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The three-dimensional Schrodinger equation inverse scattering problem is solved using an
orthogonalization approach. The plane waves propagating in free space are orthogonalized
with respect to an inner product defined in terms of a Jost operator. The resulting integral
equation is identical to the generalized Gel’fand-Levitan equation of Newton, although the
present derivation is simpler and more physical than that of Newton. Newton’s generalized
Marchenko equation is derived from the defining integral equation for the Jost operator. These
integral equations are shown to be solved by fast algorithms derived directly from the
properties of their solutions. This paper thus presents a simple interpretation of Newton’s two
integral equations, two fast algorithms for solving these integral equations, and relations
between the various approaches. This is a generalization of previously obtained results, which
are also reviewed here, for the one-dimensional inverse scattering problem.

I. INTRODUCTION

The inverse scattering problem for the Schrédinger
equation in three dimensions with a time-independent, local,
non-spherically-symmetric potential has a wide variety of
applications. For example, the inverse seismic problem of
reconstructing the density and wave speed of an inhomogen-
eous isotropic acoustic medium from surface measurements
of the medium response to a harmonic excitation can be for-
mulated as a Schrédinger equation inverse scattering prob-
lem, as was done by Coen et al.’!

A major breakthrough in obtaining an exact solution to
the three-dimensional Schrodinger equation inverse scatter-
ing problem was made by Newton.” In Ref. 2 Newton pre-
sented generalized versions of two integral equations ob-
tained for the one-dimensional inverse problem by
Marchenko? and Gel’fand and Levitan.* These generalized
Marchenko and Gel’fand-Levitan integral equations recon-
struct the scattered field in the vicinity of the scattering po-
tential from far-field data, just as their one-dimensional
namesakes do (for details of the one-dimensional problem
integral equations, see Refs. 5 and 6). The scattering poten-
tial is then recovered from the scattered field using an equa-
tion Newton calls the “miracle” equation. This completes
the solution of the inverse scattering problem. In Ref. 1 this
procedure was applied to the inverse seismic problem noted
above.

Recently it has been noted that the derivation of the
generalized Gel’fand-Levitan integral equation in Ref. 2 re-
lies implicitly on the existence of a so-called “‘regular” solu-
tion. It was not firmly established in Ref. 2 that this regular
solution is always well defined. However, this does not inva-
lidate the results of Ref. 2; it merely limits their applicability
to situations for which the regular solution does exist. In this
paper the inverse scattering problem is restricted to situa-
tions in which the regular solution exists and is well defined;
this is expected to cover most physical inverse scattering
problems. Since a major goal of this paper is to underscore
ways in which one-dimensional results generalize to three
dimensions, this is an acceptable limitation.
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Although Ref. 2 is a highly significant contribution to
inverse scattering theory, the derivations contained therein
shed little insight into the actual mechanism of the inversion
process. Several recent papers have presented much simpler
derivations of Newton’s Marchenko integral equation. In
Ref. 7 the frequency-domain Schrodinger equation was
transformed into a time-domain plasma wave equation, and
the interpretation of various frequency-domain properties
(e.g., analyticity in the upper half-plane) as time-domain
properties (e.g., causality ) lended some physical insight into
the inversion process. Newton’s Marchenko integral equa-
tion was derived in Ref. 8 using a representation theorem,
and was derived in Ref. 9 using a generalized Radon trans-
form; both of these derivations are much simpler than New-
ton’s derivation. However, there are no such simpler deriva-
tions as yet for Newton’s generalized Gel'fand-Levitan
integral equation.

For the one-dimensional inverse problem the integral
equation procedures of Refs. 3—6 are known to have differen-
tial counterparts, which are called layer stripping algorithms
(in the seismic literature they are known as “downward con-
tinuation” algorithms). These algorithms may be derived by
exploiting the Toeplitz or Hankel structure of the kernel of
integral equations'®; however, derivations that are more
physical and insightful result if basic physical principles
such as causality are exploited.!! Since they exploit the in-
herent structure of the inverse scattering problem, which
manifests itself in the structure of the kernel of the integral
equation, these algorithms require significantly fewer com-
putations than would solving the integral equations; hence
they are referred to as ““fast” algorithms. An important point
is that these differential, layer stripping algorithms are inti-
mately related to the integral equation procedures; these re-
lations are discussed in Ref. 11.

Layer stripping algorithms for the three-dimensional
Schrodinger equation inverse scattering problem have been
proposed in Refs. 9 and 12. Although the numerical perfor-
mance of these algorithms is unknown at present, their com-
putational complexity is significantly less than that of the
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integral equation procedures of Newton. A relation between
the algorithm of Ref. 9 and Newton’s Marchenko integral
equation procedure was presented in Ref. 9; this relation
involved a generalized Radon transform. However, this rela-
tion did not extend to Newton’s generalized Gel’fand—-Levi-
tan integral equation, and a differential fast algorithm for
this integral equation has not been obtained previously.

In this paper Newton’s generalized Gel’fand-Levitan
integral equation is rederived by treating the inverse scatter-
ing problem as an orthogonalization problem. A Gram-
Schmidt orthonormalization is performed on the free-space
form of the wave field, which is a probing plane wave in a
given direction of incidence. The orthogonalization is per-
formed with respect to an inner product defined in terms of a
multidimensional Jost operator, and the associated orthogo-
nality principle results in Newton’s generalized Gel’fand-
Levitan integral equation. This is the first derivation of this
equation other than that of Ref. 2. Newton’s generalized
Marchenko integral equation is also derived from the inte-
gral equation defining the Jost operator.

Two differential fast algorithms that also solve these in-
tegral equations are given. One of these algorithms is the
algorithm of Ref. 12; the other is a generalized Levinson-like
algorithm that is new, although it bears some resemblance to
a fast algorithm derived in Ref. 13 for the problem of com-
puting the filter for the linear, least-squares estimate of a
homogeneous, anisotropic random field.

This paper thus provides a unified derivation of two
multidimensional integral equations and two multidimen-
sional fast algorithms, all of which solve the inverse scatter-
ing problem for the three-dimensional Schrodinger equa-
tion. It is thus a generalization of results for the
one-dimensional inverse problem presented in Refs. 11 and
14, and illustrates how all of these procedures are connected.

