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Adding twist to anisotropic fluids
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We present a solution generating technique for anisotropic fluids which preserves
specific Killing symmetries. Anisotropic matter distributions that can be used with
the one parameter Ehlers—Geroch transform are discussed. Example space—times
that support the appropriate anisotropic stress-energy are found and the transforma-
tion applied. The 3-1 black string solution is one of the space—times with the
appropriate matter distribution. Use of the transform with a black string seed is
discussed. ©2002 American Institute of Physic§DOI: 10.1063/1.1448683

[. INTRODUCTION

Physically relevant solution generating techniques were developed in the 1960s and 1970s.
Ehlers! Harrison? and Gerocfi* showed that a projective transform on the norm and tvisi»{),
of a Killing vector will generate a Killing vector with norm and twisk ([w'). Starting with a
vacuum space—time and a twist-free Killing vector, their method adds twist. For example, their
method applied to the vacuum Schwarzschild metric generates a NUT metric. The generating
method can be applied to any vacuum space—time with a Killing vector and has been generalized
to the Einstein—Maxwell spaceésnd to some matter space—tinfeShe extension to matter
metrics is restrictive; Stephdriias shown that the only two equations of state that can be treated
within this formalism are

p=P,
@
p+3P=0.

Raca and Zsigriihave also considered solution generating on fluids with this equation of state.
The result clearly applies to fluids with isotropic stress. A close examination of the method used to
generate the allowed matter distributions shows that it can be generalized to fluids with anisotropic
stresses.

There has been increasing interest in general relativistic systems with anisotropic stress. Her-
rera and Santdshave reviewed some of the possible causes and the related general relativistic
solutions. Anisotropic fluid spheres have been a useful model for discussing anisotropy since the
early work of Bowers and Liart§ on anisotropic fluid spheres. More recently Corchktmas
discussed a post-Newtonian approximation to anisotropic fluid sphereet@a¥ and Das and
Kloster*® have investigated the spherically symmetric collapse of anisotropic fluid objects into a
black hole. Hernandez, Lunez, and Perd8dmve treated anisotropy and nonlocal equations of
state in radiating spheres. Conformally flat anisotropic spheres were examined by leeakra
Glass and Krisclf have discussed diffusion induced anisotropies in a Vaidya atmosphere. Fol-
lowing up the recent interest in dimensional effects, Harko andfdiscussed charged aniso-
tropic fluid spheres iD-dimensions. Anisotropy in cosmological solutions has also been studied
by McManus and Coledf vandenHoogen and Colé¥,Giovannini?® and Rainsford! Relative
motion as a source of anisotropy in multifluid systems was suggested long ago by*2Jeans.
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Letelier® has shown that two perfect fluids in relative motion can be described as a system with
anisotropic pressures and has given the standard two-fluid stress energy form.

Physically, anisotropy is finding increasing application in systems at the density extremes of
very compact objects and very diffuse mass clusters. This increasing interest in fluid solutions with
anisotropic pressures suggests it would be of interest to extend the solution generating technique
to space—times that have anisotropic fluid content. While it is relatively simple to create aniso-
tropic fluid solutions by changing the functional dependence of metric potentials, the generating
technique here will preserve specific Killing symmetries while obtaining new anisotropic solu-
tions.

In Sec. II, we briefly review the formalism that leads to the isotropic pressure restrictions on
the standard solution generating technique. The extension to anisotropic stresses follows directly
from this. Isotropic seed space—times are discussed in Sec. Ill. Some examples of space—times
containing the allowed anisotropies are in Sec. V. Killing symmetries for the possible anisotropic
spaces are covered in Sec. V, and Sec. VI has a discussion of the effect of the Geroch transfor-
mation on the fluid description in these spaces.

II. FORMALISM
A. The Killing description

Let (M,g,;,) be a solution of the Einstein field equations with energy densténd isotropic
pressureP. Assume thag,, has a Killing vectoré® with norm A and twistw® where
A= fafa!
%= Vit

)

The induced metric on the three-dimensional space of vectors orthogonal to the Killing vector is

Nab=0gab— €aén/N. ©)

The vacuum field equations can be written in terma.ptw and vy,

Yab™= |)\|haba
(4)

wa=D,w,

where y,,, is conformally related td1,;,,% w is the scalar potential associated with the Killing
twist, andD, is the covariant derivative for metrig,, .

