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We show that the mixed quantum-classical Liouville equation is equivalent to linearizing the
forward-backward action in the influence functional. Derivations are provided in terms of either the
diabatic or adiabatic basis sets. An application of the mixed quantum-classical Liouville equation
for calculating the memory kernel of the generalized quantum master equation is also presented.
The accuracy and computational feasibility of such an approach is demonstrated in the case
of a two-level system nonlinearly coupled to an anharmonic bath. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1771641#

I. INTRODUCTION

Quantum effects play a central role in a variety of im-
portant processes that take place in condensed phase
environments.1–3 Hence, the simulation of quantum dynam-
ics in condensed phase hosts is one of the most important
challenges facing theoretical chemistry. Whereas numerically
exact classical molecular dynamics simulations are feasible
for relatively complex many-body systems, the analogous
numerically exact solution of the Schro¨dinger equation for
such systems remains far beyond the reach of currently avail-
able computer resources, due to the exponential scaling of
the computational effort with the number of degrees of free-
dom ~DOF!. A common approach for dealing with this diffi-
culty is based on the observation that, in practice, one can
often directly probe and/or manipulate only a few DOF. The
subsystem subject to direct observation and/or manipulation
may correspond to the reaction coordinate, a vibrational
mode of a solute molecule, or the electronic DOF of an op-
tically excited chromophore molecule in solution. Thus, it is
worthwhile to consider a strategy that combines an accurate
description of the subsystem, which will be referred to asthe
systemfrom now on, with a minimal, yet accurate, treatment
of the rest of the DOF, which will be referred to asthe bath.
The key to the success of such an approach relies on one’s
ability to accurately describe those aspects of the many-body
bath dynamics which affect the system.

One way of approaching this challenge is based on the
path-integral formulation of quantum mechanics,4–6 and in-
troduces the influence of the bath in terms of an influence
functional ~IF!.7 One of the most important advantages of
this approach has to do with the fact that theexactIF can be
obtained in closed form, in the case of linear coupling to a
harmonic bath.8–11 This fact, in conjunction with important
algorithmic advances, such as the development of iterative
tensor quasiadiabatic propagators by Makri and co-workers,
has opened the door to numerically exact calculations of the
reduced dynamics of this type of systems~as long as one can
evaluate the remaining path integral over the system
DOF!.12–27However, there are many important systems, e.g.,
liquid solutions, where it is difficult, and perhaps even im-

possible, to map the bath Hamiltonian onto a harmonic one.
To the best of our knowledge, the only attempt so far for
calculating the IF in the case of nonlinear coupling to an
anharmonic bath has been carried out by Makri and co-
workers, who proposed using the forward-backward semi-
classical initial-value-representation approximation for this
purpose.28–30

An alternative to the IF approach may be based on solv-
ing the Nakajima-Zwanzig generalized quantum master
equation ~GQME!,31–45 which also provides an exact de-
scription of the system dynamics. In this equation, the influ-
ence of the bath on the system is given in terms of amemory
kernelsuperoperator. The latter is analogous to the IF in the
sense that it contains all the information needed in order to
account for the influence of the bath on the system dynamics.
In a previous paper,45 we presented a new framework for
calculating the Nakajima-Zwanzig memory kernel, without
resorting to the commonly made assumption of weak
system-bath coupling. The strategy that we proposed is based
on expressing this kernel in terms of two-time system-
dependent bath correlation functions~SDBCFs!. We have
also proposed to approximate the SDBCFs by using the
Meyer-Miller ~MM ! mapping for the system DOF,46–53 and
linearizing the forward-backward~FB! action54–56in the cor-
responding path-integral expression.57 The resulting linear-
ized semiclassical Meyer-Miller~LSC-MM! approximation
was found to perform rather well when applied to benchmark
models. It should also be noted that a similar linearization
approximation has been observed to lead to accurate results
when used for calculating reaction rate constants,58 high-
frequency vibrational energy relaxation rate constants,59,60

and nonradiative electronic relaxation rate constants.61,62

Another approach, which received much attention, is
based on a mixed quantum-classical treatment. In this case,
the system is treated quantum mechanically, while the bath is
treated in a classical-like, trajectory-based, manner.63 A num-
ber of such mixed quantum-classical methodologies have
been proposed, including ones based on a mean-field
approach,64,65 surface-hopping,66–70 and hybrids that com-
bine those two strategies.71–73 More recently, Martens and
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co-workers have proposed an approach based on a mixed
quantum-classical Liouville~MQCL! equation.74–77Over the
last few years, this approach has been further explored and
developed by several groups.78–83 Within this approach, a
classical-like bath phase-space densitys i j (Q,P,t) is associ-
ated with each of the elements of the system reduced density
matrix ^ i uŝu j &. The mixed quantum-classical equation of
motion of s i j (Q,P;t) can be derived in several ways~e.g.,
by replacing the commutators by the corresponding Poisson
brackets, performing a partial Wigner transform over the
bath DOF, and taking the\→0 limit with respect to them,
etc.!, and is referred to as the MQCL equation. Important
recent advances by Martenset al.,77,84 Santer, Manthe, and
Stock,79 Nielsen, Kapral, and Ciccotti,81 and Wan and
Schofield,82,83 have led to the development of practical sto-
chastic trajectory algorithms for solving the MQCL equation.
Although the computational cost involved in solving the
MQCL equation is higher than that involved in either mean-
field or surface-hopping techniques, it has been observed to
be accurate in cases where those other techniques fail.79,82,83

In this paper, we establish a general relationship between
the IF formalism, the linearization approximation, and the
MQCL equation. We will also propose a scheme for extend-
ing the applicability of the MQCL equation to longer times,
with the help of the GQME formalism. Our main goals are as
follows.

~i! To establish a relationship between the IF and MQCL
approaches, by showing that linearizing the FB action in the
exact path-integral expression for the IF is equivalent to the
MQCL equation.

~ii ! To develop an approach which restricts the use of
the MQCL equation to calculating the short-lived memory
kernel of the GQME. Subsequently, one can simulate rela-
tively slow nonequilibrium relaxation processes by solving
the GQME in a numerically exact manner.

The structure of the remainder of this paper is as fol-
lows. In Secs. II and III, we derive the MQCL equation, by
linearizing the FB action in the IF in the case of diabatic and
adiabatic basis sets, respectively. Section IV describes the
calculation of the GQME memory kernel, which is based on
solving the MQCL equation. The main results are summa-
rized and discussed in Sec. V. A more detailed outline of the
derivations is provided in two appendixes.