The paper is organized as follows. Results for one di-
mension are quickly summarized in Sec. II, which contains
some results from Refs. 11 and 14. The new results for three
dimensions are contained in Sec. II1, and the ways in which
the one-dimensional results generalize to three dimensions
are emphasized. The main results of Sec. III are Newton’s
generalized Gel'fand-Levitan and Marchenko integral
equations. In Sec. IV the differential, layer-stripping algo-
rithms are presented and related to the integral equations of
Sec. ITI. Some connections between multidimensional in-
verse scattering and linear, least-squares estimation of ho-
mogeneous, anisotropic random fields are also noted. Final-
ly, Sec. V concludes by summarizing the results of the paper
and noting directions in which further research is needed.

Il. THE ONE-DIMENSIONAL PROBLEM

This section derives the Gel'fand-Levitan and Mar-
chenko integral equations for the one-dimensional inverse
scattering problem using an orthogonalization procedure,
following Ref. 14. It also derives differential fast algorithms
that solve the inverse scattering problem and require fewer
computations than would solving the integral equations.
The purpose of this section is to review these concepts in a
simple setting before proceeding to the more complex three-
dimensional inverse problem, and to demonstrate how the
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concepts for the one-dimensional case generalize to the
three-dimensional case.

A. The fundamental solutions

The one-dimensional inverse scattering problem consid-
ered in this section is as follows. The wave field u (x,k) satis-
fies the Schrodinger equation

d2
(— +k*— V(x))u(x,k) =0, (2.1)

dx?

where the scattering potential ¥(x) is real valued, smooth,
and has compact support. Two different initial conditions
for this differential equation will be considered, resulting in
two different solutions. These correspond to two different
inverse scattering problems: the reflection problem and the
regular problem. The names of these problems come from
the names of their solutions, as will be explained shortly.

The time-domain version of the Schrodinger equation
(2.1) is the plasma wave equation

a* 4a: .

(8x2 P V(x))u(x,t) 0.
Solutions of (2.2) are related to solutions of (2.1) by a Four-
ier transform. In the sequel we will switch freely from the
time domain to the frequency domain and back again.

First, some solutions to the reflection problem are de-
fined. The wave field u (x,k) is split into two waves traveling
in the + x and - x directions, and two different reflection
problems (probing from — o« and + «) are considered.
This results in four solutions, which are then arranged in a
2 % 2 matrix ¥ (x,k) and termed the Jost solution. The com-
ponents of the Jost solution W(x,k) = [V(xk, + ),
¥(x,k, — )]7to (2.1) are defined by their behaviorat + .
Specifically,

Y,k +)=[e”*, R (k)e*]" as x-> — o, (2.32)

(2.2)

Y(xk, +) = [T(k)e *, 0]" as x>, (2.3b)
V(x,k, —) = [0, T(k)e**]1" as x— — w0, (2.3¢)
Y(x,k, — )= [Rr(k)e™™, ¢*]7 as x>0 . (2.3d)

Physically, the solution ¥/{x,k, + ) results from a prob-
lem in which the scattering potential is probed from the left,
in the + x direction, resulting in a transmitted wave
T(k)e ™ ** and a reflected wave R, (k)e***. The solution
U(x,k, — ) results from a problem in which probing takes
place from the right, in the — x direction. Here R, (k) and
R, (k) are the reflection coefficients for the two problems,
and T'(k) is the transmission coefficient, which by reciproc-
ity is the same for both problems. The first component of
each solution is the rightward traveling wave, and the second
component is the leftward traveling wave. The situation is
illustrated in Fig. 1. Note that the complete Jost solution
W (x,k) is thus a 2 X 2 matrix. Since the data for these prob-
lems consists of the reflection coefficient R, (k) or Ry (k),
the inverse scattering problem that results in the Jost solu-
tion W (x,k) is termed the reflection problem. Note that given
either R, (k) or R (k) itis possible to reconstruct the other
reflection coefficient and 7(k); see Ref. 6.

Next, some solutions to the regular problem are defined.
The wave field u (x,k) is again split into two waves traveling
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FIG. 1. (a) The reflection problem for an impulsive plane wave incident
from the left. (b) The reflection problem for an impulsive plane wave inci-
dent from the right.

in the + x and — x directions; however, the boundary con-
ditions are changed. Instead of specifying the behavior of the
wave field at + o0, the behavior is specified at the origin
x = 0. Since each wave must be initialized, this again results
in a 2x2 matrix. The regular solution P(x,k)
= [d(x,k, + ),d(x,k, — )] to (2.1) is defined by the ini-
tial conditions

S(0k) =1, diqno,k) — diag[ik, —ik]. (2.4)
X

In the time domain, this corresponds to introducing an im-
pulse at the origin x = 0. Thus in the time domain the regu-
lar solution is actually a noncausal impulse response relating
the field at the origin to the field at x. This is discussed in
more detail in Ref. 15. The term “regular solution” was in-
troduced by Newton in Ref. 2, and has become standard;
hence we use it here. The inverse scattering problem result-
ing in the regular solution ®(x,k) is termed the regular prob-
lem, and it is illustrated in Fig. 2.

Since the reflection and regular solutions are linearly
independent, they are related by a Jost function J(k), which
is also a 2 X2 matrix. We have

d(x,k) =V(x,k)J(k) (2.5)
and at x = 0 we also have
W(0,k) = DOk (k) =J (k). (2.6)

Since the total field u(x,k) is the sum of the leftgoing and
rightgoing waves at x, we have

u(0,ky =[1,11J ~ (k). 2.7

All of these equations generalize directly to the three-dimen-
sional case, as we shall see in Sec. I11.

