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Summary. The Daily Hormone Study, a substudy of the Study of Women’s Health Across the Nation
(SWAN) consisting of more than 600 pre- and perimenopausal women, includes a scalar measure of total
hip bone mineral density (BMD) together with repeated measures of creatinine-adjusted follicle stimulating
hormone (FSH) assayed from daily urine samples collected over one menstrual cycle. It is of scientific
interest to investigate the effect of the FSH time profile during a menstrual cycle on total hip BMD,
adjusting for age and body mass index. The statistical analysis is challenged by several features of the data:
(1) the covariate FSH is measured longitudinally and its effect on the scalar outcome BMD may be complex;
(2) due to varying menstrual cycle lengths, subjects have unbalanced longitudinal measures of FSH; and
(3) the longitudinal measures of FSH are subject to considerable among- and within-subject variations
and measurement errors. We propose a measurement error partial functional linear model, where repeated
measures of FSH are modeled using a functional mixed effects model and the effect of the FSH time profile on
BMD is modeled using a partial functional linear model by treating the unobserved true subject-specific FSH
time profile as a functional covariate. We develop a two-stage nonparametric regression calibration method
using period smoothing splines. Using the connection between smoothing splines and mixed models, we
show that a key feature of our approach is that estimation at both stages can be conveniently cast into a
unified mixed model framework. A simple testing procedure for constant functional covariate effect is also
proposed. The proposed methods are evaluated using simulation studies and applied to the SWAN data.

Key words: Longitudinal covariates; Mixed effects models; Nonparametric regression; Periodic smoothing
spline; Restricted maximum likelihood; Variance components.

1. Introduction
The Daily Hormone Study is a substudy of the Study of
Women’s Health Across the Nation (SWAN) involving 628
women (Sowers et al., 2000). Total hip bone mineral density
(BMD; g/cm2) was measured for each woman at a clinical
visit. Each woman was also asked to collect daily urine sam-
ples during one menstrual cycle, and daily creatinine-adjusted
follicle stimulating hormone (FSH) levels (mIU/ml) were mea-
sured by laboratory assay. One of the study objectives is to
assess the effect of the FSH profile during a menstrual cy-
cle on total hip BMD adjusting for age and body mass index
(BMI; Sowers et al., 2003).

Several unique features of this dataset present substan-
tial statistical challenges. First, the primary response BMD
is a scalar, but the covariate FSH is measured longitudinally.
Hence standard longitudinal techniques are not applicable.
Further, menstrual cycle lengths vary substantially among
women, ranging from 14 to 50 days with an average of about
30 days, and result in a great deal of imbalance in the num-
ber of FSH measures per subject. Second, both biological
understanding of reproductive hormones and empirical evi-
dence indicate that the FSH profile exhibits a complex pe-

riodic pattern over a menstrual cycle. Figure 1 presents the
FSH concentrations in a menstrual cycle for four randomly
chosen women, where their cycle lengths were standardized
by 28 days (Zhang, Lin, and Sowers, 1998). We also superim-
pose in Figure 1 the estimated periodic subject-specific pro-
files and the population profile obtained using the estimation
procedure to be discussed in Section 3. It clearly shows large
between-woman and within-woman variation in FSH levels
and individual FSH profiles. We are hence challenged by mod-
eling the effects of periodic complex longitudinal FSH profiles
on the scalar outcome BMD, with the longitudinal FSH mea-
sures subject to considerable imbalance and variation.

When a functional covariate is measured without error at
equally spaced time points, Ramsay and Silverman (1997)
proposed a functional linear model to model its relationship
with a continuous scalar response variable characterized by
an integrated smooth function, which is estimated using tra-
ditional smoothing techniques. When the functional covari-
ate is measured with error, a naive approach estimates the
covariate profile for each individual separately using smooth-
ing techniques, such as kernels or splines, and then plugs the
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Figure 1. FSH levels (divided by 100) from four randomly
selected women plotted against days in a standardized men-
strual cycle, superimposed with the estimated population and
individual FSH profiles: –––, population profile; - - - -, indi-
vidual profile.

estimators of the individual covariate profiles in the functional
linear model and estimates the coefficient function following
Ramsay and Silverman (1997). However, because the observed
individual longitudinal covariate values measure the true in-
dividual covariate profiles with error, as demonstrated in the
measurement error literature (Carroll, Ruppert, and Stefan-
ski, 1995), such a naive plug-in estimator ignores measure-
ment error and often leads to biased estimators of regression
coefficients. Similar bias results are shown for mixed effects
models when naive individual trajectories are fit, especially
when the data are variable and the number of repeated mea-
sures is small (Fitzmaurice, Laird, and Ware, 2004).

James (2002) recently proposed an extension of functional
linear models for discrete and survival data, where the func-
tional covariate is measured with error. Similar to Ramsay
and Silverman (1997), he expressed the true subject-specific
functional covariate as a linear combination of a preselected
fixed number of cubic spline basis functions with normally
distributed subject-specific random coefficients, in a similar
spirit to Rice and Wu (2001), and parameterized the fixed
functional covariate effect using a similar basis function ap-
proach. The model then reduces to a special mixed model
with parameters in the design matrix, and the expectation
maximization (EM) algorithm can be used for maximum like-
lihood estimation. However, as shown in his simulation stud-
ies and our simulation study (Section 6), the nonparametric
functional covariate effect estimate is sensitive to the choice of

the number of knots and can be subject to considerable bias.
This regression spline approach also suffers from numerical
difficulties. As the number of the basis functions increases,
the number of parameters grows quickly causing numerical as
well as inferential problems.

