Maa56], [Maa71]) and later studied extensively by G. Shimura ([Shi94], [Shi90],

[Shi84], [Shi81], [Shi81], [Shi84], [Shi00]) and M. Harris ([Har86], [Har81]). (In the

case of modular forms on the upper half plane, these C∞-differential operators are

the widely used operators g #→ y−k( ∂
∂z )(y

kg) that map a weight k modular form

g to a weight k + 2 modular form. More generally, they map a vector- or scalar-

valued automorphic function to an automorphic function of a different weight.) These

C∞-differential operators play an important role in Shimura’s proofs of algebraicity

properties of Eisenstein series and L-functions. Shimura’s proofs, however, do not

provide insight into p-adic properties.

For Hilbert modular forms (which are scalar-valued), N. Katz ([Kat78]) reformu-
2The material in this thesis also generalizes almost immediately to give a similar construction of differential

operators and similar results in the case of the symplectic groups Sp(n), and it should be relatively straightforward
to generalize to U(m, n).
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lates Shimura’s C∞-differential operators in terms of the Gauss-Manin connection

and the Kodaira-Spencer isomorphism. This algebraic-geometric approach is useful

because it allows Katz to construct a p-adic analogue of the C∞-differential opera-

tors for Hilbert modular forms. An algebraic geometric argument then shows that for

each of the p-adic differential operators D and each holomorphic automorphic form

f with p-integral Fourier coefficients, Df is p-integral (up to a period) at points cor-

responding to abelian varieties with complex multiplication (viewing automorphic

functions as sections of a sheaf on a Shimura variety, which is a certain moduli space

of abelian varieties); these are the only points whose values matter in the construc-

tion of L-functions. Katz also studies the coefficients of a q-expansion DE obtained

by applying a p-adic differential operator D to a classical Eisenstein series E; this

is useful for using the coefficients of the q-expansion of E to prove that DE can

be p-adically interpolated. I have generalized [Kat78] to the setting of automorphic

forms on U(n, n) and symplectic groups, including the more general case of vector-

valued forms. This should be useful for constructing some of the more general p-adic

L-functions mentioned above.

The p-adic interpolation of special values of L-functions is dependent in part upon

the following remarkable fact, which is an easy consequence of theorems we prove

using the differential operators: The differential operators allow one to show that the

values of a certain p-adic – in general non-algebraic – function at CM points over OCp

are in fact not only algebraic but also the same as the values of a closely related C∞

– in general non-holomorphic – function at CM points over OCp . Thus, special values

of pairs of seemingly unrelated functions (namely, a C∞ non-holomorphic function

and p-adic function) are meaningfully compared and shown to be equal.

The starting point for my construction and proofs is [Kat78]; however, the higher-
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dimensional, vector-valued situation is more complicated and involves several obsta-

cles not encountered in the one-dimensional case considered in [Kat78]. My gener-

alization involves a more delicate use of the Kodaira-Spencer morphism (which, for

the unitary case, is no longer an isomorphism) than in Katz’s situation. Also, unlike

in [Kat78], the action of the operator on q-expansions is no longer in terms of a

derivation on a commutative ring, but rather a map (in general, not a derivation) on

a ring that is in general non-commutative; I formulate the precise action of this map

on coefficients of vector-valued q-expansions so that the description of the resulting

coefficients might be used to study p-adic interpolation. (Similarly, there are other

instances in which a commutative ring in [Kat78] is replaced with a non-commutative

one in my situation.)

I have aimed to express the material in such a way here that it can easily be applied

to generalize some of the constructions of L-functions mentioned above. For example,

I have given formulas for the action of the differential operators on q-expansions,

which is crucial information if one is to try to p-adically interpolate q-expansion

coefficients (in order to p-adically interpolate L-functions, as described above). Along

the way, we obtain a higher-dimensional, vector-valued analogue of Ramanujan’s

operator q d
dq . I have also provided a detailed discussion of the Kodaira-Spencer

isomorphism in coordinates. To date, this does not appear elsewhere in the literature,

but it is important for understanding the action of the differential operators at the

level of coordinates (rather than just as abstract maps). Furthermore, this thesis

provides a user’s guide to q-expansions and the “Mumford object,” a generalization of

the Tate curve to the higher dimensional setting. Unlike the situation for Tate curves,

which are used explicitly in computations and described in detail in coordinates over

C, the current literature ([Lan08]) on Mumford objects and algebraic q-expansions
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is at the level of existence statements. Since our intended applications, as well as

other unrelated projects ([SU09]) require a more explicit description of the Mumford

object, we provide one here. While it is in some ways simpler, the simplicity of the

one-dimensional case (i.e. Tate curves, as discussed in [Kat78] and [Kat73b]) obscures

the larger picture. In fact, many details of the one-dimensional case become more

transparent in the arbitrary-dimension situation.

1.2 Notation

We now introduce some notation that we will use throughout the paper. Our

setup is exactly the same as the setup in Sections 0 and 1 of [HLS06], though our

notation is not always the same. We have tried to be as consistent as possible with

the notation of [Shi00], [Har81], [Kat78], [HLS06], and [Hid04]. Absolute consistency

is frequently impossible, though, since the notation often varies from one source to

the next.

Throughout the paper, fix a quadratic imaginary extension K of Q, and let OK

denote the ring of integers in K. Fix a CM type Σ of K, i.e. an embedding

K ↪→ C.(1.1)

Throughout this paper, we associate K with its image in C under the embedding

(1.1). Let δK denote the discriminant of K. Unless otherwise noted, we will always

use R0 to denote an OK-algebra. Let α be a generator of OK over Z. The reason for

fixing this element α is that it makes various examples later on more transparent.

In cases where it is possible, we note that it is easiest to follow the examples if one

takes α to be purely imaginary. One may also find it helpful to keep in mind the

case where α = i =
√
−1.
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Let Q̄ denote the algebraic closure of Q in C, and write

incl∞ : Q̄ ↪→ C

to denote the given embedding of Q̄ in C.

Fix a prime ideal (p) in Z that splits completely in K. We write Af to denote

the finite adeles of Q, and we write Ap
f to denote the restricted product

∏′ Ql over

finite primes l '= p. Let Cp denote the completion of an algebraic closure of Qp, and

fix an embedding

inclp : Q̄ ↪→ Cp.

Given an embedding

σ : K ↪→ Q̄,

we write σ∞ to denote the embedding

incl∞ ◦ σ : K ↪→ C,

and we write σp to denote the embedding

inclp ◦ σ : K ↪→ Cp.

We write σ̄ to denote the composition of the embedding σ with complex conjugation.

We now establish some notation for modules. For any module M , we denote

∑∞
e=0 M⊗e by T (M). From now on, for any module M , we associate

Sym(M) =
∑

e

SymeM

with its image in

T (M) =
∑

e

T e(M)
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via the inclusions

Syme(M) ↪→ M⊗e(1.2)

x1 · · · · · xe #→
∑

s∈Se

xs(1) ⊗ · · · ⊗ xs(e),

where S is the group of permutations of 1, . . . , e. Let r be a positive integer, and let

V be a vector space containing vectors vi indexed by a subscript i. For any r-tuple

λ = (λ1, . . . , λr) of integers, we use the notation vλ to denote the tensor product

vλ1⊗· · ·⊗vλr of r vectors vλ1 , . . . , vλr . We write vλ to denote the symmetric product

vλ1
1 · · · vλn

n . We write ρst or simply st to denote the standard representation of GL(V )

on a vector space V .

In parts of the paper dealing with a complex analytic approach, we primarily use

Shimura’s notation (used throughout his papers, e.g. as discussed in the Notation

and Terminology section of [Shi00]). We review some of it here. For a ring R and

positive integers r and c, we write Rr
c to denote the R-module of r× c-matrices with

entries in R, i.e. a matrix with r rows and c columns. When we want to be careful

about distinguishing between column and row vectors, we shall take advantage of

this notation. For a matrix z with entries in C, we write tz to denote the transpose

of z and z∗ to denote the complex conjugation tz̄ of tz.

Throughout the paper, fix a positive integer n and set

g = 2n.

We write 1n to mean the n× n identity matrix. As in [Shi00], we define

Hn = {z ∈ Cn
n | i(z∗ − z) > 0}

ηn =




0 −1n

1n 0



 .
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Though it may seem arbitrary at this point in the paper, we will also find the following

notation helpful. If A is a matrix, we write A+ to denote A and A− to denote tA.

Given a subgroup G of GLn(R), we denote by G+ the subgroup of G consisting

of elements of positive determinant.

We now establish some conventions for schemes. For any morphism of schemes

π : Y → Z, let (Ω•Y/Z , d) denote the complex of sheaves of relative differentials

on Y/Z (where d is the usual differentiation map). The de Rham cohomology

H i
DR(Y/Z) is defined to be the hypercohomology Riπ∗(Ω•Y/Z). Given a scheme X

over a scheme S and a scheme T over S, we denote by XS the scheme X×S T . When

working with a separated scheme S of finite type over C, we write San to denote the

associated complex analytic space. We then write Ohol
S or OS(hol) (resp. OC∞

S or

OS(C∞)) to denote the sheaf of holomorphic (resp. C∞) functions on San.



CHAPTER II

Certain abelian varieties of PEL type and automorphic
forms

In this chapter, following the perspectives of [Shi00], [Kat78], and [Hid04], we

discuss automorphic forms on the unitary groups U(n, n) and certain abelian varieties

with PEL structure.

2.1 Unitary groups

In order to discuss automorphic forms on unitary groups and abelian varieties of

PEL type, we need first to establish conventions for unitary groups. In this section,

we recall the notation and conventions concerning unitary groups given in Section

(0.1) of [HLS06]; all the material in Section (0.1) of [HLS06] applies to our situation.

Let V be an n-dimensional vector space over K, and let 〈•, •〉V be a non-degenerate

hermitian pairing on V relative to the extension K/Q. We write −V to denote the

vector space V over K with hermitian pairing 〈•, •〉−V defined by

〈•, •〉−V = −〈•, •〉V .

We write 2V to denote the K-vector space V ⊕ V with the hermitian pairing

〈•, •〉2V

11
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defined by

〈(v1, v2), (w1, w2)〉2V = 〈v1, w1〉V + 〈v2, w2〉−V

(= 〈v1, w1〉V − 〈v2, w2〉V )

for all vectors v1, v2, w1, w2 in V .

The Hermitian pairing 〈•, •〉V defines an involution c on End(V ) via

〈gv, v′〉 = 〈v, c(g)v′〉

for all g in End(V ) and v, v′ ∈ V . Note that for any Q-algebra R, the involution c

extends to an involution of V ⊗Q R.

For any vector space W with hermitian pairing 〈•, •〉W and Q-algebra R, we define

the following unitary groups over Q:

U(W )(R) = U(W, 〈•, •〉W )(R)

= {g ∈ GL (W ⊗Q R) | 〈gv, gv′〉 = 〈v, v′〉, for all v, v′ ∈ W}

GU(W )(R) = GU(W, 〈•, •〉W )(R)

=
{
g ∈ GL (W ⊗Q R) | for all v, v′ ∈ W, 〈gv, gv′〉 = ν(g)〈v, v′〉 with ν(g) ∈ R×}

.

Then

U(2V )(R) ∼= U(n, n)(R) = {g ∈ GL2n(K ⊗Q R) | gηng
∗ = ηn}

GU(2V )(R) ∼= GU(n, n)(R) =
{
g ∈ GL2n(K ⊗Q R) | gηng

∗ = ν(g)ηn some ν(g) ∈ R×}
.

2.2 Certain abelian varieties of PEL type

In this section, we review certain abelian varieties of PEL type.

Our situation is similar to the setup in Sections 1.2 through 1.4 of [HLS06]. We

review here the most important features of the setup in [HLS06], following [HLS06]
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closely. Our notation in this section is not entirely the same as the notation in

[HLS06]. (For details on the material covered in this section, the reader may also

find it helpful to look at chapters 1 and 2 of [Lan08] and at chapters 6 and 8 of

[Mil04].)

Let G = GU(V ). Fix a compact open subgroup K = Kp × Kp of GU(V )(Af ),

with Kp ⊆ G(Qp) a hyperspecial maximal open compact subgroup of G(Qp) and Kp

in G(Ap
f ). (In applications, the maximal compacts of interest will be those used in

[HLS06].) We recall the functor KAV from schemes S over Q to the category of sets

that is given in (1.3.1) of [HLS06].

S #→ {(A, λ, ι, α)}(2.1)

where

• A is an abelian scheme over S, up to isogeny

• λ : A → A∨ is a polarization

• ι : K → EndS(A)⊗Q is an embedding of Q-algebras

• α : V ⊗ Af
∼→

∏
l Tl(A)⊗Q is an isomorphism of K-spaces, modulo the action

of K.

The above data are required to satisfy the Rosati condition, i.e. the following diagram

commutes:

A
λ !!

ι(ā)
""

A∨

ι∨(a)
""

A
λ

!! A∨.

Furthermore, the isomorphism α must identify the Hermitian pairing on V with a

multiple of the one coming from the Weil pairing associated to λ. We call the tuples

(A, λ, ι, α) abelian varieties of PEL type.
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Given a vector space W over K with a non-degenerate hermitian pairing on W ,

one can canonically associate to the group G = GU(W ) a Shimura datum (G, X)

and a Shimura variety Sh(W ) = Sh(G, X). The complex-valued points of Sh(G, X)

are given by

Sh(G, X)(C) = lim
K

G(Q)\X ×G(Af )/K,

where the limit is over all open compact subgroups of G(Af ). Let

KSh =K Sh(V ) =K Sh(G, X)

be the variety whose complex points are given by G(Q)\X ×G(Af )/K; the complex

points of this variety classify complex abelian varieties satisfying the above moduli

problem. If U is a compact closed subgroup of GU(Af ), we use the notation USh(V )

to mean the tower of the varieties KSh =K Sh(V ) with K ⊂ U a compact open.

We remind the reader of Theorem (1.3.2) in [HLS06], which is originally due to

Shimura:

Theorem II.1. Whenever K is sufficiently small (“neat”, in the sense of [Lan08],

suffices), the functor KAV is representable by a quasi-projective scheme KM over Q .

The scheme KM is the canonical model for KSh(V ). As K varies, the natural maps

between the above functors induce the natural maps between the varieties KSh(V ).

The action of GU(V )(Af ) on KSh(V ) preserves the Q-rational structure.

Now we consider a similar but slightly different moduli problem that is discussed

in Section (1.6) of [HLS06]; it will be useful for the p-adic theory, which we will discuss

later. Fix a sufficiently small compact open subgroup K = Kp × Kp ⊂ G(Af ) as

above. Consider the above moduli problem with ι replaced by an injection

(OK)(p) ↪→ EndS(A)⊗ Z(p).
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As explained in [Kot92], this moduli problem is represented by a smooth integral

scheme KS(G, X) over Z(p), which is a smooth integral model for KSh(G, X). This

moduli problem is closely related to the moduli problem we now describe. Let KpAp

be the functor S #→ {(A, λ, ι, αp)} with A an abelian scheme over S up to prime-to-p

isogeny, λ a polarization of degree prime to p, ι : (OK)(p) → EndS(A) ⊗ Z(p) an

embedding of Z(p)-algebras, and αp : V (Ap
f )

∼→ V f,p(A) a prime-to-p (OK)(p)-linear

level structure modulo Kp. This functor is representable over Zp by a scheme also

denoted KS(G, X). The forgetful map gives an isomorphism KAV
∼→Kp Ap.

We denote by M a moduli space over an OK-algebra in the situation where we

want to remain ambiguous about the level structure or any other details about the

moduli problem; we also use this notation when it is clear from context which moduli

space we mean. We write Auniv to denote the universal abelian variety over M:

Auniv

π

""
M.

We define

ω := π∗(ΩAuniv/M)

H1
DR := H1

DR(Auniv/M).

Note that we will always take M to be over an OK-algebra.1 Working over OK

affords us the following convenient splittings. The embedding

ι : K → EndS(A)⊗Q
1Although much of the material in this paper can be developed over other schemes, for example over Q, the

construction of the Mumford object (discussed in Section IV) and the compactification of Shimura varieties takes
place over (OK)(p). In addition, it will be convenient – though not necessary – to take advantage of the splittings of

ω and H1
DR given above.
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makes ω and H1
DR into OK-modules through the action defined by

a · v = ι(a)∗(v)

for each a ∈ OK. Similarly, since A lies over an OK-scheme S, the action on ω and

H1
DR induced by the composition of morphisms of structure sheaves

OK → OS → OA

also makes ω and H1
DR into OK-modules. The isomorphism

OK ⊗Q OK
∼→ OK ⊕OK

a⊗ b #→ (ab, āb)

extends to an isomorphism

OK ⊗Q OS
∼→ OS ⊕OS(2.2)

a⊗ b #→ (ab, āb).

So there is a splitting over OS

ω = ω+ ⊕ ω−,

where ω+ is the OS-module defined by

ω+ := {w ∈ ω|ι(a)∗w = aw, a ∈ OK}

and ω− is given by

ω− := {w ∈ ω|ι(a)∗w = āw, a ∈ OK}.

There is a similarly defined splitting

H1
DR = H1

DR
+ ⊕H1

DR
−

of H1
DR. We shall sometimes denote H1

DR
± by H±.
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2.3 The complex analytic viewpoint (Shimura’s perspective)

In this section, for a fixed open compact K, let Γ be the congruence subgroup of

GU(ηn) defined by

Γ = K ∩G(Q).

2.3.1 Transcendental description of abelian varieties of PEL type

In this section, we give a transcendental description of complex abelian varieties

of PEL type, following the approach of Shimura in [Shi00] and [Shi98].

Let

A = (A, λ, ι, α)

be a complex abelian variety of PEL type. Then Aan is a complex torus C2n/L,

for some Z-lattice L in C2n, which can be obtained as follows. Let {ω+
i }n

i=1 be a

basis for ω+
A/C, and let {ω−i }n

i=1 be a basis for ω−A/C. Then, we define the Z-lattice

L(A, {ω+
i }n

i=1, {ω−i }n
i=1) to be

L(A, {ω+
i }n

i=1, {ω−i }n
i=1) =










∫
γ ω−1
...

∫
γ ω−n

∫
γ ω+

1

...

∫
γ ω+

n





∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γ ∈ H1(A, Z)






.

The complex abelian variety Aan is isomorphic to Cg/L(A, {ω+
i }n

i=1, {ω−i }n
i=1). The

polarization λ on A corresponds to a Riemann form on L(A, {ω+
i }n

i=1, {ω−i }n
i=1). The

morphism

ι : K ↪→ EndQ(A)
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corresponds to the action ι of K on L(A, {ω+
i }n

i=1, {ω−i }n
i=1) given by

i(a)v = Ψ(a) · v

for all a in K and v in L(A, {ω+
i }n

i=1, {ω−i }n
i=1), where

Ψ : K → C2n
2n

is given by

a #→ diag[ā · 1n, a · 1n].

The level structure

α : V (Af )
∼→ V f (A) mod K

corresponds to a map

V (Af )
∼→ L(A, {ω+

i }n
i=1, {ω−i }n

i=1)⊗ Af mod K,

with a compatibility of pairings as above.

2.3.2 Families of complex abelian varieties of PEL type

We now recall Shimura’s construction (Section 4 of [Shi00]) of some families of

complex abelian varieties of PEL type. Throughout this section, fix a Z-lattice L in

K1
2n.

For each z ∈ Hn and each row vector x in K1
2n, let pz(x) be the vector in C2n

defined by

pz(x) =
(
[z 1n]x∗, [tz 1n] · tx

)
.

The function pz(x) is holomorphic in z.
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We define

LL(z) = pz(L).

Then pz(L) is a lattice in Cg.

Let Az be the complex torus defined by

Az = C2n/pz(L).

Let Cz be the polarization on Az given by the Riemann form Ez defined by

Ez (pz(x), pz(y)) = tr (K⊗QR)/R (xηny
∗)

Every complex-valued point (A, λ, ι, α) of the Shimura variety KSh(V ) is isomor-

phic for some z to Az with polarization Cz and action of K given by

ιz(a) · v = diag[ā · 1n, a · 1n] · v

(for v ∈ LL(z) and a ∈ K).

To specify a finite ordered set of points t1(z) . . . , ts(z) of finite order on Az, it is

equivalent to specify a finite set of elements u1, . . . , us in L⊗Q/L such that

ti(z) = pz(ui).

We conclude this section by giving a more explicit classification of analytic families

of complex abelian varieties of PEL type. Fix a finite set of points {u1, . . . , us} in

K1
2n. Consider the quintuple

Ω = {K, Ψ, L, ηn, {ui}s
i=1} .(2.3)

Such a quintuple is called a PEL-type. Let

P = (A, C, ι; {ti}s
i=1)
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be a tuple consisting of a complex abelian variety A, a polarization C, a set of points

t1, . . . , ts of finite order on A, and a ring injection

ι : K ↪→ EndQ(A)

that is stable under the involution of EndQ(A) determined by C. We say that P is

of type Ω if the following holds: there is a Z-lattice Λ; a homomorphism ξ : Cg → A;

an R-linear isomorphism

q : C1
g → Cg

such that

q(ax) = Ψ(a)q(x) and

ι(a) ◦ ξ = ξ ◦Ψ(a)

for all a ∈ K and x ∈ C1
g and such that q(ui) = ti for each i; a Riemann form E

determined by C that satisfies

E(q(x), q(y)) = tr K/Q(xηny
∗);

and a commutative diagram (Figure (4.3) in [Shi00])

0 !! L !!

