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A derivation of the mixed quantum-classical Liouville equation
from the influence functional formalism
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We show that the mixed quantum-classical Liouville equation is equivalent to linearizing the
forward-backward action in the influence functional. Derivations are provided in terms of either the
diabatic or adiabatic basis sets. An application of the mixed quantum-classical Liouville equation
for calculating the memory kernel of the generalized quantum master equation is also presented.
The accuracy and computational feasibility of such an approach is demonstrated in the case
of a two-level system nonlinearly coupled to an anharmonic bath2084 American Institute of
Physics. [DOI: 10.1063/1.1771641

I. INTRODUCTION possible, to map the bath Hamiltonian onto a harmonic one.

) ] _ To the best of our knowledge, the only attempt so far for
Quantum effects play a central role in a variety of im- cajculating the IF in the case of nonlinear coupling to an

portant processes that take place in condensed phag@harmonic bath has been carried out by Makri and co-

. -3 . .
environments> Hence, the simulation of quantum dynam- workers, who proposed using the forward-backward semi-

ics in condensed phase hosts is one of the most importaRi,sgjca initial-value-representation approximation for this
challenges facing theoretical chemistry. Whereas numericall

exact classical molecular dynamics simulations are feasibl
for relatively complex many-body systems, the analogou
numerically exact solution of the Sclimger equation for

An alternative to the IF approach may be based on solv-
?ng the Nakajima-Zwanzig generalized quantum master

; 31-45 |\ s : }
such systems remains far beyond the reach of currently avaiﬁquat'on(GQME)’ which also provides an exact de

able computer resources, due to the exponential scaling Os}gnphon of the system dynamics. In this equation, the influ-

the computational effort with the number of degrees of frees 1o° of the bath on the system is given in terms ofeanory

dom (DOF). A common approach for dealing with this difi- kernelsuperoperator. The latter is analogous to the IF in the

culty is based on the observation that, in practice, one canense that it contains all the information needed in order to

often directly probe and/or manipulate only a few DOF. The&ccount f(?r the influence of the bath on the system dynamics.
subsystem subject to direct observation and/or manipulatioH1 Ia {)r(_ewous pﬁpi\?uwe gresen.ted a new fkrame:/vorlfhfor
may correspond to the reaction coordinate, a vibrationaf@cu'ating the Nakajima-Zwanzig memory kernel, without

mode of a solute molecule, or the electronic DOF of an op/€SOrting to the commonly made assumption of weak
tically excited chromophore molecule in solution. Thus, it is SYStem-bath coupling. The strategy that we proposed is based

worthwhile to consider a strategy that combines an accuraf@? €xpressing this kernel in terms of two-time system-
description of the subsystem, which will be referred tares ~ dePendent bath correlation functiogSDBCFs. We have
systerrfrom now on, with a minimal, yet accurate, treatment /S0 proposed to approximate the SDBCFs by 35Ing the
of the rest of the DOF, which will be referred to e bath ~ Meyer-Miller (MM) mapping for the system 5Dﬁd|§,‘ and
The key to the success of such an approach relies on ondi§€arizing the forward-backwardB) actior?™ in the cor-
ability to accurately describe those aspects of the many-bodﬁ?sPO”d'”g path-integral expressinThe resulting linear-
bath dynamics which affect the system. ized semiclassical Meyer-Mille(LSC-MM) approximation
One way of approaching this challenge is based on th&/as found to perform rather well when applied to benchmark
path-integral formulation of quantum mecharficé and in- models. It should also be noted that a similar linearization
troduces the influence of the bath in terms of an influencépproximation has been observed to lead to accurate results
functional (IF).” One of the most important advantages of When used for calculating reaction rate constahtsigh-
this approach has to do with the fact that thectlF can be ~ frequency vibrational energy relaxation rate constaht§,
obtained in closed form, in the case of linear coupling to a@nd nonradiative electronic relaxation rate constats.
harmonic batf¥~* This fact, in conjunction with important Another approach, which received much attention, is
algorithmic advances, such as the development of iterativeased on a mixed quantum-classical treatment. In this case,
tensor quasiadiabatic propagators by Makri and co-workerghe system is treated quantum mechanically, while the bath is
has opened the door to numerically exact calculations of thereated in a classical-like, trajectory-based, mafhamum-
reduced dynamics of this type of systefas long as one can ber of such mixed quantum-classical methodologies have
evaluate the remaining path integral over the systenbeen proposed, including ones based on a mean-field
DOF).12"2"However, there are many important systems, e.g.approactf*®® surface-hoppin§®~"° and hybrids that com-
liquid solutions, where it is difficult, and perhaps even im-bine those two strategiés:" More recently, Martens and
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co-workers have proposed an approach based on a mixaghere Q=(Q®,...QMN)), P=(P® ... PMN)  and
quantum-classical LiouviléMQCL) equation’*="" Over the (M®), ... MM are the corresponding coordinates, mo-
last few years, this approach has been further explored anfélenta, and masses, respectively. We assume that the depen-
developed by several groufis.® Within this approach, a dence ofV,, on the bath DOF can be given in terms @f
classical-like bath phase-space density(Q,P,t) is associ- \we also assume that the dependencé/p; on the system

