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Dispersed Phase Mixing: 1. 
Theory and Effects in Simple Reactors 

R. I.. CURL 
Shell Development Company, Emeryville, Colifornio 

When drops in a two-liquid phase chemical reactor are able to mix with one another by 
coalescences and redispersions, any spread of concentration among the drops tends to be 
averaged out. This phenomenon can affect average reaction rate and selectivity in non first- 
order reactions or mass transfer rate controlled reactions in the dispersed phase. It was found 
that for mass transfer rate controlled reactions, or the equivalent zero-order reaction, quite 
large dispersed phase mixing rates are required to bring conversions close to the level obtained 
with complete mixing. 

It is possible to consider any number 

transfer, number and order of reaction, 
of direction of 

A well-stirred flow reactor which 
contains two immiscible liquid phases 
generally can be treated as an ideal 
stage with respect to the residence 
time distribution and the concentration 
uniformity of the continuous phase. 
For the dispersed phase however the 
distribution of concentration among 
the drop population in the same vessel 
depends not only upon the residence 
time distributions and reaction or mass 
transfer conditions but also upon the 
number of coalescences and redisper- 
sions that occur during a nominal resi- 
dence time. Therefore when a chemical 
reaction of other than first order occurs 
in the dispersed phase in such a reac- 
tor, mixing of that phase can have an 
important effect on the reactor size 
required for a given conversion or on 
the conversion and selectivity in a 
given reactor. The two extremes of no 
mixing and complete mixing of the dis- 
persed phase have been considered by 
Rietema ( 5 )  for a single-stage reactor 
in which a zero-order reaction is pro- 
ceeding in the dispersed phase. He 
calculated the ratio of residence times 
required for a given conversion for 

R. L. Curl is with Technische Hogeschool Te 
Eindhoven, Eindhoven, Holland. 
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these two cases and found for example 
that mixing can make a factor of 3 
difference at 80% conversion. 

More recently Madden and Damer- 
ell ( 3 )  have described work in which 
they measured the rate of dispersed 
phase mixing in a 5 %  in. diameter 
stirred vessel. The question naturally 
arises of whether under particular cir- 
cumstances a certain measured rate of 
dispersed phase mixing represents a 
case closer to no mixing or to complete 
mixing. It would also be desirable to 
estimate the actual effect of mixing on 
the conversion or selectivity in a par- 
ticular system. A mathematical model 
is presented here for the simultaneous 
effects of reaction, mass transfer, and 
dispersed phase mixing in a continu- 
ous flow stirred reactor. From this 
there are obtained the consequences 
in batch mixing, zero-order chemical 
reactions, and cases of mass transfer 
controlled reactions in the dispersed 
phase. The model used is a simplified 
one. For example it is assumed that all 
drops in the system are of equal size 
and have equal probability of coalesc- 
ing, and that redispersion occurs im- 
mediately after a coalescence to form 
two equal drops. 

A.1.Ch.E. Journal 

consecutive reactions, and series or 
other arrangements of stages. However 
the intent here is primarily to suggest 
a model for dispersed phase mixing 
which subsequently can be introduced 
into various reaction and reactor 
schemes. The examples and applica- 
tions given here are both by way of 
example and to provide quantitative 
answers for a case of basic interest, the 
zero-order or mass transfer controlled 
reaction. 

There is similarity between the phe- 
nomena associated with incomplete 
dispersed phase mixing and incomplete 
homogeneous mixing. In the terminol- 
ogy of Danckwerts ( 1 )  the latter is 
segregated flow and is the cause of 
changes in overall reaction rate for re- 
actions of other than first order. In the 
homogeneous case the scale of segrega- 
tion may have a number of definitions 
as there are no sharp boundaries be- 
tween the clumps or streaks of differ- 
ent concentrations. In  the present case 
the phase boundary permits a clearer 
concept of segregation or concentra- 
tion distribution. 