In this article, we propose a two-stage functional mixed ef-
fects model, and estimate the effect of the periodic functional
covariate, for example, the FSH profile, on a continuous scalar
response variable, for example, BMD, using a two-stage non-
parametric regression calibration (TS-NRC) method. At the
first stage, a periodic nonparametric mixed model is used to
estimate the periodic subject-specific profiles using periodic
cubic smoothing splines. At the second stage, the estimated
subject-specific profiles are then plugged in the functional lin-
ear model, and the functional covariate effect is estimated
by a periodic cubic smoothing spline through a linear mixed
model formulation. Our approach is an extension of regression
calibration in traditional parametric measurement error mod-
els (Carroll et al., 1995) to nonparametric settings. It allows
for measurement error and imbalance in repeated measures
of FSH levels, and models the within- and between-subject
variability in FSH profiles. A key feature of our approach is
that mixed model representations are used in a unified conve-
nient way at both stages to estimate all the model parameters
simultaneously, including nonparametric functions, variance
components, and smoothing parameters. This is in contrast
to the regression spline approach of James (2002), where one
has to choose the number and the locations of knots, which
can be difficult in practice and is likely to cause overfitting
and yield artificial curvatures mainly driven by the assumed
parametric form instead of the data (Carroll et al., 2004).
Our smoothing spline approach uses all data points as knots
and flexibly controls the smoothness and goodness of fit of
individual covariate profiles and the functional covariate ef-
fects through penalties, and estimates smoothing parameters
conveniently as variance components within a unified mixed
model framework. It also eliminates the inferential and nu-
merical problems associated with the increasing number of
parameters of the regression spline method. Previous results
show that smoothing splines perform better than regression
splines for longitudinal data (Carroll et al., 2004). Our simu-
lation study further shows a similar phenomenon in our func-
tional regression settings.

The rest of the article is organized as follows. We present
the two-stage functional mixed model in Section 2. We de-
scribe in Section 3 the TS-NRC estimation procedure, and
a test for whether or not the functional covariate effect
is a constant. We provide theoretical justifications for the
proposed TS-NRC method in Section 4. We apply in Section 5
the proposed methods to analyze the SWAN data. In Section
6, we conduct an extensive simulation study to evaluate the
performance of proposed estimation and testing procedures,
and compare our estimation procedure to James’s (2002)
regression spline approach. Concluding remarks are given in
Section 7.

2. The Periodic Partial Functional Linear Model
with Measurement Error

Suppose that the data are collected from m subjects. For
subject i (i = 1, 2, . . . ,m), let Yi be a scalar response vari-
able, si be a p × 1 vector of scalar covariates, for example,
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age and BMI in the Daily Hormone Study, and Wij be ob-
served error-prone longitudinal measures of the true unob-
served smooth periodic functional covariate xi (t) at time point
tij (j = 1, . . . ,ni ), where 0 ≤ tij ≤ T and T is the period length
such as the standardized cycle length in the Daily Hormone
Study. The response variable Yi is assumed to relate to the
unobserved functional covariate xi (t) through a partial func-
tional linear model (Ramsay and Silverman, 1997)

Yi = α + sT
i δ +

∫ T

0

xi(t)γ(t) dt + εi, (1)

where α is the intercept, δ is a p × 1 vector of regression
coefficients of si, γ(t) is an unknown periodic smooth function
with period T modeling the effect of x(t) on Y, and the errors
εi are assumed to be independent and identically distributed
as N(0, σ2

ε).
The model is completed by assuming the observed longitu-

dinal covariates Wij are related to xi (t) by an additive mea-
surement error model as follows

Wij = xi(tij) + eij , (2)

where eij ’s are measurement errors assumed to be indepen-
dent and identically distributed as N(0, σ2

e). Our interest lies
in using the data (Yi , si, Wij ) to estimate the regression co-
efficients α, δ, the nonparametric periodic function γ(t), and
the residual variances σ2

ε and σ2
e.

When analyzing the Daily Hormone Study data, we can
assess the potential effect of individual cycle length Ti on Yi

by including Ti in the covariate vector si in model (1). Alter-
natively, we may model the effect of Ti implicitly by replacing

the integral in (1) with
∫ Ti

0 x̃i(ti)γ(t) dti, where x̃i(ti) is the
true hormone profile for woman i in the actual time scale and
t = Tti/Ti is the standardized day. This integral can be shown

to be (Ti/T )
∫ T

0 xi(t)γ(t) dt with xi(t) = x̃i(Tit/T ) being the
individual hormone profile in the standardized cycle length.
Therefore, the methods to be developed for model (1) can be
easily modified to fit this new model. See Section 5 for more
discussion.

When the functional coefficient γ(t) = γ is a constant,
model (1) reduces to the familiar case of using the “area

under the curve” Ai =
∫ T

0 xi(t) dt as a covariate. One can

use W i =
∑ni

j=1 Wij(tij − tij−1) as an error-prone measure of
Ai and apply the conventional linear model measurement er-
ror approach (Carroll et al., 1995). However, since the whole
profile xi (t) is unknown, with finite ni,W i is often a biased
measure of Ai . Results in the standard measurement error
literature mainly concern parametric regression and do not
directly apply here even in this special case (Carroll et al.,
1995). When the repeated measures of Wij are observed at
the same time points without error, see Ramsay and Silver-
man (1997).

3. The Two-Stage Nonparametric Regression
Calibration Method

Both the periodic nonparametric function γ(t) and the true
periodic subject-specific covariate profiles xi (t) in the func-
tional linear model (1) are infinitely dimensional parameters.
We estimate them by periodic smoothing splines. Specifically,
denote by t0 the q × 1 vector of the distinct values of the

time points tij ’s (0 and T are considered as the same time
point). We assume that {γ(t), xi (t)} ∈ Wps = { periodic cu-
bic smoothing splines in [0, T ] with knots t0}.

For any function d(t) ∈ Wps , it is easy to show using
the results in Green and Silverman (1994) that there exist
q piecewise periodic cubic polynomial basis functions c(t) =
{c1(t), . . . , cq(t)}T such that d(t) =dTc(t), where d = d(t0) is
the vector formed by evaluating d(t) at knot t0. Each function
cj (t) itself is also a periodic cubic smoothing spline uniquely
determined by its values at knot t0 assumed as (0, . . . , 0, 1,
0, . . . , 0) with the jth element being 1 and the rest being
0. This gives periodic cubic smoothing spline basis function
expressions for the functional covariate effect γ(t) and the
subject-specific profile xi (t) as

γ(t) = γT c(t), xi(t) = xT
i c(t),

where γ = γ(t0) and xi = xi (t0). Using these expressions, the
measurement error partial functional linear model becomes

Yi = α + sT
i δ + xT

i Cγ + εi,

Wi = Nixi + ei, (3)

where C =
∫ T

0 c(t)cT (t) dt and the integrals are evaluated ele-
mentwise, Wi = (W i1, . . . ,W ini

)T , Ni is the incidence matrix
mapping (ti1, . . . , tini

)T to t0 such that the (j, l)th element of
Ni is 1 if tij = t0l and 0 otherwise (j = 1, . . . ,ni , l = 1, . . . , q),
and ei = (ei1, . . . , eini

)T . Since each cj (t) is a piecewise peri-
odic cubic polynomial, calculation of the matrix C is straight-
forward.