ated with gach of the elements of the system reduced densityor «an pe given in terms of a single system operéor
matrix (i|o|j). The mixed quantum-classical equation of such that\A/bsz\A/bs((A),AS). Finally, let{|s,)|j = 1...n} be the

motion Of_U”(Q’P;t) can be derived in several w_aYe.g.,_ eigenbasis of the operat®, such thatS|s;)=si|s;), and
by replacing the commutators by the corresponding Pmssoq1 R <~ ] 1=
ereforeVbS(Q,S)|Sj>:VbS(Q,S]‘)|Sj>.

brackets, performing a partial Wigner transform over the! S

bath DOF, and taking thé—0 limit with respect to them, The state of the overall system at timés given by the
etc), and is referred to as the MQCL equation. ImportantdensIty operator
recent advances by Martewes al,’”%* Santer, Manthe, and
Stock,'79 l;lziesgsen, Kapral, and Ciccofit and Wan and ;)(t):e—iﬁt/ﬁ;,(o)eiﬁt/ﬁ, 3)
Schofield;“°* have led to the development of practical sto-
chastic trajectory algorithms for solving the MQCL equation.
Although the computational cost involved in solving the
MQCL equation is higher than that involved in either mean-
field or surface-hopping techniques, it has been observed to p(0)=p,(0)® o(0), (4)
be accurate in cases where those other techniques it

In this paper, we esFains.h a_general relgtior_lship betweeQes,mes a factorized forfip,(0) and &(0) correspond to
the IF formalism, the linearization approximation, and they,s gensity operators that represent the initial states of the

MQCL equation. We will also propose a scheme for extendy41h and the system, respectivieljhe sought after state of
ing the applicability of the MQCL equation to longer times, e system at time can then be described by the reduced
with the help of the GQME formalism. Our main goals are aSgensity operator

follows.

(i) To establish a relationship between the IF and MQCL . .
approaches, by showing that linearizing the FB action in the  o(t)=Tr[p(t)]=Try[e M p (0)2 0 (0)eV ],  (5)
exact path-integral expression for the IF is equivalent to the

MQCL equation. , , where T, stands for a partial trace over the bath DOF.

(i) To develop an approach which restricts the use of  pqr the sake of simplicity, the remainder of the deriva-
the MQCL equation to calculating the short-lived memory ;on will be presented in terms of a 1D bath, such thgt
kernel of the GQME. Subsequently, one can simulate rela- 1,0—-0W-Q, P~PU_P, MMM (the results can
tively slow nonequilibrium relaxation processes by solvingy,
the GQME in a numerically exact manner.

The structure of the remainder of this paper is as fol-aganted by a matrix in terms of the basis $&;)]
lows. In Secs. Il and Ill, we derive the MQCL equation, by _1 1 The elements of this matrix can be given in terms
linearizing the FB action in the IF in the case of diabatic andy¢ e following path-integral expressigi#2985
adiabatic basis sets, respectively. Section IV describes the
calculation of the GQME memory kernel, which is based on

solving the MQCL equation. The main results are S”mmaZs-|&(t)|s->=E z E E <Smefieliis/ﬁlsﬁ D
! ! g ¥ B
So

where the initial state,

e generalized to the case of a multidimensional bath in a
straightforward manngrAs is well known,o(t) can be rep-

rized and discussed in Sec. V. A more detailed outline of the

A . . . . SN-1 SN-1 So
derivations is provided in two appendixes.

X (sy e Ms|s5)(sga(0)]sg )
—laieHe /AN, . S ieHo /|
Il. THE DIABATIC CASE X(sg |€' s sy )+ (sn_q|€' s sy)

We consider a situation where a system of free Hamil- XFlso syl ®)

tonianH; is coupled to a bath of free Hamiltonidh, with . - . o
the coupling HamiltoniaV,¢, such that the overall Hamil- Hefe_,_si=s,_\l , S§j=Sn, €=t/N, andF [sqy ,...,sy] is the IF,
tonian is given by explicitly given by

H:HS+Hb+VbS' (1) N N M N
. . F[S6’---:5N]:(ﬁ) J'ng"‘J’dQﬁflJ' dQn
We assume that the bath under consideration can be de- The
scribed in terms ofN,, nuclear DOF, such that
[ aquy+ [ ooy

No rp(i)]2
~ [P «
Ho= 2, — 55 Vbl Q) )

(Q415(0)]Qp Y& (S —swr, (7)
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h
o slovls)=32 3 3 3 [ g, ap,