Since the one-dimensional problem is defined on the en-
tire real line, and the potential ¥(x) has compact support,
we may without loss of generality restrict its support to the
half-line x>>0. Then the Jost solution condition at — o0 may
be replaced by a similar condition at x = 0. Equations (2.3)
and (2.6) then yield

J k) =[ (2.8)

0
R (k) T(k )] )
This explicit representation of the Jost function will not be
available in the three-dimensional case, since that problem is
radial, i.e., defined on |x|>0.
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ik | = ikx

- e e —
FIG. 2. The regular problem. For the 1-D problem:
an impulsive boundary condition at x = 0. For the
Scattering 3-D problem: an impulsive boundary condition on
Medium the plane e;-x = 0.
)l 0

B. Orthogonalization

It is well known that the Jost solutions ¥ (x,k) are or-
thonormal on the real line with respect to the usual L ? matrix
inner product, i.e., that

1

2r J- »
where the superscript H denotes Hermitian transpose. This
naturally suggests that the reconstruction of the field result-
ing from a scattering problem might be regarded as an ortho-
gonalization procedure. However, such a procedure would
clearly have to start from a point and proceed outward, and
for the Jost solutions there is no clear place to start. The
regular solutions ®(x,k) would be an ideal candidate for
such a procedure, since they are formed starting at x = O and
propagate outward in the 4 x directions, but they are not
orthonormal. But the regular solutions are orthonormal
with respect to the inner product with weighting matrix
(JH~'(k), since

W(x,k)¥(y,k)" dk =8(x —y), (2.9

Zif D(x.k) (TN~ (K B,k P dk
ﬂ — o0

=2Lf°° W k)W (kR dk=8(x —p). (2.10)
T - co
Note that
1 R*(k)
BI) (k) = - 11
(JH) " 1(k) [RL(k) : , (2.11)

which follows from (2.8) and the conservation of energy
relation

IR, (R)*+ |T(R)[*=1. (2.12)

This suggests that the solutions ® (x,k) may be constructed
from the scattering data from the left, R, (k), as follows.

The quantities to be orthogonalized are, in the time do-
main, the free-space leftgoing and rightgoing impulsive
plane waves resulting from the impulse introduced at the
origin. In the frequency domain, these waves have the form
e* ™ and arranging them into a 2 X2 matrix as was done
with the reflection and regular solutions results in the free-
space solutions

— ikx 0 ]
0 eikx ¢
In the absence of a scattering potential these would consti-

tute the regular solution to the Schrodinger equation (2.1),
so that we would have ®(x,k) = E(x,k).

E(xk) = [e (2.13)
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Since there is a scattering potential, the solution ® (x,k)
is formed by orthogonalizing E(x,k) in increasing |x|. This is
done by projecting E(x,k) onto the subspace of already-
orthogonalized ®(x,k), which is span{®(y,k), [y

< |x|} = span{E(p,k), |y| < |x|}. The projection onto a sub-
space is a linear combination of the elements of the subspace;
here it takes the form

X

P{E(xk)} = — M(xy)E(y,k)dy,

where M (x,y) is a matrix kernel to be specified momentar-
ily. Note that the linear combination has been taken over the
elements of span{E(y,k), |p|<|x|}, rather than
span{®(y,k), |y| < |x|}; since the orthogonalization of a
subspace does not change its span these two subspaces are
equal, and the projection can be taken to be a linear combina-
tion of the elements of either subspace.

The error E(x,k) — P{E(x,k)} is then orthogonal to
the above subspace, and we take the error to be P(x,k). We
now recognize M(x,t) to be the smooth part of the inverse
Fourier transform of ®(x,k),

(2.14)

®(x,k) = diag[e ~ "] +f M(x,t)e*dt,
R (2.15)

so that M (x,t) is the scattered part of the regular solution to
the plasma wave equation (2.2), which is the Schrodinger
equation in the time domain.

Writing out the condition that the error ®(x,k) be or-
thogonal to E(y,k) with respect to the inner product defined
in (2.9) for |y| < | x| results in the following integral equation
for the scattered field M (x,z):

0 R(x+t)]
[R(x+t) o |TMZD
* 0 R(y+t>] _
+ _,M(X’y)[R(y+t) 0 dy =0, (2.16)
where
R(t)=Lf°° R, (oye™ dk (2.17)
27 J_ &

is the inverse Fourier transform of R, (k). Note that R(¢) is
a causal function, which accounts for the lower limit of the
integral in (2.16). The centrosymmetry of (2.16) implies
that M(x,t) is a centrosymmetric matrix, i.e., that

M (xt) =M, (x,t), M,(xt)=M,(xt) (2.18)

[note that this also follows on purely physical grounds from
the definition of ®(x,k)]. This implies that the scattered
field @1 (x,t), which is the sum of the waves traveling in the
+ x directions, i.e.,

ﬁ;(X,t)lel(x’t) + M, (x,1), (2.19)
satisfies the Gel ’fand-Levitan integral equation
R(x + 1) + &, (x,1)

+ | 4, (xp)R(y+8dy, —x<t<x. (2.20)

—t

Equation (2.20) is a Gel’fand-Levitan equation since
the unknown scattered field #, (x,¢) arising from a regular

1484 J. Math. Phys., Vol. 28, No. 7, July 1987

problem has finite support — x<f<x, resulting in a finite
interval of integration.

The Marchenko equation for this problem has the same
form, except that the range of validity is changed to ¢>x.
This follows since it has been assumed that the potential
V(x) has support on the half-line x»0. Thus there is no
difference between the regular and reflection problems, so
that the only difference between the regular and reflection
(Jost) solutions is their supports, which are complementary.

The half-line assumption was necessary in order to ob-
tain an explicit representation of the inverse Jost function
J 7 (k). In the three-dimensional case an explicit represen-
tation of J ~ (k) will not be available, and the distinction
between the two integral equations will become important.
This distinction is also important in the one-dimensional in-
verse problem on the full (real) line.

For both the regular and Jost solutions, the potential
V(x) may be obtained from the jump in the scattered field at
the wave front, as follows. The solution to the plasma wave
equation (2.2) can be written as

u(x,t) =6(t—x) + i, (x,t)1(t —x) (2.21a)

for the reflection problem, and

(x,t) =8t —x) + i1, (x5,0)(1(¢ + x) — 1(t — x))
(2.21b)
for the regular problem, where #, (x,¢) is the smooth part of
the scattered field and 1(-) is the unit step or Heaviside
funciton. Inserting (2.21) in (2.2) and equating orders of
singularities yields'®
Vix)= + 2—d—zvts (xx), (2.22)
dx
where the + applies for the regular problem and the — for
the reflection problem. Equation (2.22) in conjunction with
the integral equation (2.20) completes the solution of the

inverse scattering problem.