II. THE DIABATIC CASE

We consider a situation where a system of free Hamil-
tonian Ĥs is coupled to a bath of free HamiltonianĤb with
the coupling HamiltonianV̂bs , such that the overall Hamil-
tonian is given by

Ĥ5Ĥs1Ĥb1V̂bs . ~1!

We assume that the bath under consideration can be de-
scribed in terms ofNb nuclear DOF, such that

Ĥb5(
j 51

Nb @ P̂~ j !#2

2M ~ j !
1Vb~Q̂!, ~2!

where Q̂5(Q̂(1),...,Q̂(Nb)), P̂5( P̂(1),...,P̂(Nb)), and
(M (1),...,M (Nb)) are the corresponding coordinates, mo-
menta, and masses, respectively. We assume that the depen-
dence ofV̂bs on the bath DOF can be given in terms ofQ̂.
We also assume that the dependence ofV̂bs on the system
DOF can be given in terms of a single system operatorŜ
such thatV̂bs5V̂bs(Q̂,Ŝ). Finally, let $usj&u j 51,...,n% be the
eigenbasis of the operatorŜ, such thatŜusj&5sj usj&, and
thereforeV̂bs(Q̂,Ŝ)usj&5V̂bs(Q̂,sj )usj&.

The state of the overall system at timet is given by the
density operator

r̂~ t !5e2 iĤ t/\r̂~0!eiĤ t/\, ~3!

where the initial state,

r̂~0!5 r̂b~0! ^ ŝ~0!, ~4!

assumes a factorized form@ r̂b(0) and ŝ(0) correspond to
the density operators that represent the initial states of the
bath and the system, respectively#. The sought after state of
the system at timet can then be described by the reduced
density operator

ŝ~ t !5Trb@ r̂~ t !#5Trb@e2 iĤ t/\r̂b~0! ^ s~0!eiĤ t/\#, ~5!

where Trb stands for a partial trace over the bath DOF.
For the sake of simplicity, the remainder of the deriva-

tion will be presented in terms of a 1D bath, such thatNb

51, Q→Q(1)→Q, P→P(1)→P, M (1)→M ~the results can
be generalized to the case of a multidimensional bath in a
straightforward manner!. As is well known,ŝ(t) can be rep-
resented by a matrix in terms of the basis set$usj&u j
51,...,n%. The elements of this matrix can be given in terms
of the following path-integral expression.7,24,29,85

^si uŝ~ t !usj&5(
s0

1
¯ (

sN21
1

(
sN21

2
¯(

s0
2

^sN
1ue2 i eĤs /\usN21

1 &¯

3^s1
1ue2 i eĤs /\us0

1&^s0
1uŝ~0!us0

2&

3^s0
2uei eĤs /\us1

2&¯^sN21
2 uei eĤs /\usN

2&

3F@s0
6 ,¯,sN

6#. ~6!

Here,si5sN
1 , sj5sN

2 , e5t/N, andF @s0
6 ,...,sN

6# is the IF,
explicitly given by

F@s0
6 ,...,sN

6#5S M

2p\e D NE dQ0
1
¯E dQN21

1 E dQN

E dQN21
2

¯E dQ0
2

^Q0
1ur̂b~0!uQ0

2&ei ~SN
1

2SN
2

!/\, ~7!
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where

SN
65e (

j 50

N21
M

2 S Qj 11
6 2Qj

6

e D 2

2Vb~Qj
6!2Vbs~Qj

6 ,sj
6!,

~8!

andQN
65QN .

It should be noted that Eq.~6! is based on the quasiadia-
batic partitioning of the overall Hamiltonian intoĤs ~the free
system Hamiltonian! and Ĥenv5Ĥb1V̂bs . The dependence
on the bath DOF is restricted to the latter, and ends up being
integrated over in the IF. As a result, one can use a bath-
independent~diabatic! basis set in order to represent the sys-
tem density matrix. The quasiadiabatic partitioning is ex-
pected to be particularly efficient~in the sense that relatively
long time steps may be used! in cases where the bath dynam-
ics is much faster than the system’s dynamics. Under those
circumstances, the bath DOF rapidly adjusts itself to the sys-
tem displacement, such that the dependence ofĤenv on the
system DOF is truly parametric.

In the next step, we apply the linearization approxima-
tion to the FB action in Eq.~7!. More specifically, we assume
that the dominant contributions to the IF arise from FB paths
that are relatively close to each other, such thatSN

12SN
2 can

be replaced by its first-order expansion in terms of the de-
viation between the forward and backward paths. The actual
derivation is similar to that involved in applying the same
approximation to nonadiabatic correlation functions, and was
described in detail elsewhere.57,62,86Following the same pro-
cedure and making the transition from discrete time to con-
tinuous time leads to the following approximation for the IF:

F@s0
6 ,...,sN

6#'FL@s0
6 ,...,sN

6#

5
1

2p\ E dQ0E dP0rb
W~Q0 ,P0 ;0!

3expF2 i E
0

t

dtU~t!/\G , ~9!

where

rb
W~Q0 ,P0 ;0!5

1

2p\ E
2`

`

dDe2 iPD/\

3^Q1D/2ur̂b~0!uQ2D/2& ~10!

is the Wigner transform of the initial bath density operator,

U~t!5Vbs@Qt ,st
1#2Vbs@Qt ,st

2#, ~11!

and the dynamics ofQt is dictated by the following, explic-
itly time-dependent, averaged classical Hamiltonian:

Hav~ t !5
P

2M
1Vb~Q!1

1

2
$Vbs@Q,st

1#1Vbs@Q,st
2#%.

~12!

Substituting the linearized IF in Eq.~9! back into Eq.~6!
then yields the following approximate expression for a sys-
tem density operator matrix element:

^si uŝ~ t !usj&5(
s0

1
¯ (

sN21
1

(
sN21

2
¯(

s0
2
E dQ0E dP0

3rb
W~Q0 ,P0 ;0!expF2 i E

0

t

dtU~t!/\G
3^sN

1ue2 i eĤs /\usN21
1 &¯^s1

1ue2 i eĤs /\us0
1&

3^s0
1uŝ~0!us0

2&^s0
2uei eĤs /\us1

2&¯

3^sN21
2 uei eĤs /\usN

2&. ~13!