""

C1
g

!!

q

""

C1
g/L !!

""

0

0 !! Λ !! Cg
ξ !! A !! 0.

The classification of complex abelian varieties of type Ω, which we now make precise,

will be useful for understanding how the classical (analytic) definition of automorphic

forms motivates the algebraic-geometric definition of automorphic forms. For each z

in Hn, let

Pz = (Az, Cz, ιz; {ti(z)}s
i=1)
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with Az, Cz, ιz, and {ti(z)}s
i=1 defined as above. Then, Pz is of type Ω for each z in

Hn. Furthermore, Theorem II.2 (Theorem 4.8 in [Shi00]) classifies abelian varieties

of type Ω. An element

α =




A B

C D



 ∈ U(ηn)

acts on Hn by

αz = (Az + B)(Cz + D)−1.

Theorem II.2. The tuple Pz is of type Ω for each z in Hn, and every tuple of type

Ω is isomorphic to Pz for some z in Hn. Tuples Pz and Pw are isomorphic if and

only if there is an element γ in the group

Γ = {α ∈ U(ηn)|Lα = L and uiα− ui ∈ L for each i}

that satisfies

w = γz.

Remark II.3. Taking L to be the lattice in K1
2n generated by the standard basis

vectors e1, . . . , e2n and the vectors α · e1, . . . , α · e2n (with α a generator of K over Q),

we see that there is an analytic family of abelian varieties Auniv over Hn such that

the fiber of Auniv over each point z = (zij) in Hn is the abelian variety

Az := Cn/Lz,
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where Lz is the Z-lattice in C2n generated by:

zj = (z1j, . . . , znj, zj1, . . . , zjn),

(2.4)

ej = vector with 1 in the j-th and j + n-th positions and zeroes everywhere else

(2.5)

z′j = (α∗z1j, . . . , α
∗znj, αzj1, . . . , αzjn)

(2.6)

e′j = vector with α∗ in j-th position, α in j + n-th position, and zeroes everywhere else,

(2.7)

with j = 1, . . . , n. We will work with this family of abelian varieties in examples in

future sections.

2.3.3 Complex analytic automorphic forms

In this section, we remind the reader of the classical definition of automorphic

forms over C, following the perspective of Shimura ([Shi00]).

For α =




A B

C D



 ∈ U(ηn) and z ∈ Hn, we define

Mα(z) = M(α, z) = (µ(α, z), λ(α, z)),

where

µ(α, z) = Cz + D

and

λ(α, z) = C̄ · tz + D̄.

Let X be a finite-dimensional vector space, and fix a representation

ω : GLn(C)×GLn(C) → GL(X).
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For any map

f : Hn → X

and α ∈ U(ηn), define

f‖ωα : Hn → X

by

(f‖ωα) (z) = ω (Mα (z))−1 f(αz).

Definition II.4. Let Γ be a congruence subgroup of U(ηn). A (holomorphic) auto-

morphic form of weight ω with respect to Γ is a holomorphic function

f : Hn → X

that satisfies

f‖γ = f(2.8)

for each γ ∈ Γ. When n = 1, we also require that f is holomorphic at the cusps.

We denote the space of all (holomorphic) automorphic forms of weight ω with

respect to Γ by Mω(Γ), and we set

Mω = ∪ΓMω(Γ).

Definition II.5. A C∞-automorphic form of weight ω with respect to a congruence

subgroup Γ is a C∞-function

f : Hn → X

that satisfies (2.8) for each γ ∈ Γ.
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2.4 Automorphic forms from another perspective

In this section we reformulate the definition of automorphic forms given in Section

2.3.3 in terms of functions on certain lattices (with additional structure) and, finally,

in terms of functions on abelian varieties of type Ω. Our discussion here is a gener-

alization to abelian varieties (of type Ω) of the situation for elliptic curves discussed

in Appendix A1.1 of [Kat73b]. Although the situation for modular forms (viewed as

functions on lattices in C, or equivalently, as functions on genus 1 abelian varieties)

is explained in [Kat73b], the case g = 1 is so simple as to obscure the situation for

more general automorphic forms.

Let Ω be as in (2.3). We begin by defining a lattice of type Ω. Let (L, E, {ti}s
i=1)

be a tuple consisting of a lattice L in Cg such that there is an R-linear isomorphism

q : C1
g → Cg(2.9)

satisfying

q(L) = L

and

q(ax) = Ψ(a)q(x)

for all a ∈ K and x ∈ L, a finite set of points {t1, . . . , ts} in L⊗Q such that q(ui) = ti

for all i, and a Riemann form E on Cg relative to L such that

E(q(x), q(y)) = tr K/Q(xηny
∗)(2.10)

for all x, y ∈ Cg. We call such a tuple (L, E, {ti}s
i=1) a lattice of type Ω. We define

an action of GLn(C)×GLn(C) on the set of tuples (L, E, {ti}s
i=1) of type Ω via

α · (L, E, {ti}s
i=1) = (αL, Eα, {αti}s

i=1),
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where Eα is defined by

Eα(αz, αw) = E(z, w).

(Note that by αL, we mean

αL = {αv|v ∈ L} .)

Observe that, modulo the action of GLn × GLn on lattices of type Ω, there is a

natural correspondence between lattices of type Ω and isomorphism classes of abelian

varieties of type Ω.

From now on, given an R-linear isomorphism q : Cg → Cg, we write Eq to denote

the Riemann form on Cg defined by

Eq(q(x), q(y)) = tr K/Q(xηny
∗).

Let

f : Hn → X

be an automorphic form of weight ω with respect to a congruence subgroup Γ of

U(ηn). Fix a Z-lattice L in K1
2n. We now associate to the pair (f, L) a function fL

of lattices L ⊂ Cg of type Ω, which we will later use to reformulate our definition of

automorphic forms in terms of functions on abelian varieties of type Ω.

Theorem II.6. Fix a CM type Ω. Let L be a Z-lattice in Cg, and let f be an

automorphic form of weight ω with respect to a congruence subgroup Γ of U(ηn)

containing the group

Γ′ = {α ∈ U(ηn)|Lα = L and uiα− ui ∈ L for each i}.(2.11)



26

There exists a unique function fL of lattices (L ⊂ Cg, E, {ti}s
i=1) of type Ω with

Nui ∈ L for all i, such that for each α ∈ GLn(C)×GLn(C),

fL(α · (L, E, {ti}s
i=1)) = ω(tα)−1fL(L, E, {ti}s

i=1)(2.12)

and such that

fL(pz(L), Ez, {pz(ui)}s
i=1) = f(z)(2.13)

for all z in Hn.

Proof. Let (L ⊂ Cg, E, {ti}s
i=1) be a lattice of type Ω such that Nti ∈ L for all i,

and let q be as in (2.9) through (2.10). Then, as explained in the first paragraph

of Theorem 4.8 of [Shi00], there is a diagonal matrix S ∈ GL2n(C) and an element

z ∈ Hn such that

q = S · pz,(2.14)

i.e. such that

(L ⊂ Cg, E, {ti}s
i=1) = S · (pz(L), Epz , pz(ui)).

Therefore, if the function fL exists, then by (2.12) and (2.13), its value at L must be

ω(tS)−1f(z). So if the function fL exists, it is unique.

Now we show that the function fL exists. For this, it suffices to show that if there

exist matrices S and T in GLn(C)×GLn(C) and elements z and w in Hn such that

(L ⊂ Cg, E, {ti}s
i=1) = S · (pz(L), Epz , pz(ui))(2.15)

and

(L ⊂ Cg, E, {ti}s
i=1) = T · (pw(L), Epw , pw(ui)),(2.16)
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then

ω(tT )−1f(w) = ω(tS)−1f(z).(2.17)

For the remainder of the proof, suppose that both (2.15) and (2.16) hold. Then the

abelian varieties of type Ω attached to (pz(L), Epz , pz(ui)) and (pw(L), Epw , pw(ui))

are both isomorphic to the abelian variety of type Ω attached to (L ⊂ Cg, E, {ti}s
i=1).

Therefore, by Theorem II.2,

w = γz

for some

γ ∈ Γ′ ⊂ Γ ⊂ U(ηn).

By line (4.31) of [Shi00],

pz(xα) = tM(α, z)pαz(x)(2.18)

for all x ∈ Cg and α ∈ U(ηn). Since L = Lα for all α in Γ′, (2.18) shows that

pz(L) = tM(γ, z)pw(L).

Since ui − αui ∈ L for each α in Γ′,

pz(uiα) = pz(ui)

for each α in Γ′. Since γ ∈ U(ηn),

γηnγ
∗ = ηn,

Hence, it immediately follows from the definition of Ez that

Epz(pz(xα), pz(yα)) = Epz(pz(x), pz(y)).
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So

(pz(L), Epz , pz(ui)) = tM(γ, z) · (pw(L), Epw , pw(ui))

Therefore

T = S · tM(γ, z),

so the right hand side of (2.17) is equal to

ω(tT )−1ω(M(γ, z))f(z) = ω(tT )−1f(γz).(2.19)

Since w = γz, the right hand side of (2.19) is equal to the left hand side of (2.17).

So Equation (2.17) holds, which proves the existence of the function fL.

Having reformulated the definition of automorphic forms in terms of functions

of lattices of type Ω, we now reformulate it again in terms of functions of complex

abelian varieties of type Ω. Observe that giving an ordered basis {ω±i }n
i=1 of ω± is

equivalent to giving an element of the module

E±A = IsomC(Cn, ω±A).

(This equivalence is via 〈ei #→ ω±i 〉ni=1 ↔ {ω±i }n
i=1, with ei standard basis vectors in

Cn.) The group GLn(C) acts on EA± via

(α · λ)(v) := λ(tα · v)(2.20)

for all v ∈ Cn and α ∈ GLn(C). We define EA by

EA := E−A ⊕ E+
A .

Then the action of GLn(C) on E±A given in (2.20) induces an action of GLn(C) ×

GLn(C) on EA, and to give an element of EA is equivalent to specifying an ordered

basis of ω+ and an ordered basis of ω−.
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Let L(A) be the lattice of type Ω attached to A as in Section 2.3.1. Then we see

that for each α ∈ GLn(C)×GLn(C) and λ ∈ EA,

α · L = L(A, α · λ).(2.21)

Let (ω, V ) be a finite-dimensional representation of GLn(C)×GLn(C), and let

f : Hn → V

be an automorphic form of weight ω with respect to some congruence subgroup Γ of

U(ηn) containing Γ′ (with Γ′ defined as in (2.11)). We define FL to be the unique

function from pairs (A, λ)2 (where λ is an element of EA) to V satisfying both

FL(A, αλ) = ω(tα)−1FL(A, λ)

and

FL(A, λ) = fL(L(A, λ)).

Thus, an automorphic form f of weight ω on Γ corresponds to a function F from

pairs (A, λ) to V satisfying

F (A, αλ) = ω(tα)−1F (A, λ).(2.22)

Now we explain how to view functions F satisfying (2.22) as certain functions on

abelian varieties A of type Ω.

Given a ring R and a group B that acts on R-modules V1 and V2, we define the

contracted product V1 ×B V2 to be V1 ⊕ V2 modulo the relation (v1, v2) ∼ (bv1, bv2).

Let Hω := GLn(C)×GLn(C) act on EA by the action induced by (2.20), and let Hω

act on V via

v #→ ω(th)−1v.

2To avoid confusion with the notation λ for the polarization, the notation (A, λ) will always refer to an an abelian
variety A/R in KAV (R) for some OK-algebra R and an element λ ∈ EA.
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We define EA,V,ω to be the contracted product

EA,V,ω := EA ×Hω
V.

To give a function F from pairs (A, λ) to V satisfying (2.22) is equivalent to giving

a function F̃ from abelian varieties A of type Ω to EA,V,ω. This equivalence is via

F̃ (A) = (λ, F (A, λ)).

Letting Aan
univ be the universal family of abelian varieties of type Ω over Γ\Hn, we

see that giving a holomorphic automorphic form f is equivalent to giving a section

of the Ohol
Hn

-module

Ean
V,ω := EAan

univ ,V,ω ⊗Ohol
Hn

.

Similarly, giving a C∞-automorphic form f is equivalent to giving a section of the

OHn(C∞)-module

EV,ω(C∞) := EAan
univ ,V,ω ⊗OHn(C∞).

2.5 Algebraic geometric approach to automorphic forms on unitary groups

Having discussed several equivalent definitions of automorphic forms from an an-

alytic perspective, we now approach automorphic forms from an algebraic geometric

perspective. As the reader will see, over C, we recover our earlier definition of auto-

morphic forms from the algebraic geometric definition. Our approach here is similar

to the one taken in Section 1.2 of [Kat78].

Fix an OK-algebra R0. Let V be an R0-module. For any R0-algebra R, we denote

by VR the R-module V ⊗R0 R obtained by extension of scalars R0 → R. Let (ρ, V )

be an algebraic representation of GLn × GLn that is defined over R0. That is, for
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each R0-algebra R, ρ defines a homomorphism

ρR : GLn(R)×GLn(R) → GL(VR)

that commutes with extension of scalars R → R′ of R0-algebras.

Fix a compact open subgroup K of G = GU(n, n). We denote by Γ the congruence

subgroup G(Q) ∩ K. For each abelian variety A = (A, λ, ι, α) in KAV (R) over an

R0-algebra R, we now define modules E+
A/R, E−A/R, and EA/R. Similarly to in Section

2.4, we define

E±A/R = IsomR(Rn, ω±A/R)

EA/R = E−A/R ⊕ E+
A/R.

To give an element of λ ∈ E±A/R is equivalent to specifying an ordered basis ω1, . . . , ωn

of ω±A/R; the equivalence is via

λ ∈ E±A/R ↔ λ(e1), . . . , λ(en) ∈ ω±A/R.

So to giving element of EA/R is equivalent to specifying an ordered basis of ω− and

an ordered basis of ω+. The group GLn(R) acts on E±A/R via

(α · λ)(v) := λ(tαv).(2.23)

The action of GLn(R) given in (2.23) induces an action of GLn(R) × GLn(R) on

EA/R.

Let Hρ = GLn(R)×GLn(R) act on VR via v #→ ρ(tα)−1v and act on EA/R through

the action induced by (2.23). Similarly to in Section 2.4, we denote by E(A,V,ρ)/R the

R-module

EA/R ×Hρ
V.
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Observe that formation of E(A,V,ρ)/R commutes with extension of scalars R → R′ of

R0-algebras.

Definition II.7. An automorphic form of weight ρ, defined over R0, is a function f

from the set of pairs (A, λ), consisting of A in KAV (R) over an R0-algebra R and an

element λ in EA/R, to VR such that all of the following hold:

1. The element f(A, λ) depends only on the R-isomorphism class of (A, λ).

2. The formation of f(A, λ) ∈ VR commutes with extension of scalars R → R′ of

R0-algebras, i.e.

f(A×SpecR R′, λ⊗R R′) = f(A, λ)⊗R 1 ∈ V ⊗R R′

.

3. For each (A, λ) over R and α ∈ Hρ(R),

f(A, αλ) = ρ(tα)−1f(A, λ).

We write Mρ(R0) to denote the R0-module of automorphic forms of weight ρ defined

over R.

Similarly to in Section 2.4, we now give an equivalent definition of automorphic

forms of weight ρ.

Definition II.8. An automorphic form of weight ρ defined over R0, is a rule f̃ that

assigns to each A in KAV (R) over an R0-algebra R an element of E(A,V,ρ)/R such that

both of the following conditions hold:

1. The elementf̃(A) in E(A,V,ρ)/R depends only on the R-isomorphism class of A.

2. The formation of f̃(A) commutes with extension of scalars R → R′ of R0-

algebras, i.e.

f̃(A×SpecR SpecR′) = f̃(A)⊗R 1 ∈ E(A,V,ρ)/R ⊗R R′.
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The equivalence of these Definition II.7 with Definition II.8 is through

f̃(A) = (λ, f(A, λ)).

The perspective of Definition II.8 leads us to another (equivalent) formulation of

the definition of automorphic forms in the case where KAV (R) is representable (i.e.

in the case where K is sufficiently small ). In this case, consider the scheme

M := MR(K) :=K Sh(V )×OK R

""
SpecR

We denote by E± the locally free sheaf

E± = IsomOM(On
M, ω±)

of OM-modules on M, and we denote by E the locally free sheaf

E = E− ⊕ E+

of OM-modules on M. We denote by EV,ρ, the locally free sheaf E ×Hρ
V . Then

an automorphic form of weight ρ is a global section of the sheaf EV,ρ on MR(K).

Note that for any representation (ρ, V ) that can be decomposed as a direct sum

(ρ1 ⊕ ρ2, V1 ⊕ V2), the map

EV,ρ → EV1,ρ1 ⊕ EV2,ρ2(2.24)

(λ, v) #→ ((λ, v1), (λ, v2))

is an isomorphism. (Its inverse is ((λ, v1), (αλ, αv2)) #→ (αλ, α(v1, v2)).) Therefore,

to give an automorphic form of weight ρ is equivalent to giving an automorphic form

of weight ρ1 and an automorphic form of weight ρ2.
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Since GLn is reductive, each finite dimensional representation ρ can be written as

a direct sum of irreducible representations

ρ = ρ1 ⊕ · · · ⊕ ρm

for some m. Every irreducible representation of GLn can be realized as a subrep-

resentation of one of the representations constructed as follows.3 For each set Λ of

ordered integers λ1 ≥ . . . ≥ λn, there is a representation (ρΛ, VΛ) of highest weight

Λ. The representation (ρΛ, VΛ) can be realized explicitly by taking

VΛ = Sym(λ1−λ2)(Rn)⊗ Sym(λ2−λ3)(∧2Rn)⊗ · · · ⊗ Symλn(∧nRn),

and letting ρΛ be the GLn-action on VΛ induced by the standard representation

of GLn(R) on Rn. If λn is negative, then by Symλn(∧nRn), we mean the dual

representation of Sym−λn(∧nRn), which is just the representation in which each

g ∈ GLn acts on each v ∈ R by v #→ det gλnv. (Note that the highest weight

vector in VΛ is (e1)(λ1−λ2)⊗ (e1∧ e2)(λ2−λ3)⊗· · ·⊗ (e1∧· · ·∧ en)λn .) Every irreducible

representation of GLn×GLn is of the form ρ−⊗ρ+ with ρ± irreducible representations

of GLn.

Let W be a free rank n R-module. We write W ρΛ to denote Sym(λ1−λ2)(W ) ⊗

Sym(λ2−λ3)(∧2W )⊗· · ·⊗Symλn(∧nW ). When ρ is an arbitrary representation whose

decomposition into irreducible representations is ρΛ1 ⊕ · · · ⊕ ρΛm , we denote by W ρ

the module W ρΛ1 ⊕ · · · ⊕ W ρΛm . Given another free-module W0 of rank n and a

representation ρ = ρΛ1⊗ρΛ2 , we write (W⊗W0)ρΛ1⊗ρΛ2 to denote the module W ρΛ1⊗

W
ρΛ2
0 . Given an arbitrary representation ρ whose decomposition into irreducible

representations is ρ1 ⊕ · · · ⊕ ρm, we write (W ⊗W0)ρ to denote the module W ρ1 ⊕

· · · ⊕W ρm .
3To see that not all of these representations are irreducible, observe that the representation of GL3 corresponding

to (2, 1, 0) is the representation st⊗ (st∨ ⊗ det), and st⊗ st∨ = Ad0 ⊕ 1.
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Let Λ be an ordered set of integers λ1 ≥ . . . ≥ λn, corresponding to the represen-

tation of GLn of highest weight Λ. Each λ± ∈ E± induces an isomorphism

λ±,ρΛ : VΛ = (Rn)ρΛ → (ω±)ρΛ

defined by

v1 · v2 · · · · · vm #→ λ(v1) · λ(v2) · · · · · λ(vm)

where each vi is in Rn and each · denotes the symmetric, tensor, or alterating product

(according to VΛ). Observe that

(α · λ)±ρΛ = λρΛ(ρΛ(tα)v).

So given a representation ρΛ− ⊗ ρΛ+ of GLn × GLn, each isomorphism (λ−, λ+) ∈

E = E− ⊕ E+ induces an isomorphism

λρΛ−⊗ρΛ+ : VρΛ−
⊗ VρΛ+

= (Rn)ρΛ− ⊗ (Rn)ρΛ+
∼→ (ω−)ρΛ− ⊗ (ω+)ρΛ+

via

v− ⊗ v+ #→ λρΛ− (v−)⊗ λρΛ+ (v+).

Observe that

(α · λ)ρΛ−⊗ρΛ+ (v) = λρΛ−⊗ρΛ+ (ρΛ− ⊗ ρΛ+(tα)v).

Therefore, there is an isomorphism

EVΛ−⊗VΛ+ ,ρΛ−⊗ρΛ+

∼→ (ω−)ρΛ− ⊗ (ω+)ρΛ+ ,(2.25)

defined by

(λ, v) #→ λρΛ−⊗ρΛ+ (v).
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Thus, at least in the case in which K is sufficiently small (i.e. when the moduli

problem KAV is representable), automorphic forms of weight ρ̃ (with ρ̃ a subrepre-

sentation of ρ = ρΛ− ⊗ ρΛ+) are sections of (ω− ⊗ ω+)ρ. This last perspective (i.e.

viewing automorphic forms as sections of (ω− ⊗ ω+)ρ will be particularly useful to

us when defining the differential operators.