B. Vacuum space—times

Consider the action written in the conformal three-space gf

I=fd3x\/;

A projective transform of the complex potentied= w+i\ can be written

1
'R—W(Da)\Da)\-i-DawDaw) . (5)

L 709 ) +sin( d)

"~ cogd)—r7sin(d)’ ©)

r
where § is a transformation parameter. The action is invariant under this transformation, so we
have added twist to the Killing vector witly,, unchanged and can generate the newl3
space—timeg_,, from the formalism. The development of the transformation method is described
in Refs. 3 and 4. We briefly review the transformation method for twist-free Killing vectors.
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C. Generating the new space—time from a twist-free seed

The generation method as described by Getdébr vacuum will be the same in the matter
space—times. Starting with metrir,,, define formsa,, B,, and n, based on a seed Killing
vector, &, , with norm\ and transformation parametéy

Ba=E(N—\T1), (7a)
20y 4= EapcdV &%, (7b)
Ma=N""€at agSin(25). (70
The new metric is then given by
9ab=F(Gao—N"€aéo) + (NF) 727 tS)
with
F=cog(8)+\2sirf(9). (9)

The norm of the Killing vector becomes
N =NF. (10
The scalar twist potential that has been added to the Killing vector is

. sin(8)cog8)(1—\?)
w = F .

(11
These are the equations that will generate the new space—time from static seed metrics.

lll. ISOTROPIC MATTER DESCRIPTIONS

A. Isotropic model 1

To find the isotropic matter space—times that can be used with this method, consider the
actiort*

D AD?\
R— =7 +¥ (12)

I=j PBx/y]
with ¥ a specified function. Stephdrtias shown that the Ricci tensor in four dimensions is

Rab=~Y|M(Gap— €aéb/N) 13

and clearly the action will be invariant under the projective transform.dn the isotropic case,
this Ricci tensor is associated with a perfect fluid §ditimelike. The fluid has an equation of state
p+3P=0, with 8mp=3W\/2.

B. Isotropic model 2

A second action that one can considéf is

I=fd3x\/;

D AD2\

R=—5z2

—5,8% (14

with
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Sx€2=0. (15
The four-dimensional Ricci tensor for this action is
Rab= SaSh (16

which, in the isotropic case, describes a perfect fluid if the Killing vector is spacelike. The fluid
has density and pressure

8mp=—5%s,/2,
17
P=p.
Solution generating with both of these isotropic forms has been examined by Garfinkle, Glass, and
Krisch2®

IV. ANISOTROPIC MATTER DESCRIPTION

The form of the Ricci tensor will be the same for fluids with nonisotropic stress. The stress-
energy content can be written as

(1/8) Tap= pUalp+ pre el + prellef?) + pselef?, (18
where (1,el) i=1,2,3) is a convenient orthogonal tetrad. The associated Ricci tensor is

Rab=Tab—(T/2)Gap, (19

pP—P
5 2)cyab, (20

(1/8m)Rap= pUauiy+ p1ef el + pyelel?)+ pyelel +

whereps=p;+po+Pp3.

A. Anisotropic model 1

Consider Ricci tensdR,,= — "V |\ |(gap— £aE,/N). There are two Killing vector possibilities:
&,=\u, and §a:)\egl), where we have chosa" for convenience. The timelike Killing vector
will generate isotropic stress. Consider the spacelike ve&ter)\egl). We have

P~ Ps
—(1/8m)W|\|(gap—eSVefM) = puaup+ prellelt + pePel?) + paelPel¥ + 5| Jab-
(21)
Multiplying by e{* we have
P1tp=p2+ps. (22
Contracting withu, we find
(1/8m)2¥|\|=p+ps. (23
The other spatial contractions give
—(1/8m)2W [\ =p2—p1—P3+p,
(29)

—(1/8m)2¥|\|=p3—p1— P2+ p.

Comparing, we must have,=p3, and
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—(1/8m)2¥|\|=—p;1+p. (25

Combining, we find an anisotropic fluid with density and stress

8mp=—TN\/2,
8mp,=3¥\/2, (26)
P2=Pp3=—p.

B. Anisotropic model 2

Consider Ricci tensoR,,=s,S,. This Ricci tensor model requires that the vectdrbe
orthogonal to the Killing vector. Again there are two choices for the Killing vector, and in this
model it is the timelike Killing vector that generates the anisotropic stress energy. Coggider
zxu?i)Sincesa is orthogonal to the Killing vectors, is spacelike. Choose functich and s,
=de;”,

.5 P2elMell)
87 8w

o @7

oty pee )+ paele+ paele+

Following the same method used in the previous section, we obtain
8mp=8mp,=D?/2,
(28)
87Tp2:877p3: _(I)Z/Z.