C. Fast algorithms

An alternative to solving the integral equation (2.20) is
to propagate the scattered field i (x,¢) for all £ recursively in
x, obtaining ¥(x) from (2.22) as we go. This is the essence of
a layer stripping algorithm, which recursively reconstructs
the scattered field and potential and strips away their effects.
However, the layer stripping algorithms for the regular and
reflection problems, although superficially similar in ap-
pearance, are actually quite different. The difference is due
to the complementary nature of the support of the scattered
fields for the two problems, as illustrated in Figs. 3 and 4.
The regular solution in the time domain, which is
diag[6(t — x),8(t + x)] + M(x,t), has support in ¢ in the
interval [ — x,x]. The reflection solution in the time domain
has support in 7 in the interval [x, o ] for the problem in
which probing takes place from the left, and has support in ¢
in the interval [ — o, — x] for probing from the right. This
produces a major difference in the manner in which (2.22) is
implemented in the algorithms.

A fast algorithm that recursively reconstructs the po-
tential and scattered field for the reflection problem is as
follows.!!
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te m (x5) m (xg+A)

N v\,slope =-1

N

n (xg) m (xg+A)

FIG. 3. (a) Recursion pattern for updating m(x,¢) in the fast algorithm for
the regular problem. (b) Recursion pattern for updating n(x,t) in the fast
algorithm for the regular problem.

(1) Initialize the algorithm with

50,) =R(1), §(0s) = 2%12(:) . (2.23)

(2) Propagate the following equations recursively in x
and ¢, for > x:

(7;9; + %) B(x) = §0nt) (2.24a)
(58; _ gi) Gt = Vi) , (2.24b)
Vix)= —2§(x,x) . (2.24¢)

The recursion pattern for this algorithm is illustrated in
Fig. 4. Note that this amounts to successively truncating the
potential—at each recursion, the region to the left of x has
been replaced by free space [ F(y) = 0 for y <x]. Thus the
algorithm is successively reconstructing the potential and
then stripping away its effects; hence the name “layer strip-
ping” algorithm.

A fast algorithm that recursively reconstructs the po-
tential and scattered field for the regular problem is as fol-
lows. For convenience let the scalars m(x,t) and n{x,t) con-
stitute the first column of the marrix M(x,t) of (2.14), i.e.,
m{x,t) = M, (x,t) and n(x,t) = M,,(x,t). Then proceed as
follows.

(1) Initialize the algorithm with

m(0,t) =n(0,t) =0. (2.25)
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FIG. 4. (a) Recursion pattern for updating u (x,¢) in the fast algorithm for
the reflection problem. (b) Recursion pattern for updating g(x,?) in the fast
algorithm for the reflection problem.

(2) Propagate the following equations recursively in x
and ¢, for —x<r<x:

(5‘9; + %)m(x,t) =n(xt), (2.26a)
(i _ -—a—)n(x,t) = Vxmx0) (2.26b)
ax ot
mxgt= —x)=0, (2.26¢)
V(ix) =2n(x,x)
= — 4-‘%R(2x) —2R(2xYm(x,x)
* d
+f m(x,y)ER(x +y)dy
x d
+f R(x +y){n(x,y) — ER(X +y)
— m(x,z) iR(z +y)dz]dy , (2.26d)
—y dy

where (2.26d) follows from applying (2.26a) to the integral
equation (2.20).

The recursion pattern for this algorithm is illustrated in
Fig. 3. Note that for the regular problem the support in # of
m(x,t) and n(x,?) is the interval [ — x,x], so that the data
R (¢) entersinto the algorithm not in the initialization, but in
the computation of ¥(x) at each recursion. Thus this algo-
rithm solves a boundary value problem, while the reflection
problem algorithm solves an initial value problem. This is
why the additional computation of (2.26d) is necessary for
the regular problem algorithm, but not for the reflection
problem algorithm.

Let the region where F(x) has support be discretized
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into N subintervals. Then each of these algorithms requires
O(N) multiplication-and-add operations at each recursion,
for a total of O(N ?) operations toreconstruct ¥(x). Solution
of the integral equations by Gaussian elimination requires
O(N?) operations to reconstruct ¥(x). The fast algorithms
require fewer computations because they exploit the causal
structure of the inverse scattering problem. Both of these
algorithms have their three-dimensional problem counter-
parts, which are given in Sec. IV.

It should be noted that other differential fast algorithms
exist; see Ref. 11. In particular, the more familar continuous-
parameter fast Cholesky and Krein—Levinson algorithms
can be derived by reformulating the Schrédinger equation as
a two-component wave system parametrized by a reflectivity
function. Details are given in Ref. 11.

In this section the Gel’fand-Levitan integral equation
has been derived by considering the inverse scattering prob-
lem as an orthogonalization problem with respect to the in-
ner product defined in (2.10). This result has appeared pre-
viously in Refs. 14 and 17; it has been reviewed here in order
to make apparent the ways in which this approach general-
izes to the three-dimensional problem. In the next section
the three-dimensional problem is treated using a similar ap-
proach, and generalized Gel’fand-Levitan and Marchenko
integral equations identical to those of Ref. 2 are obtained.

lll. THE THREE-DIMENSIONAL PROBLEM

In this section the main results of this paper are present-
ed. The generalized Gel’fand-Levitan and Marchenko inte-
gral equations derived in Ref. 2 are here derived using an
orthogonalization procedure similar to that used above for
the one-dimensional problem. This is a much simpler deriva-
tion than the one used in Ref. 2, and it clarifies the difference
between the solutions of the two integral equations. It also
illustrates how the one-dimensional results presented above
generalize to three dimensions.

A. The fundamental solutions

The inverse scattering problem considered in this sec-
tion is as follows. The wave field u (x,k) satisfies the Schro-
dinger equation

(A+ k%= V(x)u(x,k) =0, (3.1)

where xeR> and the potential V(x) is real valued, smooth,
and has compact support. It is also assumed that V(x) does
not induce bound states; a sufficient condition for this is for
V(x) to be non-negative. It should be noted that bound
states are treated in Ref. 2; we omit them in the present
derivation for simplicity and to emphasize the parallels with
the one-dimensional problem. The time-domain version of
(3.1) is again the plasma wave equation
a7 .

(A e V(x))u(x,t) =0,
where solutions to (3.1) and (3.2) are related by a Fourier
transform. As before, we will switch freely from the time
domain to the frequency domain, and back again.

Asin the one-dimensional problem, two different sets of
boundary conditions are specified, resulting in two different

(3.2)
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solutions. To emphasize the parallels with the one-dimen-
sional problem, we use the same notation as in Sec. II.