When working over C, the following theorem, which relates algebraic automorphic

forms to holomorphic ones, is useful.

Theorem II.9. If n > 1, then f #→ f an gives an isomorphism

Malg(C)(ρ, Γ) → Man(ρ, Γ).

This fact involves the existence of toroidal compactifications and the analytic

Koecher principle. The reader may see [FC90] for additional details.

2.6 C∞-automorphic forms

For any sheaf F on M, we let F(C∞) be the sheaf obtained by tensoring F with

the C∞-structural sheaf of Man.

Note that we have inclusions (analogous to (1.8.1) of [Kat78])

Malg = H0(MC, EV,ρ) ⊂ Mhol = H0(Man, EV,ρ ⊗Ohol
M ) ⊂ MC∞ = H0(M, EV,ρ ⊗OC∞

M )

Over Man, we have the Hodge decomposition

H1
DR(C∞) = ω(C∞)⊕ ω(C∞)(2.26)

of H1
DR into the sheaf ω(C∞) of holomorphic differentials and the sheaf ω(C∞) of

anti-holomorphic differentials. The fiber H1
DR(C∞)z of H1

DR(C∞) over a point z ∈ Hn

is the de Rham cohomology of that fiber. The splitting (2.26) induces the Hodge

decomposition of H1
DR(C∞) at each fiber, i.e. the splitting into holomorphic and

antiholomorphic submodules.



CHAPTER III

The Gauss-Manin connection and the Kodaira-Spencer
isomorphism

In this chapter, we review the Gauss-Manin connection and the Kodaira-Spencer

morphism, two maps that are important for the construction of the differential op-

erators. We follow the construction of each map with an explicit example in terms

of coordinates over C.

Throughout this section, let π : X → S and π′ : Y → S be smooth, proper

morphisms of schemes, and suppose that S is a smooth scheme over a scheme T .

(For our upcoming construction of the C∞-operators, it will be useful to keep in

mind the case where T = Spec(C), S = M, and X = Auniv.) As noted in Section

2.6, we move freely between the algebraic and analytic perspectives.

3.1 The Gauss-Manin connection

In this section, we briefly review the construction of the Gauss-Manin connec-

tion ([Kat70], [KO68], [kan], [Ked08]), from which the differential operators will be

constructed. Consider the decreasing filtration of (Ω•X/T , d) defined by

F i = Fili(Ω•X/T )

= Image(π∗Ωi
S/T ⊗OX Ω•−i

X/T → Ω•X/T ),(3.1)

37
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where the morphism in (3.1) is the canonical one. The associated graded complex

is Gr(Ω•) = ⊕p≥0Grp, with Grp = F p/F p+1. As explained in [KO68] and [Kat70],

there is a spectral sequence (which converges to Rp+qπ∗(Ω•X/T ) = Hp+q
DR (X/S)) with

E1 term given by

Ep,q
1 = Rqπ∗(Grp).

The Gauss-Manin connection is the differential

d1 : E0,q
1 → E1,q.

We denote the Gauss-Manin connection by ∇.

Observe that

Gri ∼= Ω•−i
X/S ⊗OX π∗Ωi

S/T

for all i. In particular, we see that

E0,q
1

∼= Hq
DR(X/S)

E1,q
1

∼= Hq
DR(X/S)⊗OS Ω1

S/T .

So the Gauss-Manin connection is the map

∇ = d1 : Hq
DR(X/S) → Hq

DR(X/S)⊗OS Ω1
S/T .

We will always take q = 1 when applying the Gauss-Manin connection.

Observe that by construction of ∇, if f is an endomorphism of X over S, then

∇(f ∗(v)) = (f ∗ ⊗ Id)(∇(v))(3.2)

for each v in H1
DR(X/S). As a consequence of (3.2), we see that if A is an abelian

variety of type (2.1) over an OK-scheme S and v is in H1
DR(A/S)+, then

(ι(a)∗ ⊗ Id)(∇(v)) = ∇(ι(a)∗v) = ∇(a · v) = a∇(v) = (a⊗ Id)∇(v),
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so

∇
(
H1

DR(A/S)+
)
⊆ H1

DR(A/S)+ ⊗ Ω(3.3)

Similarly,

∇
(
H1

DR(A/S)−
)
⊆ H1

DR(A/S)− ⊗ Ω.(3.4)

3.1.1 An important example

If we trace through the map given by the Gauss-Manin connection, we see that

it involves lifting a relative form to an absolute form, differentiating the absolute

form, and then projecting down to an element of H1
DR(X/S) ⊗ Ω1

S/T . This idea is

best made clear in an example over C, which we will now provide. This example not

only explicitly illustrates how the Gauss-Manin connection acts in one of the main

cases that interests us (the other example being over a p-adic base); it also will be

useful later when we explicitly describe the action of our C∞-differential operators

and when we relate our C∞-operators to the ones in [Shi00]. This example is strongly

inspired by sections 4.0-4.2 of [Har81], and the construction here is directly analogous

to and closely follows what Harris does for symplectic modular forms. Our example

is the U(n, n) analogue of the example for symplectic groups in sections 4.0-4.2 of

[Har81].

As noted in Section II, we will often work over the underlying C∞-manifold of our

moduli space. We take this approach right now. In our example, we will consider

Auniv over Hn over C, as in Section 2.3. The sheaf H1
DR(C∞) has a splitting

H1
DR(C∞) ∼= ω(C∞)⊕ Split(C∞),(3.5)

where ω(C∞) is the space of holomorphic one-forms (which is the C∞ vector bundle

corresponding to the sheaf of relative one-forms ω = π∗ΩAuniv/Hn) and Split(C∞)
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is the space of anti-holomorphic one-forms. Also, recall that the fiber H1
DR(C∞)z

of H1
DR(C∞) over a point z ∈ Hn is the de Rham cohomology of that fiber (i.e.

Az, in the notation of Section 2.3) and that the splitting (3.5) induces the Hodge

decomposition of H1
DR(C∞) at each fiber.

Let u1, . . . , u2n denote standard coordinates in C2n. Then the global relative 1-

forms du1, . . . , du2n form a basis of the fiber of ω over each point z ∈ H.

We now define some global relative 1-forms that have constant periods across the

fibers of Auniv/Hn. We define them to be dual to the one-cycles (in homology)

defined in terms of the basis for Lz given in Equations (2.4-2.7). We consider the

R-linear global relative one forms (for i = 1, . . . , n) which are given over

z = (zij) in Hn

by

αi

(
n∑

j=1

ajej +
n∑

j=1

bjzj +
n∑

j=1

a′je
′
j +

n∑

j=1

b′jz
′
j

)
= ai(3.6)

βi

(
n∑

j=1

ajej +
n∑

j=1

bjzj +
n∑

j=1

a′je
′
j +

n∑

j=1

b′jz
′
j

)
= bi(3.7)

α′i

(
n∑

j=1

ajej +
n∑

j=1

bjzj +
n∑

j=1

a′je
′
j +

n∑

j=1

b′jz
′
j

)
= a′i(3.8)

β′i

(
n∑

j=1

ajej +
n∑

j=1

bjzj +
n∑

j=1

a′je
′
j +

n∑

j=1

b′jz
′
j

)
= b′i,(3.9)

for each ai, bi, a′i, b
′
i in R. (Here we are using the notation for the basis of Lz given

in Equations (2.4-2.7).)

Observe that these forms have constant periods along the fibers. Therefore,

∇ (αi) = ∇ (βi) = ∇ (α′i) = ∇ (β′i) = 0 for i = 1, . . . , n.(3.10)

That is, the sections αi, βi, α′i, β
′
i are horizontal.
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Now we express du1, . . . , du2n and ¯du1, . . . , ¯du2n in terms of αi, βi, α′i, β
′
i. Using

the definitions of ei, zi, e′i, z
′
i (as in Equations (2.4-2.7)) and αi, βi, α′i, β

′
i (as above),

we see that for i = 1, . . . , n,

dui = αi +
n∑

j=1

zijβj + ᾱα′i + ᾱ
n∑

j=1

zijβ
′
j(3.11)

d̄ui = αi +
n∑

j=1

z̄ijβj + αα′i + α
n∑

j=1

z̄ijβ
′
j;(3.12)

and for i = n + 1, . . . , 2n, we have

dui = αi +
n∑

j=1

zj,i−nβj + αα′i + α
n∑

j=1

zj,i−nβ
′
j(3.13)

d̄ui = αi +
n∑

j=1

z̄j,i−nβj + ᾱα′i + ᾱ
n∑

j=1

z̄j,i−nβ
′
j(3.14)

Since ∇ is a connection, it satisfies:

∇ (a · v) = a∇ (v) + v ⊗ da

for any a ∈ OHn and any v ∈ H1
DR. This, combined with Equations (3.11) - (3.14)

shows that for i = 1, . . . , n,

∇ (dui) =
n∑

j=1

βj ⊗ dzij + ᾱ
n∑

j=1

β′j ⊗ dzij

=
n∑

j=1

(
βj + ᾱβ′j

)
⊗ dzij(3.15)

∇ (dui+n) =
n∑

j=1

βj ⊗ dzji + α
n∑

j=1

β′j ⊗ dzji

=
n∑

j=1

(
βj + αβ′j

)
⊗ dzji(3.16)

One can similarly compute ∇
(
d̄ui

)
. For our purposes, however, we will only be

interested in the application of ∇ to the holomorphic differentials. (This is because

automorphic forms are associated with the holomorphic differentials.)
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From Equations (3.11) - (3.14), we see that





β1 + αβ′1
...

βn + αβ′n




= (zt − z̄)−1





dun+1 − dū1

...

du2n − dūn




(3.17)





β1 + ᾱβ′1
...

βn + ᾱβ′n




= (z − z∗)−1





du1 − dūn+1

...

dun − dū2n




(3.18)

Remark III.1. We revisit (3.2) in the context of our example. Consider an endomor-

phism f : Auniv → Auniv over Hn. Then f (Lz) ⊂ Lz, and so f ∗ maps the horizontal

sections αi, βi, α′i, β
′
i to horizontal sections. (i.e. Forms with constant periods are

mapped to forms with constant periods.) Let v be an element of H1
DR. Then we can

write v =
∑

fiγi for some horizontal sections γi and some sections fi ∈ OHn . Since

f is a morphism over Hn, we see that f ∗ (v) =
∑

fif ∗γi. So

∇ (f ∗ (v)) = f ∗γi ⊗ dfi = (f ∗ ⊗ Id)∇
(∑

fiγi

)
= (f ∗ ⊗ Id)∇ (v)

This completes our example (for now) regarding the action of the Gauss-Manin

connection. This perspective will be useful again when we define the C∞-differential

operators.

3.1.2 Remark about some related connections

From the Gauss-Manin connection, we can construct connections on (H1
DR)⊗m,

∧H1
DR, and SymH1

DR through the product rule. For example, for any v and w in
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H1
DR, we set

∇ (v ⊗ w) = σ (∇ (v)⊗ w) + v ⊗∇ (w) ,(3.19)

where σ is the canonical isomorphism switching the order of the last two components

of the tensor product:

σ : H1
DR ⊗ Ω⊗H1

DR
∼→ H1

DR ⊗H1
DR ⊗ Ω

v1 ⊗ v2 ⊗ v3 #→ v1 ⊗ v3 ⊗ v2

We similarly define ∇ on higher tensor powers of H1
DR inductively.

Connections constructed from the Gauss-Manin connection through the product

rule play a role in the construction of the differential operators in later sections.

3.2 The Kodaira-Spencer isomorphism

We now briefly review the Kodaira-Spencer isomorphism, which will be essential

in our construction of the differential operators. For some more details (from the

perspective of deformations), see [FC90]. For a much more thorough treatment (also

from the perspective of deformations), see [Lan08].

From here on, we will restrict our discussion to the case where X is an abelian

scheme. In our construction of the differential operators, we need to apply the Gauss-

Manin connection iteratively. For this, we need to relate ΩS/T to a submodule of

H1
DR(X/S). (We will relate ΩX/S to ΩS/T .) We do this via the Kodaira-Spencer

morphism.

Let

ωX := π∗ΩX/S

ωX∨ := π∗ΩX∨/S,
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where X∨ denotes the dual of X.

Hypercohomology gives a canonical exact sequence

0 → ωX ↪→ H1
DR(X/S) → R1π∗(OX)(3.20)

We then have canonical isomorphisms

H1
DR(X/S)/(π∗ΩX/S)

∼→ R1π∗(OX)

∼→ (ωX∨)∨,

Define

KS ′ : ωX → (ωX∨)∨ ⊗ ΩS/T(3.21)

to be the composition of canonical maps

ω ↪→ H1
DR(X/S)

∇→ H1
DR(X/S)⊗ ΩS/T ! R1π∗(OX)⊗ ΩS/T

∼→ (ωX∨)∨ ⊗ ΩS/T .(3.22)

Tensoring each side with of 3.21 with ωX∨ , we obtain a morphism

KS : ωX ⊗ ωX∨ → ΩS/T ,

making the Diagram (3.23) commute.

ωX ⊗ ωX∨
KS !!

KS′⊗Id ##!!!!!!!!!!!!!!!
ΩS/T

(ωX∨)∨ ⊗ ΩS/T ⊗ ωX∨

f⊗g⊗h ,→f(h)⊗g

$$""""""""""""""

(3.23)

In Subsection 3.2.1, we explicitly describe the Kodaira-Spencer morphism in co-

ordinates in an example over C. In our example, we will be able to explicitly give

the kernel of KS. For more general cases, the kernel of KS is provided in [Lan08];

we provide the relevant result from [Lan08] in Subsection 3.3. However, while the

abstract result from [Lan08] is useful, it is also important (for our particular situ-

ation) to keep in mind the example in coordinates that we work out in Subsection

3.2.1.
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3.2.1 Useful Example over C

We now discuss the Kodaira-Spencer isomorphism in in detail in coordinates over

C, in order to provide the reader with a more explicit understanding. In this example,

like in the example in Subsection 3.1.1, we will consider Auniv over Hn over C. To

describe KS, it will be helpful first to describe the polarization (for z in Hn)

λ := λz : Az → A∨z

following section 3.3 of [Shi98] and section 4 of [Shi00].

Define 〈, 〉 to be the non-degenerate symmetric R-bilinear pairing on C2n defined

by

〈x, y〉 =
n∑

i=1

xiȳi + x̄iyi

for all vectors x = (xi) and y = (yi) in C2n. Let z∗j , e
∗
j , z

′
j
∗, e′j

∗1 denote the elements

of C2n such that for any vector v ∈ C2n

〈v, z∗j 〉 = βj(v)

〈v, z′j
∗〉 = β′j(v)

〈v, e∗j〉 = αj(v)

〈v, e′j
∗〉 = α′j(v),

where βj, αj, β′j, α
′
j are defined as in Equations (3.6) through (3.9).

Let (, ) be the pairing on C2n defined by

(x, y) =
n∑

i=1

x̄iyi

1We remark that the notation ∗ here has a different meaning from in Section 2.3. We use this notation in both
places in order to be consistent with Shimura’s notation in [Shi00] and [Shi98], since he also uses this notation in
both ways. It should be clear from context in this paper which meaning ∗ has.
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for all vectors x = (xi) and y = (yi) in C2n. Then we can write αi, βi, α′i, β
′
i as the

sum of its C-anti-linear and C-linear pieces as

αi(•) = (•, e∗j) + (e∗j , •)

βi(•) = (•, z∗j ) + (z∗j , •)

α′i(•) = (•, e′∗j ) + (e′∗j , •)

β′i(•) = (•, z′∗j ) + (z′∗j , •)

Consider the Riemann form Ez on C2n defined on the lattice Lz by

Ez(pz(x), pz(y)) := tr C/R(xηny
∗)

for all x, y ∈ O2n
K , where pz(•) is defined as in section 2.3.

Viewing Aˇ
z as

C2n/L∗z,(3.24)

where L∗z is the lattice spanned by z∗i , e
∗
i , z

′∗
i , e′∗i , we have that λ is the C-linear map

defined by

〈λ(u), v〉 = Ez(u, v)

for all u, v in C2n. In particular, we see that

λ(ei) = 2z∗i + tr C/R(ᾱ)z′∗i

λ(e′i) = tr C/R(α)z∗i + 2αᾱz′i ∗ .

So for uj ∈ C, we have that for j = 1, . . . , n,

λ((0, . . . , uj, . . . , 0)) = ujλ

(
1

α− ᾱ
(αej − e′j)

)

=
uj

α− ᾱ

((
2α− tr C/R(α)

)
z∗j + α

(
tr C/R(ᾱ)− 2ᾱ

)
z′∗j

)

= uj

(
z∗j + αz′∗j

)
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and similarly,

λ((0, . . . , uj+n, . . . , 0)) = ujλ

(
1

ᾱ− α
(ᾱej − e′j)

)

= uj(z
∗
j + ᾱz′∗j ).

Now let w1, . . . wn, wn+1, . . . , w2n be coordinates on C2n in terms of the vectors

z∗1 + αz′∗1 , . . . , z∗n + αz′∗n , z∗1 + ᾱz′∗1 , . . . , z∗n + ᾱz′∗n ,

respectively. Then for 1 ≤ j ≤ n,

λ∗(dwj) = duj

We are now in a position to look at the action of the Kodaira-Spencer morphism

KS on the basis dui ⊗ dwj, i, j = 1, . . . 2n for ωAz ⊗ ωA∨z . We will do this by tracing

dui ⊗ dwj step-by-step through the composition of maps (3.22) and (3.23). For

i = 1, . . . , n and j = n + 1, . . . , 2n,

dui ⊗ dwj
(incl.)
#−→ dui ⊗ dwj

∇⊗Id#−→
(

n∑

k=1

(βk + ᾱβ′k)⊗ dzik

)
⊗ dwj(3.25)

mod ωAz#−→
n∑

k=1

((•, z∗k + ᾱz′∗k )⊗ dzik)⊗ dwj(3.26)

#→
n∑

k=1

(
(dwk)

∨ ⊗ dzik

)
⊗ dwj #→ dzi,j−n.(3.27)

(Note that in lines (3.24), (3.26), and (3.27), we are implicitly associating the

following via their canonical identifications: C2n, the tangent space of A∨z , ω∨A∨z ,

HomC-anti-lin(ωAz , C), and ω̄Az .)

So from lines (3.25) through (3.27), we see that

KS(dui ⊗ dwj) = dzi,j−n for 1 ≤ i ≤ n and n + 1 ≤ j ≤ 2n.(3.28)
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Similarly, by tracing dui ⊗ dwj through the composition of maps (3.22) and (3.23),

one finds that

KS(dui ⊗ dwj) =






dzj,i−n if n + 1 ≤ i ≤ 2n and 1 ≤ j ≤ n

0 if 1 ≤ i, j ≤ n

0 if n + 1 ≤ i, j ≤ 2n

(3.29)

We thus find that

IKS := ker(KS)

is spanned by

{dui ⊗ dwj − duj ⊗ dwi|1 ≤ i, j ≤ 2n} ∪{ dui ⊗ dwj|1 ≤ i, j ≤ n or n + 1 ≤ i, j ≤ 2n} .

(3.30)

This is a special case of the more general result given in Lemma III.4. In Section

VIII, the above description of IKS will be important in our consideration of the action

of ∇ on IKS (defined through the product rule).

For our construction of the differential operators and our comparison of our differ-

ential operators to the C∞-operators in [Shi00], the following lemma (which follows

from our work above) will be useful.

Lemma III.2. KS induces an isomorphism (the “Kodaira-Spencer isomorphism”)

KS : ωAuniv ⊗ ωA∨univ
/IKS

∼→ ΩH/C.

Associating ΩH/C with the complex vector space Cn
n via

dzij ↔ eij := the n× n matrix with 1 in the ij-th position and zeroes everywhere else,

we have that for all γ ∈ Kc ⊂ GL2n(C), h ∈ ωA ⊗ ωA∨, and g ∈ ΩH/C,

KS ((ρSt ⊗ ρSt)(γ ⊗ γ)(h)) = τ(γ)g.(3.31)
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The reader may find it instructive to compare the above lemma with the description

of the Kodaira-Spencer isomorphism over MumL(q) given in Section 4.2.1.

Proof. The isomorphism follows directly from the above example. Equation (3.31)

also follows from the above example, combined with the definitions of ρSt and τ from

Section 2.3.

For convenience, we often associate ωA with ωA∨ via the isomorphism

λ∗ : ωA∨ → ωA

dwi #→ dui

coming from the polarization λ.

Lemma III.3.

∇(IKS) mod (Split(C∞)⊗ Ω(C∞))

is contained in

IKS ⊗ Ω(C∞).

Proof. We prove this lemma by showing that

∇(v) ⊂ I ⊗ Ω(3.32)

for all the elements v in the basis for IKS given in (3.30).