The indices can be relabeled to descrildying alonge? or el®).

V. SPACE-TIMES FOR THE ANISOTROPIC MATTER DISTRIBUTIONS

In Sec. IV we examined two anisotropic models. One has a timelike Killing vector and one a
spacelike Killing vector. We now find examples of space—times that could contain the anisotropic
matter distribution.

A. Timelike Killing vector

For density and pressurgs= p,= —p,= — p3 consider the metric with functiog(z):
ds?= —e?™ dt?+ dz?+ e?X(dr?+r? de?). (29
The field equations are
8mp="—2x 2 3x%
8mp,=x%(2n+1), (30)
87p=(N+1)x -+ x5(n*+n+1)
with py labeling bothp, andp,,. Enforcing the stress relations, one finds the solution
e 2xX=az+b
with fluid p=p,= —py

(2n+1)a?

" (nr2%azrb) o
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and metric
ds?= —(az+b)?"("* Ddt?+ dz?+ (az+b) " A (dr2+r? de?). (32)

Forn=1, this space—time is conformally flat.

B. Spacelike Killing vector

A simple space—time whose fluid content has the necessary anisotropic structure is the con-
formally flat space—time with metric

ds?=e?%( —dt?+dr2+r? de?+dz?). (33
The fluid parameters are easily shown to be
8mp=— ale—22z
8mp,=3a’e %27 (34
8mp, =aZe 22,

where p, are the radial andp-stresses. The negative density does not readily lend itself to a
physical description. An interesting space—time that also has the appropriate anisotropic stress

relations is the simple lift of the 21 BTZ black hole space—tirigdescribing an infinite black

string?”28

2

ds?=—(—m+Agr?)di?+ 5 +r2de?+dz2. (35)

—m+Agr?
In 2+ 1 there is a stress energy
Tii = A3Gii
with A3 the 2+1 cosmological constant. When tkecoordinate is added the fluid content is
8mp=—Aj3,
8mp,=8mp,=As, (36)
8mp,=3A;,

which has the required anisotropic stress-energy structure. The relation betweeii T1hBTZ
solution and the 3 1 black string has been studied by Lemos and Zanthiine negative density

in this case can be physically motivated from the cosmological constant. It will be of interest to
apply the Geroch transform to thist3L BTZ lift and then project back down to+21 to examine

the effects on the cosmological fluid.

VI. APPLYING THE GEROCH TRANSFORMATION

In this section we will use the Geroch formalism described by Ef)s(10) to add twist to the
Killing vectors of our example space—times. The new space—time will be generated and the effect
of the transformation on the fluid parameters examined.

A. Timelike Killing vector

The space—time with a timelike Killing vector that we found had metric

ds?= — (az+b)?V("* Adt?+ dz?+ (az+b) (" 2(dr2+r? de?).
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The Geroch transform process can be applied to this space—time adding twist to the timelike
Killing vector and vorticity to the fluid. From Eqg7) to (9) we have

V& =N =—(az+b)2V(*2), (37)
F=cos(8)+\2sir(9), (39
2nar
Apr ™ & o= mﬂtnpza (39
nar?
a‘p=—n+2+ao, (40

where 7y, ,,= 1. The new metric is

(aZ+ b)2n/(n+2)

2
ds =

[dt+sin(28) a, dp]*+F dz?+ F(az+b)?"2)(dr?+r? dp?).

(41)
The fluid parameters in this space—times are the original parameters scadted by
p'=plF,

(42)
pi=pilF.

The fluid has acquired vorticity along theeaxis

. _2nasin(25)

o' )—W(aﬁ b)(n—2)/(n+2). (43

The projective transform on the Killing parameters that generates the new space—time has two
fixed points. For the case where the initial space is twist free, the fixed points of the projective
transform are\ = = 1. For this examplel-=1 at the fixed points, and the fluid parameters are the
same in both the seed and transformed space—times.