< < -
SN-1 SN-1 So

N-1 M Qt A2
" j+1 j + + o*
SN=6]207(%> = Vp(Qj) = Vus(Qj 15 ), .
) xpg“’(Qo,PO;O)exp[—i deTU(T)/h

andQy=Qy. ol ... fat|a—ieHs/i] ot

It should be noted that E6) is based on the quasiadia- X (syle™! " sy ) +(sp e e 5o )
batic partitioning of the overall Hamiltonian intds (the free ><<s§|&(0)|sg)(sg|ei eI:IS/h|SI>, ..
system Hamiltonianand H,,=Hp+ Vys. The dependence N
on the bath DOF is restricted to the latter, and ends up being X (Sy_4|€' s | sy). (13

integrated over in the IF. As a result, one can use a bath-

independentdiabatig basis set in order to represent the sys- )

tem density matrix. The quasiadiabatic partitioning is ex- ~ duation(13) can be used as such, as long as the nu-
pected to be particularly efficiefin the sense that relatively Merical evaluation of the path integral over the system DOF
long time steps may be useid cases where the bath dynam- is feasible(which will be the case if the system can be de-

ics is much faster than the system’s dynamics. Under thosecribed in terms of a relatively small basis)sétowever, our

circumstances, the bath DOF rapidly adjusts itself to the sysgoal here is to show that the approximation embodied by Eq.
tem displacement, such that the dependencE Qf on the (?3) |sf|tnhfa§/t| egllj_lvalen: to tr_;_attlrjlpderlélmg the dlapa:uc Vt?r-th
system DOF is truly parametric. sion of the MQCL equation. To this end, we associate a ba

In the next step, we apply the linearization approxima-F)h""s’e'SF"”‘Ce density;; (Q,P:1) with each system density

tion to the FB action in Eq(7). More specifically, we assume matrix element(s|o(t)]s;) such that

that the dominant contributions to the IF arise from FB paths

that are relatively close to each other, such Sjat- Sy can R

be replaced by its first-order expansion in terms of the de- <5i|0(t)|si>:J de dPa;;(Q,Pit). (14
viation between the forward and backward paths. The actual

derivation is similar to that involved in applying the same )

approximation to nonadiabatic correlation functions, and wadt Should be noted that the expectation value at tiroéany
described in detail elsewhete®?®Following the same pro- System operatoA can be written in terms of a bath phase-
cedure and making the transition from discrete time to conspace average of the following form:

tinuous time leads to the following approximation for the IF:

Flsg ,...551~Fi[Ss .....50] (A)(t):TrS(&(t)A)=j dQJ dPiEj aij(Q,P;OA;

1 15
~ 5 | 400 [ dPontiQo Poi0) 19

whereA; =(sj|A|si>.
: ©) According to Eq(13), ¢;(Q,P;t) may be written in the
following form:

t
X exp —iJ drU(7n)/h
0

where

oi(QP=2 X X X fonfdPopEV

1 » .
W . — —iPA/K
pb(Qo,Po,o) _27TfL f dAe

— SN-15N-1 So
~ t
X(Q+A/2|pp(0)|Q—A/2) (10 X(Qo,Po:O)eXp[—iJ d7U(7)
0
is the Wigner transform of the initial bath density operator, . .
. ) X(silem Mty ) (s e Ml 57
U(T):VbS[QTVST]_VbS[QﬂST]i (11) ~ oA
. . . . X (s |a(0)]sg )(sg |€'H's"|sy )
and the dynamics d®, is dictated by the following, explic- R
itly time-dependent, averaged classical Hamiltonian: X (sy_1l€' s s ) 8(Q— Q) 8(P—Py), (16)
ay, P 1 + - .
RO =537 T Ve(Q)+ 51Ved Q.8 1+ Vo d Q.5¢ 1 where Q, and P, are propagated classically based on the

(12) particular realization of the averaged Hamiltonian in B®)
[it should be noted that E416) involves integration over all
Substituting the linearized IF in Eq9) back into Eq.(6)  such possible realizatiohs
then yields the following approximate expression for a sys-  We next seek an equation of motion fe;(Q,P;t). To
tem density operator matrix element: this end, we note that
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lll. THE ADIABATIC CASE

7ii(Q,Pit+e)=2, JthJdPtUkl(QuPt;t) o o o
kil The derivation of thediabatic MQCL equation in the
e preceding section was based on the quasiadiabatic partition-
xex;{ —if drU(7)/% ing of the overall Hamiltonian intoHs and Hen=Hy,
i +Vys. In this section we consider an alternative partitioning
X<Si|efieHS/ﬁ|Sk><Sl|eieHS/ﬁ|sj> of the overall_ Hamllton_|an, which will lead to thadiabatic
MQCL equation. To this end, let

X6(Q— Q) (P—Pyio). 7

The equation of motion fow;; (Q,P;t) is then obtained from Ha=Hs+ Vps, (24)
Eq. (17), with the help of the identitydoy;(Q,P;t)/dt e . . _
=lim._ o[ 0i;(Q,P;t+¢€)—0y;(Q,P;t)]/e. An outline of the such thatH =H,+Hy,. Also, define an adiabatic system ba-
derivation is given in Appendix A, and only the final result is sis set that consists of the eigenstate$igf such that
given below, A