Using the product rule given in (3.19), we have that for all x and y in ω(C∞),

∇(x⊗ y − y ⊗ x) = σ(∇(x)⊗ y) + x⊗∇(y)− σ(∇(y)⊗ x)− y ⊗∇(x).(3.33)

By (3.30), we know that for all x and y in ω(C∞)

x⊗ y − y ⊗ x
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lies in IKS. Therefore, for all z and w in ω(C∞),

z ⊗∇(w)− σ(∇(w)⊗ z) mod (Split(C∞)⊗ Ω(C∞))

lies in IKS ⊗ Ω. Consequently, from Equation (3.33), we see that

∇(x⊗ y − y ⊗ x)

lies in IKS ⊗Ω mod (Split(C∞)⊗ Ω(C∞)) for all x and y in ω(C∞). In particular,

for all i and j,

∇(dui ⊗ duj − duj ⊗ dui) mod (Split(C∞)⊗ Ω(C∞))

lies in IKS ⊗ Ω.

Now, we check that

∇(dui ⊗ duj) mod (Split(C∞)⊗ Ω(C∞))

lies in IKS ⊗ Ω(C∞) whenever 1 ≤ i, j ≤ n or n + 1 ≤ i, j ≤ 2n. From Equations

(3.15) through (3.18), we see that for 1 ≤ i, j ≤ n,

∇(dui) mod Split(C∞)⊗ Ω(C∞)

is contained in the submodule of ω(C∞)⊗ Ω(C∞) generated by the set of elements

{duk ⊗ w|1 ≤ k ≤ n and w ∈ Ω(C∞)} ;

and similarly,

∇(dui+n) mod Split(C∞)⊗ Ω(C∞)

is contained in the submodule of ω(C∞)⊗ Ω(C∞) generated by the set of elements

{duk ⊗ w|n + 1 ≤ k ≤ 2n and w ∈ Ω(C∞)} .
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Therefore, we see that for 1 ≤ i, j ≤ n,

∇(dui ⊗ duj) mod Split(C∞)⊗ Ω(C∞)

is contained in the submodule of ω(C∞)⊗ ω(C∞)⊗ Ω(C∞) generated by

{duk ⊗ dul ⊗ w|1 ≤ k, l ≤ n and w ∈ Ω(C∞)} ,

which is a submodule of IKS⊗Ω(C∞) (by 3.30). Similarly, we see that for 1 ≤ i, j ≤ n,

∇(dui+n ⊗ duj+n) mod Split(C∞)⊗ Ω(C∞)

is contained in the submodule of ω(C∞)⊗ ω(C∞)⊗ Ω(C∞) generated by

{duk+n ⊗ dul+n ⊗ w|n + 1 ≤ k + n, l + n ≤ 2n and w ∈ Ω(C∞)} ,

which is a also submodule of IKS ⊗ Ω(C∞) (by 3.30).

Since we have now shown that (3.32) holds for all v in the basis for IKS given in

(3.30), the proof of the lemma is complete.

3.3 The kernel of the Kodaira-Spencer isomorphism

We try as much as possible in this section to be consistent with the notation of

[Lan08]. Throughout this section, let S0 be the base scheme over which KS is defined,

and let (A, λ, ι, α) be the tuple associated to a morphism S →K S (by the universal

property). As usual, (A, λ, ι, α) consists of the following data:

1. an abelian scheme A over S

2. a prime-to-p polarization λ : A → A∨ (if p is the characteristic of S)

3. an endomorphism ι : OK → EndS(A)

4. a level structure α

parametrized by KS over S0, where the characteristic of S0 is 0 or p.
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Lemma III.4 ([Lan08], part of Proposition 2.3.4.2). The kernel IKS of

KS : ωA/S ⊗ ωA∨/S → ΩS/S0

contains the submodule JKS of ωA/S ⊗ ωA∨/S generated by the set of elements

{
λ∗(y)⊗ x− λ∗(x)⊗ y|x, y ∈ ωA∨/S

}
∪

{
(i(b)∗x)⊗ y − x⊗ ((i(b)̌)∗y)|x ∈ ωA/S, y ∈ ωA∨/S, b ∈ OK

}
,(3.34)

Furthermore, if S →M is étale, then the map

KS : ωA/S ⊗ ωA∨/S/JKS → ΩS/S0

is an isomorphism.

Since λ is a prime-to-p polarization, the morphism

λ∗ : ωA∨/S → ωA/S

is an isomorphism.

Therefore, we obtain the following Corollary of Lemma III.4.

Corollary III.5. Suppose S → M is étale. Then, the Kodaira-Spencer morphism

KS induces an isomorphism, which by abuse of notation we also denote KS:

KS : Sym2(ωA/S)/JKS
∼→ ΩS/S0 .(3.35)

(Here, we associate JKS with its image in Sym2(ωA/S).)

Remark III.6. We shall mainly be applying Corollary III.5 in the case where S = M

and the map M→M is the identity (so the abelian scheme associated to S →M

is the universal abelian scheme Auniv). Since the identity map is étale, we can indeed

apply Corollary III.5 in this situation.
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We note, however, that in the case where S is an arbitrary scheme over S0 and S →

M is not étale, IKS can be strictly larger than JKS. For example, consider the case

where M = Hn over S0 = C, S = C, and A is the abelian variety corresponding to a

morphism S := Spec(C) → Hn/C. In this case, ΩS/S0 = 0, but Sym2(ωA/S)/JKS '= 0.

As a direct consequence of Corollary III.5, we have isomorphisms (which are

crucial in our construction of the differential operators)

ΩM/S0

∼→ Sym2(ω)/JKS(3.36)

∼→ ω+ ⊗ ω−(3.37)

Note that depending on the situation, we will work sometimes with isomorphism

(3.36) and sometimes with (3.37).



CHAPTER IV

Algebraic and analytic q-expansions

In this chapter, we briefly discuss algebraic q-expansions, which will be important

in later proofs.

4.1 Fourier expansions

In this section, we discuss the complex-analytic theory of q-expansions, closely

following section 5 of [Shi00].

For c ∈ C and X ∈ Cn
n, we let

e(c) = exp(2πic)

en(X) = e(tr (X))

S = Sn = {σ ∈ Kn
n |σ∗ = σ} .

Let Γ ⊂ GU(ηn) be a congruence subgroup. Then there exists a Z-lattice M in S

such that




1 σ

0 1



 is in Γ for each σ in M . Let

L′ = {h ∈ S|tr(hM) ⊂ Z} .

Remark IV.1. Shimura denotes the Z-lattice L′ by L ([Shi00]). Since we (and

Shimura) use L to denote another lattice as well, we introduce the notation L′ rather

54
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than labeling both lattices (which appear in the same contexts but are not equal)

the same.

Let f be a holomorphic automorphic form with respect to Γ that takes values in

a vector-space X. Then because f(z + σ) = f(z) for each σ ∈ M , f has a Fourier

expansion, i.e. there exist elements c(h) ∈ X such that

f(z) =
∑

h∈L′

c(h)en(hz).

We write the Fourier expansion of f as

f(z) =
∑

h∈S

c(h)en(hz).

The elements c(h) are called the Fourier coefficients of f . If n > 1, then c(h) '= 0

only if h is nonnegative definite.

4.2 A user’s guide: The algebraic theory of q-expansions and the Mum-
ford object

In this section, we discuss the algebraic theory of q-expansions. This section

should be viewed as a user’s guide to algebraic q-expansions in the PEL moduli

problem (i.e. the situation of this paper). The situation for the Sp(n) moduli

problem is similar.

The algebraic theory of q-expansions relies upon the existence of what we shall

call “Mumford objects” or “Mumford abelian varieties.” Mumford ojects are the

higher dimensional generalization of Tate elliptic curves. Like Tate curves, Mum-

ford abelian varieties arise naturally from a certain semiabelian scheme over toroidal

compactifications of the moduli scheme M = Sh(2V ) over (OK)(p). For each cusp of

M, there is a corresponding Mumford object, which lies over the compactification of

Sh(2V ) at that cusp. The details of the construction of toroidal compactifications
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of PEL Shimura varieties is given in [Lan08].1 For Hilbert modular forms, the cor-

responding toroidal compactifications were constructed in [Rap78]. For symplectic

modular forms, this is discussed is [FC90]. For details on the discussion in [FC90],

the reader is advised to see [Lan08].

Tate curves are often used explicitly in computations and described in detail in

coordinates over C. The current literature on Mumford objects and algebraic q-

expansions, however, does not provide a similarly explicit description. The current

literature ([Lan08]) does, however, provide a q-expansion principle analogous to the

q-expansion principle for Tate curves.

Since our intended applications, as well as other unrelated projects ([SU09]) re-

quire a more explicit description of the Mumford object, we provide one here. The

reader wishing, on the other hand, to learn the details of toroidal compactifications

of M should consult [Lan08].

While it is in some ways simpler, the simplicity of the one-dimensional case (i.e.

Tate curves, as discussed in [Kat78] and [Kat73b]) obscures the larger picture. In fact,

many details of the one-dimensional case become more transparent in the arbitrary-

dimension situation.

4.2.1 The Mumford object

Let

V = W ⊕W ′,

where

W ,W ′ = Kn.

1Though it is not in [Lan08], Lan shows in [Lan09] that the q-expansions defined algebraically in [Lan08] agree
with the analytic Fourier expansions.
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Note that

J =




0 −1n

1n 0





induces a pairing Ψ on V . The pairing Ψ induces an isomorphism

W ′ ∼→ Hom(W ,K).

Define a pairing

Ψ′ : V × V → Q

by

(x, y) #→ Ψ′(x, y) = tr
(
δ−1
K Ψ (x, y)

)

for each x, y ∈ V . Let L be the lattice inside V defined by

L = On
K ⊕On

K.

Then the restriction

Ψ′ : L× L → Z

of Ψ′ to L× L is a perfect pairing. We shall write W and W ′ to denote W ∩ L and

W ′ ∩ L, respectively.

Let U be an open compact subgroup of GU(n, n)(Af ) = G(Af ). Then

ShG(U) = G(Q)+\Hn ×G(Af )/U ⊇ Γ\Hn,

with

Γ = G+(Q) ∩ U.
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Let P be the stabilizer of W ′ in GU(n, n), where GU(n, n) acts on W ′ (viewed as

row vectors) on the right. Then each matrix in P is of the form




A B

0 C



 .

Let N be the unipotent radical of P , and let

H = N ∩ Γ.

Then H is an upper-triangular, unipotent subgroup of GU(n, n)(K). It is a simple

computation to show that N is contained in the group of matrices of the form




1n B

0 1n





with B a Hermitian matrix with entries in K. Thus, we can choose the lattice M

used to construct Fourier expansions in Subsection 4.1 so that

H =




1n M

0 1n



 .

Note that H maps W to W ′.

Let H∨ be the dual lattice of H. That is, each element of H∨ may be viewed as

a Z-linear map H → Z given by

h #→ tr (gh) ⊆ Z.

for some (non-unique) matrix g. A simple computation shows that we may associate

H∨ with the lattice L′ in Kn
n , where L′ is defined in terms of M as above.

The data L = W ⊕W ′ above is called the (zero-dimensional) “cusp at infinity.”

The zero-dimensional cusps are in one-to-one correspondence with the elements of
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P (Q)\G(Af )/K. There is not a canonical way to associate a lattice to each g in

P (Q)\G(Af )/K, but a systematic way is the following. Write

G(Af ) =
∐

i

G(Q)giK

g = γgik.

Define the lattice at the cusp corresponding to g to be

Lg = (L⊗ Ẑ)gi ∩ V

Wg = Wγ ∩ L

W ′
g = W ′γ ∩ L.

Then H is defined accordingly, corresponding to our new choice of cusp. Note that

the symmetric space is
∐

Γi
Hn. Each gi tells us which Γi and γ says which Borel.

In the following discussion of Mumford objects and q-expansions, one can consider

any of the cusps g, even though we write our discuss in terms of the notation for the

cusp at infinity; the reader wishing to work with a different cusp g should simply

replace L with Lg, W with Wg, etc.

As explained in [Lan08], for a toroidal compactification of M, the completion

along the boundary stratum for the zero-dimensional cusp [g] lies over SpfR, where

R is the ring

(OK)(p) [[q, H∨
≥0]]

Γg =

8
><

>:

X

h∈H∨≥0

ahqh | h ≥ 0, ah ∈ (OK)(p) , and a(γhγ∗) for all (γ, γ∗) ∈ Γg

9
>=

>;
.

There is a semiabelian scheme over the toroidal compactification ofM. By passing to

(OK)(p) ((q, H∨
≥0)), we obtain an abelian variety GH over M/Spec((OK)(p) ((q, H∨

≥0))),

which gives the Mumford object at the cusp H, a semi-abelian scheme lying over

(OK)(p) ((q, H∨
≥0)) =

{
∑

h∈H∨

ahq
h | ah ∈ (OK)(p) and ah = 0 if h << 0

}
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and denoted MumL(q).

We now briefly discuss the analytic situation over C to provide some context and

motivation for our upcoming (algebraic) description of Mumford objects. Recall that

for an elliptic curve E, the analytic construction

E = C/Z + τZ exp−−→ C×/q(Z),

where q is the map

q : Z → C×

n #→ e2πin,

gives a map from an elliptic curve to the complex points of the Tate curve. We now

do the analogue of this in our situation.

Recall the notation

Hn = {Z ∈ Mn(C) | i (Z∗ − Z) > 0} .

Let Z = X + iY be in Hn. Then setting

X =
Z + Z∗

2

Y =
−i (Z − Z∗)

2
,

we have Z = X + iY , with Y > 0. Now we express Hn in terms of H:

Hn = H ⊗ R + (H ⊗ R)>0 i ⊂ H ⊗ C.

(For a set S of Hermitian matrices, we write S>0 to denote the set of positive definite

matrices in S.) Let τ ∈ Hn ⊂ H ⊗ C. Then we may express the abelian variety Aτ

as

W ′ ⊗ C/Lτ ,
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where Lτ is the Z-lattice generated by W ′ ⊗ 1 and τ(W ) ⊂ W ′ ⊗ C. So we have a
commutative diagram of Lie groups (where the map q is defined implicitly through
the exp map, and q(H∨) = exp(τ(W )))

W ′ ⊗ C/Lτ

""

exp
!! W ′ ⊗ C×/q(H∨) = W ′ ⊗ Gm(C)/qτ (H∨)

""

Hn ⊂ H ⊗ C
exp

!! H ⊗ C× = Spec
“
(OK)(p) ((q, H∨

≥0))⊗OKC
”an

The quotient W ′ ⊗ Gm(C)/q(H∨) above is the set of complex points of an abelian

variety.

We now describe the Mumford object more explicitly, analogous to the description

of Tatea,b(q) in [Kat78].

Remark IV.2. For the reader trying to understand [Kat78] in the context of our

description of the general situation, we provide the following dictionary between

Katz’s notation and the notation we will use for the general situation.

a ↔ W ′

b ↔ W

a−1b−1 ↔ H

ab ↔ H∨.

We define a Z-linear morphism

q : W → W ′ ⊗Gm(4.1)

from W to the torus W ′ ⊗ Gm lying over OK((q, H∨)) to be the composition of

morphisms

W
w ,→evalw−−−−−→ HomZ(H,W ′)

∼→ H∨ ⊗W → W ′ ⊗Gm.

(By evalw, we mean the map h #→ h(w) in HomZ(H,W ′).)
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The “Mumford abelian variety at the cusp H” is the algebraification of the rigid

analytic quotient

q(W )\ ((W ′)∨ ⊗Gm) .(4.2)

We denote the Mumford abelian variety by MumL(q) or MumH(q). The construction

of the Mumford abelian variety is discussed in [Mum72] and in [Lan08].

The Mumford abelian variety MumL(q) has a canonical PEL structure. The

canonical endomorphism

ιcan : OK → End(OK)(p)((q,H∨
≥0))(MumL(q))

is defined by

α : L → L

l #→ α · l

for each element α of OK. The dual abelian variety is

MumL(q)∨ = MumW ′∨⊕W∨(q),

i.e. the algebraification of the rigid analytic quotient

q(W ′∨)\ (W∨ ⊗Gm) .

The canonical isomorphism

W ′ ∼→ W∨

induced by the pairing Ψ induces a canonical polarization

λcan : q(W )\ (W ′ ⊗Gm) → q(W ′∨)\ (W∨ ⊗Gm)
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of MumL(q).

The natural exact sequence

0 → W ′ ⊗
∏

l

lim←−
n

µln →
∏

l

Tl(A) → W ⊗ Ẑ → 0

induces a canonical level K structure

αcan : V ⊗ Af
∼→

∏

l

Tl(A)⊗Q

modulo the action of K.

At times, we shall write MumL(q) to mean the tuple (MumL(q), λcan, ιcan, αcan).

Observe that there is a canonical isomorphism

ωL : Lie(MumL(q))
∼→ Lie(W ′ ⊗Gm) = W ′ ⊗ (OK)(p) ((q, H∨

≥0))

Dualizing the morphism ωL, we obtain a canonical isomorphism

ωcan : W ′∨ ⊗ (OK)(p) ((q, H∨
≥0))

∼→ ω,(4.3)

which gives a canonical element of E . There is a similar isomorphism on MumL(q)∨:

W∨ ⊗ (OK)(p) ((q, H∨
≥0)) = Lie(Gm ⊗W∨)

∼→ Lie(MumL(q)∨)(4.4)

We now revisit the Kodaira-Spencer morphism in the context of MumL(q). Recall

that for an abelian variety A the Kodaira-Spencer isomorphism identifies derivations

of OM with pairings of ωA and Lie(A∨), i.e. with elements of Lie(A) ⊗ Lie(A∨).

We provide a concise reminder of the Kodaira-Spencer isomorphism for an abelian

variety A, reviewing precisely the details that we will need in our discussion of the

situation for MumL(q). Recall the exact sequence

0 → ω → H1
DR → Lie(A∨) → 0
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and the Gauss-Manin connection (from which the Kodaira-Spencer morphism is con-

structed)

∇ : H1
DR → H1

DR ⊗ Ω.

Each

D ∈ TM/OK = Der (OM,OM)

defines a morphism

∇(D) : H1
DR → H1

DR,

which induces a morphism

KS(D) : ω → Lie(A∨)

defined to be the composition of maps

ω ↪→ H1
DR

∇(D)−−−→ H1
DR ! Lie(A∨).

The map

D #→ KS(D)

defines the Kodaira-Spencer morphism

TM/OK → HomOM (ω, Lie(A∨)) ∼= Lie(A)⊗ Lie(A∨).

Dualizing gives

Ω ← Lie(A)⊗ Lie(A∨).

On MumL(q), the Kodaira-Spencer map is

KS : Der
(
(OK)(p) ((q, H∨

≥0)), (OK)(p) ((q, H∨
≥0))

)
→ Lie (MumW⊕W ′(q))⊗ Lie (MumW ′∨⊕W∨(q))

∼= W ′ ⊗W∨ ⊗ (OK)(p) ((q, H∨
≥0))
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Given γ ∈ H ⊗Z OK, define

D(γ) ∈ Der
(
(OK)(p) ((q, H∨

≥0)), (OK)(p) ((q, H∨
≥0))

)

by

D(γ)

(
∑

α∈H∨

aαqα

)
=

∑

α∈H∨

tr (αγ)aαqα.

Note that there is a natural Z-linear morphism

φH : H → W∨ ⊗Z W ′.

Then

KS(D(γ)) = φH(γ)⊗ 1

in W ′ ⊗W∨ ⊗ (OK)(p) ((q, H∨
≥0)).

For w ∈ W ′∨, let ω(w) denote the image in ω of w⊗ 1 under the morphism (4.3).

For each v ∈ W∨, let l(v) denote the image of v⊗1 under the morphism (4.4). Then

for each γ ∈ H,

∇ (D(γ)) (ω(w)) ≡ l(w · γ) mod ω.

The notation ω and l has been chosen to be similar to similar maps in [Kat78]. We

further denote by

ω±(w)

the projection of ω(w) onto ω±. We then have that the Kodaira-Spencer isomorphism

is the map

ω+(ei)⊗ ω−(ej) #→ (D(eij))
∨,
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with ei, ej, eij standard basis vectors in W and H ⊗Z OK = (OK)n
n, respectively.

Note that by extending scalars, we may consider MumL(q) over R⊗(OK)(p) ((q, H∨
≥0))

for each OK-algebra R, and we can extend the above maps to the case of MumL(q)

over R⊗ (OK)(p) ((q, H∨
≥0)).

4.2.2 Algebraic q-expansions

The algebraic theory of Fourier-Jacobi expansions is discussed in detail in [Lan08].

We now discuss the key features for our situation. For a general, in-depth discussion

of Fourier-Jacobi expansions, the reader is referred to [Lan08].

Definition IV.3. Let f be an automorphic form of weight (ρ, V ) over R. We define

the q-expansion of f at the cusp H to be

f ((MumL(q), αcan, ιcan, λcan)⊗R, ωcan ⊗R)

As noted at the beginning of the section on the Mumford object, the q-expansions

of f lie inside V ⊗R R⊗ (OK)(p) [[q, H∨
≥0]].

Furthermore, when working over C, the analytically defined Fourier coefficients of

the function fan on Hn (where we associate the function f of abelian varieties with

the function fan : Hn → C as in Sections 2.3 through 2.5) at the cusp L are the

same as the algebraically defined q-expansion coefficents at the cusp L. That is, if

f ((MumL(q), αcan, ιcan, λcan)⊗ C, ωcan ⊗ C) =
∑

h∈H∨

c(h)qh,

then the h-Fourier cofficient of fan for each h ∈ H∨ is also c(h).