Let #(x,k,e;) be the solution to (3.1) with boundary
condition

b(xke) =e 4 (e * X /4r|x|)A ke, e;)

+0(x|7%), (3.3)
where the scattering amplitude is defined by
Alke,e) = — f e “TVYYvke)dy  (34)

and e; and e, are unit vectors. The solutions #(x,%,e; ) can be
considered as a generalizaton of the one-dimensional Jost
solutions (as in Ref. 2), with the ensemble of directions {e; }
replacing the directions + x. These solutions also result
from a reflection problem in which an incident impulsive
plane wave in the direction e; is used to probe the scattering
potential, and the data consists of the far-field reflection re-
sponse in the form of the scattering amplitude. Equations
(3.3) and (3.4) have their time-domain counterparts that
specify solutions to the plasma wave equation (3.2); see
Refs. 7-9. Note that in the present formulation the factor of
477 is incorporated in (3.3) instead of (3.4), as in Refs. 7-9.

Let ¢(x,k,e;) be the solution to (3.2) that is an entire
analytic function of %, is of exponential order |e; x|, and has
a value of 1 along the plane e;"x = 0. More specifically,
& (x,k.e; ) is specified by the boundary conditions

d(x,k.e)=1; Vo(xke)=ike, for ex=0;

(3.5)
d(x,k,e;) is thus a generalization of the regular solution
(2.4) to three dimensions. It is also the regular solution re-
ferred to in Ref. 2.

In Ref. 17 it was pointed out that the regular solution
defined in Ref. 2 cannot be guaranteed to exist. This is be-
cause the regular solution in Ref. 2 was defined by a Jost
operator [Eq. (3.6) below; compare to (2.5) for the one-
dimensional problem], and thus it cannot be guaranteed to
be of exponential order |e;<x|. This implies that the Povsner—
Levitan relation (7.3) used in Ref, 2 may be incorrect. Here,
however, we assume that this regular solution exists.

It should be noted that the existence of the regular solu-
tion in general is still an unsolved problem. However, the
corrections made to the results of Ref. 2 in Refs. 18 and 19
obfuscate an already complicated inverse scattering proce-
dure still further, and as noted in Ref. 18, the results of Ref. 2
are “probably correct” in any case. In the sequel we simply
restrict our attention to situations in which it does exist.

We further assume that é(x,k,e;) — e ™ s square
integrable in k. Then, using the Paley—~Wiener theorem, as in
Ref. 2, it follows that gZ(x,t,e,» ) =% ~YHé(x,k,e;)} hassup-
port in ¢ in the interval [ — e;*X,e;*x] (compare this to the
one-dimensional support interval [ — x,x]). Thus ¢ (x,k,e, )
has the Povsner-Levitan representation [compare with
(7.3) in Ref. 2 and (2.14) above]

X

¢(X;k,ef) =e therx f,

[the impulse in the — e;*x direction is included in
é(x,k, — e;)] so that m(x,z,e;) is the nonimpulsive part of

m(x,te e ™ dt

erx

(3.6)
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the regular solytion (Z(x,t,e,. ). Note that in the time domain,
the solutions ¢(x,t,¢;) and ¥(x.,t,e;) have complementary
support in that the former has support in ¢ on the interval
[ — e;x,e;x], while the latter has support in ¢ on the inter-
val [e;*X, 0 ].

The solutions ¢¥(x,k,e;) and ¢(x,k,e;) are related by a
Jost operator J(k). This is an operator on the space L 2(S?)
(S? is the unit sphere) with kernel J(k,e,,e,). The 2x2
matrix multiplication (2.5) becomes

pxke) = [ pixke) (ke e )de, (3.7)
SZ

The Jost operator has inverse* J ~! (k) with a kernel defined

as above. Setting x = 0 results in

P(0,k.e;) =J- $(0,k,e,)J ~(k.e,,e,)de,
52

=J J (ke e )de, =1J "' (k), (3.8)
S2

where the effect of the operator 1 is a generalization of pre-
multiplication by the vector [1,1] in (2.7). This confirms
that the Jost operator defined here matches the one defined
in Ref. 2.

In Sec. II the potential was required to have support in
the half-space x>0, allowing an explicit representation
(2.8) of the Jost function to be determined. Unfortunately,
this will not work for the three-dimensional problem, since
the present problem is defined over all of R?. It is noted in
Ref. 2 that the Jost operator satisfies

J(—k)=0S(k)J(K)Q, (3.9)
where S(k) is the scattering operator with kernel
S(k.e,.e;) —I= — (k/2mi)A(k,e,.e;) (3.10)

and Q@ is the operator such that QA(k.e,.e;)
= A(k, — e ,e;). InRef. 2 the relation (3.9) leads to a Mar-
chenko integral equation for the kernel J(k,e.e;). We now
derive a similar equation for the kernel J ~'(k,e,,e; ).

From (3.9) we have that

JT( k)= " (k)SH(k)Q, (3.11)
where the well-known unitarity of the scattering operator
S(k) has been used. Repeating the derivation of Ref. 2 (p.
1707) for (3.11) instead of (3.9) leads to a Marchenko inte-
gral equation for the kernel J ~'(k,e,,¢;), as follows. Since
both # and ¢ contain impulses in the time domain, J ~' does
also, and J ~!(k) — 1 is square integrable (see Ref. 2).
Therefore we may write

]

L(te,e)e " dt (3.12)

J Mke,e)=1 +J
0

and, following Ref. 2, this leads to the following Marchenko
integral equation for L(t,e,,e;):

L(tses,ei) = G(t’ - es’ei)
+f f L(r, —e,e)G(t+ T.e¢)de dr,
(o] S?

(3.13)
where G(t,e;,e,) is defined by

1487 J. Math. Phys., Vol. 28, No. 7, July 1987

G(t,e,-es) =_1.J (S(k,es’ —e) — l)eikt dk
27 V- w

- 4_1;]— ikd ke, — e)e dk
(note the transposition of e; and e, caused by the Hermitian
operator).

It is indeed unfortunate that the solution of the general-
ized Gel’fand-Levitan equation requires the prior solution
of this Marchenko equation in order to obtain the inverse
Jost operator kernel J ~'(k,e,,e;), but there is no other
known way to obtain this kernel. However, in Sec. III C
below it will be shown that the generalized Marchenko equa-
tion for the scattered field resulting from a reflection prob-
lem can be derived from (3.13) and (3.14).