Equation~13! can be used as such, as long as the nu-
merical evaluation of the path integral over the system DOF
is feasible~which will be the case if the system can be de-
scribed in terms of a relatively small basis set!. However, our
goal here is to show that the approximation embodied by Eq.
~13! is in fact equivalent to that underlying the diabatic ver-
sion of the MQCL equation. To this end, we associate a bath
phase-space densitys i j (Q,P;t) with each system density
matrix element̂ si uŝ(t)usj& such that

^si uŝ~ t !usj&5E dQE dPs i j ~Q,P;t !. ~14!

It should be noted that the expectation value at timet of any
system operatorÂ can be written in terms of a bath phase-
space average of the following form:

^Â&~ t !5Trs„ŝ~ t !Â…5E dQE dP(
i , j

s i j ~Q,P;t !Aji ,

~15!

whereAji 5^sj uÂusi&.
According to Eq.~13!, s i j (Q,P;t) may be written in the

following form:

s i j ~Q,P;t !5(
s0

1
¯ (

sN21
1

(
sN21

2
¯(

s0
2
E dQ0E dP0rb

W

3~Q0 ,P0 ;0!expF2 i E
0

t

dtU~t!G
3^sN

1ue2 i eĤs /\usN21
1 &¯^s1

1ue2 i eĤs /\us0
1&

3^s0
1uŝ~0!us0

2&^s0
2uei eĤs /\us1

2&¯

3^sN21
2 uei eĤs /\usN

2&d~Q2Qt!d~P2Pt!, ~16!

where Qt and Pt are propagated classically based on the
particular realization of the averaged Hamiltonian in Eq.~12!
@it should be noted that Eq.~16! involves integration over all
such possible realizations#.

We next seek an equation of motion fors i j (Q,P;t). To
this end, we note that
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s i j ~Q,P;t1e!5(
k,l

E dQtE dPtskl~Qt,Pt;t !

3expF2 i E
t

t1e

dtU~t!/\G
3^si ue2 i eĤs /\usk&^sl uei eĤs /\usj&

3d~Q2Qt1e!d~P2Pt1e!. ~17!

The equation of motion fors i j (Q,P;t) is then obtained from
Eq. ~17!, with the help of the identityds i j (Q,P;t)/dt
5 lime→0@s i j (Q,P;t1e)2s i j (Q,P;t)#/e. An outline of the
derivation is given in Appendix A, and only the final result is
given below,

]s i j ~Q,P;t !

]t
5$Hi j

av,s i j ~Q,P;t !%2
i

\
@Vbs~Q,si !

2Vbs~Q,sj !#s i j ~Q,P;t !

2
i

\ (
k

@^si uĤsusk&sk j~Q,P;t !

2s ik~Q,P;t !^skuĤsusj&#. ~18!

Here,

$Hi j
av,s i j ~Q,P;t !%5

]Hi j
av

]Q

]s i j ~Q,P;t !

]P

2
]Hi j

av

]P

]s i j ~Q,P;t !

]Q
~19!

is the classical Poisson bracket, and

Hi j
av5

P2

2M
1Vi j

av~Q!, ~20!

where

Vi j
av~Q!5Vb~Q!1 1

2@Vbs~Q,si !1Vbs~Q,sj !#. ~21!

Equation ~18! corresponds to the MQCL equation, in
terms of the diabatic basis set$usj&u j 51,...,n%. The emerging
description associates a different potential energy surface
$Vi j

av(Q)% with each of then2 states in the system’s Liouville
space,87 $u i , j &&u↔u i &^ j uu,i , j 51,...,n%. The three terms on
the RHS of Eq.~18! correspond to~in the order of appear-
ance!: ~1! propagation of the bath phase-space density
s i j (Q,P;t) on the potential energy surfaceVi j

av(Q); ~2! ac-
cumulation of phase during this single surface propagation
~in the off-diagonal case,iÞ j ); ~3! transitions between sur-
faces, where the coupling arises from the off-diagonal matrix
elements of the system Hamiltonian,$^si uĤsusj&,iÞ j %. It
should also be noted that the factorized initial state in Eq.~4!
implies that

^si uŝ~0!usj&5E dQE dPrb
W~Q,P;0!^si uŝ~0!usj&,

~22!

which implies that

s i j ~Q,P;t50!5rb
W~Q,P;0!^si uŝ~0!usj&. ~23!

III. THE ADIABATIC CASE

The derivation of thediabatic MQCL equation in the
preceding section was based on the quasiadiabatic partition-
ing of the overall Hamiltonian intoĤs and Ĥenv5Ĥb

1V̂bs . In this section we consider an alternative partitioning
of the overall Hamiltonian, which will lead to theadiabatic
MQCL equation. To this end, let

Ĥa5Ĥs1V̂bs , ~24!

such thatĤ5Ĥa1Ĥb . Also, define an adiabatic system ba-
sis set that consists of the eigenstates ofĤa , such that

Ĥa~Q!uk~Q!&5Ek~Q!uk~Q!&, k51,...,n. ~25!

It should be noted that the adiabatic basis functions and cor-
responding energy levels are parametrically dependent on the
bath coordinateQ.

In the next step, we take the partial Wigner transform,
over the bath DOF, of the overall density operator,78

ŝW~Q,P;t !5
1

2p\ E dDe2 iPD/\^Q1D/2ur̂~ t !uQ2D/2&.

~26!

It should be noted thatŝW(Q,P,t) is a system operator,
which can be represented by a matrix in terms of the basis set
$uk(Q)&%, such that the characteristic matrix element is given
by

s i j
W~Q,P;t !5^ i ~Q!uŝ i j

W~Q,P,t !u j ~Q!&

5
1

2p\ E dDe2 iPD/\^ i ~Q!,Q

1D/2ur̂~ t !u j ~Q!,Q2D/2&. ~27!

It should be noted that theQ dependence ofs i j
W(Q,P;t)

arises from two sources, namely, from that ofŝW(Q,P;t)
and from that of the basis set functionsu i (Q)& and u j (Q)&.