Model (3) takes the same form as the standard linear mea-
surement error model. However, unlike the traditional linear
measurement error model, the dimensions of γ(t) and xi (t)
are infinite so they have to be estimated nonparametrically.
Motivated by the parametric regression calibration method
in traditional parametric measurement error models (Carroll
et al., 1995), we propose a nonparametric regression calibra-
tion approach. At stage I, we calculate the subject-specific
smoothing spline estimator x̂i(t), equivalently x̂i, under (2)
using the functional mixed model formulation. At stage II, we
calculate the smoothing spline estimator of γ(t), equivalently
γ, by fitting the nonparametric regression calibration model

Yi = α + sT
i δ + x̂T

i Cγ + ε∗i (4)

via a linear mixed model smoothing spline formulation and
treating the new residual error ε∗i to be independent and iden-
tically distributed. We describe in Sections 3.1 and 3.2 the
two-stage regression calibration estimation procedure. In Sec-
tion 3.3, we propose a score test for testing γ(t) is a constant,
which corresponds to the simple linear regression model with
the area under the curve xi (t) as a covariate.

3.1 Stage I: Estimation of the Individual Profile xi (t)
Decompose the subject-specific profile xi (t) as

xi(t) = f(t) + gi(t),

where f(t) is a periodic cubic smoothing spline modeling
the population profile, and gi (t) is a random periodic cubic
smoothing spline characterizing the subject-specific deviation
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from the population profile. Under this decomposition, the
model for longitudinal measurements Wij becomes

Wij = f(tij ) + gi(tij ) + eij , (5)

where gi (t) is a mean zero Gaussian stochastic process whose
covariance matrix is given later in this section. Equivalently,
the vector Wi can be rewritten as

Wi = Nif + Nigi + ei, (6)

where f = f(t0) and gi = gi (t0). It is sufficient to estimate f
and gi in order to estimate xi , and hence the process xi (t).

The smoothing spline estimator of f(t) maximizes the pe-
nalized likelihood function

�p(f ;W) =

m∑
i=1

�(f ;Wi) −
λf

2

∫ T

0

{f ′′(t)}2 dt

=

m∑
i=1

�(f ;Wi) −
λf

2
fTKf ,

where W = (WT
1 , . . . ,WT

m)T , �(f; Wi) is the log likelihood
of f under (6), λf > 0 is a smoothing parameter that controls
the goodness of fit of the model and the roughness of f(t),
and K is the q × q smoothing matrix for a periodic smooth-
ing spline and has rank r = q − 1 and satisfies K1q = 0,
with 1q being a q-dimensional vector of ones. Following Zhang
et al. (1998) and Zhang, Lin, and Sowers (2000), the smooth-
ing spline estimator of f has a mixed model representation.
Specifically, decompose K as K =LLT , where L is a q × r full
rank matrix. Then f has a mixed effect representation as f =
1qη + Ba , where η is a fixed effect, B = L(LTL)−1, and a are
random effects distributed as a∼N(0, τf Ir×r) with τf = λ−1

f

and identity matrix Ir×r . Hence the inverse of the smoothing
parameter can be treated as a variance component.

Since gi = g(t0) and gi (t) models the random subject-
specific deviation from the population profile, the mixed effect
representation of f motivates us to model gi by gi = 1qbi +
Bai, where bi ∼N(0, σ2

b) and ai ∼N(0, τgIr×r) are two inde-
pendent random variables. Substituting the expressions of f
and gi in model (6), we get the following smoothing spline
mixed model representation of model (6)

Wi = 1ni
η + NiBa + 1ni

bi + NiBai + ei, (7)

where η is the fixed effect, a∼N(0, τf Ir×r), bi ∼N(0, σ2
b) and

ai ∼N(0, τgIr×r) are independent random effects, and ei is a
vector of measurement errors.

Following Zhang et al. (1998), we treat τ f as an ex-
tra variance component and estimate it with other vari-
ance components (σ2

b, τg σ2
e) simultaneously using the re-

stricted maximum likelihood (REML) approach under the lin-
ear mixed model (7). We then estimate the population pro-
file f by f̂ = 1q η̂ + Bâ and subject-specific deviation gi by

ĝi = 1q b̂i + Bâi, where η̂, â, b̂i, and âi are the best linear un-
biased predictors (BLUPs). This gives the estimate of subject-
specific profile x̂i = f̂ + ĝi, which is the BLUP of xi under the
linear mixed model (7). Hence the first stage provides a non-
parametric subject-specific periodic smoothing estimate of xi ,
equivalently, the subject-specific smoothing spline estimate
x̂i(t) = x̂T

i c(t).

3.2 Stage II: Estimation of γ(t)
The second stage of the nonparametric regression calibration
approach is to estimate the nonparametric function γ(t) in the
functional model (1) using the nonparametric regression cal-
ibration model (4) by holding the subject-specific profiles xi

fixed as the nonparametric BLUP estimates x̂i. We estimate
γ(t), equivalently γ, using a smoothing spline by developing a
mixed model representation of the nonparametric regression
calibration model (4).

Specifically, we jointly estimate γ and the parametric re-
gression coefficients α and δ by maximizing the following pe-
nalized pseudo-likelihood function

�p(α, δ,γ;Y, s, x̂) =

m∑
i=1

�(α, δ, γ;Yi, si, x̂i)−
λγ

2

∫ T

0

{γ ′′(t)}2dt

=

m∑
i=1

�(α, δ,γ;Yi, si, x̂i) −
λγ

2
γTKγ,

where Y = (Y1, . . . , Ym)T , �(α, δ,γ;Yi, si, x̂i) is the pseudo
log likelihood of (α, δ, γ) contributed by subject i by treating
ε∗i in model (4) as independent and identically distributed as
N(0, σ2

ε∗), λγ is a smoothing parameter controlling goodness
of fit of the model to the data and roughness of γ(t), and K
is the nonnegative definite matrix given in Section 3.1. The
resulting penalized pseudo-likelihood estimator of γ(t) is a
smoothing spline.