(3.14)

B. Orthonormalization

It is well known that in the absence of bound states the
solutions ¥(x,k,e,) are orthonormal, in that

(2:7.)3j J‘ w(x’k’e)¢*(y’k’e)k2de dk
0 §?

=6(x—y). (3.15)

As in the one-dimensional case, the solutions {¥(x,k.e;)}
are inappropriate candidates for the result of an orthogonali-
zation procedure, since they are initiated in the far field. The
solutions {¢(x,k,e,; )} are ideal candidates for such a proce-
dure, since they are generated in increasing |e; x| in the time
domain, and from (3.6) and (3.15) they are orthonormal
with respect to the inner product

(uy(x,k,e),u,(y,k.e))

:(_2;17?]&[ f U (xk,e,) (P~ (kep,e,)
(0] Ss2Js?

X uk(y,k,e,)k 2 de, de, dk . (3.16)

However, the region {yeR* — e, x<e;-y<e;x} in
which the orthogonalization takes place is still not compact,
so a further transformation is necessary. Since the time-do-
main solution é(x,t,ei ) is only defined for > 0, we may re-
gard its smooth part m(x,t.e;) as the Radon transform of a
function 2(x,y) (Ref. 2):

Ah(xy)} = f h(xy)5(1 — ey)dy

=m(x,t,e;)sgn[e; x] . (3.17)
Note that the support of A(x,y) in y is the interior of the
sphere of radius |x|: {|y| < |x|}. This is the triangularity
property that makes an integral equation procedure possi-
ble; we see here that this property follows from time causal-
ity. Using the projection-slice property of the Radon trans-
form, the Fourier transform relation (3.6) becomes

d(x,k.e;) = e~ ke _ J h(x,y)e” " dy

=F{6(x~—y) —h(xy)}. (3.18)

From this point on the argument matches that given in
Sec. II for the one-dimensional problem. The free-space so-
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lutions {e ™ ***} are orthogonalized in increasing |x|. The
projection of e ™™ on span{g(y.k.e), |y|<|x|}
=span{e “*?, |y|<|x|} takes the form [compare to
(2.14)]

P = h(x,y)e” ™ dy . (3.19)

lyl<ix|
The reason that the kernel of the projection (3.19) is
h(x,y) is as follows. As in the one-dimensional case, we take
the error

e—ikef-x P = e‘ikei-x _ f h(x,y)efikefy dy
Iyl < x|

=g (x,k.e;) (3.20)

to be the regular solution at x, since by the orthogonality
principle the error is orthogonal to this subspace, and thus
may be used to expand it. Comparing (3.18) and (3.20)
proves that the kernel of the projection (3.19) is precisely
h(x,y). The kernel £(x,y) should be compared with the ma-
trix kernel M(x,y) in the projection (2.14). The difference is
that A(x,y) is the inverse Radon transform of the smooth
part of the regular solution in the time domain, while M (x,y)
is simply the smooth part of the regular solution in the time
domain.

We now derive a generalized Gel’fand—Levitan integral
equation identical to that of Ref. 2. For convenience the no-
tation of Ref. 2 is adopted. Writing out the condition that the
error ¢(x,k,e;) be orthogonal to the subspace element

e~ ™" for |y| <|x|, with respect to the inner product defined
by (3.16), results in

ho<x,y>=h(x,y>+f h(x2)ho(zy)dz, (3.21)
J2} < |x]
which is Eq. (8.4) in Ref. 2. Here
1 - ]
hy(x,y) = f f M(k,e, e
o Qm) e JsJse n€z)
e HEOTTaVE 2 go de, dk
=F fer J M(kee)e “™de,, (3.22)
52

where M(k,e,,e,) = ((JPJ)~! —I)(k,e,e,) is the pertur-
bation of the spectral function (J /) ~! away from its free-
space representation. Equations (3.21) and (3.22) should
be compared to the one-dimensional problem Egs. (2.16)
and (2.17).

The key fact here is the triangularity of A(x,y) in (3.21).
This follows from the support of the regular solution, al-
though it has also been established rigorously.'® Taking the
partial inverse Radon transform'® of (3.21), and using
(3.17) and the projection-slice theorem results in the gener-
alized Gel’ fand-Levitan integral equation®

sgn[e;x]m(x,te;)

Jesx|
= f M(t + €;°X,¢e,,¢e; )de.t - f f
s S J — jesx|

Xm(x,7,e, )M(t + 7,e,,e; )dr de, ,
where M (1, —e,,e;) =.F “{M(k,e,e)}.

sgne, x|

(3.23)
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Once the integral equation (3.23) has been solved, the
potential V(x) is then recovered from m(x,t,e;) using the
miracle® or fundamental identity’

Vix) =2e,Vm(x,t =e;’x,¢;) , (3.24)

which is the three-dimensional analog of (2.22) and is de-
rived in the same way. Note the sign change in (3.24) as
compared to the equation in Refs. 2 and 7; this is due to the
use of the regular solution instead of ¥(x,k,e;). In Refs. 18
and 19 the gradient of the jump in the scattered field must be
used in (3.24), since the regular solution as defined in those
papers is not known to satisfy m(x,t,e;) =0 for ¢>e;x.
However, in the present case this anticausality follows from
the support of the regular solution.

As in the one-dimensional case, the generalized
Gel'fand-Levitan equation has a finite interval of integra-
tion, which is an advantage over the generalized Marchenko
integral equation to be derived next. However, it is necessary
to solve the Marchenko equation (3.13) for the generalized
Jost function J ~'(k,e,,e,) first, which is most inconve-
nient.

C. Generalized Marchenko equation

In the one-dimensional case the inverse Jost function
was related to the reflection problem scattered field at the
origin by (2.7). Since the scattered field was known at the
origin, an explicit representation of J ~! could be found. For
the three-dimensional case, the reflection problem scattered
field is not known at the origin, and / ~ ! must be found from
the integral equation (3.13). However, the integral equation
(3.13) can be transformed into an integral equation for the
scattered field at the origin, and then into an integral equa-
tion for the reflection problem scattered field anywhere, us-
ing an observation made in Ref. 2. This integral equation is
identical to the generalized Marchenko equation of Ref. 2.