This idea of homogeneous but segre- 
gated flow has been extended by 
Zwietering (8) to continuous flow SYS- 
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One now divides the maximum con- 
centration range into N intervals of 
concentration A c  wide and defines as 
p ( n )  Ac the fraction of the drops with 
Concentration within the nth concen- 
tration interval (n - 1/2 f 1/2)Ac * 
[ p  ( n )  ] is the discontinuous frequency 
function of the concentration distribu- 
tion and is equal to GJu. It will be as- 
sumed to be zero outside of the range 
1 .L n .L N .  Then the rate of creation 
of new drops in the concentration in- 
terval ( n  - 1/2 -t_ 1/2)Ac, owing to 
all collisions between drops in all sym- 
metrically located concentration inter- 
vals is from Equation (3)  

Fig. 1. Evolution of the concentration distribution frequency 
function as mixing proceeds. 

tems with arbitrary residence time dis- 
tributions in order to calculate the con- 
versions with a chemical reaction of 
arbitrary order for the extremes of 
minimum segregation and complete 
segregation. 

In the present work on dispersed 
phase segregation a well-mixed (con- 
tinuous phase) single-stage reactor is 
the basis of all calculations. The solu- 
tion of the problem of dispersed phase 
mixing in a reactor system with an 
arbitrary residence time distribution 
would provide a generalization to arbi- 
trary degrees of mixing of Zwietering's 
conclusions, to the extent that the dis- 
persed phase mixing model is applica- 
ble to homogeneous mixing. This 
aspect of the problem is here left to 
the future. 

with G, and G, drops, respectively, the 
riumber of ways that a member of 
(GI) can coalesce with a member of 
(G,) is equal to 

(1) 
and hence the rate of all successful col- 
lisions which involve only a member 
of (G,) plus a member of (G2) is 

equal to this divided by ( :) , times 

2 1 ,  or 

I1 (2) 
2GG2 

U ( U -  1) 
Since each collision yields two drops of 
the new concentration, the rate of crea- 
tion of such average drops is close to 

U (3 )  
DISPERSED PHASE MIXING 4GiGz 

r I, 

Drops also are produced in the spec- 
ified interval by collision between 
drops in certain asymmetrically located 
concentration intervals. Each such col- 
lision yields two new drops, but it will 
be assumed that only half the success- 
ful collisions produce drops in the de- 
sired interval. Therefore the contribu- 
tion to the rate of formation of drops 
from asymmetric concentration inter- 
vals is 

Equation (4) excludes collision of 
drops within the interval itself. Equa- 
tion ( 5 )  includes the contribution due 
to collision of drops in the central in- 
terval with those in the two adjacent 
intervals. 

Drops in the interval are also lost by 
collision with drops of other concentra- 
tions at the rate 

u 
The mechanism of dispersed phase If u is very large, 2 ~ p ( n )  [I - p(n)Ac]Ac (6) mixing adopted in this report follows. 

All drops in the system are assumed to 
be the same size. Coalescences take I 0  

place at random between two drops 
having a solute concentration of c1 and 
c?, res ectively, and redispersion occurs ~ 0 9  

9 : immegately to produce two equal 
drops of the same concentration 8 0 8  

34 (c, + cp). The collision rate is u, 

system is U .  The contribution of this 
mechanism to changes in the frequency ; 

now be considered. d 
The total number of ways in which 

L 

; 0 7  

and the total number of drops in the 

function fr.f. (probability density dis- 2 0 6  
tribution) of drop concentration will 

- 0 5  

collision may occur between two of the 

U drops is the number of ways 

in which the U drops may be taken 
two at a time. Given two mutually 
exclusive sets of drops (G,) and (G2) 

0 4  
2 O +  0 6  0 8  1 4 b 8 1 0  0 1  0 2  

K - Reaction Modulus - 
+re 

Fig. 2. Effect of dispersed phase mixing on the conversion for a zero- 
order reaction in the drops in a single-stage, two-phase, stirred reactor. 
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Fig. 3. Frequency function of dimensionless Concentration for a zero-order 
reaction in the dispersed phase. 