This penalized pseudo-likelihood has essentially the same
form as the one for f given in Section 3.1. Therefore, the esti-
mator of γ has a similar mixed effect representation

γ = 1qξ + Bu, (8)

where ξ is a fixed effect, u∼N(0, τγIr×r), and τγ = λ−1
γ .

Substituting this mixed effect representation of γ into model
(4), we get the following working linear mixed model

Y = Xβ + Zu + ε∗, (9)

where X is the new design matrix whose ith row is
(1, sT

i , x̂
T
i C1q), β = (α, δT , ξ)T are new fixed effects, Z is

the new design matrix for random effects u whose ith row
is x̂T

i CB, and ε∗ = (ε∗1, . . . , ε
∗
m)T is an m × 1 residual er-

ror vector independent of u and its components are assumed
to be independent and follow N(0, σ2

ε∗). Note that the de-
sign matrix Z for random effects u is not block diagonal. One
can show that given τγ and σ2

ε∗ , the BLUP estimators β̂ and

γ̂ = 1q ξ̂ + Bû under the linear mixed model (9) is the maxi-
mizer of �p(α, δ,γ;Y, s, x̂). The smoothing parameter τγ and
the residual variance σ2

ε∗ can be estimated using the REML
estimators under the linear mixed model (9) by treating both
as variance components.

The covariance of (β̂, û) calculated under linear mixed
model (9) leads to an approximate estimator of the covariance
of (α̂, δ̂, γ̂). The REML estimator σ̂2

ε∗ provides an estimator
of the residual variance σ2

ε. The inverse of the information
matrix of (τγ , σ2

ε∗) from the REML likelihood provides an
approximate variance estimator of the REML estimator of
σ2
ε.
It is well recognized in the literature that the smooth-

ing parameters λf and λγ play important roles in estimating
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nonparametric functions f(t) and γ(t) and thus have to be well
estimated. Here we propose to estimate them simultaneously
with other model parameters in a unified and convenient
mixed model framework (model (7) for λf and working model
(9) for λγ). Simulation results presented in Section 6 indicate
that this estimation strategy works well in estimating under-
lying true nonparametric functions f(t) and γ(t).

3.3 Hypothesis Testing for γ(t)
It is often of interest to test whether the nonparametric func-
tional effect γ(t) of the process x(t) is a constant in the func-
tional linear model (1), that is, H0 : γ(t) = γ. Under this null
hypothesis model (1) reduces to the simple linear regression
model in which the area under the process x(t) is a covariate
with γ(t) = γ being its effect. In this section, we propose a
simple score test for H0 : γ(t) = constant versus H1 : γ(t) is
a smoothing spline.

The mixed effect representation of γ(t) in (8) suggests that
H0 : γ(t) = constant is equivalent to H0 : variance component
τγ = 0. Hence we can perform a score test for τγ in the mixed
model (9) in the same spirit as Lin (1997) and Zhang and Lin
(2003).

The score of τγ under the linear mixed model (9) is

Uτγ = (Y − Xβ̂)TZZT (Y − Xβ̂), where β̂ = (XTX)−1XTY
is the maximum likelihood estimate (MLE) of β under H0.
It is easy to show that Uτ has a distribution the same as
that of weighted chi-squared random variables

∑q

i=1 ψiχ
2
1i,

where χ2
1i are independent chi-squared random variables with

one degree of freedom and ψi are ordered non-zero eigen-
values of ZTPΣε∗PZ and decay rapidly to zero, where P =
I − X (XTX)−1XT is the projection matrix under H0. Cal-
culations of ψi are often computationally expensive and
the probability distribution of the associated weighted chi-
squared random variables is prohibitive to calculate. Follow-
ing Zhang and Lin (2003), we approximate the distribution of
Uτγ by the distribution of a scaled chi-squared random vari-
able κχ2

ν by matching their first two moments. One can easily
see that the mean and variance of Uτγ are μ = tr(ZTPΣε∗PZ)
and θ = 2tr{(ZTPΣε∗PZ)2}, respectively. Matching the first
two moments of Uτγ (Y;σ2

ε) and those of κχ2
ν gives κ = θ/(2μ)

and ν = 2μ2/θ. Then a test statistic is calculated as S =
Uτγ/κ and the evidence against H0 is given by the p-value =
P [χ2

ν ≥ S].
Note that the mixed model (9) is conditional on W; the

above argument indicates that our testing procedure has
approximately right statistical properties such as a correct
type I error probability conditional on W. Double expecta-
tion theorem then implies that our testing procedure should
also have approximately right statistical properties uncon-
ditionally. This is verified by the simulation study given in
Section 6.2.

4. Justifications for the Two-Stage Nonparametric
Regression Calibration Method

In this section, we provide some justifications for the TS-NRC
method described in Sections 3.1 and 3.2. We also propose a
bias-corrected estimator of σ2

ε and variance estimators of the
parameter estimators in model (1), including γ̂(t). The TS-
NRC method can be justified by showing that if xi (t) and
γ(t) are periodic smoothing splines, the true Yi |Wi model is

identical to the nonparametric regression calibration model
(4) except that the errors ε∗i are correlated.