Importantly, knowledge of the matrix$s i j
W(Q,P;t)% is

equivalent to that of the standard reduced density matrixŝ.
More specifically, the expectation value of any system opera-
tor Â at time t can be obtained from$s i j

W(Q,P;t)% via the
following identity:

^Â&~ t !5E dQE dPTrs@ŝW~Q,P;t !Â#

5E dQE dP(
i j

s i j
W~Q,P;t !Aji ~Q!, ~28!

whereAji (Q)5^ j (Q)uÂu i (Q)&.
Our goal in this section is to derive an equation of mo-

tion for s i j
W(Q,P;t), in a manner which is analogous to lin-

earizing the FB action of the IF in the diabatic case. To this
end, we note thats i j

W(Q,P;t1e) can be written in terms of
s i j

W(Q,P;t),
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s i j
W~Q,P;t1e!5

1

2p\ E dDe2 iPD/\^ i ~Q!,Q1D/2ue2 i eĤb /\e2 i eĤa /\r̂~ t !ei eĤa /\ei eĤb /\u j ~Q!,Q2D/2&

5
1

2p\ (
k,l ,m,n

E dQ8E dP8E dDE dD8e2 iPD/\eiP8D8/\^ i ~Q!u l ~Q8!&

3^ l ~Q8!ue2 i eĤa~Q81D8/2!/\uk~Q8!&^Q1D/2ue2 i eĤb /\uQ81D8/2&skm
W ~Q8,P8;t !

3^Q82D8/2uei eĤb /\uQ2D/2&^m~Q8!uei eĤa~Q82D8/2!/\un~Q8!&^n~Q8!u j ~Q!&, ~29!

where we have used the inverse Wigner transform,

^k~q8!,Q81D8/2ur̂~ t !um~Q8!,Q82D8/2&

5E dP8eiP8D8/\skm
W ~Q8,P8;t !. ~30!

The diagonal system overlap integrals that appear in Eq.
~29! reduce to unity, in the limite→0, due to the fact that
^n(Q)u]n(Q)/]Q&}]^n(Q)un(Q)&/]Q50 ~normalization!,

^n~Q1d!un~Q!&'^n~Q!un~Q!&1^]n~Q!/]Qun~Q!&d

→^n~Q!un~Q!&51. ~31!

The off-diagonal system overlap integrals are evaluated as
follows:

^n~Q1d!um~Q!&

'^n~Q!um~Q!&1^]n~Q!/]Qum~Q!&d

5^]n~Q!/]Qum~Q!&
Pt

M
e

~32!

^n~Q!um~Q1d!&

'^n~Q!um~Q!&1^n~Q!u]m~Q!/]Q&d

5^n~Q!u]m~Q!/]Q&
Pt

M
e,

wherePt5Md/e. The diagonal system propagators that ap-
pear in Eq.~29! can be approximated by

^n~Q!ue7 iĤ a~Q6D/2!/\un~Q!&

'^n~Q!u17
i

\
eĤa~Q6D/2!un~Q!&

'17
i

\
eEn~Q!2

i

\
e^n~Q!u

]Vbs~Q̂!

]Q
un~Q!&

D

2

'expH 7
i

\
eEn~Q!2

i

\
e^n~Q!u

]Vbs~Q̂!

]Q
un~Q!&

D

2 J ,

~33!

where the second equality involves the linearization approxi-
mation. Similarly, the off-diagonal system propagators that
appear in Eq.~29! is approximated by

^n~Q!ue7 iĤ a~Q6D/2!/\um~Q!&

'2
i

\
e^n~Q!u

]Vbs~Q̂!

]Q
um~Q!&

D

2

'expH 2
i

\
e^n~Q!u

]Vbs~Q̂!

]Q
um~Q!&

D

2 J 21, ~34!

where, once again, linearization has been employed. Finally,
the FB action in the bath propagators that appear in Eq.~29!
is also linearized, such that they are approximated by

^Q1D/2ue2 i eĤb /\uQ81D8/2&^Q82D8/2uei eĤb /\uQ2D/2&

'
M

2p\e
expH i

\
@Pt~D2D8!2eVb8~Q8!D8#J . ~35!

The equation of motion fors i j
W(Q,P;t) is obtained

from Eq. ~29!, via the identity ds i j
W(Q,P;t)/dt

5 lime→0@s i j
W(Q,P;t1e)2s i j

W(Q,P;t)#/e, and with the
help of Eqs.~31!–~35!. An outline of the derivation is given
in Appendix B, and only the final result is given below,
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]

]t
s i j

W~Q,P;t !52H P

M

]

]Q
1

Fi~Q!1F j~Q!

2

]

]PJ s i j
W~Q,P;t !2 iv i j ~Q!s i j

W~Q,P;t !

1(
kÞ i

H 2
P

M
dik~Q!1

1

2
^ i ~Q!u

]Vbs~Q,Ŝ!

]Q
uk~Q!&

]

]PJ sk j
W~Q,P;t !

1(
kÞ j

H P

M
dk j~Q!1

1

2
^k~Q!u

]Vbs~Q,Ŝ!

]Q
u j ~Q!&

]

]PJ s ik
W~Q,P;t !. ~36!

Here,v i j (Q)5@Ei(Q)2Ej (Q)#/\,

F j~Q!52Vb8~Q!2^ j ~Q!u
]Vbs

]Q
u j ~Q!& ~37!

are the Hellmann-Feynman forces, and

dmn~Q!5^m~Q!u]n~Q!/]Q& ~38!

are the nonadiabatic coupling coefficients.
Equation~36! corresponds to the MQCL equation in the

case of an adiabatic basis set.76,79–83The emerging descrip-
tion is similar to that obtained in the case of the diabatic
basis set, in that it associates a different potential energy
surface,

Vi j ~Q!5Vb~Q!1 1
2@^ i ~Q!uVbs~Q,Ŝ!u i ~Q!&

1^ j ~Q!uVbs~Q,Ŝ!u j ~Q!&#, ~39!

with each of then2 states in the system’s Liouville space,
$u i (Q)&^ j (Q)u↔u i j &&u i , j 51,...,n%. The three terms on the
RHS of Eq.~18! correspond to~in the order of appearance!:
~1! classical propagation of the bath phase-space density
s i j

W(Q,P;t) on the Vi j (Q) surface; ~2! accumulation of
phase during this single surface propagation~in the case
where iÞ j ); ~3! transitions between surfaces, where the
nonadiabatic coupling arises from the off-diagonal matrix el-
ements$^ i (Q)u]Vbs(Q,Ŝ)/]Qu j (Q)& and $di j %. It should
also be noted that the factorized initial state in Eq.~4! im-
plies that

s i j
W~Q,P;t50!5rb

W~Q,P;0!^ i ~Q!uŝ~0!u j ~Q!&. ~40!