G QP o Ha(Q)k(Q)=E(QIK(Q)), k=L,..n. (25
={Hj vo’ij(Q1Pat)}_%[Vbs(Qrsi)

ot It should be noted that the adiabatic basis functions and cor-
—Vps(Q,5§)]04;(Q,P;t) responding energy levels are parametrically dependent on the
_ bath coordinate.
o 10 _ . In the next step, we take the partial Wigner transform,
h EK [(silHlsoG(Q.P:t) over the bath DOF, of the overall density operator,
—oi(Q,P;t) (s Hgls))]- (18 o 1 o A
Here, o (Q,P,t)—mf dAe (Q+A/2p(t)|Q—A/2).
(26)
Hav dai;(Q,P;t)
{H o (Q.PiD}= P It should be noted thatV(Q,P,t) is a system operator,
av which can be represented by a matrix in terms of the basis set
-~ aHij d0i;(Q,P;t) (19) {|k(Q))}, such that the characteristic matrix element is given
JP JQ by

is the classical Poisson bracket, and W _ ~ W ,
p2 oii (Q,P;1)=(i(Q)|aij (Q,P,1)]{(Q))
HY =5y TVi(Q), (20) 1

! ZwﬁfdAe—lPA/h<l Q) Q

where

Vi(Q)=Vp(Q) + [ Vid(Q,8) + Vire(Q,5) 1. (21)

Equation (18) corresponds to the MQCL equation, in
terms of the diabatic basis sgs;)|j=1,...n}. The emerging
description associates a different potential energy surfac

{Va"(Q)} with each of then? states in the system’s Liouville
Spacee7 {i,iN<[i)ll.i.j=1,...n}. The three terms on equivalent to that of the standard reduced density maitrix

the RHS of Eq.(18) correspond tdin the order of appear- More specifically, the expectation value of any system opera-
ance: (1) propagation of the bath phase-space densityfO" A at timet can be obtained fronior(Q,P;t)} via the
7;(Q,P;t) on the potential energy surfad§*(Q); (2) ac-  following identity:

cumulation of phase during this single surface propagation

in the off-diagonal casa#j); (3) transitions between sur- - _ AW e

Eaces, where '?he coupling eir)isés)from the off-diagonal matrix <A>(t)_f de dPTrLo(Q.PiUA]

elements of the system Hamiltoniafysi|Hg[s;),i#j}. It

+A2p(1]§(Q),Q—A2). 27

It should be noted that th€ dependence otr (Q,P;t)

arises from two sources, namely, from that(t) (Q,P;t)

nd from that of the basis set funct|oh$Q)) and|j(Q)).
Importantly, knowledge of the matm{«rIl (Q,P;t)} is

should also be noted that the factorized initial state in(Ep. =f de dPZ o}?’(Q,P;t)A,—i(Q), (28
implies that g
150)s)= WQ.P:0)(s|5(0)]s. whereA;;(Q)=(j(Q)IAli(Q))-
(slo(0ls;) f de dPpy (Q.P:0)(sa(0)]sy). Our goal in this section is to derive an equation of mo-

(22 tion for criVJ-V(Q,P;t), in a manner which is analogous to lin-
which implies that earizing the FB action of the IF in the diabatic case. To this

W R end, we note thadr i (Q,P;t+¢€) can be written in terms of
0ij(Q,P;t=0)=py'(Q,P;0)(s||a(0)|s;). 23 oMQ,P1),
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1 4 . S . .
O'i\?/(Q,P;t‘FE): 5o j dAe_'PA”‘G(Q),Q—l—A/2|e_'be”‘e"fHa”‘p(t)e'eHa”’e'be/h|j(Q),Q—A/Z)

:%k%n fdejdprf dAfdA/e—iPA/heiP’A'/ﬁ<i(Q)“(Q,))
X<|(Qr)|efiel:ia(Q'+A'/2)/h|k(Q/)><Q+A/2|efiel:|b/h|Ql+Ar/2>U\I£Vm(Qr,P/;t)

X(Q' —A"[2]el Hb/h|Q— A/2)(m(Q")|e'HalQ ~A 2 n(Q"))(n(Q)[}(Q)), (29)

where we have used the inverse Wigner transform, <n(Q)|eii|:|a(QiA/2)/ﬁ|n(Q)>

~ %<n(Q)|1+—;iGAa(Q_A/2)|n(Q)>
<k(q,)le A//2|p(t)|”|(Q,),Q’ A’/2> H +
bs(Q)

:f dP/eiP’A'/ﬁo_\liVm(Qr,Pr;t). (30) _% Q)__6< Q)| | (Q)>_
«(Q)
pf L eE(Q) 1 &n(Q) b(Q Q)5
The diagonal system overlap integrals that appear in Eq. (33)