Specifically, since xi (t) is a period smoothing spline, using
the results at the beginning of Section 3, xi (t) is fully deter-
mined by its values at the knots xi . The smoothing spline
mixed model representation of (Wi, xi) in Section 3.1 can be
written as

Wi = Nixi + ei, xi = 1qη + Ba + 1qbi + Bai,

where η is a fixed effect parameter, a∼N(0, τf Ir×r), bi ∼
N(0, σ2

b), ai ∼N(0, τgIr×r), and ei ∼ N(0, σ2
eIni×ni

) are in-
dependent. Denote by x=(xT

1 , . . . ,xT
m)T , N=diag {N1, . . . ,

Nm}, Ex = σ2
b1q1T

q + τgBBT , EW = Ex + σ2
eIr×r, and

B̃ = τ
1/2
f [BT , . . . ,BT ]T . Then under the mixed model rep-

resentation, x∼N(η1, Σx), W∼N(η1, ΣW ), where Σx =

cov(x) = diag{Ex, . . . ,Ex} + B̃B̃T and ΣW = cov(W) =

Ndiag{EW , . . . ,EW }NT + NB̃B̃TNT . Since W and x are
jointly normal, x |W follows a normal distribution with
mean E(x |W) = x̂ and covariance cov (x |W), which can be
equivalently written as

xi = x̂i + Ui,

where x̂i is the estimator of xi given in the first stage, U =
(U1, . . . ,Um)T ∼N(0, ΣU ) is independent of x̂i, and ΣU =
cov(x |W) = Σx − ΣxNTΣ−1

WNΣx. Note that ΣU is not a
block diagonal matrix and hence Ui and Ui′ (i 	= i′) are cor-
related. Also note that the direct inverse of ΣW is prohibitive
because of its usually large dimension (i.e.,

∑m

i=1 ni). How-
ever, we can exploit the special structure of ΣW , and calcu-
late Σ−1

W by only inverting a matrix with the same dimension
as B and the ni × ni matrices NiEWNT

i .
Since xi (t) is a periodic cubic smoothing spline, we have

xi(t) = xic(t) = x̂ic(t) + Uic(t) = x̂i(t) + Ui(t), (10)

where Ui (t) is a mean zero stochastic process whose covari-
ance is determined by cT (t)ΣUc(t). Note that Ui (t) and
Ui′(t) (i 	= i′) are correlated stochastic processes. Substitut-
ing expression (10) into model (1), we have the true Y |W
model:

Yi =α+ sT
i δ+ x̂T

i Cγ +γTCUi + εi =α+ sTi δ+ x̂iCγ + ε∗i ,

(11)

where ε∗i = γTCUi + εi, ε∗ = (ε∗1, . . . , ε
∗
m)T , ε∗ ∼ N(0,Σε∗),

and Σε∗ =GΣUGT +σ2
εIm×m and G=diag{γTC, . . . ,γTC}.

A comparison of the true Y |W model (11) with the non-
parametric regression calibration model (4) shows that the
nonparametric regression calibration model at the second
stage correctly specifies the mean structure of the Y |W
model, but assumes the errors ε∗i are independent across
subjects. In other words, it estimates the smoothing spline
estimator of γ by maximizing the following penalized pseudo-
likelihood function by treating ε∗i ∼ N(0, σ2

ε∗) as independent
errors

− 1

2σ2
ε∗

m∑
i=1

(Yi − α− sT
i δ − x̂T

i Cγ)2 − λγ

2
γTKγ.

The results of Lin et al. (2004) show that such a working
independent smoothing spline estimator of γ(t) is consistent.
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However, the estimator σ̂2
ε∗ calculated under the linear mixed

model assuming working independence is a bias-estimator of
σ2
ε. Examination of equation (11) shows that a simple bias-

corrected moment estimator of σ2
ε can be constructed as

σ̂2
ε = σ̂2

ε∗ −
1

m

m∑
i=1

γ̂TCΣUi
Cγ̂, (12)

where Ĝ = diag{γ̂TC, . . . , γ̂TC} and ΣUi
= cov(Ui).

The naive variance estimators of β̂ and γ̂ calculated under
the linear mixed model (9) assuming working independence
ignore the correlation in ε∗ and may not capture the true vari-
ation in β̂ and γ̂. Write β̂ = AβY and γ̂ = AγY. Then their

covariance matrices can be estimated as ˆcov(β̂) = AβΣ̂ε∗AT
β

and ˆcov(γ̂) = AγΣ̂ε∗AT
γ , where Σ̂ε∗ = ĜΣUĜT + σ̂2

εIm×m.

Note that such covariance estimators of β̂ and γ̂(t) account
for the variability of the nonparametric regression calibra-
tion estimators x̂i(t) resulted from the first-stage estimation.
Simulation studies conducted in Section 6 show that the cor-
rected estimator σ̂2

ε in equation (12) is virtually unbiased and
the above covariance estimates of β̂ and γ̂ estimate the true
variances of β̂ and γ̂(t) well.

5. Application to the Hormone Data
In this section, we use the TS-NRC method developed
in Sections 3 and 4 to analyze the SWAN data intro-
duced in Section 1. Denote by Yi , total hip BMD (g/cm2);
AGEi , age in years; BMIi (kg/m2); xi (t), the true FSH
profile; and Wij , the observed FSH level at the jth time
point during a standardized menstrual cycle for woman
i (i = 1, . . . ,m = 628). Cycle lengths varied considerably
among women, with the mean equal to 30 days and a range
between 14 and 50 days. Following the common practice in
hormone studies (Zhang et al., 1998), we standardized the
cycle length for each woman to 28 days. The average age of
the participants was 47 years, the average hip BMD was 0.94
(g/cm2), and the average FSH level was 35.8 (mIU/ml).

We considered the following partial functional linear model
to examine the effect of the FSH profile on BMD, adjusting
for age and body mass index

Yi = α + AGEiδ1 + BMIiδ2 +

∫ 28

0

xi(t)γ(t) dt + εi, (13)

where α, δ1, δ2 are regression coefficients, γ(t) is a periodic
smooth function in [0, 28] characterizing the effect of the FSH
profile on BMD, and εi ∼N (0, σ2

ε) are independent errors.
The subject-specific observed FSH values Wij were obtained
at irregular time points and were assumed to relate to the
subject-specific true profile xi (t) by equation (5).

We used the first-stage functional mixed model estimation
procedure discussed in Section 3.1 to obtain subject-specific
smoothing spline estimates of the xi (t). For numerical rea-
sons, BMD was multiplied by 100 and FSH was divided by
100. Figure 1 presents the estimated subject-specific profiles
x̂i(t) for four randomly chosen women, plotted together with
their raw FSH values and the estimated population profile.
Figure 1 shows that the observed individual raw data have
considerable between- and within-woman variability. The esti-

mated subject-specific profiles tracked each woman’s raw data
very well and lay between the estimated population profile
and the individual raw data. The estimated population profile
is consistent with the biological knowledge of FSH function-
ing. During menstruation, FSH levels increase and promote
growth and selection of follicles. FSH begins to decrease fol-
lowed by a secondary rise as a dominant follicle is selected to
continue to develop. After surging with luteinizing hormone
about 1 day before ovulation, FSH decreases to the lowest
level. It then gradually increases at the end of a cycle, with
the initiation of the next cycle.