Integrating (3.13) with respect to e, over the unit
sphere S 2 and using (3.8) and (3.12) results in

u,(0,z.e;) :J G(t,e,.¢e; )de,
s?

+ f J G(t+ r.e.e;)i, (0, —e')de dr,
0 S?
(3.25)

where i, (0,z,e;) is the scattered field at the origin for the
reflection problem with probing impulsive plane wave in the
direction e;. This integral equation is equivalent to the gener-
alized Marchenko equation of Ref. 2 with x = 0, since it is
identical to (4.14) of Ref. 7 with x = 0. Here G(z,¢,,¢,) is
the time derivative of the inverse Fourier transform of the
scattering amplitude 4 (k,e_,e;) [note the transposition of e,
and e;, and compare with (4.11) of Ref. 7].

We now make use of an observation made in Ref. 2. If
the potential V' (x) is shifted by a translation x’, becoming
V(x —x’), then the solution ¢¥(x,k,e;) becomes
P(x —x',ke;)e ™™ and thus the scattering amplitude
A(k,e,e;) becomes A(k,e, e, )e” %™ Therefore to
compute the scattered field &, (x',7,e,) at x’ resulting from a
potential V' (x), we compute the field at the origin x = 0 [us-
ing (3.25)] resulting from a shifted potential V(x — x’).
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This merely requires that we replace the scattering ampli-
tude, and hence G(t,e;,e,), with its shifted version. This
yields

G(t,e;.e.,x)

= — (277)'zf e =Nk A (ke e, )dk
- (3.26)
and the integral equation (3.25) is modified to

b5 (x,t,€;) =f G(t.e,,e;.x)de,
SZ

+ Jw f G(t + 7,¢',e;,x)D, (x,t, — e')de dr,
C (3.27)

where
(3.28)

is simply the delayed scattered field. Equations (3.26) and
(3.27) are identical to (4.11) and (4.14) of Ref. 7, which in
turn are equivalent to the generalized Marchenko integral
equation of Ref. 2.

It has been shown that the generalized Gel’fand—Levi-
tan integral equation of Ref. 2 can be interpreted as an or-
thogonality condition for the construction of the solutions
@ (x,k,e;) with respect to the inner product (3.16). The con-
struction of the inverse Jost operator requires the solution of
a Marchenko equation, and this equation can be extended to
the generalized Marchenko integral equation of Ref. 2. This
shows the relation between the two integral equations, and
how this relation is a generalization of the relation that exists
between them in one dimension.

O, (X,1,e;) =1, (X,t — e;*x,e;)

IV. FAST ALGORITHMS FOR THE THREE-
DIMENSIONAL INVERSE SCATTERING PROBLEM

In this section differential, layer stripping fast algo-
rithms for solving the three-dimensional inverse scattering
problem are presented. These algorithms require fewer com-
putations than solving the integral equations presented
above, but they reconstruct V(x), ¥(x,t,e;), and ¢(x,t,e;)
just as the integral equations do. They are also generaliza-
tions of the algorithms presented in Sec. 1I.

A. The reflection problem

A major distinction between the one-dimensional and
three-dimensional reflection problems is that for the one-
dimensional problem near-field and far-field data are identi-
cal (save for a time shift), while for the three-dimensional
problem the extrapolation of the near-field scattered field
from the far-field scattering amplitude is a nontrivial prob-
lem. For the reflection problem differential algorithms it is
assumed that the scattered field is observed in the near field.
Since in many inverse scattering problems (e.g., inverse seis-
mic problems) data are actually taken in the near field, this
assumption is not only tenable, but realistic.

A differential algorithm for solving the reflection prob-
lem is as follows.'? For convenience let z = e;*x be the axis
normal to the incident impulsive plane wave, and let y be the
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two directions perpendicular to z, so that any function f(x)
of x can be written as a function f(z,y) of zand y.

(1) Initialize the algorithm on the plane z = ¢;x =0
with observations of the scattered field and its derivative on
this plane.

(2) Propagate the following equations recursively in
z=-e;xand t, for t>z and for all y:

(% + %) u(zy,t) =q(z,y,t), (4.1a)
(—a———a—)q(z,y t) =(V(x) — A,)u(zy,t) (4.1b)
dz ot ’ Y e

Vix) = —2q(gyt=2z2), (4.1¢c)

where A, is the Laplacian operator with respect to y, which
is also the transverse Laplacian operator with respect to x.
The recursion patterns for this algorithm are the same as for
its one-dimensional counterpart, and are illustrated in Fig. 4.

Note that (4.1c) follows using the same argument used
to derive (3.24) (see Ref. 12) and is comparable to (2.22).
Also note that this algorithm requires O(N ®) operations to
reconstruct ¥ (x), while the solution of the generalized Mar-
chenko integral equation requires O(N ') operations. Some
details on ways to implement this algorithm numerically are
given in Ref. 12.

The computational simplicity of this algorithm as com-
pared to the solution of the generalized Marchenko integral
equation (and the algorithm for the regular problem given
below) results from the inherent causal structure of the re-
flection problem, which is fully exploited by this algorithm.
Instead of attempting to reconstruct the scattered field all at
once in one huge operation, the algorithm recursively recon-
structs both the scattered field and the potential as the wave
front penetrates the region where ¥ (x) has support. It then
strips away the effects of the reconstructed region, reducing
the size of the problem and obviating the need to store infor-
mation about the reconstructed region to process the data
associated with the unknown region. Another important fea-
ture is the use of near-field data, which avoids the coupling
between the scattered fields associated with different e, that
makes the generalized Marchenko equation so computation-
ally intensive to solve.

B. The regular problem

The regular problem lacks the causal structure of the
reflection problem, which is why it is harder to solve using
either the generalized Gel’fand-Levitan equation or a differ-
ential algorithm. Two different differential algorithms for
the regular problem are presented. The second algorithm is
similar to an algorithm proposed for estimation of random
fields in Ref. 13, illustrating some connections between in-
verse scattering in three dimensions and estimation of ran-
dom fields. This generalizes the connections between these
two topics that exists in one dimension (e.g., Ref. 20).

A new differential algorithm for solving the regular
problem is as follows.