In Proposition 7.1.2.15 of [Lan08], Lan proves the Fourier-Jacobi Principle for

automorphic forms on PEL Shimura varieties. The q-expansion principle for modular

forms is a special case of this.
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Theorem IV.4 (q-expansion Principle, special case of Proposition 7.1.2.15 of [Lan08]).

Let f be an automorphic form on U(n, n) over an OK-algebra R of weight ρ with val-

ues in an R-module R⊗OK X for some OK-module X.

1. If f(MumL(q)) = 0 at one cusp on each connected component of M, then f = 0.

2. Let R0 ↪→ R be an OK-subalgebra of R. If f(MumL(q)) ∈ (OK)(p) ((q, H∨
≥0))⊗OK

R⊗X actually lies in (OK)(p) ((q, H∨
≥0))⊗OK R0⊗X ↪→ (OK)(p) ((q, H∨

≥0))⊗OK

R⊗X for one cusp in each component of M, then there is a unique automorphic

form of weight ρ on U(n, n) defined over R0 which becomes f after the extension

of scalars R0 ↪→ R.
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p-adic automorphic forms and the Igusa tower

In this chapter, we review p-adic automorphic forms, following the viewpoints of

[Hid04], [Hid05] and [HLS06]. We also introduce the results that will be necessary

for our construction of the p-adic differential operators. Many of these results are

the analogue for U(n, n) of the results in sections 1.9 through 1.12 of [Kat78].

Note that our notation is neither exactly that of [Hid04] nor that of [HLS06]; those

sources use different notation from each other, and so we’ve chosen the notation we

found most appropriate for our situation.

Let R be an OK-algebra that is separated for the p-adic topology, i.e. satisfying

R ↪→ lim←−
m

R/pmR.

Let R0 be the p-adic completion of R. Let K = Kp × Kp ⊂ G(Af ) be a compact

open subgroup with Kp ⊆ G(Qp) a hyperspecial maximal compact and Kp ⊆ G(Ap
f ).

Let v be the prime of K over p determined by the embedding inclp. Let

W = (OK)v, and let Wm = W/pmW for all nonnegative integers m. Fix a toroidal

compactification KS of KS(G, X) over W . (Recall that KS(G, X) is a smooth integral

model for the prime-to-p moduli problem1 discussed in Section 2.2.) The theory of

p-adic automorphic forms is independent of the choice of toroidal compactification.
1Recall from Section 2.2 that KS(G, X) classifies abelian varieties with additional structure, including a prime-to-p

level structure.
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Let H̃ be a lift of a power of the Hasse invariant H to KS. For m a positive integer,

let

Mm =K S×W Wm,

and let

Sm = Mm

[
1

H̃

]

be the nonvanishing locus of H̃, i.e. the ordinary locus. Let

S0 = M

[
1

H̃

]
,

and let S∞ be the formal completion lim←−m
Sm of S0 along S1. Note that Sm is

independent of the choice of H̃ as long as p is nilpotent in Wm for all positive m.

For m ≥ 0, let Pm,r be the rank g p-adic étale sheaf

Pm,r = Auniv[p
r]ét = Auniv[p

r]/Auniv[p
r]0

over Sm. We define Tm,r to be the finite étale Sm-scheme

Tm,r = IsomSm(Pm,r, (OK/prOK)n)

πm,r

""
Sm

representing the functor

(π : X → Sm) #→
{

isomorphisms Ψ : Pm,r
∼→ (OK/prOK)n over X

}
.

Details about this scheme are given in [Hid04] and [Hid05]; of particular interest to

us will be the fact that πm,r is an affine morphism. Define

Tm,∞ = lim←−
r

Tm,r
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and

T∞,∞ = lim←−
m

Tm,∞.

Note that the formal scheme T∞,∞ is an étale cover of S∞.

Note that Tm,r classifies quintuples

A =
(
A, λ, ι, αp, X[pr]ét

∼→ (OK/prOK)n
)

,

where (A, λ, ι, αp) is the abelian variety with prime-to-p structure corresponding to

a point of KS(G, X). Note that

(OK/prOK)n ∼= (Z/prZ)g .

Therefore, the prime-to-p polarization λ and the isomorphism

X[pr]ét
∼→ (OK/prOK)n

induce isomorphisms

A[pr]0
∼→ A∨[pr]0

∼→ µg
pr ,

which induces an inclusion

αp : µg
pr ↪→ A.

Let ωm,r be the pullback of Pm,r to Tm,r, i.e.

ωm,r =
(
π∗m,rPm,r

)
⊗OTm,r .

For r ≥ m, there’s a universal isomorphism (i.e. the universal object over Tm,r)

Ψuniv : π∗m,rPm,r
∼→ (OK/prOK)n ,
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which induces an isomorphism

ωcan = Ψuniv ⊗ Id : ωm,r
∼→ (OK/prOK)n ⊗Zp OTm,r .

For r ≥ m, the sheaf ωm,r is just the pullback of the sheaf of differentials ω to Tm,r.

Indeed, the pullback of ω to Tm,r is canonically identified with Lie(A∨univ)⊗Wm; the

isomorphism with ωm,r now follows from the canonical isomorphisms

Lie(A∨univ)⊗Wm
∼→ Lie(A∨univ[p

r]0)⊗Wm
∼→ Lie(µpr)n ⊗Wr

∼→ (OK/prOK)n ⊗OTm,r .

Note that ωcan induces isomorphisms ω+
can and ω−can of ω− and ω+ with OKn

v ⊗

OTm,r
∼= On

Tm,r
and OKn

v̄ ⊗OTm,r
∼= On

Tm,r
, respectively. So for the p-adic situation (in

contrast to the situation over C), ωcan provides a canonical element of the sheaf E

introduced earlier.

A p-adic automorphic form of weight ρ− ⊗ ρ+ is defined to be a global section

of
(
On

T∞,∞

)ρ−
⊗

(
On

T∞,∞

)ρ+

, where the action of OK on each copy of
(
On

T∞,∞

)
is

induced by the action on ωρ−
− ⊗ ωρ+

+ (identifying the two sheaves via ωcan). When

we want to eliminate ambiguity about the identification, we shall write
(
O−

T∞,∞

)n

or
(
O+

T∞,∞

)n

to mean ωcan (ω∓), respectively. We write V (ρ, R0) to denote the space

of p-adic automorphic forms of weight ρ over R0.

Above, we have used notation similar to that for the Igusa tower in [Hid04],

[Hid05], and [HLS06]. To emphasize the analogy with [Kat78], we shall sometimes

use the notation

ω(p-adic)± = ω±T∞,∞

OM(p-adic) = OT∞,∞

M(p-adic) = T∞,∞.

We shall denote the space of p-adic automorphic forms of weight ρ = ρ−⊗ρ+ over

a p-adically complete and separated OK-algebra R0 by Mp-adic.
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5.1 q-expansions of p-adic automorphic forms

In this section, we discuss q-expansions of p-adic automorphic forms and the q-

expansion principle for p-adic automorphic forms. This is also covered in [HLS06],

which cites [Hid04].

By extending scalars from (OK)(p) ((q, H∨
≥0)) to the p-adic completion

R0⊗̂OK (OK)(p) ((q, H∨
≥0)) of R0 ⊗OK (OK)(p) ((q, H∨

≥0)), we obtain the Mumford ob-

ject (MumL(q), λcan, αcan, ιcan) over the p-adic ring R0⊗̂OK (OK)(p) ((q, H∨
≥0)). (Note

that by construction, the isomorphism ωcan from the previous section, viewed over

MumL(q) is the same as the isomorphism ωcan in (4.3).

So we obtain a q-expansion homomorphism2 FJ from the space of p-adic auto-

morphic forms with values in an R0-module X to R0⊗̂OK (OK)(p) ((q, H∨
≥0))⊗R0 X.

f #→ f

((
MumL(q), λcan, αcan = αp

can × (αcan)p , ιcan

)

R0⊗̂OK (OK)(p)((q,H∨
≥0))

, ωcan

)

Definition V.1. When R0 has no p-torsion, we define the space of p-adic automor-

phic forms defined over R0 ⊗Q to be V (ρ, R0)⊗OKv
Kv.

The q-expansion homomorphism extends to a q-expansion homomorphism

FJ ′ : V (ρ, R0)⊗OKv
Kv → R0⊗̂OK (OK)(p) ((q, H∨

≥0))⊗Kv ⊗R0 X.

We now state the q-expansion principle for p-adic automorphic forms. This is the

analogue of Theorem 1.9.9 of [Kat78] and Corollary 1.9.17 of [Kat78].

Theorem V.2 (Theorem 2.3.3 of [HLS06], which cites [Hid04]). The q-expansion

homomorphisms have the following properties.

1. The q-expansion homomorphisms FJ and FJ ′ are injective, and when R0 has

no p-torsion, the cokernel of FJ and FJ ′ has no p-torsion.

2. FJ ′−1(R0 ⊗X) = V (ρ, R0).
2The notation FJ stands for Fourier-Jacobi.
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5.1.1 Map from automorphic forms over a p-adic ring R0 to p-adic automorphic forms
over R0

Theorem V.3 (((2.2.7) in [HLS06]), analogue of Theorem 1.10.15 of [Kat78]). The

homomorphism

f #→ f̃

from the space of weight ρ level α automorphic forms to the space of weight ρ level

αp p-adic automorphic forms defined by

f̃(X, λ, ι, α) = f(X, λ, ι, α, ωcan)

preserves q-expansions.

5.1.2 Frobenius and the unit root splitting

In this section, we give a splitting

H1
DR = ω ⊕ U(5.1)

over T∞,∞ analogous to the C∞-splitting

H1
DR = ω ⊕ ω̄.

The splitting (5.1) will be indispensable for the construction of the p-adic differential

operators.

Most of the material in the section is essentially covered in section 1.11 of [Kat78],

with trivial generalizations. However, we have provided details not given in [Kat78].

Let X be an abelian variety of PEL type over an OK-algebra R in which p is

nilpotent, and suppose that each of the geometric fibers of X/R is ordinary. So there

is an inclusion

αp : µg
p ↪→ X.
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Let X̂ denote the formal group of X, and let Hcan be the canonical subgroup of X,

i.e. the kernel of multiplication of by p in X̂. Then Hcan = αp

(
µg

p

)
.

Let

X ′ = X/Hcan,

and let

π : X → X ′

be the projection map. When p = 0 in R, X ′ = X(p), where X(p) denotes the scheme

over R obtained from X by extension of scalars Fabs : R → R, and π is the relative

Frobenius morphism:

X

π

%%#
##

##
##

##
##

##

Fabs

&&$$$$$$$$$$$$$$$$$$$$$$$$$$$

''%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

X(p) !!

""

X

""

"

R
Fabs

!! R

Given a morphism

αp : µg
p∞ ↪→ X,

we define

α′p : µg
p∞ ↪→ X ′



75

to be the morphism that makes the following diagram commute

0 !! µg
p

!!

∼=

""

µg
p∞

p !!
! "

αp

""

µg
p∞

!!

α′p

""

0

0 !! Hcan
!! X !! X ′ !! 0

Note that a prime-to-p level structure αp induces a prime-to-p level structure αp′ on

X ′. We let

ιp′ : OK(p) ↪→ End(A′)⊗ Z(p)

be the embedding induced by

ιp : OK(p) ↪→ End(A)⊗ Z(p).

As Katz explains in Lemma 1.11.6 of [Kat78], if (X, λ) is in T∞,r, then there is a

unique polarization λ′ that reduces mod p to the polarization λ(p) on X(p). We

shall now also use π to denote the morphism

(X, λ, ι, αp, αp) #→ (X ′, λ′, ι′, αp′, α′p)

induced by π.

Note that, by construction, π is compatible with change in base

R/pmR → R/pm−1R

induced by projection. So the morphisms π induce a morphism

Auniv/W → A′univ/W(5.2)

(where W = SpecR) over the p-adic ring R. Since this is not explicitly mentioned

in [Kat78] and could be somewhat confusing to the reader, we note that the map π
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in (5.2) is defined over R, not over T∞,∞, though Auniv and A′univ lie over T∞,∞. So

there is a unique isomorphism

F : T∞,∞ → T∞,∞

such that A′univ is the fiber product

A′univ
!!

""

Auniv

""
T∞,∞

F !! T∞,∞

We now describe the action of F on q-expansions, which we will use in the proof

of Lemma V.9.

Lemma V.4. For any q-expansion homomorphism

f #→ f(q),

the action of F on f satisfies

(Ff)(q) = f(qp),

and so, if

f(q) =
∑

h∈H∨

(
c(h)qh

)
,

then

(Ff)(q) =
∑

h∈H∨

(
c(h)qph

)
.

Lemma V.5. The abelian variety MumL(q)′ and the morphism

π : MumL(q) → MumL(q)′

a priori defined over (OK)v(q, L) are in fact defined over OK(q, L).
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Proof. Since MumL(q)′ is obtained from MumL(q) by extension of scalars q #→ qp,

which is defined over OK(q, L), MumL(q) = MumL(qp) is defined over OK(q, L). It

follows from the definition of π that π is the map making the following diagram

commute (where the vertical maps are projection onto the quotient):

W ′ ⊗Gm
×p !!

""

W ′ ⊗Gm

""

W ′ ⊗Gm
π !! W ′ ⊗Gm/p · q(H∨) = W ′ ⊗Gm/q(p ·H∨)

Remark V.6. Since π and MumL(q)′ are defined over OK, we can extend scalars and

consider the map π over C. In this case, observe that π corresponds to the map on

lattices

pz(L) → ppz(L),

l #→ pl

i.e. the map

C/pz(L) → C/ppz(L)

x #→ px.

The morphism F corresponds to the morphism

Hn → Hn

z #→ pz.

Define Fr to be the morphism

Fr = π∗ : F ∗(H1
DR) → H1

DR.

Note that Fr defines a (F -linear) morphism of H1
DR.

The higher dimensional analogue of Lemma (A2.1) in [Kat73b] is the following.
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Lemma V.7.

π∗ (F ∗ω) = pω.

As in [Kat78], we have the following powerful proposition, which is essential in

the construction of the p-adic differential operators.

Proposition V.8. There is a unique splitting

H1
DR = ω ⊕ U(5.3)

over OM such that π∗F ∗ is an isomorphism on U when tensored with Q and such

that

∇(U) ⊆ U ⊗ Ω

The splitting (5.3) is called the unit root splitting and U the unit root submodule

of H1
DR, as in [Kat78] and [Kat73a].

[Kat78] notes simply that the version of Proposition V.8 in [Kat78] (Theorem

1.11.27) is explained in [Kat73a]. If T∞,∞ were affine (which it is not), then all but

the uniqueness statement would follow immediately from [Kat78]. Since T∞,∞ is not

affine and since the reader may not see immediately why Proposition V.8 holds in

this instance, we explain here. Let {Ui}i be an affine cover of T∞,∞ such that each

Ui is sufficiently small so that the locally free sheaves H1
DR, U , and ω are free on Ui.

Then by Lemma 4.1 of [Kat73a], for each i, there is a splitting

H1
DR|Ui = ω|Ui ⊕ U i(5.4)

such that

π∗ : F ∗U → U i(5.5)
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is an isomorphism on U i and such that

∇(U i) ⊆ U i ⊗ Ω.

If the splittings (5.4) are unique, then they glue together to give the desired splitting

on T∞,∞. So it suffices to show that the splittings are (5.4) are unique. Since (5.5)

is an isomorphism and since Lemma V.7 holds, π∗ is of the form



pA 0

0 D





with A and D g × g matrices with entries in OM with D invertible, with respect to

fixed bases for ω|Ui and U i, respectively. Suppose U ′
i is another sheaf on Ui such that

H1
DR|Ui = ω|Ui ⊕ U ′

i

such that

π∗ : F ∗U → U ′
i

is an isomorphism on U ′
i and such that

∇(U ′
i) ⊆ U ′

i ⊗ Ω.

Then π∗ is of the form



pA 0

0 D′





with D′ invertible, with respect to fixed bases for ω and U ′
i. Therefore, since p is not

invertible in OM,

U = U ′,

i.e. the splitting is unique.
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5.1.3 Unit root splitting for the Mumford abelian variety

In this section, we study the unit root splitting over MumL(q), which is important

in the proof of Theorem IX.3.

Lemma V.9. (Analogue of [Kat78] Key Lemma (1.12.7)) Upon extension of scalars

to (OK)v ⊗OK (OK)(p) ((q, H∨
≥0)), the elements ∇(D(γ))(ω(w)) lie in U ⊆ H1

DR for

each γ ∈ H and w ∈ (W ′)∨.

Proof. By Lemma V.5, F , MumL(q)′, and

π : MumL(q) → MumL(q)′

are defined over OK(q, L). By Lemmas V.7 and V.8, π∗ has the form



pA 0

0 D′





with respect to fixed bases for ω and U for some g×g matrixes A and D with entries

in OM and D invertible. So it suffices to show that

π∗ (F ∗ (∇ (D(γ)) (ω(w)))) = ∇ (D(γ)) (ω(w))(5.6)

for all γ ∈ H and w ∈ (W ′)∨. So it is sufficient to extend scalars to C and check

(5.6) over C.

In our proof, we shall work with L = O2n
K , i.e. the cusp at ∞, and we note that

the proof at other cusps is similar. (We choose L = O2n
K because working in the

context of our explicit examples over C - which all used this lattice - provides the

most insight.)

Over C,

H1
DR = HomZ (pz(L), C) ,
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and ω(w) is a C-linear combination of the elements dui. So we are now reduced to

proving an assertion about maps of lattices.

By Remark V.6,

(π∗l) γ = l(pγ)

for each l ∈ F ∗H1
DR and γ ∈ Lz.

By (3.15) and (3.16), ∇(D(γ))(dui) lies in the subspace of H1
DR generated by

elements of the form

βj + αβ′j(5.7)

or

βj + ᾱβ′j(5.8)

1 ≤ j ≤ n (in the notation of (3.15) and (3.16)). Therefore, it suffices to show that

π∗ ◦ F ∗ fixes each element of the form (5.7) and each element of the form (5.8).

By Remark V.6 and the definition of βj, we see that

F ∗ (βj) : ppz(L) → C

is the Z-linear map defined by

p · zj #→ 1

pzi #→ 0, i '= j

ei, e
′
i, pz

′
i #→ 0, for all i.

Similarly,

F ∗ (βj) : ppz (L) → C
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is the Z-linear map defined by

p · z′j #→ 1

p · z′i #→ 0, i '= j

ei, ei, p · zi #→ 0, for all i.

So

π∗F ∗ (
βj + cβ′j

)
(l) = F ∗ (

βj + cβ′j
)
(pl)

=
(
βj + cβ′j

)
(l)

for each l ∈ pz(L) and each c ∈ OK, in particular for c = α, ᾱ. Therefore,

π∗F ∗∇ (D(γ)) (dui) = ∇ (D(γ)) (dui)

for 1 ≤ i ≤ 2n.
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C∞-differential operators from the perspective of Shimura

In this chapter, we review C∞-differential operators (acting on automorphic forms

on unitary groups) from the perspective of Shimura, as discussed for example in

[Shi00]. In later sections, we reformulate Shimura’s differential operators algebreo-

geometrically, and then we construct and discuss a p-adic analogue of the C∞-

differential operators. In Proposition VIII.5, we show that the C∞-differential oper-

ators we construct algebreo-geometrically in Chapter VIII are the same as Shimura’s

differential operators that we discuss in this chapter.

For a matrix z, we use the notation from [Shi00]

Ξ(z) = (i(z̄ − tz), i(z∗ − z)).

Let T = Cn
n, and let Hn be the irreducible hermitian symmetric space of non-

compact type defined by

Hn = {z ∈ T |i (z∗ − z) > 0} .

Let {εν} be an R-rational basis of T over C. For u ∈ T , let uν be defined by

u =
∑

ν

uνεν .
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Similarly, for z ∈ Hn, define zν ∈ C by

z =
∑

ν

zνεν .

Let (ρ, V ) = (ρ−⊗ρ+, V−⊗V+) be a finite-dimensional representation of GLn(C)×

GLn(C). Let e be a positive integer. For finite-dimensional vector spaces X and Y ,

define Se(Y, X) to be the vector space of degree e homogeneous polynomial maps of

Y into X, i.e. the space of maps h from Y to X such that

h(a · y) = aeh(y)

for each a ∈ C and y ∈ Y . We let Se(Y ) denote Se(Y, C). From here on, we identify

Se(Y, X) with Se(Y )⊗X via

h(u)⊗ x #→ h(u)x,

for each function h in Se(Y ) = Se(Y, C) and x in X. Let Mle(Y, X) denote the vector

space of all C-multilinear maps

Y × · · · × Y︸ ︷︷ ︸
e times

→ X.

An element of Mle(Y, X) is called symmetric if

g
(
yπ(1), . . . , yπ(e)

)
= g(y1, . . . , ye)

for each permutation π of {1, . . . , e}. As explained in Lemma 12.4 of [Shi00], for

each h in Se(Y, X), there is a unique symmetric element h∗ of Mlp(Y, X) such that

h(y) = h∗(y, . . . , y)

for all y in Y . We shall associate Se(Y, X) with a subspace of Mle(Y, X) in this way.

We define a representation (τ e, Mle(T, C)) of GLn(C) × GLn(C) as follows: Given
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(a, b) ∈ GLn(C)×GLn(C) and h ∈ Mle(T, C),

[τ e(a, b)h](u1, . . . , ue) = h(tau1b, . . . ,
t aueb).