which includes the collisions with the 
adjacent intervals which return drops 
to the central interval. With no other 
sources of drops of concentration (n  - 
1/2 2 1/2)Ac, the rate of change of 
Up(n)Ac, the total number of drops 
in the interval, may be written as 
the sum of Equations (4), (5), and 
( 6 ) ,  which after they are rearranged 
and divided by UAc become 

It is characteristic that an emulsion 
which originally is very nonuniform in 
concentration becomes at o,t = 2.0 
relatively uniform in that most concen- 
trations are represented among the 
drops. The approach to a final mixed 
condition proceeds quite slowly with a 
considerable spread of concentration 
remaining even at w4t = 11, when the 
total volume of dispersed phase which 

where = 2u/U is the number of 
dispersed phase volumes involved in 
coalescences per unit time. This is de- 
fined as the rate of dispersed phase 
mixing. If p is continuous, the limit 
Ac+ 0 may be taken readily to give 

+ p = 4 JC p ( c  + aP 
oi at 
- 

a ) p ( c - a ) &  ( 8 )  
This equation represents the transient 
spreading by coalescences and redis- 
persals of a solute among the drops of 
a stirred batch emulsion in accordance 
with the suggested mechanism. Whe- 
ther the sum or integral form is pre- 
ferred depends on the application. As 
no analytical solution is known, the 
former was used for machine computa- 
tions. Although the integral form was 
derived by taking the limit A C +  0 for 
p continuous, certain manipulations 
may be made with a more general p ,  
which may include any number of dis- 
continuities in p or in its distribution 
function. 

TRANSIENT SOLUTE SPREADING 

Equation (7) was solved on a digital 
computer for twenty concentration in- 
tervals and with the time step w4At = 
0.2. With initial conditions of p ( 1 ) AC 
= 10/19 and p(20)Ac = 9/19 the 
distribution evolved as shown in Fig- 
ure 1. 

zero. On the other hand the skewness 
remains constant and the peakedness 
increases without limit. For a normal 
distribution as = 0 and ar = 3. 

The behavior shown in Figure 1 is 
similar to that found experimentally 
for the mixing of solids by Weiden- 
baum and Bonilla (6) who show the 
results of tumbling mixing of sand and 
salt in equivalent coordinates. They 
used a normal distribution to represent 
the theoretical limit in their mixing 
process. While this may be appropriate 
when a limiting distribution exists, in 
the present case the limit is an impulse 
at the average concentration. 

The equation for the variance given 
in Table 1 has been suggested for 
solids mixing (with experimental evi- 
dence) by Oyama and Ayaki (4) 
based on a linear random-walk model. 
Lacey ( 2 )  arrives at a similar expres- 
sion from a linear diffusion model of 
solids mixing. The analogy between the 
dispersed phase mixing case and solids 
mixing appears to reside in part in the 
analogy between the discrete drop in 
one case and the fixed sampling vol- 
ume used in the latter. The subject of 
solids mixing has been reviewed by 
Weidenbaum (7). 

has entered into coalescences is eleven 
times the dispersed phase voluae. 

The concentration fr.f. which evolves 
in accordance with this mechanism 
does not approach a normal distribu- 
tion. If Equation (8) is multiplied 
through by (c--C)', where C is the 
average concentration, and the equa- 
tion is then integrated formally over 
the range of concentrations, an expres- 
sion may be obtained for the transient 
in the rth moment of the distribution 
about the mean, namely 

from which one may obtain the results 
shown in Table 1. 

As expected the average remains 
constant and the variance drops to 

CHEMICAL REACTION OCCURRING 
IN THE DISPERSED PHASE 

The consumption by reaction of a 
chemical species in the dispersed phase 
also transfers drops to different con- 
centrations and hence affects the fr.f. 
of drop concentration. If one assumes 
that in each drop, owing to chemical 
reaction of order s 

then U p ( n  + 1)Ac drops enter the in- 
terval ( n  - 1/2 -C 1/2)Ac in the time 
interval At = (c + Ac)-' Ac/k, while 
U p ( n ) ~ c  drops leave the interval in 
A t  = c-"Ac/k. The net rate of addition 
of drops to ( n -  1 / 2 2  1/2)Ac is 
therefore 