Figure 1 shows that there is complicated and tremendous
between-woman variation in FSH profiles. The variances of
bi and ai in the mixed model representation (7) of xi (t)
were estimated as σ̂2

b = 0.12 and τ̂g = 0.80, and the average
of the var{xi (t)} was estimated as 0.14. The measurement
error variance σ2

e in model (7) was estimated as σ̂2
e = 0.06,

which measured the departure of the FSH measurements from
the subject-specific curves. These results indicate that the
between-woman variation in the hormone profile dominates
the total FSH variation.

At the second stage of the proposed TS-NRC method,
we replaced xi (t) in the functional linear model (13) by its
subject-specific estimate x̂i(t) obtained from the first stage.
We then calculated the maximum pseudo-likelihood estimate
of β and the periodic smoothing spline estimate γ(t) using
the linear mixed model representation (11). We estimated the
standard errors of δ̂ and γ̂(t) using the method described at
the end of equation (4). Figure 2a presents the estimated pe-
riodic cubic smoothing spline γ̂(t) and its 95% pointwise con-
fidence intervals. The estimated curve γ̂(t) was negative in
most of the interval [0, 28], implying the overall negative as-
sociation between BMD and the FSH profile. This result was
consistent with the finding of negative association between
BMD and serum FSH from a cross-sectional study (Sowers
et al., 2003).

To compare our smoothing spline regression calibration
method with James’s (2002) regression spline approach, we
estimated γ(t) using his approach with two, three, and four
equally spaced interior knots assuming periodic cubic regres-
sion splines. The results are given in Figure 2b. Although the
estimates with two interior knots had an overall similar shape
to the two-stage estimate γ̂(t), the values of the regression
spline estimates were much greater in some regions. The es-
timates of γ(t) with three and four interior knots exhibited
an additional mode and was dramatically different from the
other estimates. These results indicate that regression spline
estimates are sensitive to the choice of the number of knots.
James (2002) did not provide a data-driven method to esti-
mate the number and the locations of the knots. See Section
7 for more discussions. In Section 6, we use simulations to
more systematically compare the performance of the smooth-
ing spline method and the regression spline method.

The estimated age coefficient was δ̂1 = 0.16 (SE = 0.18),
and the estimated BMI coefficient was δ̂2 = 1.37 (SE = 0.06).
These results indicated that there was no significant age effect
on BMD, and the women with higher BMI values had higher
BMD values, characteristics well recognized in the epidemi-
ological literature. The uncorrected estimate of the residual
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Figure 2. (a) Estimated nonparametric function γ̂(t) in
model (13) and its 95% confidence intervals: –––, estimated
γ̂(t); · · · ·, confidence intervals. (b) Estimated function γ̂(t)
using periodic cubic regression splines: ——, estimate with
two interior knots; · · · ·, estimate with three interior knots;
– – – –, estimate with four interior knots.

variance of σ2
ε was 116.51 and the corrected estimate in equa-

tion (12) was 116.50. Because γ̂(t) was much smaller than σ̂2
ε,

the correction given in equation (12) did not have much im-
pact on the estimation of σ2

ε. However, the simulation results
in Section 6 show that when the measurement error becomes
larger, the uncorrected estimate can be quite biased, while
the corrected estimator still performs well.

The relatively flat 95% pointwise confidence intervals of
the nonparametric regression calibration estimate γ̂(t) given
in Figure 2a motivated testing the null hypothesis H0 : γ(t)
is a constant, that is, γ(t) = γ. We applied the score test
developed in Section 3.3. The test statistic was S = 2.57
with 1.80 degrees of freedom (p-value = 0.24). Therefore, it
is reasonable to assume that γ(t) in model (13) is a con-
stant γ. Under this assumption, we refit model (13) with

the area under the curve
∫ 28

0 xi(t) dt as a true unobserved
covariate, and obtained γ̂ = −0.091 with the estimated stan-
dard error 0.046. This indicates a strong negative relationship
between BMD and cumulative FSH hormone concentrations
characterized by the area under the profile. The estimates of
the other parameters remained almost unchanged. The esti-
mated R2 for both models were very close (0.4334 vs. 0.4320),
and the residual plots (not shown) did not reveal any un-
usual patterns, indicating a reasonable fit of either model to
the data.

We also included actual individual cycle length Ti in model
(13) to assess the potential effect of cycle length on BMD.
The estimated regression coefficient was −0.004 with esti-
mated standard error 0.068 (p-value = 0.95), indicating that
it may be reasonable to use the standardized cycle length in
model (13).

We then conducted a naive analysis where the area under
the profile xi (t) was estimated using raw FSH observations
from woman i with simple interpolation described in the last
paragraph of Section 2. The analysis gave almost identical
results to those from the two-stage procedure and hence is not
shown. This is because the measurement error variance σ2

e in
FSH measurements is much smaller than the between-woman
variance of the FSH profiles, implying negligible measurement
error in the naive estimates of the areas under the profiles.
In fact, the Pearson correlation coefficient between the two
areas under the profile using the naive approach and two-
stage approach was almost equal to 1. The simulation results
show that if the measurement error is more prominent, the
bias of the naive method would become significant.

6. Simulation Studies
6.1 Simulation Study for the Estimation Procedure
In this section, we present results from simulation studies de-
signed to evaluate the finite sample performance of the two-
stage nonparametric regression calibration method developed
in Sections 3.1 and 3.2. Two sample sizes m = 200 and m =
400 were considered.