Thus, we obtain a representation ρe ⊗ τ of GLn(C)×GLn(C) on Mle(T, C)⊗X =

Mle(T,X) via

[ρ⊗ τ e(g)](h(u)⊗ x) = τ e(g)h⊗ ρ(g)x

for each g ∈ GLn(C)×GLn(C), h ∈ Mle(T, C), and x ∈ X. We also write ρ⊗ τ e to

denote the restriction of this representation to Se(T,X).

For f ∈ C∞(Hn, V ), define operators

C, D : C∞(Hn, V ) → C∞(Hn, S1(T, V ))(6.1)

by

(Df)(u) =
∑

ν

uν
∂f

∂zν
,

(Cf)(u) = (τ 1(Ξ)Df)(u) = (Df)(tξuη),

respectively. For e > 1, we write Def and Cef to denote D(De−1f) and C(Ce−1f),

respectively. The functions Def and Cef have symmetric elements of Mle(T, V ) as

their values, which allows us – as explained in Section 12.1 of [Shi00] – to view them

as elements of C∞ (Hn, Se(T, V )) . Therefore, the operators Ce and De can be viewed

as maps

C∞(Hn, V ) → C∞(Hn, Se(T, V )).

In general, the operators Ce and De do not map automorphic forms to auto-

morphic forms. They are, however useful for constructing a map from the space of
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automorphic forms of weight ρ to the space of automorphic forms of weight ρ ⊗ τ .

Define

(Dρf)(u) = ρ(Ξ)−1D[ρ(Ξ)f ](u)

= (ρ⊗ τ) (Ξ)−1C[ρ(Ξ)f ]

and, more generally,

(De
ρf) = (ρ⊗ τ e)(Ξ)−1Ce[ρ(Ξ)f ].

The operator De
ρ satisfies the following properties ([Shi00]):

De+1
ρ = Dρ⊗τD

e
ρ = De

ρ⊗τDρ

De
ρ(f‖ρα) = (De

ρf)‖ρ⊗τeα,(6.2)

for α in G. From (6.2), we see that De
ρ maps automorphic forms of weight ρ to

automorphic forms of weight ρ⊗ τ e.

Example VI.1. In the case where n = 1 and the representations ρ under consider-

ation are powers of the determinant representation, the operators Dρ are the usual

weight-raising Maass differential operators, as we see in the following example.

Let n = 1. Then Hn is the usual upper half plane in the complex plane

Hn = H1 = {z = x + iy ∈ C | x, y ∈ R, y > 0} ,

and

T = C.

We shall choose the element 1 ∈ C as a basis for C. Let ρ be the representation of

GL1(C)×GL1(C) = C× × C× given by

(a, b) #→ (ab)k.
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Then for any weight ρ automorphic form with values in C and u ∈ C = T ,

(Dρf) (u) = ρ(2y, 2y)−1 ∂

∂z
(ρ(2y, 2y)f) · u

=

(
(2y)−2k ∂f

∂z
− 2kiyf

)
· u.

Note that we may identify the one-dimensional complex vector space S1(T ) with C

by identifying each element h ∈ S1(T ) with h(1). Therefore we may view Dρ as the

map

f #→ (2y)−2k ∂f

∂z
− 2kiyf.

Then Dρf maps C-valued automorphic forms of weight ρ to C-valued automorphic

forms of weight ρ′, where ρ′ is the representation of GL1(C) × GL1(C) = C× × C×

given by

(a, b) #→ (ab)k+1.

Let Z be a GLn(C) × GLn(C)-stable quotient of Se(T ), and let φZ denote the

projection of Se(T )⊗X onto Z ⊗X. Then the operator

DZ
ρ = φZDe

ρ

is a map from the space of automorphic forms of weight ρ to the space of automorphic

forms of weight ρ⊗ τZ , where τZ denotes the restriction of τ to Z.



CHAPTER VII

Some purely algebraic differential operators

In this chapter, we introduce some algebraic differential operators and maps that

are key ingredients in the construction of the C∞- and the p-adic-differential opera-

tors.

7.1 Some algebraic differential operators

In this section, we define some purely algebraic differential operators, which will

be used to construct the p-adic and C∞-differential operators. Let S be an OK-

scheme. The notation here is the same as in Section 3.3. We also assume throughout

this section:

S →M is an étale morphism.

We also try in this section to be consistent with the notation of [Kat78].

Recall that by (3.3) and (3.4),

∇(H±(A/S)) ⊆ H±(A/S)⊗ ΩS/T .(7.1)

So the Gauss-Manin connection induces a connection (through the product rule (3.19)

and the fact that (7.1) holds)

∇ : T •(H±(A/S)) → T •(H±(A/S))⊗ ΩS/T .
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Let ρ = ρ+ ⊗ ρ− be a quotient of ρ⊗d1
st ⊗ ρ⊗d2

st for some d1 and d2. Applying the
product rule (3.19) again, we get a connection

∇ : H1
DR(A/S)ρ ⊗ T •(H+(A/S)⊗H−(A/S))→ H1

DR(A/S)ρ ⊗ T •(H+(A/S)⊗H−(A/S))⊗ ΩS/T .

We define a differential operator

Dρ
A/S : VA/S := H1

DR(A/S)ρ ⊗ T •(H+(A/S)⊗H−(A/S))→ H1
DR(A/S)ρ ⊗ T •+1(H+(A/S)⊗H−(A/S))

to be the composition of maps:

VA/S := H1
DR(A/S)ρ ⊗ T •(H+(A/S)⊗H−(A/S))

∇ !!

Dρ
A/S

((&
&&

&&
&&

&&
&&

&&
&&

&&
&&

&&
&&

&&
&&

&&
&&

&&
&&

&&
&&

&&
&&

&&
&&

&&
&&

&&
&&

&&
VA/S ⊗ ΩS/T

id⊗KS

""
VA/S ⊗ ω+(A/S)⊗ ω−(A/S)

ι

""
VA/S ⊗H+(A/S))⊗H−(A/S)

=

""
H1

DR(A/S)ρ ⊗ T •+1(H+(A/S)⊗H−(A/S))

(7.2)

Remark VII.1. Observe that we can similarly construct an algebraic differential op-
erator

D̃ρ
A/S : H1

DR(A/S)ρ ⊗ Sym•(H+(A/S)⊗H−(A/S))→ H1
DR(A/S)ρ ⊗ Sym•+1(H+(A/S)⊗H−(A/S))

(essentially by replacing T • with Sym• in the definition of Dρ
A/S).

In the case where A = Auniv and S = MR0/R0, we define

Dρ := Dρ
Auniv/MR0

We denote by D the morphism

D : T •(H1
DR(A/S)) → T •+2(H1

DR(A/S))

whose restriction to T r(H1
DR(A/S)) is D⊗r.
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We write (Dρ
A/S)d (resp. (D̃ρ

A/S)d) to denote Dρ
A/S (resp. D̃ρ

A/S) composed with

itself d times.

Now we give a formula for the action of D in terms of the basis of invariant one-

forms αi, βi, α′i, β
′
i in H1

DR(C∞) over C. So that we can consider all representations

of interest simultaneously, we consider the representation ρ as a subrepresentation

of the tensor algebra. So we may view Dρ in terms of the restriction to H1
DR(C∞) of

the morphism D, which is a morphism

T •(H1
DR(C∞)) #→ T •+2(H1

DR(C∞))

that is homogeneous of degree two in the sense that D maps T r(H1
DR(C∞)) to

T r+2(H1
DR(C∞)). The sheaf T (H1

DR(C∞)) is the sheaf R of graded non-commutative

OM(C∞)-algebras generated by the horizontal sections αi, βi, α′i, β
′
i (defined in Sub-

section 3.1.1) with no relations other than those in the commutative ring OM(C∞).

Lemma VII.2 gives the action of D on R explicitly.

Lemma VII.2. Viewed as a morphism on R, the action of D is defined for all

sections f of OM(C∞) and nonnegative integers κi, κ′i, λi, λ′i by

D

((
∏

1≤l≤n

ακl
l α

′κ′l
l βλl

l β
′λ′l
l

)
f

)
=

∏

1≤l≤n

ακl
l α

′κ′l
l βλl

l β
′λ′l
l

∑

1≤i,j≤n

∂f

∂zij
· (Qj · Pi) ,(7.3)

with Pi and Qj the elements of R defined by

Pi = αi +
n∑

k=1

zikβk + ᾱα′i + ᾱ
n∑

k=1

zikβ
′
k

and

Qj = αi +
n∑

k=1

zkjβk + αα′i + α
n∑

k=1

zkjβ
′
k.
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For all v and w in R,

D(v + w) = D(v) + D(w).(7.4)

Proof. Equation (7.4) follows immediately from the definition of D. Since αi, βi, α′i, β
′
i

are horizontal,

∇
((

∏

1≤l≤n

ακl
l α

′κ′l
l βλl

l β
′λ′l
l

)
f

)
=

∏

1≤l≤n

ακl
l α

′κ′l
l βλl

l β
′λ′l
l

∑

1≤i,j≤n

∂f

∂zij
· dZij.

Recall from (3.28) that the injection

Ω ↪→ T 2(H1
DR)

defined by the Kodaira-Spencer isomorphism is given by

dZij #→ duj+n ⊗ dui.

By (3.11)–(3.14), we see that in R,

dui = Pi

duj+n = Qj,

for 1 ≤ i, j ≤ n. So now the lemma follows from the definition of D.

Note that since

∇(H±) ⊆ H± ⊗ Ω,

restriction of Dρ to (H±)ρ± gives maps

(H±)ρ± → (H±)ρ±⊗ρst ⊗ (H∓)ρst .

So through the product rule, D induces morphisms

(H1
DR(A/S)+)ρ+ ⊗ (H1

DR(A/S)−)ρ− −→ (H1
DR(A/S)+)ρ+⊗ρst ⊗ (H1

DR(A/S)−)ρ−⊗ρst .
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7.2 Some algebraically defined maps on automorphic forms

The maps defined in this section will be used in the proofs of Theorems VIII.2

and IX.2, algebraicity theorems about the differential operators defined in Sections

8.1 and 9.1. Our construction is completely analogous to the one in [Kat78], and we

follow [Kat78] closely. Our construction here is a general vector-valued construction

that generalizes the scalar-valued one in [Kat78] to our higher-dimensional setting.

We work over anOK-algebra R0. Let R be an R0-algebra, and let x be an R-valued

point of the moduli scheme MR0 over R0, corresponding to a morphism

Spec(R) →M

over R0. Let X denote the associated abelian variety X with the associated PEL

structure. Let λ be an element of EX/R.

Suppose that we are given an R-sub-module

Split(X/R)

in H1
DR(X/R) such that the natural map (induced by the inclusions)

ωX/R ⊕ Split(X/R)→H1
DR(X/R)(7.5)

is an isomorphism and such that

H1
DR(X/R)± ⊆ Ω±X/R ⊕ Split(X/R).

(For example, when R = C and we work in the C∞-category, the Hodge decom-

position gives us a splitting in which we can take Split(X/R) to be the sheaf of

anti-holomorphic one-forms.)
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As earlier, we let Mρ(α)(R0) denote the space of automorphic forms over R0 of

weight

(ρ = ρ− ⊗ ρ+, V = V − ⊗ V +)

and level α. Let e and d be positive integers. In this section, we define an R0-linear

map

∂(ρ, e, x, λ, Split(X/R), d) : Mρ⊗τe(R0) → V − ⊗ V + ⊗ (Rn ⊗Rn)⊗e+d.

We identify each automorphic form f in Mρ⊗τe(R0) with the corresponding global

section of (ω− ⊗ ω+)ρ ⊗ (Ω⊗e
M/R0

), as in Section 2.5.1 The canonical inclusion

ω(X/R)± ↪→ H1
DR(X/R)±

and the Kodaira-Spencer map (3.37) induce inclusions

(ω−X/R ⊗ ω+
X/R)ρ ⊗ (Ω⊗e

M/R0
) ↪→ (H1

DR
− ⊗H1

DR
+
)ρ−⊗ρ+ ⊗ (H1

DR
+ ⊗H1

DR
−
)⊗e.(7.6)

Associate f with its image in (H1
DR ⊗H1

DR)ρ ⊗ (H1
DR

+ ⊗H1
DR

−)⊗e via the inclusion

(7.6). Then for each integer d, (Dρ)d(f) is a global section of (H1
DR

+ ⊗ H1
DR

−)ρ ⊗

(H1
DR

+ ⊗H1
DR

−)⊗e+d. Thus,

((Dρ)d(f))(x) ∈ (H1
DR

−
(X/R)⊗H1

DR
+
(X/R))ρ−⊗ρ+ ⊗

“
(H1

DR
+
(X/R)⊗H1

DR
−

(X/R)
”⊗d+e

.

The choice of λ gives isomorphisms

λ± : ω±X/R
∼→ Rn,

which induce isomorphisms

(ω−X/R ⊗ ω+
X/R)ρ−⊗ρ+ ⊗ (ω−X/R ⊗ ω+

X/R)⊗e+d ∼→ V − ⊗ V + ⊗ (Rn ⊗Rn)⊗e+d

1Recall that we write (ω− ⊗ ω+)ρ−⊗ρ+ to mean (ω−)ρ− ⊗ (ω+)ρ+ .
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The splitting (7.5) gives projections

H1
DR(X/R)± → ω±X/R,(7.7)

which induce projections

(ω± ⊕ Split(X/R))ρ± → (ω±X/R)ρ± .

The projection (7.7) also induces a projection

(H1
DR(X/R)− ⊗H1

DR(X/R)+)⊗d+e → (ω−X/R ⊗ ω+
X/R)τ⊗(d+e)

and a projection

(ω−X/R ⊕ Split(X/R))ρ− ⊗ (ω+
X/R ⊕ Split(X/R))ρ+ → (ω−X/R)ρ− ⊗ (ω+

X/R)ρ+ .

We now define the R0-linear map

∂(ρ, e, x, λ, Split(X/R), d) : Mρ⊗τe(R0) → V − ⊗ V + ⊗ (Rn ⊗Rn)⊗e+d,

as follows. We define ∂(ρ, e, x, λ, Split(X/R), d)(f) to be the image of (Dρ+⊗ρ−)d(f) ∈

(H1
DR

+)ρ+⊗ρd
st ⊗ (H1

DR
−)ρ−⊗ρd

st under the composition of morphisms given by the

diagonal map in the commutative diagram (7.8):

(H1
DR

+
)ρ+⊗ρd

st ⊗ (H1
DR

−
)ρ−⊗ρd

st

))

g ,→g(x) !! (ω−X/R ⊕ Split(X/R))ρ−⊗ρd
st ⊗ (ω+

X/R ⊕ Split(X/R))ρ+⊗ρd
st

mod Split(X/R)

""

(ω−X/R)ρ−⊗ρd
st ⊗ (ω+

X/R)ρ+⊗ρd
st

λ

""
V − ⊗ V + ⊗ (Rn ⊗Rn)⊗e+d

(7.8)
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For each R-submodule Z that is a GLn(R)⊗GLn(R)-stable quotient of (ω−X/R)ρ−⊗ρd
st⊗

(ω+
X/R)ρ+⊗ρd

st , define φZ to be the projection of (ω−X/R)ρ−⊗ρd
st ⊗ (ω+

X/R)ρ+⊗ρd
st onto Z.

Identify Z with λ(Z). Then we define

∂(ρ, e, x, λ, Split(X/R), d)Z = φZ ◦ ∂(ρ, e, x, λ, Split(X/R), d).



CHAPTER VIII

The C∞-differential operators

8.1 Construction of the C∞ differential operators

First we construct the C∞ differential operators. Later, we will define p-adic

differential operators through a similar construction.

Let

H1
DR(C∞) = ω(C∞)⊕ Split(C∞)(8.1)

be the canonical splitting of the Hodge filtration corresponding to the holomor-

phic and anti-holomorphic one-forms. Here, Split(C∞) is the sheaf ω(C∞) of anti-

holomorphic one forms. Note that for each derivation D ∈ Der(OC∞
M ,OC∞

M ),

∇(D)(ω(C∞)) ⊂ ω(C∞).

Since

H1
DR(C∞)± ⊆ ω(C∞)± ⊕ Split(C∞),

the splitting (8.1) induces projections

H1
DR(C∞)± → ω(C∞)±,
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which induces a projection

H1
DR(C∞)ρ ⊗ T •(H1

DR
+
(C∞)⊗H1

DR
−
(C∞)) → ω(C∞)ρ ⊗ T •(ω+(C∞)⊗ ω−(C∞))

(8.2)

∼→ ω(C∞)ρ ⊗ T •(Ω(C∞)).

As usual, we associate ω± with its image in (H1
DR)± under the inclusion coming

from hypercohomology

ω ↪→ H1
DR.(8.3)

As in (7.6), the inclusion (8.3) and the Kodaira-Spencer isomorphism (3.37) induce

inclusions

(ω−)ρ− ⊗ (ω+)ρ+ ⊗ (Ω⊗e
M/R0

) ↪→ (H1
DR)ρ−⊗ρ+ ⊗ (H1

DR
− ⊗H1

DR
+
).(8.4)

Restricting Dρ to the image of (8.4), we get a map

(Dρ)d|(ω−)ρ−⊗(ω+)ρ+⊗(Ω⊗e
M/R0

) : (ω−)ρ− ⊗ (ω+)ρ+ ⊗ (Ω⊗e
M/R0

)→ H1
DR(C∞)ρ

− ⊗ ρ+ ⊗ (H1
DR

+ ⊗H1
DR

−
)⊗e+d.

We define the C∞-differential operator ∂(ρ, C∞, d) to be the map

∂(ρ, C∞, d) : (ω−)ρ− ⊗ (ω+)ρ+ ⊗ (Ω(C∞)⊗•) → (ω−)ρ− ⊗ (ω+)ρ+ ⊗ (Ω(C∞))⊗•+d)

that is the composition of maps in the following commutative diagram:

(ω−)ρ− ⊗ (ω+)ρ+(C∞)⊗ (Ω(C∞)⊗•)

∂(ρ,C∞,d)

**

(Dρ)d

!! H1
DR(C∞)ρ ⊗ (H1

DR
+ ⊗H1

DR
−

)•+d

mod Split(C∞)

""
(ω−)ρ− ⊗ (ω+)ρ+(C∞)⊗ (ω+ ⊗ ω−)⊗•+d

∼=

""
(ω−)ρ− ⊗ (ω+)ρ+(C∞)⊗ (Ω(C∞))•+d
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Remark VIII.1. For the reader who worries that defining the differential operators

on (ω−)ρ− ⊗ (ω+)ρ+ (instead of EV,ρ) is too ad hoc or non-canonical, we note that

the differential operators can equivalently be defined as morphisms from EV,ρ to

EV,(ρ+⊗ρst)⊗(ρ−⊗ρst). Indeed, the composition of maps

EV,ρ !!

(λ,v) ,→λ(v)

""

E(V−⊗Cn)⊗(V+⊗Cn),(ρ−⊗ρst)⊗(ρ+⊗ρ+)

(ω−)ρ− ⊗ (ω+)ρ+
∂(ρ,C∞,d)

!! (ω−)ρ− ⊗ (ω+)ρ+ ⊗ Ω
KS

!! (ω−)ρ−⊗ρst ⊗ (ω+)ρ+⊗ρst

v ,→(λ,λ−1(v))

++

gives an equivalent expression of our differential operator as an operator from EV,ρ

to E(V⊗(Rn)⊗(Rn)),(ρ+⊗ρst)⊗(ρ−⊗ρst).

Let Z be a GLn(C)×GLn(C)-stable quotient of

(ω−)ρ− ⊗ (ω+)ρ+(C∞)⊗ (ΩAuniv/M(C∞))•+d,

and let φZ be the projection of (ω−)ρ− ⊗ (ω+)ρ+(C∞)⊗ (ΩAuniv/M(C∞))•+d onto Z.

We define the differential operator ∂(ρ, C∞, 1)Z by

φZ ◦ ∂(ρ, C∞, d).

8.2 Algebraicity theorem for C∞-differential operators

The following algebraicity theorems (Theorems VIII.2 and VIII.3) are important

for our intended applications. The statement of Theorem VIII.2 and the idea of the

proof are essentially the same as what is done in Section 2.4 of [Kat78]; the new

parts are our generalizations from Katz’s special scalar-valued case to the arbitrary

(often vector-valued) case and to the case of projection onto subrepresentations.

Throughout this section, fix an OK-algebra R with an inclusion

ιR : R ↪→ C.
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In the special case R = Q̄, the statement of Theorem VIII.2 is essentially the

same as Theorem 14.9 (2) of [Shi00]. However, the methods or the proof of Theorem

VIII.2 are different from the proof in [Shi00]; the proof we present is similar to what

is done in Section 2.4 of [Kat78].

We associate each automorphic form f in Mρ⊗τe(R) with its image in Mρ⊗τe(C)

via the extension of scalars induced by ιR. We also associate each automorphic form

in Mρ⊗τe(C) with the corresponding holomorphic section of (ω−)ρ− ⊗ (ω+)ρ+(C∞)⊗

Ω(C∞)⊗e on M(C∞).

Let x = X be an R-valued point of MR, and let λ be an element of EX/R. Suppose

there is a splitting over R

Split(X/R)⊕ ωX/R
∼→ H1

DR(X/R).

Then we have an inclusion

Split(X/R) ↪→ H1(Xan
C , C)(8.5)

coming from the composition of maps

Split(X/R) # ! ext. of scalars via ιR!!