(29) reduce to unity, in the limitt—0, due to the fact that
(n(Q)|an(Q)/3Q)xd(n(Q)|n(Q))/9Q=0 (normalization,

where the second equality involves the linearization approxi-
mation. Similarly, the off-diagonal system propagators that

(N(Q+8)In(Q)=(n(Q)IN(Q)) +(an(Q)/#QIn(Q))s  apPearin Eq(29)is approximated by

—(n(Q)In(Q))=1. (3D A
(n(Q)e™Ma( =42 m(Q))
. . bs(Q) A
The off-diagonal system overlap integrals are evaluated as ~— —e< (Q)| Im(Q)) =
follows: 2
d A
%exp| (@] (Q) mQ)5(-1L (39
(n(Q+6)|m(Q))
~(n(Q)ImM(Q))+(an(Q)/aQ|m(Q)) 5 where, once again, linearization has been employed. Finally,
p the FB action in the bath propagators that appear in(Z9).
=(n(Q)/IQIm(Q)) Mte is also linearized, such that they are approximated by
(32)
(Q+ A/l Mo/ Q + A'/2)(Q" — A’ /2l Mo /| Q— AL2)
(n(Q)Im(Q+9)) M i
~(n(Q)IM(Q))+(n(Q)|dm(Q)/3Q) QZWﬁeeXp[%[P‘(A_A JmVH(QDAT) 9

P
=((Q)Im(Q)/9Q) i «.

The equation of motion foraIJ (Q,P;t) is obtained
from Eqg. (29, via the identity daIl (Q,P;t)/dt
—I|mHO[<rI (Q,P;t+¢e)— (r,J(Q P;t)]/e, and with the
whereP;=M 6/ e. The diagonal system propagators that ap-help of Egs. (31) (35). An outline of the derivation is given
pear in Eq.(29) can be approximated by in Appendix B, and only the final result is given below,
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d P o F(Q+F(Q) ¢ )
w ) — i j w . w .
5t 7l (Q,Pit)= _[M %‘*’ % p|Yii (Q,P:t) —iw;j(Q)aij(Q,P;t)
P 1 VpdQ,S) AN
+ Z { — v G Q)+ 5 (I(Q) T“«Q))ﬁ oj(Q,P;t)
P 1 Npd(Q,S) . 0w
+|g:4j [Mdkj(Q)Jr E(WQHT“(QD% o (Q,P;t). (36)
|
Here, ;;(Q)=[E;i(Q) —E;(Q) ]/, more states. The adiabatic representation is particularly suit-
Y able to cases where the system dynamics is much faster than
— / i bs, he bath dynamics. Under those circumstances, the system
Fi(Q=—-V4(Q)—(i(Q) (Q @7 ! y - the sy
! b ( | 9Q | ) DOF rapidly adjust themselves to the displacements of the
are the Hellmann-Feynman forces, and bath, such tha_t the depe_ndencel-b; on the bath DOF is
truly parametric. A prominent example correspond to the
dmn(Q)=(m(Q)|on(Q)/4Q) (38  case where the system and bath correspond to electronic and

are the nonadiabatic coupling coefficients. nuclear DOFs, respectively.

Equation(36) corresponds to the MQCL equation in the
case of an adiabatic basis $&{°~®3The emerging descrip- V. CALCULATION OF THE MEMORY KERNEL OF
tion is similar to that obtained in the case of the diabaticTHE GENERALIZED QUANTUM MASTER EQUATION

basis set, in that it associates a different potential energg The generalized quantum master equation

surface, . . .
A major weakness of almost all available approximate

Vij(Q)=Vp(Q)+ 3[(i (Q)|VbS(Q,é)|i(Q)> methods for simulating many-body quantum dynamics has to
) - do with the fact that their accuracy and/or computational
+(j(Q)[Vps(Q,9)]j(Q))1, (39 feasibility deteriorate with time. The derivation of the MQCL

with each of then? states in the system’s Liouville space equation in Sec. Il implies that it is equivalent to linearizing
i Q) Q)<= ijV]i,j=1,...n}. The three terms on the the IF. It should be noted that the accuracy of the lineariza-
RHS of Eq.(18) correspond tdin the order of appeararice  tion @pproximation is known to detcriorate with time>°

(1) classical propagation of the bath phase-space denswevertheless, it is also known that the IF is characterized by
OiV-V(Q,P;t) on the V;;(Q) surface; (2) accumulation of a relatively short memory time in condensed phase systems.
phjase during this single surface propagatiém the case Thus, restricting the use of the linearization approximation to
where i#j); (3) transitions between surfaces, where thecalculating_ th_e short-lived IF is more Iik_ely to yield an accu-
nonadiabatic coupling arises from the off-diagonal matrix el-"ate description of the system relaxation at long tiniies