Uk 
(c + Ac)'p(n + l)Ac-c'p(n)Ac 

Ac 
(11) 

TABLE 1. PROPERTIES OF CONCENTRATION DI~TRIsVrION DURING TRANSIENT MIXING 

Area of distribution p o = l  
Mean p1= 0 r.rnl(t) = r n * ( O ) l  

W 4 t  -- 
Variance (central) 

Skewness 

Peakedness 

2 

= ado) 
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If the reaction system is a well- 
stirred single-stage reactor with volume 
V and flow rate Q, and the fraction dis- 
persed phase in the feed is and in 
the vessel 6, then the addition of drops 
to the distribution in the reactor at any 
time makes a contribution of U (+lQ/ 
&V) p.  (n) Ac, while the effluent re- 
moves drops at the rate U(+lQ/&V) 
p (n)  Ac. Combining these two terms 
with Equations (4) to (6) and (ll), 
taking the limit A c +  0, and dividing 
through by UAc+,Q/&V, one obtains 
the equation for a single-stage reactor 
with a reaction of order s proceeding 
in the drop phase: 

-= a p  p . - p +  
o,at 

I [4JC p + p - & - p ] + c . K d c ’ P  ac 

(12) 

where the residence frequency w,. = 
+lQ/&V; I = ( w / m c ) ,  and K = k/ 
w,c.. An abbreviation has been used for 
the argument of the integral. 

ZERO-ORDER REACTION IN THE 
DISPERSED PHASE 

Equation (12), in the difference 
forms of Equations (4) to (6) and 
( ll), has been solved numerically to 
obtain the steady state solutions for 

M Mass Transfer Modulus 
D Phase Ratio 
_ _  

Fig. 5. Effect of dispersed phase mixing on the conversion for a mass 
transfer controlled reaction in the drops in a single-stage, two-phase, 

stirred reoctor for two different values of the stoichiometric ratio S. 

cases between the extremes solved by 
Rietema for a single-feed concentration 
[ p  (c) = 6 (c. - c) ] and a zero-order 
reaction in the drops (s = 0) .  The 
equations must be handled carefully 
because of the possible existence of 
delta function solutions. Since this oc- 
curs when s <  1, appropriate steps 
were taken to handle the singularity at 
c = 0 which represents the fraction of 
the drops in which the reactant has 
been entirely consumed. Equation 
(12) was solved on a digital computer 

f - Conversion of Reactant m Dispersed Phase 

Fig. 4. Effect of dispersed phase mixing on conversion with 
zero-, first-, or second-order reactions in the dispersed phase. 
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by allowing the transient to evolve to 
the steady state for different number 
of Ac intervals (25, 50, and 100) and 
extrapolating the calculated values for 
conversion and g to Ac = 0. The cal- 
culation was considered to have 
reached steady state when all the val- 
ues of Ap/o,At and Ag/odt became 
less than 5 x 10“. The results are 
given in Figure 2 as the fraction of 
the reactant in the feed which is con- 
verted (f)  for a given K .  The two 
limiting curves for I = 0 and Z = 00 

are Rietema’s solutions. The conversion 
i? defined as 

f =  1 -  ~ ‘ ~ p d c  (13) 
co 

Figure 2 shows that the drop inter- 
action rate has a pronounced effect on 
conversion. At 90% conversion for ex- 
ample the vessel volume, or residence 
time, for no mixing ( I  = 0) is 4.7/0.9 
= 5.2 times that for complete mixing 
( I  = co ) . A mixing rate corresponding 
to fifty volumes of dispersed phase 
interacting in one average residence 
time ( I  = 50) still requires about 
30% larger reactor volume than for 
complete mixing. 

Several of the concentration distribu- 
tions resulting from combinations of I 
and K are shown in Figure 3. 