,,

Split(X/R)⊗ C # !(8.5)⊗Id
!! H1

DR(X/R)⊗ C

∼=

""

H1(Xan
C , C)

We say that the the pair (x, Split(X/R)) satisfies the condition (†)if the following

holds:

The image of Split(X/R) under the inclusion (8.5) is the antiholomorphic subspace

H0,1 ⊂ H1(Xan
C, C),

i.e. Split(X/R)⊗ C = Split(C∞)(xC).(†)
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Note that this condition is essentially the same as condition (2.4.2) in [Kat78].

For our intended applications, the only points that will interest us are certain

ordinary CM points. We shall see later that for each such ordinary CM point, there

is indeed a splitting satisfying condition (†).

Note that in general, we only know that the values of ∂(ρ, C∞, d)(f) at points

(x, λ) lie in a C-vector space. (This is because even if f ∈ Mρ(R), we only know

that ∂(ρ, C∞, d)(f) is a C∞-function and nothing about where its values at arbitrary

points lie.) We see in theorem VIII.2, however, that we can say much more about

the values of ∂(ρ, C∞, d)(f) at points satisfying (†).

Theorem VIII.2. Suppose that (x, Split(X/R)) is an R-valued point of MR that

satisfies condition (†). Let f be an automorphic form in Mρ⊗τe(R) with values in an

R-module V . Then

(∂(ρ, C∞, d)f)(x, λ)C = ιR(∂(ρ, e, x, λ, Split(X/R), d)f).(8.6)

Therefore,

(∂(ρ, C∞, d)f)(x, λ)C ∈ V ⊗R (Rn ⊗Rn)⊗d .

The proof we provide is similar to Katz’s proof of Theorem 2.4.5 in [Kat78].

Proof. As it was defined in Section 7.2, ιR(∂(ρ, e, x, λ, Split(X/R), d)f) lies in

V ⊗R (Rn ⊗Rn)⊗d .

So to prove the theorem, it suffices to prove that Equation (8.6) holds.

By the extension of scalars from R to C given by ιR, we associate the automorphic

form f with its image fC in Mρ⊗τe(C), the R-valued point x with R-basis λ with x

with basis λC, and Split(X/R) with its image in Split(X/R)⊗C. Then, we see that

ιR(∂(ρ, e, xC, λC, Split(X/R)C, d)fC) = ιR(∂(ρ, e, x, λ, Split(X/R), d)f)
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is V ⊗R (Rn ⊗Rn)⊗d-valued. So it suffices to show that Equation (8.6) holds in the

case R = C, which we will now do.

Consider the following commutative diagram (8.7). (Note that commutativity in

(8.7) follows from the hypothesis that (x, Split(X/R)) satisfies condition (†).)

(H1
DR)ρ ⊗ (H1

DR
+ ⊗H1

DR
−)⊗e+d

take fiber at x

--''''''''''''''''''''''''''''''''''''

mod Split(C∞)

""
(ω−)ρ− ⊗ (ω+)ρ+ (C∞)⊗ (ω+(C∞)⊗ ω−(C∞))⊗e+d

take fiber at x

--'''''''''''''''''''''''''''''''''''''
(H1

DR(X/R))ρ ⊗ ((H1
DR

+ ⊗H1
DR

−)(X/R))⊗e+d

mod Split(X/R)

""
((ω+ ⊗ ω−)(X/R))ρ ⊗ ((ω− ⊗ ω+)(X/R))⊗e+d

∼= from choice of λ

""
(V ⊗R C)⊗C (Cn ⊗ Cn)⊗d

(8.7)

As usual, we associate f with its image in (H1
DR)ρ ⊗ (H+ ⊗H−)⊗e. Then

(∂(ρ, e, x, λ, Split(X/R), d)f)(x) is obtained by applying (Dρ)d to f and composing

with the maps along the right side of the commutative diagram (8.7). Similarly,

(∂(ρ, C∞, d)f)(x) is obtained by applying (Dρ)d to f and composing with the maps

along the left side of the commutative diagram (8.7). Therefore, (8.6) holds for all x

admitting a splitting satisfying (†).

We also obtain the following generalization of Theorem VIII.2:

Theorem VIII.3. Suppose that (x, Split(X/R)) is an R-valued point of MR that
satisfies condition (†). Let f be an automorphic form in Mρ⊗τe(R). Let Z be a
GLn(R)×GLn(R)-stable R-quotient of ωρ

R ⊗ (ΩAuniv/MR
)•+d, and let φZ be the pro-

jection of ω(C∞)ρ ⊗ (ΩAuniv/M(C∞))•+d onto Z ⊗R C. Let Zx be the fiber of Z at x.
Then

(∂(ρ, C∞, d)Zf)((X, λ, ι, α), λ)C = ιR(∂(ρ, e, x, λ, Split(X/R), d)ZX f).
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Therefore,

(∂(ρ, C∞, d)Zf)(x, λ)C

actually takes values in the R-module λ(Z).

Proof. The proof is similar to the proof of Theorem VIII.2, except that we replace

the commutative diagram 8.7 with the commutative diagram

(H1
DR)ρ ⊗ (H1

DR
+ ⊗H1

DR
−)⊗e+d

take fiber at x

--''''''''''''''''''''''''''''''''''''''

mod Split(C∞)

""
((ω−)ρ− ⊗ (ω+)ρ+ )(C∞)⊗ ((H+ ⊗H−)(C∞))⊗e+d

φZ

""

(H1
DR(X/R))ρ ⊗ ((H+ ⊗H−)(X/R))⊗e+d

mod Split(X/R)

""
Z

take fiber at x

--((((((((((((((((((((((((((((((((((((((((((((( ((ω−)ρ− ⊗ (ω+)ρ+ (X/R))ρ ⊗ ((ω+ ⊗ ω−)(X/R))⊗e+d

φZX

""
ZX

∼= from choice of λ

""
Crank(ZX )

(8.8)

Now, the proof goes in the same way as the proof of Theorem VIII.2.

Note that similarly to in Remark VIII.1, restriction to Z yields a canonical map

EV,ρ → EZ .

8.3 Some properties of the C∞-differential operators

In this section, we give some fundamental properties of the C∞-differential oper-

ators ∂(ρ, C∞, d).
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We denote by (∂(ρ, C∞, 1))d the composition of ∂(ρ, C∞, d) with itself d times.

Theorem VIII.4. The differential operators satisfy the following properties.

1.

∂(ρ, C∞, d) = (∂(ρ, C∞, 1))d(8.9)

for each positive integer d.

2. Associating the space of automorphic forms of weight ρ ⊗ τ f with (ω−)ρ− ⊗

(ω+)ρ+(C∞) ⊗ Ω(C∞)⊗f via the natural isomorphism induced by the Kodiara-

Spencer isomorphism, we have that ∂(ρ, C∞, d) is the same as ∂(ρ⊗ τ f , C∞, d),

i.e.

∂(ρ, C∞, d)|(ω−)ρ−⊗(ω+)ρ+ (C∞)⊗ΩAuniv/M(C∞)⊗e

= ∂(ρ⊗ τ f , C∞, d)|(ω−)ρ−⊗(ω+)ρ+ (C∞)⊗ΩAuniv/M(C∞)⊗e(8.10)

for all non-negative integers f ≤ e.

3.

∂(ρ⊗ τ d−1, C∞, 1) ◦ · · · ◦ ∂(ρ⊗ τ, C∞, 1) ◦ ∂(ρ, C∞, 1) = ∂(ρ, C∞, d)(8.11)

for all positive integers d ≥ 2.

Proof. Recall that Split(C∞) is horizontal with respect to ∇, in the sense that

∇(Split(C∞)) ⊆ Split(C∞)⊗ ΩAuniv/M(C∞).

So from the definition of Dρ, we see that

Dρ(Split(C∞)) ⊆ Split(C∞),
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and hence, for all positive integers d,

(Dρ)d(Split(C∞)) ⊆ Split(C∞).

So

(Dρ)d ◦ (“ mod Split(C∞)”) = (Dρ ◦ (“ mod Split(C∞)”))d,

where (Dρ◦(“ mod Split(C∞)”))d denotes Dρ◦(“ mod Split(C∞)”) composed with

itself d times. Therefore, it follows directly from the definition of ∂(ρ, C∞, d) that

∂(ρ, C∞, d) = (∂(ρ, C∞, 1))d.

So (8.9) holds.

Equation (8.10) follows directly from the definition of τ , our earlier explicit

description of the Kodaira-Spencer isomorphism, and the definition of the map

∂(ρ, C∞, d) for any representation ρ.

Now we prove that (8.11) holds. Note that for any ρ, ∂(ρ, C∞, 1) has image in

ω(C∞)ρ ⊗
∑∞

e=1 Ω⊗e(C∞). So (9.2) is a corollary of (8.9) and (8.10).

8.4 Explicit formulas for the C∞-differential operators

In this section, we present explicit formulas for the C∞-differential operators and

compare them to the formulas in [Shi00]. The reader familiar with [BSY92], which

handles the symplectic case, can compare our formulas with [BSY92] to see that we

have constructed essentially the same C∞-operators that [BSY92] defines combinato-

rially. The form in which we have chosen to write our formulas should help the reader

see the connection between our operators and the ones in [BSY92]. In particular,

the reader may wish to compare our formulas with Formula (2.1) of [BSY92].

Recall that a holomorphic (resp. C∞) automorphic form of weight (ρ, V ) = (ρ−⊗

ρ+, V− ⊗ V+) and level Γ ⊆ GU(ηn) may be viewed as a holomorphic (resp. C∞)
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function

f :Hn → V = V− ⊗ V+

(where V± are complex vector spaces) that satisfies

f((Aτ + B)(Cτ + D)−1) = ρ(Cτ + D)f(τ)(8.12)

for all

γ =




A B

C D



 ∈ Γ.

Let Dρ be Shimura’s differential operator discussed in the introduction (cf. section

12.1 of [Shi00]). In Proposition VIII.5, we will show that our C∞-differential operator

∂(ρ, C∞, d) is the same as Shimura’s C∞-differential operator Dd
ρ.

Proposition VIII.5. Let f : Hn → V = V− ⊗ V+ be a C∞-function. Let λ ∈ E.

Then

∂(ρ, C∞, 1) (λ(f)) = λ(Dρf).(8.13)

(In Equation (8.13), λ refers to the induced map from V± to ωρ±
± .)

Proof. Define

v±λ± = λ−1(du±λ±)

for each tuple λ±. Writing f in terms of the basis vλ± for V ±, we have

f =
∑

λ−,λ+

fλ−,λ+λ(v−λ− ⊗ v+
λ+

),(8.14)
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for some C∞ complex valued functions fλ−,λ+ . The sum in Equation (8.14) is, as

usual, over all tuples λ± so that vλ± is in V ±. Note that

∂(ρ, C∞, 1)(λ(f(z))) = ∂(ρ, C∞, 1)




∑

λ−,λ+

fλ−,λ+λ(v−λ− ⊗ v+
λ+

)





(8.15)

= ∂(ρ, C∞, 1)




∑

λ−,λ+

fλ−,λ+(du− − dū−)λ− ⊗ (du+ − dū+)λ+



 .(8.16)

We get from (8.15) to (8.16) by recalling that ∂(ρ, C∞, 1)(ω̄) = 0, since ω̄ is holo-

morphically horizontal with respect to ∇.

Applying Equations (3.17) and (3.18) to Equation (8.16), we see that

∂(ρ, C∞, 1)(λ(f(z)))

= ∂(ρ, C∞, 1)



ρ(Ξ(z))




∑

λ−,λ+

fλ−,λ+(β + ᾱβ)λ− ⊗ (β + αβ)λ+







 .

Now recall that the sections βi + ᾱβi and βi + αβi are horizontal for the Gauss-

Manin connection. So their image under ∂(ρ, C∞, 1) is zero.

Therefore

∂(ρ, C∞, 1)(λ(f(z))) = D

0

@ρ(Ξ(z))

0

@
X

λ−,λ+

fλ−,λ+(β + ᾱβ)λ− ⊗ (β + αβ)λ+

1

A

1

A mod Split(C∞),

where D is the map (6.1). Applying (3.17) and (3.18) again, we obtain

∂(ρ, C∞, 1)(λ(f(z)))

= ρ−1(Ξ(z))D

0

@ρ (Ξ(z))

0

@
X

λ−,λ+

fλ−,λ+(du− − dū−)λ− ⊗ (du+ − dū+)λ+

1

A

1

A mod Split(C∞)

= ρ−1(Ξ(z))D

0

@ρ (Ξ(z))

0

@
X

λ−,λ+

fλ−,λ+(du−)λ− ⊗ (du+)λ+

1

A

1

A

= ρ−1(Ξ(z))D (ρ (Ξ(z)) λ(f)) .
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Let Z be a GLn(C)×GLn(C)-stable quotient of

ω(C∞)ρ ⊗ (ΩAuniv/M(C∞))•+d,

and let

Z = H0(Hn, Z).

Let φZ denote projection onto Z.

Recall that Shimura defines a differential operator DZ
ρ (see e.g. [Shi00]) by

DZ
ρ = φZDd.

So as a corollary of Proposition VIII.5, we obtain the following

Corollary VIII.6.

DZ
ρ = ∂(ρ, C∞, 1)Z .

From the proof of the above propositions, we see that

Image(∂(ρ, C∞, d)) ⊂ (ω−)ρ− ⊗ (ω+)ρ+ ⊗ Symd(Ω(C∞)) ⊂ (ω−)ρ− ⊗ (ω+)ρ+ ⊗ Ω(C∞)⊗d,(8.17)

where we associate Symd(Ω(C∞)) with its image in Ω(C∞)⊗d as in (1.2). Note that

we could have defined another C∞-differential operators with similar properties to

those of ∂(ρ, C∞, d), by replacing Dρ with D̃ρ in the construction of ∂(ρ, C∞, d). By

(8.17), we see that in fact, the differential operators constructed from D̃ρ are the

same differential operators as ∂(ρ, C∞, d).

We have seen above that our C∞-differential operators are the same as the C∞-

differential operators Shimura defines in [Shi00]. For our later applications, as well

as a reference for the reader who wishes to apply the differential operators, we now

provide explicit formulas for the action of some of the differential operators.
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Lemma VIII.7. Let

f =
∑

1≤λ−,λ+≤n

fλ−,λ+du−λ− ⊗ du+
λ+

be an automorphic form of weight ρst ⊗ ρst, viewed as an element of ω− ⊗ ω+. Then

∂(ρ, C∞, 1)(f) =
∑

1≤λ+≤n

Mλ+

f ·





du−1
...

du−n




⊗ du+

λ+
+

∑

1≤λ−≤n

duλ− ⊗Mλ−
f ·





du+
1

...

du+
n




,

(8.18)

where Mλ±
f is the row vector (dependent only on f) defined by

1

2

(
df1,λ± , df2,λ± , . . . , dfn,λ±

)
+

(
f1,λ± , . . . , fn,λ±

)
·
(
dz±

) (
Ξ±

)

Proof. Note that

∂(ρ, C∞, 1)(f) =
∑

1≤λ−,λ+≤n

∂(ρ, C∞, 1)
(
fλ−,λ+du−λ− ⊗ du+

λ+

)
.

We have that

∂(ρ, C∞, 1)
(
fλ−,λ+du−λ− ⊗ du+

λ+

)
=

1

2
dfλ−,λ+du−λ− ⊗ du+

λ+
+ du−λ− ⊗

1

2
dfdu+

+f∂(ρ, C∞, 1)(du−)⊗ du+ + du− ⊗ f∂(ρ, C∞, 1)(du+)

So now it suffices to recall ∂(ρ, C∞, 1)(duλ±); applying (3.17) and (3.18), we obtain

(8.18).

One can alternatively derive the formula from Proposition VIII.5.

Similarly, we can provide formulae for ∂(ρ, C∞, 1) for representations other than

ρst. For now, we conclude with the formulas for ρ = Symm− ⊗ Symm+ and ρ =

detm− ⊗ detm+ .
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Using the above discussion, we see that if

f = f̃(∧n
du−i

)m− ⊗ (∧ndu+
i )m+(8.19)

is an automorphic form of weight ρ = ρ− ⊗ ρ+ with ρ± = detm± , then

∂(ρ, C∞, 1)(f) = df +
(
m+ · det(Ξ+)−1 · (dz)+ + m− · det(Ξ−)−1(dz)−

)
f

In the following lemma, λ± denotes as usual an n-tuple of positive integers

(λ±1 , . . . , λ±n ).

We have chosen these particular forms ((8.20) and (8.19)) in which to express the

action of ∂(ρ, C∞, 1) for the determinant and symmetric representations because it

helps illustrate the connection with Formula (2.1) for the operators on Siegel modular

forms defined in [BSY92].

Lemma VIII.8. Let f = be an automorphic form of weight ρ = ρ− ⊗ ρ+, with

ρ± = Symm±

for some integers m±. Viewing f as an element
∑

λ−,λ+
fλ−,λ+(du−)λ− ⊗ (du+)λ+ of

Symm−(ω−)⊗ Symm+(ω+), we have the following equality

∂(ρ, C∞, 1)




∑

λ−,λ+

fλ−,λ+

(
du−

)λ− ⊗
(
du+

)λ+



 =(8.20)

∑

λ+

Mλ+

f ·





du−1
...

du−n




⊗

(
du+

)λ+ +
∑

λ+

(
du−

)λ− ⊗Mλ−
f ·





du+
1

...

du+
n




,(8.21)

where Mλ± is the row vector (dependent only on f) defined by

M
λ±
f =

1
2

0

@
X

λ∓

dfλ∓,λ±du
λ∓1 −1
1

Y

j .=1

du
λ∓j
j , . . . ,

X

λ±

dfλ∓,λ±du
λ∓n−1
n

Y

j .=n

du
λ∓j
j

1

A

+

0

@
X

λ∓

λ∓1 fλ−,λ+(du∓1 )λ∓1 −1
Y

j .=1

du
λ∓j
j , . . . ,

X

λ∓

λ∓n fλ−,λ+(du∓1 )λ∓n−1
Y

j .=n

du
λ∓j
j

1

A · (dz±)(Ξ±)−1
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One sees that in the case m− = m+ = 1, Lemma VIII.8 specializes to Lemma

VIII.7.

Proof. The lemma follows by expressing the action of ∂(ρ, C∞, 1) as follows.

∂(ρ, C∞, 1)




∑

λ−,λ

fλ−,λ+(du−)λ− ⊗ (du+)λ+



 =

∑

λ−,λ+

dfλ−,λ+(du−)λ− ⊗ (du+)λ+ +
∑

λ−,λ+

fλ−,λ+∂(ρ, C∞, 1)
(
(du−)λ− ⊗ (du+)λ+

)
.

Now,

∂(ρ, C∞, 1)
(
(du−)λ− ⊗ (du+)λ+

)

= ∂(ρ, C∞, 1)
(
(du−)λ−

)
⊗ (du+)λ+ +

(
du−

)λ− ⊗ ∂(ρ, C∞, 1)
(
(du+)λ+

)
,

and

∂(ρ, C∞, 1)
(
(du±)λ±

)
= ∂(ρ, C∞, 1)

(
du±1

λ±1 · · · du±n
λ±n

)

=
n∑

i=1

(
∂(ρ, C∞, 1)

(
(du±i )λ±i

))
·
∏

j 2=i

du±j
λ±j .

Note that

∂(ρ, C∞, 1)
(
du±i

λ±i
)

= λ±i

(
du±i )λ±i −1 · (∂(ρ, C∞, 1)

(
du±i

))
.

So applying (3.17) and (3.18) and putting the above equations together, we obtain

Equation (8.20).

The above formulas for the action of ∂(ρ, C∞, 1) allow one to write down formulas

for the action of ∂(ρ, C∞, d) for d > 1.

One can also similarly work out formulas for other representations, but the main

ones of interest to us for our intended applications are powers of the determinant

and symmetric product, which we just finished describing.



CHAPTER IX

The p-adic differential operators

In this chapter, we construct p-adic differential operators that act on p-adic au-

tomorphic forms, and we discuss basic properties of these operators. We follow the

arguments from [Kat78] closely. Rather than the notation from [Kat78], however,

we use the notation from [HLS06] and [Hid04], since this is what we will use in our

applications.

Throughout this chapter, let R be an OK-algebra that is separated for the p-adic

topology, and let R0 be the p-adic completion of R.

9.1 Analogue of the differential operators ∂(ρ, C∞, d)

We define p-adic differential operators

∂(ρ, p-adic, d) : (ω−)ρ− ⊗ (ω+)ρ+(p-adic) → (ω−)ρ− ⊗ (ω+)ρ+(p-adic)⊗ Ω(p-adic)

in the same way as the C∞-differential operators ∂(ρ, C∞, d), except that we replace

Split(C∞) and Ω(C∞) with Split(p-adic) and Ω(p-adic), respectively. Replacing all

occurrences of C∞ with p-adic in the proof of Theorem VIII.4, we see that all the

properties of the C∞-operators given in Theorem VIII.4 also hold for the p-adic

operators:

Theorem IX.1. The p-adic differential operators satisfy the following properties.

111
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1.

∂(ρ, p-adic, d) = (∂(ρ, p-adic, 1))d

for each positive integer d.