; p ; i to thelirect application of this approximation
ements{(i(Q)|dV,Q,S)/3Q|j(Q)) and {d;;}. It should comparison . )
also be noted that the factorized initial state in E4). im- UnforFunatfaIy, the computationa | cost of so!vmg the MQCL
plies that equation via the stochastic trajectory algoritlisee below

grows exponentially with time, which is attributed to ineffi-
ai‘?’(Q,P;t=0)=p\g"(Q,P;0)<i(Q)|&(0)|j(Q)>. (40 cient sampling due to branching of the trajectories between
) _ . the different surface Thus, one expects that a direct appli-
Equation(36) was derived based on the partitioning of ¢44i0n of the MQCL equation for simulating nonequilibrium
the overall Hamiltonian intoH,=H+V,s and Hy,. This  gynamics will only be feasible in the case of relatively rapid
partitioning dictated the use of an adiabatic system basis Sgls|axation processes. In this section, we propose a general
which is parametrically dependent on the bath coordinateyethodology which is based on restricting the use of the
The main advantage of this approach has to do with the fagocL equation to the calculation of the relatively short-
that it restricts the transitions between the surfaces to theyeq memory kernel of the GQME. Simulation of nonequi-
presumably localized, regions in space where there is signifiipriym relaxation processes, which may be characterized by
cant overlap betweefi(Q)) and|j(Q)). This results inthe |gnger time scales, is then made possible by solving the
minimization of the branching of the trajectory taken ®y GQME in a numerically exact manner.
between the various surfaces, which is desirable from the Tpe general theoretical framework for calculating the

point of view of computational feasibilitysee Sec. IVE At memory kernel has been described in previous pBéfs,
the same time, the main disadvantage of the adiabatic MQCLq will only be outlined below. The general approach is
approach has to do with the need to repeatedly diagonalizgased on describing the system’s dynamics in terms of the
Ha, on the fly, in order to adjust the basis set to variations inyakajima-zZwanzig GQME,

Q. While such a diagonalization can be performed analyti- )

cally in the case of two- and three-level systems, it can be- —o(t)=— I—U:* &(0)]- fthK(T)&(t_ 7. (41)
come the computational bottleneck in cases involving many  dt hts 0
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Here,K(7) is the memory kernel, whose explicit form is well is the familiar Lennard-Joned.J) potential. o and € are
known(e.g., see Ref. 45K (7) is a system superoperator that given by {open,€penl aNd{ohere €He-na fOr the HeA,

can be represented by @dx n? matrix in Liouville space. and He-He interactions, respectively. The system Hamil-
The input required for calculating the?xn? matrix that tonian is given by

representsC(7), in terms of the diabatic basis set of the sys-

~ s o e
tem, {|s;)|j=1,...n}, is given by~n* SDBCFs of the fol- Hs= Qo+ [A+ 2V (X) = V_(X)ecl 02, (46)
lowing form: where o, oy, o, are the familiar Pauli operators, and
. . . . (T)eq=Try(ppT). The system-bath coupling is given by
(F(2b,a,Li7) A)e=TrHAPETs1) (5ol €77 5) o
o Vos= AR ® 5, (47)
X (s,|Te M7, (42 \where
Here,ppi= e*B'z'b/Trb[e*B'z'g] is the equilibrium density op- A= VL (0 =V_() = (Vo (%)= V_(X))eql- (48

erator of the free bath, andl, I' correspond to various bath g giapatic basis is in this case given by the eigenfunctions
operators which are given explicitly in Refs. 45 and 57. Im- ¢ Gyt Og )= | E).
portantly, correlation functions of the form of E12) are Calculations pertaining to this model have been per-

generally short lived, as is the memory kernel that can bgymed using the following values of the parameteTs:
obtained from them. Thus, approximating them via the:l/kBﬂ=40K Chena=4.944a.U., Opyep—4.310a.U.

MQCL equation, followed by a calculation of the memory ehon/ks=25.1K, epond/ka=10.2K, Q=1.0x10"*a.u.
kernel, via the procedure described in Refs. 45 and 57, and g— 1 7w 10420 ar?&i,:o.z a.u. The local harmonic ép-
numerically exact solution of the GQME, can make it pos-pqyimation, which is described in detail in Ref. 59, has been

sible to accurately simulate relatively slow nonequilibrium ;seq in order to calculate the Wigner transform of operators
relaxation processes, which could not be described by dire%tf the formﬁf)eq [see Eq(42)]
b f .

application of the MQCL equation.
C. Computer algorithm

The theoretical framework for calculating the memory
kernel was given in terms of a diabatic representattdnis

We will now demonstrate this approach in the case of gherefore natural to use the diabatic MQCL equation for cal-
two-level system(TLS) nonlinearly coupled to an anhar- culating it (although it should be noted that a calculation
monic bath. The model employed is adopted from Ref. 57pased on an adiabatic basis set would probably be more ef-
where it was used for testing the LSC-MM approximation. Itficient). In this section, we outline the stochastic trajectory
consists of a linear chain of 11 Helium atoms that lie alongalgorithm employed for solving the adiabatic MQCL equa-
thex axis, and an atom, which is attached to one end of the tions. To this end, it is convenient to consider an
chain. AtomA and the 11th Helium atom at the other end of n>-dimensional vectora(Q,P;t) whose components are
the chain are held fixed at=0 andx=opyea+100hene,  9iven by{oi;(Q,P;t)|i,j=1,..n}. Equation(18) may then
respectively. The instantaneous positions of the first ten Hebe put in the following form:
lium atoms (=1,2,...,10) are given by{X;=ope.at (i P
—1)openet 6i}- Only nearest neighbor interactions along —&(Q,P;t):(ﬁav+£phaS@L£S)&(Q,P;t)
the chain are taken into account. The TLS corresponds to an at