Equation~36! was derived based on the partitioning of
the overall Hamiltonian intoĤa5Ĥs1V̂bs and Ĥb . This
partitioning dictated the use of an adiabatic system basis set,
which is parametrically dependent on the bath coordinate.
The main advantage of this approach has to do with the fact
that it restricts the transitions between the surfaces to the,
presumably localized, regions in space where there is signifi-
cant overlap betweenu i (Q)& and u j (Q)&. This results in the
minimization of the branching of the trajectory taken byQ
between the various surfaces, which is desirable from the
point of view of computational feasibility~see Sec. IV C!. At
the same time, the main disadvantage of the adiabatic MQCL
approach has to do with the need to repeatedly diagonalize
Ĥa , on the fly, in order to adjust the basis set to variations in
Q. While such a diagonalization can be performed analyti-
cally in the case of two- and three-level systems, it can be-
come the computational bottleneck in cases involving many

more states. The adiabatic representation is particularly suit-
able to cases where the system dynamics is much faster than
the bath dynamics. Under those circumstances, the system
DOF rapidly adjust themselves to the displacements of the
bath, such that the dependence ofĤa on the bath DOF is
truly parametric. A prominent example correspond to the
case where the system and bath correspond to electronic and
nuclear DOFs, respectively.

IV. CALCULATION OF THE MEMORY KERNEL OF
THE GENERALIZED QUANTUM MASTER EQUATION

A. The generalized quantum master equation

A major weakness of almost all available approximate
methods for simulating many-body quantum dynamics has to
do with the fact that their accuracy and/or computational
feasibility deteriorate with time. The derivation of the MQCL
equation in Sec. II implies that it is equivalent to linearizing
the IF. It should be noted that the accuracy of the lineariza-
tion approximation is known to detcriorate with time.57,59

Nevertheless, it is also known that the IF is characterized by
a relatively short memory time in condensed phase systems.
Thus, restricting the use of the linearization approximation to
calculating the short-lived IF is more likely to yield an accu-
rate description of the system relaxation at long times~in
comparison to thedirect application of this approximation!.
Unfortunately, the computational cost of solving the MQCL
equation via the stochastic trajectory algorithm~see below!
grows exponentially with time, which is attributed to ineffi-
cient sampling due to branching of the trajectories between
the different surfaces.79 Thus, one expects that a direct appli-
cation of the MQCL equation for simulating nonequilibrium
dynamics will only be feasible in the case of relatively rapid
relaxation processes. In this section, we propose a general
methodology which is based on restricting the use of the
MQCL equation to the calculation of the relatively short-
lived memory kernel of the GQME. Simulation of nonequi-
librium relaxation processes, which may be characterized by
longer time scales, is then made possible by solving the
GQME in a numerically exact manner.

The general theoretical framework for calculating the
memory kernel has been described in previous papers,45,57

and will only be outlined below. The general approach is
based on describing the system’s dynamics in terms of the
Nakajima-Zwanzig GQME,

d

dt
ŝ~ t !52

i

\
@Ĥs ,ŝ~ t !#2E

0

t

dtK~t!ŝ~ t2t!. ~41!
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Here,K~t! is the memory kernel, whose explicit form is well
known~e.g., see Ref. 45!. K~t! is a system superoperator that
can be represented by ann23n2 matrix in Liouville space.
The input required for calculating then23n2 matrix that
representsK~t!, in terms of the diabatic basis set of the sys-
tem, $usj&u j 51,...,n%, is given by;n4 SDBCFs of the fol-
lowing form:45

^Ĝ~2,b,a,1;t!L̂&eq5Tr$L̂r̂b
equs1&^s2ueiĤ t/\usb&

3^sauĜe2 iĤ t/\%. ~42!

Here,r̂b
eq5e2bĤb/Trb@e2bĤb# is the equilibrium density op-

erator of the free bath, andL̂, Ĝ correspond to various bath
operators which are given explicitly in Refs. 45 and 57. Im-
portantly, correlation functions of the form of Eq.~42! are
generally short lived, as is the memory kernel that can be
obtained from them. Thus, approximating them via the
MQCL equation, followed by a calculation of the memory
kernel, via the procedure described in Refs. 45 and 57, and a
numerically exact solution of the GQME, can make it pos-
sible to accurately simulate relatively slow nonequilibrium
relaxation processes, which could not be described by direct
application of the MQCL equation.

B. The model

We will now demonstrate this approach in the case of a
two-level system~TLS! nonlinearly coupled to an anhar-
monic bath. The model employed is adopted from Ref. 57,
where it was used for testing the LSC-MM approximation. It
consists of a linear chain of 11 Helium atoms that lie along
thex axis, and an atomA, which is attached to one end of the
chain. AtomA and the 11th Helium atom at the other end of
the chain are held fixed atx50 and x5sHe-A110sHe-He,
respectively. The instantaneous positions of the first ten He-
lium atoms (i 51,2,...,10) are given by$xi5sHe-A1( i
21)sHe-He1d i%. Only nearest neighbor interactions along
the chain are taken into account. The TLS corresponds to an
internal DOF of atomA, and the interaction between atomA
and the Helium atom attached to it depends on the internal
state of atomA.

The bath Hamiltonian is given by

Ĥb5 (
k51

10
~p~k!!2

2MHe
1

1

2
@V1~ x̂!1V2~ x̂!#, ~43!

where,

V65vLJ
He-A~sHe-A1d16r 0!

1(
i 51

10

vLJ
He-He~sHe-He1d i 112d i !. ~44!

Here,V6 correspond to the potential energy that correspond
to the two statesu6& of the TLS, and

vLJ~r !54eF S s

r D 12

2S s

r D 6G ~45!

is the familiar Lennard-Jones~LJ! potential. s and e are
given by $sHe-A ,eHe-A% and $sHe-He,eHe-He% for the He-A,
and He-He interactions, respectively. The system Hamil-
tonian is given by

Ĥs5Vŝx1@D1 1
2^V1~ x̂!2V2~ x̂!&eq#ŝz , ~46!

where ŝx , ŝy , ŝz are the familiar Pauli operators, and
^Ĝ&eq5Trb( r̃b

eqĜ). The system-bath coupling is given by

V̂bs5L̂~ x̂! ^ ŝz , ~47!

where

L̂5 1
2@V1~ x̂!2V2~ x̂!2^V1~ x̂!2V2~ x̂!&eq

0 #. ~48!

The diabatic basis is in this case given by the eigenfunctions
of ŝz : ŝzu6&56u6&.