2. Associating the space of p-adic automorphic forms of weight ρ⊗ τ f with

ω(p-adic)ρ ⊗ Ω(p-adic)⊗f

via the natural isomorphism induced by the Kodiara-Spencer isomorphism, we

have that ∂(ρ, p-adic, d) is the same as ∂(ρ⊗ τ f , p-adic, d), i.e.

∂(ρ, p-adic, d)|ω(p-adic)ρ⊗ΩAuniv/M(p-adic)⊗e

= ∂(ρ⊗ τ f , p-adic, d)|ω(p-adic)⊗ΩAuniv/M(p-adic)⊗e(9.1)

for all non-negative integers f ≤ e.

3.

∂(ρ⊗ τ d−1, p-adic, 1) ◦ · · · ◦ ∂(ρ⊗ τ, p-adic, 1) ◦ ∂(ρ, p-adic, 1) = ∂(ρ, p-adic, d)

(9.2)

for all positive integers d ≥ 2.

One can construct operators ∂(ρ, p-adic, d)Z similarly to how one constructs the

operators ∂(ρ, C∞, 1)Z . The operators ∂(ρ, p-adic, d)Z have properties similar to

those of ∂(ρ, C∞, 1)Z .

9.2 p-adic arithmeticity result

In this section, following [Kat78], we give a p-adic analogue of the algebraicity

theorem VIII.2.
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Let x = X be an R-valued point of MR with an element λ of Ex/R. Suppose there

is a splitting over R

Split(X/R)⊕ ωX/R
∼→ H1

DR(X/R).

Then we have an inclusion

Split(X/R) ↪→ H1
DR(p-adic)(X/R0)(9.3)

coming from the composition of maps

Split(X/R) # ! ext. of scalars via R↪→R0 !!

..

Split(X/R)⊗R0
# !(9.3)⊗Id

!! H1
DR(X/R)⊗R R0

∼=

""

H1
DR(p-adic)(X/R0)

We introduce a p-adic analogue of the condition (†). We say that the the pair

(x, Split(X/R)) satisfies the condition (‡)if the following holds:

The image of Split(X/R) under the inclusion (9.3) is the unit root subspace

U(X/R0) ⊂ H1
DR(p-adic)(X/R0),

i.e. Split(X/R)⊗R0 = U(X/R0).(‡)

Let f be an automorphic form of weight ρ over R, and associate it with a corre-

sponding element of ωρ
R. Then by the extension of scalars R ↪→ R0, we can view f

as a section f(p-adic) of ω(p-adic)ρ.

We now give a p-adic analogue of the algebraicity theorem VIII.2.

Theorem IX.2. Suppose that (x, Split(X/R)) is an R-valued point of MR that

satisfies condition (‡), and let λ be an element of Ex/R. Let f be an automorphic

form in Mρ⊗τe(R) with values in the R-module V . Then

(∂(ρ, p-adic, d)f(p-adic))(x, λ)R0 = ιR(∂(ρ, e, x, λ, Split(X/R), d)f).



114

Therefore,

(∂(ρ, p-adic, d)f(p-adic))(x, λ)R0

lies in the R-module V ⊗ (Rn ⊗Rn)⊗d.

We note that the only points that matter in our intended applications are certain

ordinary CM points. We shall see soon that for each such ordinary CM point there

is a splitting that satisfies condition (‡).

The proof of Theorem IX.2 is similar to the proof of Theorem VIII.2: it is obtained

by replacing “C∞” with “p-adic.”

We obtain a similar arithmeticity result for the operators ∂(ρ, p-adic, d)Z .

9.3 Differential operators on p-adic automorphic forms

In this section, we construct a morphism θ that acts on the space of p-adic auto-

morphic forms. The operator θ is a vector-valued analogue of Ramanujan’s operator

q d
dq .

Recall that p-adic automorphic forms are actually certain sections of modules of

the form On
T∞,∞ ⊗R V with (ρ, V ) a representation of GLn × GLn. Thus, all p-adic

automorphic forms appear as certain sections of the tensor product of total tensor

algebras

T (On
T∞,∞)⊗ T (On

T∞,∞),

which we associate with the tensor product of the free algebras on n letters

R = OT∞,∞ ⊗R R〈T1, . . . , Tn〉 ⊗R R〈T1, . . . , Tn〉,

via

ei ⊗ ej #→ Ti ⊗ Tj,(9.4)
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where ei denotes the i-th standard basis element of On
T∞,∞ . This viewpoint allows us

to consider p-adic automorphic forms as subsections of the algebra R. In the p-adic

modular forms case, this algebra is simply the ring of p-adic modular forms.

We use this viewpoint in this section, not only because it conveniently allows

us to consider modular forms of all different weights at once, but also because this

viewpoint is important for applications involving construction of families of p-adic

automorphic forms of different weights.

While not in general a derivation of R over R, the morphism θ that we construct

later in this section extends to an R-derivation of the commutative subalgebra

OT∞,∞ ⊗R R[T1, . . . , Tn]⊗R[T1, . . . Tn].

Note that composition of the canonical isomorphism

ωcan : On
T∞,∞ ⊗On

T∞,∞

∼→ ω−(p-adic)⊗ ω+(p-adic)

with (9.4) induces an isomorphism

R
∼→ T

(
ω− (p-adic)

)
⊗ T

(
ω+ (p-adic)

)
,(9.5)

which we shall also denote by ωcan.

Before further discussing the map θ, we must recall some facts from Chapter IV

on the algebraic theory of q-expansions. Recall the canonical isomorphism

ωcan : W ′∨ ⊗ (OK)(p) ((q, H∨
≥0))

∼→ ω

over the Mumford object MumL(q) at a cusp H. We associate W ′∨ with W , through

the canonical identification

W ′ ∼→ W∨.
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Recall also the Kodaira-Spencer isomorphism

W ⊗OK W ⊗OK (OK)(p) ((q, H∨
≥0))

∼→ H ⊗Z (OK)(p) ((q, H∨
≥0)).

We shall identify H⊗Z(OK)(p) ((q, H∨
≥0)) with its image in (OK)n

n⊗OK(OK)(p) ((q, H∨
≥0))

via the inclusion

H ⊗Z (OK)(p) ((q, H∨
≥0)) ↪→ (OK)n

n ⊗OK (OK)(p) ((q, H∨
≥0))

h⊗ a #→ h⊗ a.

Recall from Chapter IV that over the Mumford object at the cusp H at ∞,

ω+(ei)⊗ ω−(ej) = KS (D (eij)) ,

where ei denotes the i-th standard basis vector of W = On
K and eij is the element of

(OK)n
n with a 1 in the i-th row of the j-th column and zeroes everywhere else.

We are now in a position to define the map θ and state some of its fundamental

properties.

Theorem IX.3. There exists a morphism θ of R such that the following hold:

1. The diagram

R
θ !!

∼=ωcan

""

R

∼=ωcan

""
T (ω(p-adic)−)⊗ T (ω(p-adic)+)

∂(ρ,p-adic,1) !! T (ω(p-adic)−)⊗ T (ω(p-adic)+)

commutes.

2. The morphism θ is “homogeneous of degree 1 ⊗ 1”, in the sense that if x1 and

x2 are homogeneous elements of OT∞,∞ ⊗R R〈T1, . . . , Tn〉 of degrees d1 and d2,

respectively, then θ(x1 ⊗ x2) is homogeneous of degree (d1 + 1)⊗ (d2 + 1).
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3. On the commutative subalgebra OT∞,∞ [T1, . . . , Tn] ⊗OT∞,∞ OT∞,∞ [T1, . . . , Tn] of

R, θ is a derivation.

4. If f is a p-adic automorphic form with q-expansion at the cusp at infinity (L, H)

given by

f(q) =
∑

h=(hij)∈H∨
≥0

(
c(h)qh

)
,

with c(h) ∈ R〈T1, . . . , Tn〉 ⊗R〈T1, . . . , Tn〉, then

(θ(f))(q) =
∑

h=(hij)∈H∨
≥0

(
d(h)qh

)
,(9.6)

where

d(h) =
∑

i,j

hijc(h) · (Tj ⊗ Ti).

Proof. We define the morphism θ by

θ = ω−1
can ◦ ∂(ρ, p-adic, 1) ◦ ωcan.

Recall that for any positive integers d and e, ∂(ρ, p-adic, 1) maps each element of

T d(ω(p-adic)−)⊗T e(ω(p-adic)+) to an element of T d+1(ω(p-adic)−)⊗T e+1(ω(p-adic)+).

So θ maps homogenous elements of degree d ⊗ e in R to homogeneous elements of

degree (d + 1)⊗ (e + 1) in R. It follows from the definition of ∂(ρ, p-adic, 1) that θ

is a R-derivation of the commutative subalgebra

OT∞,∞ ⊗R R[T1, . . . , Tn]⊗R R[T1, . . . Tn]

of R.

Now, we will examine the action of θ over the Mumford object MumL(q). By

Lemma V.9, the elements ∇(D(γ))(ω(w)) lie in U ⊆ H1
DR for each γ ∈ H and

w ∈ W . Since ∇(D(γ)) is an R-derivation and U an R-module, we in fact have that

∇ (D (γ))
(
ω± (w)

)
∈ U(9.7)
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for each w ∈ W . Since ∇ is defined through the chain rule and since ∂(ρ, p-adic, 1)

is defined by

∂(ρ, p-adic, 1) = ∇ mod Split(p-adic),

we have that

∂(ρ, p-adic, 1)
(
ω± (ei1)⊗ · · · ⊗ ω± (eir)

)
= 0

for each positive integer r and 1 ≤ i1, . . . , ir ≤ n. Let f be a section of OT∞,∞ . Then

∂(ρ, p-adic, 1)
(
f · ω± (ei1)⊗ · · · ⊗ ω± (eir)

)
= ω± (ei1)⊗ · · · ⊗ ω± (eir) ·Df.

Suppose the value of f at MumL(q) is

f(q) = f(MumL(q)) =
∑

h=(hij)∈H∨
≥0

a(h)qh.

For the standard basis elements ekl ∈ H,

(D (ekl)) (f (q)) =
∑

h=(hij)∈H∨
≥0

a(h) · tr (eklh)qh

=
∑

h=(hij)∈H∨
≥0

a(h)hlkq
h.

So over the Mumford object, we have

∇ (D (ekl))
`
f(q) ·

`
ω± (ei1)⊗ · · · ⊗ ω± (eir )

´´

= D (ekl) (f(q)) ·
`
ω± (ei1)⊗ · · · ⊗ ω± (eir )

´
· KS(D(ekl) mod Split(p-adic)

=
X

h=(hij)∈H∨≥0

a(h)hlkqh · ω+(ek)⊗ ω−(el) mod Split(p-adic).

Therefore,

∇f(q) =
∑

h=(hij)∈H∨
≥0

∑

1≤l,k,≤n

a(h)hlkq
h · ω±(ek)⊗ ω±(el) mod Split(p-adic),

so

∂(ρ, p-adic, 1)f(q) =
∑

h=(hij)∈H∨
≥0

∑

1≤l,k,≤n

a(h)hlkq
h · ω±(ek)⊗ ω±(el).

Thus, θ acts on q-expansions of automorphic forms as in Equation (9.6).
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Remark IX.4. The operators θ can be thought of as a vector-valued generalization

of Ramanujan’s operator θ = q d
dq and Katz’s analogous operator for Hilbert modular

forms in [Kat78]. Indeed, in the one-variable situation, our operator takes the form

θ = q d
dq (or, more precisely, T 2

1 q d
dq ).

Remark IX.5. The proof of Theorem IX.3 shows that in the case of U(1, 1), the

morphism θ can be viewed as a derivation

OT∞,∞ → OT∞,∞ .

Definition IX.6. For each subrepresentation Z of ρ⊗ τ d we also define an operator

θZ : (OT∞,∞)ρ → (OT∞,∞)Z

by

θZ := φZ ◦ θd|(OT∞,∞ )ρ .

From the definition of θ, we see that

θZ = ω−1
can ◦ ∂(ρ, p-adic, d)Z ◦ ωcan.

We note that, in practice, the above discussion of θ can often be simplified ac-

cording to the properties of the particular representation with which one works. For

example, in our intended applications, we will only be interested in representations

of the form ρ−⊗ρ+ with ρ± = detk± ⊗Syml± . In this case, we will be able to restrict

our discussion to the commutative subalgebra

OT∞,∞ ⊗R R[T1, . . . , Tn]⊗R R[T1, . . . , Tn]

of R, on which θ will be a derivation.

Now we compare the values of θ to the values of ∂(ρ, p-adic, d).
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Lemma IX.7. Let A be an R-valued point of M(p-adic) that satisfies condition

(‡), and let ω+ and ω− be elements of E+
A/R and E−A/R respectively. Let c = (cij) ∈

(GLn ×GLn)(R0) satisfy

ω± = c± · ω±can(A).(9.8)

Let f be an automorphic form of weight (ρ, V ) over R, and let

f̃ = ω−1
can(f) ∈ ω.

Then

∂(ρ, p-adic, d)(f̃)(A, ω) = ((ρ⊗ τ d)(c−1))(θdf)(A).

Proof. We have

∂(ρ, p-adic, d)(f̃) = ωcan ◦ θd(f).

So by (9.8),

∂(ρ, p-adic, d)(f̃)(A, ω) = (ρ⊗ τ d)(c−1)∂(ρ, p-adic, d)(f̃)(A, ωcan(A))

= ((ρ⊗ τ d)(c−1))(θdf)(A)

The same method also gives a similar result when we restrict to subrepresentations

Z of ρ⊗ τ d:

Corollary IX.8. With hypotheses as in Lemma IX.7,

∂(ρ, p-adic, d)Z(f)(A, ω) = ((ρ⊗ τ d)|Z(c−1))(θZ f̃)(A)

As a corollary of Theorem IX.2 and Lemma IX.7, we obtain the following theorem.
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Theorem IX.9. Let A be an R-valued point of the moduli scheme M(p-adic), and let

f be an automorphic form over R of weight (ρ, V ), and let Z be a subrepresentation

of ρ⊗ τ d. Then

((ρ⊗ τ d)|Z(c−1))(θZ f̃)(A) = ιR(∂(ρ, e, A, ω, Split(A/R), d)f).

Therefore,

((ρ⊗ τ d)|Z(c−1))(θZ f̃)(A)

lies in the R-submodule Z = R⊗R Z of R0 ⊗R Z.

One also obtains similar theorems for subrepresentations Z of ρ⊗ τ d.



CHAPTER X

Splitting of H1
DR for CM abelian varieties

In this chapter, we discuss conditions under which an abelian variety A/R has a

splitting over R

H1
DR(A/R) = ω ⊕M

that simultaneously satisfies both condition (†)and (‡). Such abelian varieties are

important for applications to construction of L-functions via the doubling method.

Let E × E ′ be a product of CM algebras E and E ′, with

E = L1 × · · · × LmE

E ′ = L′1 × · · · × L′mE′

products of CM fields Li, L′i such that each field Li, L′i is a totally real extension of

the CM field K fixed in Section 1.2. Let

S = SE ×SE′

be a CM type for E × E ′, with

SE = SL1 × · · · ×SLmE

S′
E = SL′1

× · · · ×SL′mE′

CM types for E and E ′.
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Definition X.1. We shall say the CM type S is compatible with Σ if the following

two conditions are both met:

1. For each σ in SE, σ|K is in Σ.

2. For each σ in SE′ , σ|K is in Σ̄.

Suppose (E × E ′, S) is a CM type compatible with (K, Σ). So

E = L1 × · · · × LmE

E ′ = L′1 × · · · × L′mE′

with each Li and each L′i a totally real extension of K, i.e. Li (resp. L′i) is of the

form Fi ⊗ K (resp. F ′
i ⊗ K) for some totally real fields Fi. We use the following

notation:

OE = OL1 × · · · × OLmE

OE′ = OL′1
× · · · × OLmE′

OE×E′ = OE ×OE′

O = OF1 × · · · × OFmE
×OF ′1

× · · · × OFmE′
.

Let R be a Z(p)-subalgebra of Q̄ containing each OLi and each OL′i
. For each

CM type (Li, SLi), there is a natural ring isomorphism

OLi ⊗R
∼→ OFi ⊗R×OFi ⊗R

a⊗ r #→ φSi(a⊗ r)× φSi(ā⊗ r),

where

φSi : OLi ⊗R → OFi ⊗R ∼= RSi

a⊗ r #→
∏

σ∈Si

σ(a)r.
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is the projection A similar isomorphism holds for each (L′i, SL′i
). So there is a

corresponding ring homomorphism

OE×E′ ⊗R → O⊗R×O ×R

a⊗ r #→ (φS(a)r, φS(ā)),

and for any OE×E′ ⊗R-module M , there is a corresponding O ⊗R-decomposition

M ∼= M(S)⊕M(S),

where

M(S) = {m ∈ M |a ·m = φS(a)m for all a ∈ OE×E′}

M(S̄) = {m ∈ M |a ·m = φS(ā)m for all a ∈ OE×E′}

If M is an invertible OE×E′ ⊗ R-module, then so are M(S) and M(S̄) as O ⊗ R-

modules.

Proposition X.2. [Analogue of Key Lemma 5.1.27 in [Kat78]] Let (S, E × E ′) be

a CM type compatible with (Σ,K), and let R be as above. Suppose A is an ordinary

CM abelian variety of PEL type over R with complex multiplication by (OE×E′ , S).

Then

ωA/R = H1
DR(S),

and the splitting

H1
DR(A/R) = H1

DR(S)⊕H1
DR(S̄)

simultaneously satisfies both conditions (†)and (‡).

Proof. Let H = H1
DR(A/R). Since (A, S) is a CM abelian variety over R,

H = H(S)⊕H(S̄)
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is an invertible OE×E′⊗R-module. So H(S) and H(S̄) are invertible O⊗R-modules.

Note that the action of OE×E′ on Lie(A∨/R) is through a #→ φS̄. Therefore, in the

exact sequence

0 → ω → H(S)⊕H(S̄) → Lie(A∨/R) → 0,

H(S) maps to 0 in Lie(A/R). So H(S) is contained in ω. Since A is ordinary, ω

is an invertible O ⊗ R-module. So H(S) = ω. The rest of the proof now follows

exactly as in [Kat78] Key Lemma 5.1.27.

Let U(1)n denote the subgroup

U(1)× · · · × U(1)︸ ︷︷ ︸
n times

.

of U(n). Consider the natural embedding

Sh (U(1)n × U(1)n) ↪→ Sh(U(n)× U(n)) ↪→ Sh(U(n, n)).

The points of Sh (U(1)n × U(1)n) parametrize abelian varieties isogenous to a CM

abelian variety of the form

A× · · · × A︸ ︷︷ ︸
2n copies of A

(where each copy of A is one-dimensional) with CM type


(K, Σ)× · · · × (K, Σ)︸ ︷︷ ︸
n times

×
(
K, Σ̄

)
× · · · ×

(
K, Σ̄

)
︸ ︷︷ ︸

n times



 .

Each abelian variety parametrized by a point of Sh(U(n)×U(n)) is isogenous to an

abelian variety parametrized by Sh (U(1)n × U(1)n). Thus points of Sh(U(n)×U(n))

parametrize CM abelian varieties compatible with Σ. Since each of the abelian

varieties in Sh(U(n) × U(n)) is a CM abelian variety of CM type compatible with

Σ, we arrive at the following corollary.
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Corollary X.3. Each of the abelian varieties in Sh(U(n) × U(n)) has a splitting

simultaneously satisfying conditions (†) and (‡).

Corollary X.3 is crucial to our applications involving the pullback method to

construct L-functions. The pullback method only requires evaluating functions at

points of U(n) × U(n). So we have the algebraicity result at all points relevant to

construction of L-functions in the pullback method. (Functions are pulled back from

Sh(GU(2V )) to Sh(U(V )× U(V )).

Remark X.4. Note that the proof of Proposition X.2 shows that there are also other

abelian varieties which have a splitting simultaneously satisfying both conditions (†)

and (‡). For example, suppose A is a CM abelian variety with CM by a CM field

L = F ⊗K in which p splits completely in F , where deg F = 2n = dim A. Let

S = {σ1, . . . , σ2n}

be a CM type for L such that

σi|K∈ Σ

for 1 ≤ i ≤ n and

σi|K∈ Σ̄

for n + 1 ≤ i ≤ 2n. Then the proof of Proposition X.2 shows that H1
DR(S) ⊕

H1
DR(S̄) gives a splitting of H1

DR satisfying conditions (†)and (‡) simultaneously.

Thus, there are also abelian varieties (over R) in Sh(U(2V )) not in Sh(U(n) ×

U(n)) that have a splitting (over R) simultaneously satisfying (†) and (†). For our

applications involving the pullback method, however, only abelian varieties of the

type in Proposition X.2 will be relevant.
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[Che04] Gaëtan Chenevier, Familles p-adiques de formes automorphes pour GLn, J. Reine Angew.
Math. 570 (2004), 143–217. MR MR2075765 (2006b:11046)

[FC90] Gerd Faltings and Ching-Li Chai, Degeneration of abelian varieties, Ergebnisse der Math-
ematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 22,
Springer-Verlag, Berlin, 1990, With an appendix by David Mumford. MR MR1083353
(92d:14036)

[Gar84] Paul B. Garrett, Pullbacks of Eisenstein series; applications, Automorphic forms of sev-
eral variables (Katata, 1983), Progr. Math., vol. 46, Birkhäuser Boston, Boston, MA,
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