B. The model

internal DOF of atomA, and the interaction between atgin =La(Q,P;t), (49)
and the Helium atom attached to it depends on the internal 20 2 .
state of atomA. where Ly, Lonase and Lg represenin“xn matrices that

correspond to the three terms on the RHS of @§), in the

The bath Hamiltonian is given b
g y order in which they appear there. The propagation of

~ 10 (p* )2 1 A A a(Q,P;t) from timet to timet+ e, wheree is a small time
Hb=k2l M e + E[V+(x)+V,(x)], (43)  step, can then be put in the following form:
a(Q,P;t+ e)=e“seLig(Q,P;t), (50)
where, Where £4= Lo+ Lonase
V. :U[';-A(UHQ_A+ S1%r0) Operating withe“d on ¢(Q,P;t) is relatively straight-

forward becausey corresponds to diagonal rfx n? ma-
He-H trix. Thus, each of the bath phase-space densities
+241 003" (Thetet 17 ). (44) {i;(Q,P;t)} is independently propagated subject to the
classical HamiltonianH{’, with the off-diagonal onesi(
Here,V. correspond to the potential energy that correspond#j) also accumulating phase in the process. It should be
to the two state$*) of the TLS, and noted that the bath is multidimensional in most cases of prac-
1 tical interest, which implies that propagating the actual
g o
7 -[3

10

® phase-space densitigs;; (Q,P;t)} is not feasible. However,

(45) due to the classical nature of the dynamics, one may instead

ULJ(r):4€
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propagateQ and P, and take advantage of the fact that Iy
e“Caig;[Q,P]=0;[Q(t+€),P(t+€)], whereQ(t+¢) and —MQCL

P(t+ €) are obtained by classical propagation, subject to the 081 ---LSC-MM
HamiltonianH{’, and starting withQ(t)=Q andP(t)=P.

Operating withe¢*s involves mixing between the various - 0.6 |
bath phase-space densitigsr;j(Q,P;t)}. A stochastic ;{'04_ |
branching algorithm similar to that used by Santer, Manthe, '
and Stock® can be used in order to accomplish this in terms 02- |
of classical trajectories, rather than in terms of the actual
phase-space densities. To this end, one defines the quantum O

0 5 10 15 20

amplitude for a transition, within a time stegp from one 4
Liouville space statgs; ,s;))<|s;)(sj| to another Liouville t/10°au
space statgs,,s;)) < |s)(si|, FIG. 1. The relaxation oP, (t)=(+|&(t)|+) to equilibrium in the case of
oA oA a TLS nonlinearly coupled to an anharmonic bath which consists of a chain
Thij=((s« S| e5ss; ,Sj))=(i le~TeHs R k) (I]eleHs]j). of 11 Helium atoms. Shown are the results based on using either the MQCL

(51) equation(solid ling), or LSC-MM method(dashed ling for calculating the
] » N memory kernel of the GQME.
One then defines a transition probability as follows:

[ T(kl—ij)] (52) time steps, and second order Trotter splitting was employed
Sl T(Mn—ij)|” for the single time step propagatorx4(® trajectories were
found to be sufficient for obtaining a converged result for the
required correlations functions, and the memory kernel that
results from them. The procedure for obtaining the memory
kernel from the SDBCFs, and subsequently simulating the
if system dynamics, is similar to that described in Ref. 45.