Rietema ( 5 )  proposed the zero- 
order problem as an approximation to 
a purely mass transfer rate controlled 
reaction. As he pointed out, a real re- 
action would decrease in rate near 
zero concentration. The approximation 
assumes it does not. A more serious 
difficulty arises however in connection 
with the fact that after the drop phase 
reactant is consumed, the continuous 
phase reactant would actually continue 
to transfer into these depleted drops. 
Then when these drops coalesced with 
some containing the other reactant, 
further reaction (conversion) would 
occur. Therefore dispersed phase mix- 
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ing can contribute another mechanism 
of apparent mass transfer to reacting 
drops. The above results can be readily 
transformed to represent a mass trans- 
fer rate controlled reaction but only 
under the condition that the transfer- 
ring species cannot build up in the de- 
pleted drops. This is analogous to the 
fact that in the case of no dispersed 
phase mixing the concentration distri- 
bution of the continuous phase react- 
ant in the drops does not influence con- 
version except by changing the availa- 
ble concentration driving force for 
transfer. 

SECOND-ORDER REACTION IN THE 
DISPERSED PHASE 

Equation (12) may be used to cal- 
culate conversion when a second-order 

Fig. 6. Frequency function of CA and CB when 
they are mutually exclusive. 

reaction is occurring in the drop phase 
by setting s equal to 2.0. A detailed 
study of this case has not yet been 
made, but the limiting solutions ( I  = 
0, I = 0 0 )  are interesting as they 
provide a comparison with low-order 
reactions. 

With I = 0 and s = 2 in Equation 
(12), the steady state equation be- 
comes 

(14) 
which is readily solved to give 

1 
1 - 

K c 9  - - 
e KCOC 

p = K c . c 2  e (15) 

from which may be obtained, by multi- 
plication by c, integration and use of 
Equation (13) 

e-h 
f ~ 1 - y  e y s  -dA (16) 

Y X  

where 
1 

Kc," Y=- 

With I = 00 and s = 2, a material 
balance on the reacting component 
gives 

or 
c = c.(l- KCa) (17) 

f =  1-f [ 1 t - - 1 1  4 
Y 

To compare the reactor volume re- 
quired in the case of a completely 
mixed drop phase with that required 
when no mixing occurs, at the same 
conversion, set 

and since from Equations (17) and 
(19) 

Equation (16) becomes 

which gives R implicitly in terms of f .  
This relation is shown in Figure 4 
along with the equivalent result for a 
zero-order reaction found by Rietema 
(5), and the zero-order reactor result 
when I = 10 (compared with com- 
plete dispersed phase mixing) obtained 
in the present study. 

In general dispersed phase mixing 
increases the conversion for a zero- 
order reaction in the dispersed phase 
while it decreases the conversion for a 
second- or higher-order reaction in the 
dispersed phase. Therefore whether it 
is desirable to encourage or discourage 
dispersed phase mixing by some means 
depends on the relative order of the 
important reactions. 

MASS TRANSFER CONTROLLED 
REACTION-INSOLUBLE REACTANT 

A reaction which is completely mass 
transfer rate controlled may be de- 
scribed by the above model of a zero- 
order reaction in the dispersed phase. 
Assume that a reactant ( B )  is trans- 
ferring from the continuous phase, 
where it has concentration cB', into the 
dispersed phase where it reacts instan- 
taneously with component (A) ,  and 
also that ( B )  is not otherwise soluble 
in the dispersed phase. [An example 
would be Madden's (3) system with 
iodine in the continuous hydrocarbon 
phase transferring into the aqueous dis- 
persed phase containing sodium thio- 
sulfate.] 

Then mass balances on the reactants 
give 

(cno  - c A ) + ~ Q  = ( ~ B o l -  cB') (1 - 
+i)Q=cs'km&V(1-g) (22) 

where k,a is the specific mass transfer 
coefficient and the average concen- 
tration of (A)  in the drops. In a zero- 
order reaction 

- 
( c n o  - c A ) $ ~ Q  = f c A o 4 i Q  = 

kVh(1-  g) (23) 

A.1.Ch.E. Journal 

so there is obtained 

where 

M = -  k,a , D=-, 1-41 
or  41 

(1 $l)cB; S =  
+ i c A o  

For particular S and D Equation 
(24) transforms the results of the 
zero-order reaction calculation by 
Equation (12) to the equivalent mass 
transfer limited case. Figure 2 is re- 
plotted in Figure 5 as f vs. M / D  for 
S = 1.0 and 2.0. 