Calculations pertaining to this model have been per-
formed using the following values of the parameters:T
51/kBb540 K, sHe-A54.944 a.u., sHe-He54.310 a.u.,
eHe-A /kB525.1 K, eHe-He/kB510.2 K, V51.031024 a.u.,
D51.231024 a.u., andr 050.2 a.u. The local harmonic ap-
proximation, which is described in detail in Ref. 59, has been
used in order to calculate the Wigner transform of operators
of the formL̂r̂b

eq @see Eq.~42!#.

C. Computer algorithm

The theoretical framework for calculating the memory
kernel was given in terms of a diabatic representation.45 It is
therefore natural to use the diabatic MQCL equation for cal-
culating it ~although it should be noted that a calculation
based on an adiabatic basis set would probably be more ef-
ficient!. In this section, we outline the stochastic trajectory
algorithm employed for solving the adiabatic MQCL equa-
tions. To this end, it is convenient to consider an
n2-dimensional vectorsW (Q,P;t) whose components are
given by $s i j (Q,P;t)u i , j 51,...,n%. Equation~18! may then
be put in the following form:

]

]t
sW ~Q,P;t !5~Lav1Lphase1Ls!sW ~Q,P;t !

5LsW ~Q,P;t !, ~49!

where Lav, Lphase, and Ls representn23n2 matrices that
correspond to the three terms on the RHS of Eq.~18!, in the
order in which they appear there. The propagation of
sW (Q,P;t) from time t to time t1e, wheree is a small time
step, can then be put in the following form:

sW ~Q,P;t1e!5eeLseeLdsW ~Q,P;t !, ~50!

whereLd5Lav1Lphase.
Operating witheeLd on sW (Q,P;t) is relatively straight-

forward becauseLd corresponds to adiagonal n23n2 ma-
trix. Thus, each of the bath phase-space densities
$s i j (Q,P;t)% is independently propagated subject to the
classical HamiltonianHi j

av, with the off-diagonal ones (i
Þ j ) also accumulating phase in the process. It should be
noted that the bath is multidimensional in most cases of prac-
tical interest, which implies that propagating the actual
phase-space densities$s i j (Q,P;t)% is not feasible. However,
due to the classical nature of the dynamics, one may instead
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propagateQ and P, and take advantage of the fact that
eeLavs i j @Q,P#5s i j @Q(t1e),P(t1e)#, whereQ(t1e) and
P(t1e) are obtained by classical propagation, subject to the
HamiltonianHi j

av, and starting withQ(t)5Q andP(t)5P.
Operating witheeLs involves mixing between the various

bath phase-space densities$s i j (Q,P;t)%. A stochastic
branching algorithm similar to that used by Santer, Manthe,
and Stock79 can be used in order to accomplish this in terms
of classical trajectories, rather than in terms of the actual
phase-space densities. To this end, one defines the quantum
amplitude for a transition, within a time stepe, from one
Liouville space stateusi ,sj&&↔usi&^sj u to another Liouville
space stateusk ,sl&&↔usk&^sl u,

Tkl← i j 5^^sk ,sl ueeLsusi ,sj&&5^ i ue2 i eĤs /\uk&^ l uei eĤsu j &.
~51!

One then defines a transition probability as follows:

p~kl← i j !5
uT~kl← i j !u

(m,nuT~mn← i j !u
. ~52!

Thus, operating witheeLs on sW (Q,P;t) translates into ran-
dom hops of the trajectory from the potential surface
Vi j

av(Q), to another potential surface,Vkl
av(Q), with the prob-

ability for hopping within a time step given bypkl← i j ~the
trajectory may also stay on the same potential surface ifkl
5 i j ). It is important to note that each trajectory accumulates
a complex weighting factor, which is equal to one att50,
and is multiplied byT(kl← i j )/p(kl← i j ) at each time step,
based on the particular choice of a random hopping event.

The above discussion gives rise to the following numeri-
cal algorithm for solving the MQCL equation.

~1! For a given choice of a Liouville space state
usi ,sj&&, sample the initial values of the bath coordinate and
momentum,Q(0) andP(0), respectively, from the Wigner
distribution@ r̂b

eq#W(Q,P). It should be noted that, in the case
of an anharmonic system, the Wigner transform can be cal-
culated using the local harmonic approximation.59

~2! PropagateQ(0) andP(0) forward by one time step,
on the potential surfaceVi j

av(Q), to obtainQ(e) and P(e).
Also, calculate the corresponding phase factor ifiÞ j .

~3! Perform a random transition from theVi j
av(Q) sur-

face to anotherVkl
av(Q) surface, based on the probability

p(kl← i j ), and multiply the weight factor of the trajectory
by T(kl← i j )/p(kl← i j ).

~4! Repeat the procedure in steps 2 and 3 at subsequent
time steps.

~5! Sample over other values ofQ(0) andP(0) and for
other choices of initial Liouville space states.

~6! Compute the quantity of interest at each time step,
by averaging over all the trajectories~also taking into ac-
count their accumulated phases and weight factors!.

The algorithm described above is not feasible for long
times, due to the multiplicity of hopping events, which leads
to an exponential decrease of the weight factors of individual
trajectories, and therefore to an exponential increase in the
number of trajectories that one needs to sample in order to
obtain a converged result. For the model under consideration,
the overall time was set tot51.23104 a.u., as dictated by
the lifetime of the memory kernel. This time was split into 20

time steps, and second order Trotter splitting was employed
for the single time step propagator. 23106 trajectories were
found to be sufficient for obtaining a converged result for the
required correlations functions, and the memory kernel that
results from them. The procedure for obtaining the memory
kernel from the SDBCFs, and subsequently simulating the
system dynamics, is similar to that described in Ref. 45.

D. Results

In Fig. 1, we show the relaxation of the excited state
population, P1(t)5^1uŝ(t)u1&, to equilibrium, starting
from the initial state,ŝ(0)5u1&^1u. The results obtained
by solving the MQCL equation~solid line! are compared to
those previously obtained, for the same model, by the
LSC-MM method~dashed line!.57 It is important to note that
simulating this relaxation dynamics via a direct solution of
the MQCL equation is prohibitively expensive, and was
therefore not carried out in practice. It should also be noted
that the MQCL and LSC-MM methods are rather different,
despite the fact that they are both based on the linearization
of the FB path-integral action. More specifically:~i! the
MQCL equation is based on linearizing the IF, whereas the
LSC-MM method is based on linearizing the SDBCFs;~ii !
the MQCL approach treats the electronic DOF in terms of
the original basis set, whereas the LSC-MM method is based
on mapping it onto classical-like continuous DOFs. Despite
of those differences, the MQCL and LSC-MM methods lead
to results which are in good agreement with each other. It
should be noted that although solving the MQCL equation is
computationally more demanding, it has several advantages
over the LSC-MM approach, namely,~a! the MQCL equa-
tion is exact in the case where the bath is harmonic~as long
as the normal mode coordinates and frequencies in the
ground and excited electronic states are the same!; ~b! in the
case of anharmonic systems, the LSC-MM method has been
observed to yield unstable trajectories, which had to be dis-
carded in Ref. 57, while the MQCL method does not.