B. Spacelike Killing vector

In this example, we wish to add twist to a spacelike Killing vector. We will consider the lift of
the BTZ metric as the seed spacetime. The seed metric is

dr?
2_ _(_ D2, .24 2 2
ds (—m+Agro)dt+ —m+A3r2+r de“+dz-. (44

There are two Killing vector choicegt®’ or £?. We will work with the ¢-Killing vector and
assume that the metric remains independent ofztbeordinate. From Eq.7) we have

EPEH=N=17, (45)
ay az,t:277tzr¢(_m+/\3r2)- (46)

Calculatinga, and , we have
a,=2(m—Agrd)t+ ay, (47)

7a=EFIN+SIN20) g, (48)
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with F=cog(8)+r*sin’(6). The new 3+ 1 metric is

2 2

+ rE[d“ a,sin26)dz]2.  (49)

2| D42 2
ds F[ (—m+Agro)dtc+ —m+A3r2+dz
This black string solution is an anisotropic member of the cylindrical black hole solution family
discussed by Lema¥.

Using 6= /2, it is easy to see the effect of the transform on the fluid parameters. For this
value, the new 3-1 space—time becomes

2

ds?=r? —(—m+Asr?)di®+ dr +dz?|+ ! de? (50)
8 —m+Agr? r2o¢
with a fluid content
8mp=—A3/r4,
8mp,=As/r4,
(51

8mp,=9A3/r%,
8mwp,=3A5/r%.
The new general space—time can be projected back ittt @ith the result

Nab=Gap— §gz)§éz)/7\z )

(52
2 r2
a b__ o 2 2 _
h,pdx? dx —F[ (=m+Agro)dte+ . + S do*,
which can be written as
hapdX? dx®= — (—m+ A 5r?)dt?+ —z-drz +r2de?+(rf—1)
ab 3 —m+A3I’ [
X SinA(8 + Agr?)dt?+ r® + - de?|. (53
SI()| = (=m+Agr?) “mFAL2 I+ (P =1)siré(s) 7 | (53

For 56=0 the original 2+ 1 BTZ space—time is recovered. It is also recovered at thel fixed
point. The fluid content of the 21 space—time is

—Ag  2r2%sir?(6)

8mp=—= + ——z3—— {MF+(~m+Agr?)[7 cod(5) —r*sir?(6) 1},
-~
gwpr:%_Zr%gz(‘s){mﬁzr“sinz(@)(—m+A3r2)}, (54
-
87Tp<p:%+zrsFI—ZZ(CS){ZmF+(—m+A3f2)[5005(5)“’45"‘2(5)]}-

The original BTZ solution described a black hole of massurrounded by a cosmological fluid
with parameters 8p=— A3, 87p,=8mp,=A3. From Eq.(54) it is clear that the cosmological
fluid is still present but scaled blf, and that in addition a new fluid has been added. &or
=1/2, for example, the fluid parameters are
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8mp=(4m—3r2A3)/r®,
8p,=(2m—3r2A4)/r8, (55)
8mp,=(2m+3r?A;)/r®.

At infinity, the new solution describes an empty vacuum in contrast to the cosmological vacuum

found in the BTZ asymptotic limit. The original BTZ solution had constant negative curvature
making it locally isometric to AdS while the new space—time has a nonconstant Ricci scalar

8r2 sir?(8)cos( )

6A3 5
R=——+(—m+Agr°) =

F (56)

VII. DISCUSSION

We have shown that the simple one parameter Ehlers—Geroch transform can be applied to
space—times with anisotropic matter content for two different stress-energy situations. The for-
malism broadens the way in which anisotropy can be introduced and studied with relation to the
Killing symmetry of the space—time. The formalism was applied to the simple lift of the BTZ
solution and when the new+31 solution was projected back tot2l, a different static 2 1
solution was obtained. It describes & 2 black hole with a horizon at the same position as the
original BTZ horizon but with an additional fluid atmosphere. The asymptotic structure of the two
solutions is very different. This result suggests that it would be useful to develop the formalism in
dimensions higher than-31, and use the projection technique to generate and study the resulting
anisotropic 3+ 1 solutions. Another generalization which could prove interesting is to broaden the
fixed point structure of the projective transform. The fixed points described by@Egqre A
==*1, as discussed previously. When using the Ehlers—Geroch method with a spacelike Killing
vector, generalizing the projective transform by placing the fixed points=dt? offers a better
chance of interpreting the fixed points and would broaden the applicability of the method.

In summary, the solution generating method developed here preserves specific Killing sym-
metries while creating new anisotropic solutions. These solutions may be useful for investigating
relativistic behavior at the density extremes.
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