Let the tj ’s be 40 equally spaced time points in [0, 10).
For each subject i = 1, . . . ,m, longitudinal covariate data Wij

were generated from

Wij = f(tj) + gi(tj) + eij , j = 1, 2, . . . , 40,

where f(t) = cos(2πt/10) is a periodic population profile with
the period length equal to T = 10, gi (t) is a periodic cu-
bic smoothing spline characterizing subject-specific deviations
from f(t) whose values at the distinct knots {tj } are given by
140bi + Bai, where B is the matrix defined in Section 3.1, and
bi ∼N(0, 0.82), ai ∼N(0, 0.52I39×39), and eij ∼N (0, 0.72) are
the measurement errors. The values of the variance compo-
nents were chosen in such a way that the measurement error
variance was comparable to the between-subject variance of
the subject-specific profiles xi (t) = cos(2πt/10) + gi (t). The
primary response Yi was generated from the following func-
tional linear model

Yi = α +

∫ T

0

xi(t)γ(t) dt + εi, (14)

where α = 2, γ(t) = sin(2 πt/10), and εi ∼N(0, σ2
ε = 4). Since,

gi (t) is assumed to be a periodic cubic smoothing spline, the

integral
∫ T

0 xi(t)γ(t) dt can be evaluated in a closed form once
the values of gi (t) at the distinct knots are given.

One hundred datasets were generated, and the TS-NRC
method developed in Section 3 was applied to each dataset to
estimate γ(t) in [0, T = 10]. To compare the two-stage pro-
cedure with James’s (2002) regression spline approach, these
generated datasets were reanalyzed using his approach with
three and five equally spaced interior knots.
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Figure 3. The true γ(t) and the average of the estimated nonparametric functions γ̂(t) (a, c, e) and their biases (b, d, f)
for two sample sizes from the simulation study: –––, true; · · · ·, m = 200; m = 400. (a) and (b) are based on the TS-NRC
method, and (c) and (d), and (e) and (f) are based on the periodic regression spline approach with three and five interior
knots, respectively.

Figure 3 presents the true γ(t), the average of the estimates
γ̂(t), and their biases, based on 100 simulation runs for two
sample sizes m = 200 and m = 400, using the TS-NRC method
and James’s (2002) periodic cubic regression spline approach

with three and five interior knots. For fair visual compari-
son, all biases were plotted on the same scale. The TS-NRC
method yielded an almost unbiased estimate of the underly-
ing true function, and the bias was smaller than that of the
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Figure 4. (a) Empirical SEs and the average estimated standard errors of the smoothing spline estimates γ̂(t)’s for two
sample sizes from the simulation study: –––, empirical SE; . . . . , estimated SE. (b) Empirical SEs of the regression spline
estimates γ̂(t)’s with three and five knots for two sample sizes from the simulation study: –––, three knots; · · · ·, five knots.
(c) Empirical coverage probabilities of the 95% confidence intervals of γ(t) for two sample sizes from the simulation study:
–––, nominal level; · · · ·, m = 200; - - - -, m = 400.

regression spline method. James’s periodic cubic regression
spline approach with three interior knots estimated γ(t) rea-
sonably well when the sample size was 400. The estimates
in other settings had considerably higher biases. The results
indicate that the regression spline method is sensitive to the
choice of the number of knots and their locations. Due to the
assumed parametric forms, regression splines are more likely
to result in overfitting and uncover artificial bumps and val-
leys. Carroll et al. (2004) also found smoothing splines per-
formed better than regression splines in other settings. An-
other reason regression splines perform worse in our setting is
numerical. For example, with five interior knots, a 6 × 6 un-
structured variance matrix for the random coefficients of the
periodic cubic basis functions has to be updated in each EM
iteration. These findings of regression splines are consistent
with the simulation study results reported in James (2002).

Figure 4a presents the estimated and empirical standard er-
rors of the smoothing spline estimates of γ(t) for sample sizes
m = 200 and m = 400 using our two-stage estimation proce-
dure. The estimated SEs were calculated using the procedure

described at the end of Section 4. The estimated standard er-
rors agreed very well with their empirical counterparts, and
the agreement became better as the sample size increased.
This indicated our standard error estimation method works
well. Figure 4b presents the empirical standard errors of the
estimates of γ(t) using James’s (2002) regression spline ap-
proach. It is clear from Figure 3 and Figure 4a and 4b that our
smoothing spline estimate not only has smaller bias but also
smaller variance compared to James’s (2002) regression spline
estimate. Figure 4c presents the empirical coverage probabil-
ities of 95% pointwise confidence intervals of γ(t) for sample
sizes m = 200 and m = 400. They were overall very close to
the nominal level (95%). Although the coverage probabilities
for sample size m = 200 fluctuated at times, they became
more stable and closer to the nominal level (95%) for a larger
sample size (m = 400).

Table 1 presents the results of the estimates of the
other model parameters in equation (14) using the TS-NRC
method. The estimates of the regression coefficients (α) were
virtually unbiased. As expected, the uncorrected estimate of
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Table 1
Simulation results for model (14): mean and EMP SE are the average of the parameter

estimates and the empirical SEs; EST SE is the average of model-based estimated standard
errors; CP is the empirical coverage probability of the 95% confidence intervals

m = 200 m = 400

EMP EST EMP EST
Par. True Method Mean SE SE CP Mean SE SE CP

α 2.00 2.00 0.31 0.32 0.92 2.02 0.23 0.22 0.96
σ2
ε 4.00 Uncorrected 4.53 0.50 0.46 0.82 4.59 0.33 0.33 0.57

Corrected 3.96 0.51 0.46 0.88 4.02 0.33 0.33 0.96

σ̂2
ε in the second stage overestimated the true value. How-

ever, its corrected estimate using equation (12) was almost
unbiased. The estimated standard errors agreed well with
their empirical counterparts. The empirical coverage prob-
abilities of the 95% confidence intervals of the regression
coefficient estimates and the corrected estimate of σ̂2

ε were
close to the nominal level, especially when the sample size is
m = 400.

We repeated the simulation by reducing the number of re-
peated measures of Wij to half the current setting, that is,
ni = 20 instead of 40 and doubling the variance of their mea-
surement errors eij ’s, that is, σ2

e = 1. The results are similar
and are omitted.

6.2 Simulation Study of the Testing Procedure
In this section, we report a simulation study to evaluate the
performance of the testing procedure developed in Section 3.3
for H0 : γ(t) = γ, including its empirical sizes and powers. The
simulation design was similar to that used in Section 6.1, ex-
cept that we only considered the case where the sample size
was m = 200 due to computational consideration. We consid-
ered a series of functions γd(t) = 1 + d × sin(2 πt/10)/20
indexed by d = 0, 1, 2, 3, 4, and 5. Five hundred simulation
runs were done for d = 0 to more accurately evaluate the em-
pirical sizes and 100 runs were done for d > 0 to evaluate the
empirical powers.