Fig. 7. Transformed distribution of Figure 6. 

MASS TRANSFER CONTROLLED 
R EACTIONCO L U B LE REACTANT 

If the reactant ( B )  is soluble in the 
drop phase and therefore continues to 
transfer into a drop even after the total 
consumption of (A) ,  a drop which 
acquires some concentration of ( B )  
might coalesce with a drop containing 
(A) ,  leading to the loss in the new 
drops of whichever reactant was not in 
excess. The solubility of ( B )  in the 
drops will therefore lead to a higher 
conversion of (A) .  The development 
oi this case is of interest both because 
it is more nearly the real case and be- 
cause it illustrates how one particular 
joint probability distribution of two 
concentrations may be handled. 

Because of the assumption that the 
reaction is very fast, no drop can con- 
tain both reactants, and therefore the 
joint concentration frequency function 
takes the form shown in Figure 6 with 
values only on the concentration co- 
ordinate axes and zero elsewhere. Now 
since the coalescence of drops of con- 
centration cB and cA produces two new 

1 
drops of concentration - ( cA - c,) , 

depending on whether (A) or ( B )  is 
in excess, cB may be looked upon as a 
negative concentration with respect to 
cA, and hence averages may be taken 
as in the original derivation. The maxi- 
mum possible drop concentration of 
(A) is cA, in the entering drops. The 
maximum possible drop concentration 
of ( B )  is c~ ' / c ,  where cS' is the con- 
tinuous phase concentration of ( B )  
and u is the partition coefficient (the 

2 
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equilibrium value of cB'/ce). With the 
changes of variable 

plus an appreciation of the fact that 
cB may be considered as I- ca( in the 
dispersed phase mixing model, the dis- 
tribution in Figure 6 may be unfolded 
and transformed to that in Figure 7 .  
Only the reaction term in Equation 
(12) need be modified to apply it to 
this new case. The modification must 
distinguish between the zero-order 
nature of the transfer of reactant when 
x L x 6 1, and the &st-order behavior 
when O - - L x - - L x :  

X L X G l  

or, with change of variables 

Fig. 8. Frequency function of dimensionless concentration for a mass transfer con- 
trolled reaction with a soluble diffusing reactant. 

which may be obtained from the mate- 
rial balance expressions for the steady 
state - 
4Jl (cdo-cA)  = (1-c&) - 

( C B ;  - co') - +ICE (33) 
and 

@( 1 - 41) ( C B o )  - C B ' )  = 

kmaV&(cn'-~TB) (34) 
- 

where iA or cB are the average con- 
centrations of ( A )  or (B) over the 
whole drop phase. The expression for 
x defined by (25b) becomes 

(35) 

The last term in Equation (12) then 
becomes 

kmmx ap  

In these variables the conversion of 
reactant (A) is given by 

Wr dx (28) f = 1- 1 ( - ) p d x  (36) X - X  -- 
Q L X 6 X  1 - X  

values of x and f consistent with (35) 
and (36) and using that x for the next 
time interval. This method does not 
yield the correct transient solution, 
since Equation (35) is only correct in 
the steady state. The numerical method 
was arranged so that instability did not 
result from the shifting values of x 
computed at each step. 

The numerical method converged 
too slowly for it to be practical to ex- 
plore a wide range of values of M, D, 
S, u, and I .  Those that were run are 
listed in Table 2, and the distributions 
p ( x )  are given in Figure 8. 