(1) Initialize the algorithm on the plane z=e;x =0
using

m(z=0,y,t=0)=n(z=0y,t=0)=0. (4.2)

Andrew E. Yagle 1489



(2) Propagate the following equations recursively in z
and ¢, for — z<t<z and for all y:

d J
(5 + E)m(z,y,t) =n(z,y,t), (4.3a)
(i -~ i)n(z,y,t) =(V(x) — Ay )m(zyt), (4.3b)
dz Ot
m(zyt= —z)=0, (4.3¢)
V(x) =2n(z,y,t =2z) (4.3d)

obtained from (3.23). The recursion patterns for this algo-
rithm are the same as for its one-dimensional counterpart,
and are illustrated in Fig. 3. Note that n(z,y,t = z) for the
regular problem must be obtained from the values of
n(z,y,t #z) using the integral equation (3.23). This is analo-
gous to (2.26d) for the one-dimensional problem, for which
n(x,t = x) is obtained from the integral equation (2.20).

Aside from the computation of (4.3d), a major problem
with this algorithm is that the region in which the computa-
tions are to be carried out has infinite extent in y. This can be
avoided by using the inverse Radon transform, as in (3.15),
which maps the region in which computations are per-
formed into the interior of a sphere. Taking the inverse Ra-
don transform of the Schrodinger equation (3.1) in the time
domain and using (3.18) results in

(A, — A)A(xY) =V(X)h(xy), (4.4)

where A, is again the Laplacian operator with respect to x.
An equation similar to (4.4) was encountered in the prob-
lem of deriving a fast algorithm for the linear least-squares
estimation of a homogeneous random field,'? and a variation
of the algorithm presented in Ref. 13 is useful here.

Another differential algorithm for solving the regular
problem is as follows.

(1) Initialize the algorithm at the origin using

h(0,0) =g(0,0) =0. (4.5)

(2) Propagate the following equations recursively in
r= |x| and s = |y|, for O<s<r:

ad d

- - h ] - y ’ 4
(ar+as) (x¥) = g(xy) (4.62)
d J

R 3 =H ] y .
(ar as)g(x y) (x,y) (4.6b)
H(x,y) = V(x)h(x,y) + (A — A2)h(x,y), (4.6c)
h(x,0) obtained from aih(x,y =0)=0, (4.6d)

AY

V(x) = —2g(x,|y| = |x]|)/r (4.6e)

is obtained from (3.21).
Here A2 is the transverse radial Laplacian operator in
spherical coordinates, which is
2
Al = 1 —é—(sin 0i) + —-—~.1 8_
7 sin @ 90 a6/ = r*sin? ¢ 3p*
The quantity A#(x,y) being computed in this algorithm is
actually rsh(x,y), where A(x,y) is defined in (3.20) as the
inverse Radon transform of the scattered field m(x,te;).
Multiplication by rs = |x| |y| is a normalization that results
in better numerical behavior near the origin.

(4.7)
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FIG. 5. (a) Recursion pattern for updating #(r,s) in the fast algorithm for
the 3-D regular problem. (b) Recursion pattern for updating g(7,s) in the
fast algorithm for the 3-D regular problem.

The recursion pattern for this algorithm is illustrated in
Fig. 5. Note that since the radii  and s are both non-negative,
the recursion pattern differs from the previous algorithm in
that s is required to be non-negative. The only other signifi-
cant difference is that computations need only be performed
over the interior of the sphere of radius r, rather than over
the infinite slab — e;*x<¢<e;*x. This is a considerable ad-
vantage over the two preceding algorithms, both of which
require computations over an infinite region in y. However,
(4.6¢) still requires a considerable amount of computation
at each recursion, although now the simpler integral equa-
tion (3.21) is used to compute g(x,|x|) from values of
g(x,y). This computation is absent in the reflection problem
algorithm, since this problem has a causal structure that is
more easily exploited.

The amount of computation required by the above algo-
rithm for the regular problem is O(N ¥) operations. This is a
significant reduction from the O(N '?) operations required
to solve the generalized Gel’fand-Levitan integral equation.
Note that the ratio of the exponents of the orders of compu-
tations required for the integral equation procedure to the
differential procedure is the same in both one and three di-
mensions, viz., 2 = 3. Also note that the layer stripping algo-
rithm for the reflection problem requires only O(N ®) com-
putations. This is because the layer stripping reflection
problem algorithm is initialized using near-field data, while
the regular problem procedures all use far-field data in the
form of the scattering amplitude [in order to compute the
Jost function J(k)].

This algorithm is quite similar to the algorithm given in
Ref. 13 for computation of the optimal filter for the linear,
least-squares estimation of a homogeneous random field.
Since the integral equation (3.21) looks much like a multidi-
mensional Wiener-Hopfequation, this is not surprising. The
form of (3.21) suggests that the well-known connection
between inverse scattering and linear least-squares estima-
tion that exists in one dimension?® extends to higher dimen-
sions. Details of this connection are given in Ref. 21 for iso-
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tropic random fields and spherically symmetric potentials,
and in Ref. 22 for a more general class of random fields and
nonspherically symmetric potentials.

V. CONCLUSION

This paper has presented a unified treatment of various
differential and integral equation procedures for solving
three-dimensional inverse scattering problems. The relation
between the generalized Gel’fand-Levitan and Marchenko
integral equations of Ref. 2 has been explored by noting that
the former can be interpreted as an orthogonality principle
with respect to an inner product defined in terms of a weight-
ing function computed using an integral equation equivalent
to the latter. The problems solved by the two integral equa-
tions, and the resulting scattering solutions, are complemen-
tary in their support. This is emphasized by the differential
counterparts to the integral equation procedures, which re-
quire less computation since they directly exploit the causal
structure of the inverse scattering problem.

An important feature of this presentation is the empha-
sis on how results for the one-dimensional inverse problem
generalize to three dimensions. The parallels between Secs.
IT and III are remarkable, considering the greater complex-
ity of the three-dimensional problem. These strong parallels
in the derivations of both the integral equation procedures
and their differential, fast algorithm counterparts suggest
that the approach taken in this paper may be particularly
insightful for further research.

Several topics developed in this paper require further
research. The most important one is the connection between
multidimensional inverse scattering and linear least-squares
estimation of random fields. A useful starting point would be
the characterization of the class of covariance functions that
can be put in the form of (3.22). Connections between other
exact inverse problem procedures and those of Ref. 2 should
also be explored, in the spirit of Ref. 9; this could result in
further insights and more fast algorithms. Finally, the nu-
merical performances of all of these procedures need to be
investigated.
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