In the case of a TLS, it can be shown that out of the 16
matrix elements of the memory kernel, only four are inde-
pendent. Those four independent elements can be chosen as:
^^12uK~t!u11&&, ^^12uK~t!u22&&, ^^12uK~t!u12&&, and

FIG. 1. The relaxation ofP1(t)5^1uŝ(t)u1& to equilibrium in the case of
a TLS nonlinearly coupled to an anharmonic bath which consists of a chain
of 11 Helium atoms. Shown are the results based on using either the MQCL
equation~solid line!, or LSC-MM method~dashed line! for calculating the
memory kernel of the GQME.
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^^12uK~t!u21&&.45 Their real and imaginary parts, as ob-
tained via the MQCL and LSC-MM treatments, are shown in
Figs. 2 and 3, respectively. It should be noted that the time
scale of the memory kernel elements, which dictates the
memory time of the bath, is an order of magnitude shorter
than that of the system relaxation~see Fig. 1!. This is the
reason for why using the MQCL equation for calculating the
memory kernel is feasible, whereas using it for directly
simulating the system relaxation is prohibitively expensive.
The agreement between the MQCL and LSC-MM results is
clearly not as good as in the case of the actual system dy-
namics ~see Fig. 1!. This suggests that the actual system
dynamics is not very sensitive to the fine details of the SD-
BCFs. This observation is also consistent with similar obser-
vations discussed in Ref. 57.

V. SUMMARY

Many advances in path-integral and mixed quantum-
classical techniques for simulating many-body quantum dy-
namics have been made over the last few years. For the most
part, those advances were made independently, and relatively
little effort was put into understanding the relationship be-

tween those two approaches. The fundamental significance
of establishing such relations is obvious. However, such re-
lations are also desirable from a more practical point of view,
as they shed light on different aspects of the underlying ap-
proximations, as well as promote the transfer of techniques
between different approaches. In this paper, we established a
general relationship between the path-integral IF and mixed
quantum-classical Liouville descriptions of a system coupled
to a bath. We have found that the dynamics dictated by the
MQCL equation is equivalent to that dictated by a linearized
IF. One implication is that well established concepts and
techniques that were developed within the framework of the
path-integral formalism can now be applied within the
framework of a mixed quantum-classical treatment, and vice
versa. For example, an interesting alternative to actually
solving the MQCL equation, could be based on using path-
integral techniques in order to calculate the IF in Eq.~9!. As
for the MQCL equation, the computational cost involved in
evaluating the path integral in Eq.~13! will grow exponen-
tially with time. However, one could effectively restrict the
calculation to a relatively short time, by taking advantage of
the finite memory time of the bath. To this end, one could
employ a strategy based on the iterative tensor propagator
concept, similar to that employed by Makri and co-workers
in the context of the semiclassical approximation for the
IF.28–30 It should be noted that such an approach would cor-
respond to the path-integral analog of the GQME-based ap-
proach described above, which also takes advantage of the
relatively short memory time of the bath.~A general discus-
sion of the pros and cons of the GQME and IF approaches
can be found in Ref. 45.! One could also go in the opposite
direction, and explore other types of mixed quantum-
classical equations of motion that may originate from other
approximations for the IF.

We have also proposed a methodology which combines
the MQCL equation with the GQME equation. This strategy
circumvents the prohibitively high computational cost in-
volved in solving the MQCL equation for long times, by only
using it for calculating the, typically short-lived, memory
kernel of the GQME. The memory kernel can then be used as
input for a numerically exact solution of the GQME, which
is feasible as long as the system basis set is not extensive. We
have also reported a comparison between the MQCL and
LSC-MM approximations as ways for calculating the
memory kernel. In a previous study, we have found that sev-
eral trajectories become unstable within the framework of the
LSC-MM approximation, and needed to be discarded. This
unphysical instability can be traced back to the MM map-
ping, and the number of trajectories exhibiting it was found
to rapidly increase with time.57 The MQCL treatment de-
scribes the system in terms of the original basis set, and
therefore does not suffer from this problem. At the same
time, the MQCL equation is more demanding computation-
ally, and especially so at long times. Both methods yielded
almost identical results in the case of the model system stud-
ied in this paper. More applications would be needed in order
to gain further insight into the optimal balance between ac-
curacy, feasibility, and self-consistency of those two meth-
ods. It is nevertheless clear that pursuing such a MQCL-

FIG. 2. The real parts of̂^12uK~t!u11&& and ^^12uK~t!u22&& ~upper
panel!, ^^12uK~t!u12&& ~middle panel!, and ^^12uK~t!u21&& ~lower
panel!, for a TLS coupled to a linear chain of 11 Helium atoms. Shown are
the results obtained via the MQCL approximation, and LSC-MM method
~the latter are adopted from Ref. 57!.

FIG. 3. The imaginary parts of^^12uK~t!u11&& and^^12uK~t!u22&& ~up-
per panel!, and ^^12uK~t!u12&& ~lower panel!, for a TLS coupled to a
linear chain of 11 Helium atoms. Note that Im^^12uK~t!u21&&50 in this
case~see lower panel of Fig. 2 for its real part!. Shown are the results
obtained via the MQCL approximation, and LSC-MM method~the latter are
adopted from Ref. 57!.
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GQME approach would allow for the simulation of
nonequilibrium quantum dynamics of a system with an arbi-
trary coupling to an anharmonic environment, beyond the
domains of linear response theory and the Bloch-Redfield
equation.45,57 Many exciting applications fall into this cat-
egory, including nonadiabatic dynamics and optical chro-
mophore spectroscopy in liquid solution and other anhar-
monic media. Those and other applications are the subject of
ongoing work in our group, and will be reported in future
publications.
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APPENDIX A: THE DERIVATION OF THE MQCL
EQUATION IN THE DIABATIC CASE

This appendix outlines the derivation of Eq.~18! from
Eq. ~17!. To this end, we expand each of the three
e-dependent factors that appear in Eq.~17! in powers ofe,

expF2 i E
t

t1e

dtU~t!/\G
512

i

\
eU~ t !1¯, ~A1!