Rietema ( 5 )  showed that the zero- 
order reaction has as its limiting con- 
version, for no and complete dispersed 
phase mixing (in the nomenclature of 
the present work) 

Z = O :  f = K ( l - e e z )  (37)  
1 

and 
I = O O  f = K , O - - L K " l  

(38) 
f = l , l L K  

dJ-~cll dc, -- --= k,a(cB'-ucB) Equations (32) and (35) have been When the reactant is soluble in the 
dt dt  solved numerically with a computer by dispersed phase and the reaction is 

(29) the transient technique used for Equa- mass transfer controlled, Equation 
tion (12). The equations were corn- (32) may be solved analytically to give 
bined by calculating at each time step the result that the conversion with 

complete dispersed phase mixing and 
TABLE 2. CALCULATED CONVERSIONS IN A soluble product is the same as in the 

(30) 

mass transfer analogy to Rietema's 
TRANSFER C O N ~ O L L E D  REACTION solutions, while the conversion with no 

(SOLUBLE REACTANT) WITH dispersed phase mixing and soluble 
reactant is given by the simultaneous 

or, with change of variables 

dx X - _ -  - k,mx - 
d t  X 

The last term in Equation (12) then 
becomes 

X DISPERSED PHASE MIXING d - P  k d o x  x 
ax 

-- D a  = 1.0 equations 
1 

(39) 

(40) 

s = 1.0 
(31) 

f = 8  ( 1 - 2 )  
and With these substitutions Equation Ma I f r 

0.5 0 0.317 0.328 0.400 
10.0 0.334 0.334 0.339 

1.0 0 0.443 0.489 0.341 

( 1  + M u ) S  - Mcf (12) takes the form 

-= P o - p  + 
o,at 

e = M u  
00 0.333 0.333 0.400 Da + M u ( l +  D a )  

0 0.444 0.490 0.340' These were used to calculate the re- 
10.0 0.500 0 . 3 0  0.333 sults given for I = 0 in Table 2. The 

100.0 0.500 o*soo 0,332 distribution of concentration for this 
O0 0*500 0*500 0*333 case is readily calculated by integrating 

0.544 O6I8 :iz Equation (32) set equal to zero with 
o.673 :::;: 0:248 I = 0. There is obtained 1.0 0.581 

taneously with an expression for (4;pm~uted from Equations (35), (41) ,  and -=(?) Mu 

(32) 2.0 
where h is x/x, 0 is 6 x 6 x, and 1 in 
x LX 6 1. The steady state form of 

00 0.667 0.667 0.250 1 1 - x  1 Equation (32)  must be solved simul- --1 
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e 
P =  

This distribution is plotted in Figure 8 
for I = 0. 

The conversion may be defined in 
two ways when a soluble reactant is 
transferring to the drop phase. The 
actual fraction of the reactant (A) 
left in the drop phase as the dispersion 
leaves the reactor has been called f .  
However if after leaving the reactor 
the dispersed phase is settled out, that 
(B) which was in drops would also 
react and consume (A). The resultant 
higher conversion is designated f' in 
Table 2. It is computed from f' = f 
+ %, wherexn is the portion of the 
distribution with x < x, averaged over 
the whole range. 

One distribution was computed for 
I = 0 with Mu = 1.0. The results are 
given in Table 2 for both the exact and 
the numerical computation. The dif- 
ferences are negligible, indicating that 
the computation had progressed to 
Gearly the steady state. The concen- 
tration distributions were almost iden- 
tical. 

DISCUSSION 
In a zero-order or mass transfer con- 

trolled reaction in the dispersed phase 
of a single-stage reactor quite large 
dispersed phase mixing frequencies, 
relative to the residence frequency, 
must be obtained to approach corre- 
spondence to complete mixing in the 
dispersed phase. This may be thought 
of as the possibility of early exiting 
from the reactor of some nearly uncon- 
verted drops. While at 80% conver- 
sion mixing of the dispersed phase 
may reduce the reaction volume re- 
quired by nearly a factor of 3,  this 
requires a value of wi as much as fifty 
times w,. Madden (3) found values of 
oI as high as 30 min.-l in a water dis- 
persed system (toluene continuous). 
Hence residence times in this system 
in excess of about 2 min. are required 
to approach complete mixing from the 
standpoint of the chemical conversion. 
Studies reported in Part I1 of this 
paper (9) found similai values for the 
rate of dispersed phase mixing but at 
significantly higher specific power in- 
puts than used by Madden. 