Figure 5a presents the empirical distribution (histogram)
of the test statistic S obtained under d = 0, superimposed
with the estimated chi-squared density. The estimated den-
sity matched the empirical distribution reasonably well. This
finding was further supported by the nearly uniform distri-
bution of the p-value for testing H0 : γ(t) = constant under
d = 0 (Figure 5b). Table 2 gives the empirical sizes and pow-
ers of the testing procedure for three commonly used nomi-
nal levels 0.01, 0.05, and 0.1. The empirical sizes were very
close to the corresponding nominal levels, confirming the evi-
dence in Figure 5b. The empirical powers quickly increased to
about 1 when d increased from 0 to 5, indicating that the test
had good statistical power to detect a nonconstant functional
covariate effect. Note that the nonconstant function γ5(t) is
equal to only one fourth of γ(t) used in Section 6.1.

When d = 0, γ0(t) = γ = 1 is the covariate effect of the area
under the true profile xi (t). Table 3 compares the estimates
of the regression coefficients and the residual variance using
the TS-NRC method with the naive method, where the area
under the true profile xi (t) was calculated using the error-

prone observations Wij with simple interpolation discussed
in the last paragraph of Section 2. The regression coefficient
estimates and the corrected residual variance estimate using
the TS-NRC method were all unbiased. The estimated stan-
dard errors agreed well with their empirical counterparts, and
the 95% confidence intervals had right coverage probabilities.
Although the estimated intercept using the naive method per-
formed well, its estimate of the key regression coefficient γ had
a downward bias as large as its standard error, resulting in
lower than the nominal coverage probability of the confidence
interval. This is because the naive estimate of the area under
the true profile xi (t) calculated using the error-prone obser-
vations Wij can itself be viewed as a covariate measured with
error, and gives an attenuated regression coefficient estimate
of the true covariate. This also explains the upward bias of
the naive estimate of the residual variance σ2

ε.
Similarly, we repeated the simulation for the testing proce-

dure using ni = 20 and σ2
e = 1. The results are similar and

hence are omitted.

7. Discussion
In this article we proposed a TS-NRC method in semipara-
metric functional linear models. In the first stage, we used
periodic cubic smoothing splines to estimate the subject-
specific functional covariates nonparametrically. At the sec-
ond stage, we fitted the semiparametric functional linear
model using a smoothing spline under working independence
by plugging in the nonparametric regression calibration es-
timates of the subject-specific functional covariates obtained
from the first stage. A key feature of our approach is that
we cast nonparametric estimation at both stages in a unified
mixed model framework and estimate all model parameters

Table 2
Empirical sizes and powers of the testing procedure from the

simulation study

Power
Nominal Empirical
level size d = 1 d = 2 d = 3 d = 4 d = 5

0.01 0.01 0.05 0.09 0.28 0.66 0.94
0.05 0.06 0.10 0.26 0.56 0.87 0.97
0.1 0.11 0.19 0.40 0.73 0.93 0.98

Empirical size was based on 500 simulation runs. Empirical powers
were based on 100 simulation runs.
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Figure 5. (a) Empirical distribution of the score test statistic S in Section 6.2 for testing H0 : γ(t) = constant, from the
simulation study, superimposed with its estimated density function. (b) Empirical distribution of the p-value of the test
statistic S in Section 6.2 for testing H0 : γ(t) = constant, from the simulation study.

including smoothing parameters simultaneously at each stage.
Unlike the traditional functional data analysis approaches,
our approach allows for unbalanced designs of longitudinal co-
variates. Theoretical justifications were given for the validity
of the TS-NRC method. Compared to the existing methods,
our approach does not require estimating a large number of
parameters and is quite robust for estimating subject-specific
profiles in the first stage and the functional covariate effect
in the second stage. We also proposed a score test for testing
whether or not the functional linear model can be reduced
to the popular model with the “area under the curve” as a
covariate. Our simulation results indicated that the proposed
procedures performed well.

Our simulation results show that the proposed TS-NRC
method using smoothing spline mixed models performs bet-
ter than the existing regression spline method. James (2002)
did not provide a data-driven method to estimate the number
of knots in xi (t) and γ(t). It would be of future research inter-
est to develop a data-driven regression spline knot selection
procedure and compare the performance of such an adaptive
regression spline method to the proposed smoothing spline
TS-NRC method. However, for the regression spline method,
since the optimal number of knots needed for estimating xi (t)
might differ from that for estimating γ(t), the numbers of
knots for estimating xi (t) and γ(t) need to be allowed to be
different and selected differently. A unified selection criterion
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Table 3
Simulation results for the area under the curve model assuming a constant γ: mean and

EMP SE are the average of the parameter estimates and the empirical SEs; EST SE is the
average of model-based estimated standard errors; CP is the empirical coverage probability

of the 95% confidence intervals

Naive Two-stage

EMP EST EMP EST
Par. True Method Mean SE SE CP Mean SE SE CP

α 2.00 2.00 0.16 0.16 0.95 2.00 0.16 0.16 0.95
γ 1.00 0.98 0.02 0.02 0.87 1.00 0.02 0.02 0.96
σ2
ε 4.00 Uncorrected 5.23 0.50 5.20 0.50 0.52 0.33

Corrected 4.00 0.50 0.52 0.94

such as CV or GCV might be difficult to develop in this con-
text. The results of Carroll et al. (2004) found that in simple
settings, even with the number of knots estimated using cross-
validation or generalization cross-validation for the regression
spline method, it still underperforms the smoothing spline
method. An alternative approach is to develop a penalized
spline (P-spline) method (Ruppert, Wand, and Carroll, 2003)
to fit the proposed functional linear mixed model. This would
be of future research interest as well.

The proposed functional linear mixed model is applicable
to many other disciplines besides hormone research. For ex-
ample, we may be interested in assessing the effect of the lon-
gitudinal profile of a biomarker on a scalar clinical endpoint.
Furthermore, the clinical endpoint might not be continuous.
It is hence of future interest to extend the proposed method
to discrete outcomes.
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