^si ue2 i eĤs /\usk&^sl uei eĤs /\usj&

5d i ,kd l , j1
i

\
e~d i ,k^sl uĤsusj&2d l , j^si uĤsusk&!1¯,

~A2!

d~Q2Qt1e!d~P2Pt1e!

5d~Q2Qt!d~P2Pt!2eH d~P2Pt!d8~Q2Qt!

3
]Hav

]P
2d~Q2Qt!d8~P2Pt!

]Hav

]Q J 1¯ . ~A3!

Equation~18! can be obtained by substituting those expan-
sions back into Eq.~17!, and calculating the overall first-
order term ine. The first-order term in Eq.~A1! gives rise
to the term 2( i /\)@Vbs(Q,si)2Vbs(Q,sj )#s i j (Q,P;t);
the first-order term in Eq.~A2! gives rise to the term
2( i /\) (k@^si uĤsusk& skl(Q,P;t)2s ik(Q,P;t)^skuĤsusj&#;
and the first-order term in Eq.~A3! gives rise to the term
$Hi j

av,s i j (Q,P;t)%.

APPENDIX B: THE DERIVATION OF THE MQCL
EQUATION OF MOTION IN THE ADIABATIC CASE

This appendix outlines the derivation of Eq.~36! from
Eq. ~29!. To this end, we apply the linearization approxima-
tion to the relevant terms@see Eqs.~31!–~35!#, and find the
overall first-order term in the expansion of Eq.~29! in pow-
ers ofe.

The e dependence of the integrand in Eq.~29! is con-

tained in a bath-dependent factor^Q1D/2ue2 i eĤb /\uQ8

1D8/2&^Q82D8/2uei eĤb /\uQ2D/2&, and a system-

dependent factor ^ l (Q8)ue2 i eĤa(Q81D8/2)/\uk(Q8)&
3^m(Q8)uei eĤa(Q82D8/2)/\un(Q8)&. The contribution to Eq.
~36! that arises from the zero-order system term and first-
order bath term is given by

1

2p\ (
k,m

E dQ8E dP8E dDE dD8e2 iPD/\eiP8D8/\

3^ i ~Q!uk~Q8!&^m~Q8!u j ~Q!&

3^Q1D/2ue2 i eĤb /\uQ81D8/2&

3^Q82D8/2uei eĤb /\uQ2D/2&skm
W ~Q8,P8;t !. ~B1!

We start by considering the term that corresponds tok5 i and
m5 j in Eq. ~B1!,

1

2p\ E dQ8E dP8E dDE dD8e2 iPD/\eiP8D8/\

3^Q1D/2ue2 i eĤb /\uQ81D8/2&

3^Q82D8/2uei eĤb /\uQ2D/2&s i j
W~Q8,P8;t !

'E dQ8E dP8s i j
W~Q8,P8;t !d~Q82Q2eP/M !

3d~P82Pt1eVb8~Q8!!, ~B2!

where the linearization approximation in Eq.~35! has been
employed. Expanding thed functions to first order ine then
yields the following contribution to Eq.~36!:

F2
P

M

]

]Q
1

]Vb

]Q

]

]PGs i j
W~Q,P;t !. ~B3!

Next, consider the term that corresponds tokÞ i andm
5 j in Eq. ~B1!,

1

2p\ (
k
E dQ8E dP8E dDE dD8e2 iPD/\eiP8D8/\

3^ i ~Q!uk~Q8!&^Q1D/2ue2 i eĤb /\uQ81D8/2&

3^Q82D8/2uei eĤb /\uQ2D/2&sk j
W~Q,P;t !, ~B4!

where we have used Eq.~31! in order to substitute
^ j (Q8)u j (Q)&51. According to Eq.~32!, the first nonvanish-
ing term in the expansion of^ i (Q)uk(Q8)& is of first order in
e. Thus, the first-order term in the expansion of Eq.~B4! in
powers ofe involves the following zero-order bath term:

@^Q1D/2ue2 i eĤb /\uQ81D8/2&^Q82D8/2uei eĤb /\u

3Q2D/2&#e505d@Q2Q81~D2D8!/2#

3d@Q2Q82~D2D8!/2#5d~Q2Q8!d~D2D8!. ~B5!

Thus, the corresponding contribution to Eq.~36! is given by

2(
kÞ i

dik

Pt

M
sk j

W~Q,P;t !. ~B6!
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Similarly, the term that corresponds tok5 i andmÞ j in Eq.
~B1! leads to the following contribution to Eq.~36!:

(
kÞ j

dk j

Pt

M
s ik

W~Q,P;t !. ~B7!

It should be noted that the terms in Eq.~B1! that correspond
to kÞ i andmÞ j do not contribute to Eq.~36!, since the first
nonvanishing term in the expansion is of second order ine.

The contribution to Eq.~36! that arises from the zero-
order bath term and first-order system term can be put in the
following form:

1

2p\ (
k,m

E dP8E dDe2 i ~P2P8!D/\

3^ i ~Q!ue2 i eĤa~Q1D/2!/\uk~Q!&

3^m~Q!uei eĤa~Q2D/2!/\u j ~Q!&skm
W ~Q,P8;t !. ~B8!

The term in the sum that correspond tok5 i andm5 j then
makes the following contribution to Eq.~36!:

2 iv i j ~Q!s i j
W~Q,P;t !1

1

2 S ^ i ~Q!u
Vbs

]Q
u i ~Q!&

1^ j ~Q!u
Vbs

]Q
u j ~Q!& D ]s i j

W~Q,P;t !

]P
. ~B9!

The terms in the sum that correspond tokÞ i and m5 j or
k5 i andmÞ j make the following contributions to Eq.~36!:

(
kÞ i

1

2
^k~Q!u

Vbs

]Q
u j ~Q!&

]sk j
W~Q,P;t !

]P
,

~B10!

(
kÞ j

1

2
^ i ~Q!u

Vbs

]Q
um~Q!&

]s im
W ~Q,P;t !

]P
.

Finally, as was noted above, terms withkÞ i and mÞ j do
not contribute to Eq.~36!.
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