The term in Equation (12) for dis- 
persed phase mixing may be intro- 
duced into equations for a variety of 
other systems to find its effect on con- 
version or selectivity. While dispersed 
phase mixing does not affect the con- 
version in a reaction system of only 
first-order reactions, it does strongly 
in%uence the variance of concentration 

in the drop phase and hence any 
events which may depend on the vari- 
ance, such as the rate of production of 
some by-product by a higher-order re- 
action. If the by-product reaction is 
important even when present to only 
a small extent, the results given in 
Figures 3 and 8 may be used to cal- 
culate the effect of dispersed phase 
mixing on the degree of by-product 
formation if one assumes that the dis- 
tribution is only negligibly affected by 
the additional reactions. 

The model used here does not in- 
clude effects due to a distribution of 
drop sizes, uneven breakup of drops, 
or a distribution of probabilities of 
coalescence with drop size or concen- 
tration. While a more complex analysis 
may eventually be called for, it was 
thought desirable at this time to devote 
effort to determining the qualitative 
effects to be expected on the basis of 
a simple model. At such time as either 
this model is shown inadequate for 
particular computations or experiments 
demonstrate departures from its pre- 
diction, the more complicated interac- 
tions will have to be considered. While 
the derivations have been on the basis 
of a single concentration in the dis- 
persed phase feed to the reactors, the 
results are readily generalized to a 
distribution of concentration in the 
feed such as would be the case if 
stages were cascaded. 
ACKNOWLEDGMENT 

The author wishes to thank Mrs. Doris 
Lidke and Miss Jane Merritt for writing 
the programs for a Datatron and an IBM- 
7090 computer, respectively, on which the 
calculations reported here were performed. 
NOTATION 
a, = skewness of frequency func- 

tion 
a, = peakedness of frequency func- 

tion 
c, (c ' )  = concentration in drop (con- 

tinuous) phase 
c,, (c',) = feed concentration in drop 

(continuous) phase 
c, (2) = average concentration in 

drop (continuous) phase 

- 

D 

f 

f' 

G 
h 
i 
Z 

k 
k,a 

(1 - $1) 
= feed phase ratio, 

dl, 
I *  

= fraction of dispersed phase re- 
actant converted in reactor 

= fraction of dispersed phase re- 
actant converted in mixed re- 
actor effluent 

= fraction of drop phase with 
identically zero concentration 

= sets of drops 
= function of x / x  
= integer summation index 
= dispersed phase mixing modu- 

lus OJOr 
= reaction rate constant 
= mass transfer coefficient per 

unit volume of dispersed 
phase 

A.1.Ch.E. Journal 

K = reaction modulus, ( k ) / ( o , c , )  
mr = T"' moment of fr.f. 

= mass transfer modulus, (k,~) / 

n = drop concentration interval in- 
dex 

N = intervals of drop concentra- 
tion in range 

v , p ( c ) , p ( n )  = frequency function 
(fr.f.) of drop concentration 

p ,  = feed fr.f. of drop concentra- 
tion 

p', p -  = abbreviations for p ( c  -+ a), 

Q = total volume flow rate to re- 

1' = moment designation 
s = order of reaction 
S = stoichiometric ratio, 

(Or) 

P ( C -  ff) 

actor 

( 1 - 41) CB; 

+lC*o 
t = time 
ic = drop collision rate 
U 
V = reactor volume 
x = dimensionless concentration 

= number of drops in vessel 

variable 

Greek Letters 
a, j?, X,8 = dummy variables 
S(x - x,) == delta function at x = xl 
hc = concentration increment 
p. 
y = partition coefficient, C' /C at 

+1 = dispersed phase fraction in 

4% = dispersed phase fraction in re- 

x = transformed zero concentra- 

O ,  = dispersed phase mixing fre- 

0, = residence frequency, (Q+l) I 

Su bscripts 
A,B 
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