p(kl—ij)=

Thus, operating witre’s on ¢(Q,P;t) translates into ran-
dom hops of the trajectory from the potential surface
Vi (Q), to another potential surfac¥(Q), with the prob-
ability for hopping within a time step given byy,._;; (the
trajectory may also stay on the same potential surfade
=ij). Itis important to note that each trajectory accumulates
a complex weighting factor, which is equal to onetat0, D. Results
and is multiplied byT(kl«—ij)/p(kl«<ij) at each time step, In Fig. 1, we show the relaxation of the excited state
based on the particular choice of a random hopping event. population, P, (t)=(+|o(t)|+), to equilibrium, starting
The above discussion gives rise to the following numeri-from the initial state,0(0)=|+ )(+|. The results obtained
cal algorithm for solving the MQCL equation. by solving the MQCL equatiofisolid line) are compared to
(1) For a given choice of a Liouville space state those previously obtained, for the same model, by the
|si.s;)), sample the initial values of the bath coordinate and_SC-MM method(dashed ling®” It is important to note that
momentum,Q(0) andP(0), respectively, from the Wigner simulating this relaxation dynamics via a direct solution of
distribution[ p£"¥(Q, P). It should be noted that, in the case the MQCL equation is prohibitively expensive, and was
of an anharmonic system, the Wigner transform can be cakherefore not carried out in practice. It should also be noted
culated using the local harmonic approximatfon. that the MQCL and LSC-MM methods are rather different,
(2) Propagat&)(0) andP(0) forward by one time step, despite the fact that they are both based on the linearization
on the potential surfac®"(Q), to obtainQ(e) andP(e).  of the FB path-integral action. More specificallfi) the
Also, calculate the corresponding phase factarf. MQCL equation is based on linearizing the IF, whereas the
(3) Perform a random transition from these}"(Q) sur-  LSC-MM method is based on linearizing the SDBCHs)
face to anotheV{(Q) surface, based on the probability the MQCL approach treats the electronic DOF in terms of
p(kl—ij), and multiply the weight factor of the trajectory the original basis set, whereas the LSC-MM method is based

by T(kl«—ij)/p(kl—ij). on mapping it onto classical-like continuous DOFs. Despite
(4) Repeat the procedure in steps 2 and 3 at subsequeat those differences, the MQCL and LSC-MM methods lead

time steps. to results which are in good agreement with each other. It
(5) Sample over other values f(0) andP(0) and for  should be noted that although solving the MQCL equation is

other choices of initial Liouville space states. computationally more demanding, it has several advantages

(6) Compute the quantity of interest at each time steppver the LSC-MM approach, namelgg) the MQCL equa-
by averaging over all the trajectorig€also taking into ac- tion is exact in the case where the bath is harméagclong
count their accumulated phases and weight fattors as the normal mode coordinates and frequencies in the

The algorithm described above is not feasible for longground and excited electronic states are the $athgin the
times, due to the multiplicity of hopping events, which leadscase of anharmonic systems, the LSC-MM method has been
to an exponential decrease of the weight factors of individuabbserved to yield unstable trajectories, which had to be dis-
trajectories, and therefore to an exponential increase in thearded in Ref. 57, while the MQCL method does not.
number of trajectories that one needs to sample in order to In the case of a TLS, it can be shown that out of the 16
obtain a converged result. For the model under consideratiomatrix elements of the memory kernel, only four are inde-
the overall time was set tb=1.2x10%a.u., as dictated by pendent. Those four independent elements can be chosen as:
the lifetime of the memory kernel. This time was split into 20 ((+—|K(7)|++)), {+—|K(D|—=)), {+—|K(D|+—)), and
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0 : e tween those two approaches. The fundamental significance
04 .:5-(';/.'..'..'12.*.1‘@%‘5{\%‘\2“ of establishing such relations is obvious. However, such re-
Sosl /T Mec lations are also desirable from a more practical point of view,
<= of : | as they shed light on different aspects of the underlying ap-
= ot proximations, as well as promote the transfer of techniques

il T LM ] between different approaches. In this paper, we established a
f‘-g } - general relationship between the path-integral IF and mixed
E (I A . guantum-classical Liouville descriptions of a system coupled
0.1F N\ 1 to a bath. We have found that the dynamics dictated by the
0.2f s | MQCL equation is equivalent to that dictated by a linearized
50‘?(0au) 10000 IF. One implication is that well established concepts and

techniques that were developed within the framework of the
FIG. 2. The real parts of(+—|K(s)|++)) and (+—|k(n|——) (upper  Path-integral formalism can now be applied within the
pane), ((+—|K(n]+-)) (middle panel, and ((+-|K(n|-+)) (ower  framework of a mixed quantum-classical treatment, and vice
pane), for a TLS_ coupl_ed to a linear chain qf 11_He|ium atoms. Shown areyersa. For example, an interesting alternative to actually
the results obtained via the MQCL approximation, and LSC-MM method . . .
(the latter are adopted from Ref. 57 §olvmg the MQCL gquatlon, could be based on using path-

integral techniques in order to calculate the IF in BJ. As

for the MQCL equation, the computational cost involved in
<<+—|IC(T)|—+>>.45 Their real and imaginary parts, as ob- evaluating the path integral in E¢L3) will grow exponen-
tained via the MQCL and LSC-MM treatments, are shown intially with time. However, one could effectively restrict the
Figs. 2 and 3, respectively. It should be noted that the timegalculation to a relatively short time, by taking advantage of
scale of the memory kernel elements, which dictates thenhe finite memory time of the bath. To this end, one could
memory time of the bath, is an order of magnitude shorteemploy a strategy based on the iterative tensor propagator
than that of the system relaxatigeee Fig. 1 This is the  concept, similar to that employed by Makri and co-workers
reason for why using the MQCL equation for calculating thein the context of the semiclassical approximation for the
memory kernel is feasible, whereas using it for directly|F28-30|t should be noted that such an approach would cor-
simulating the system relaxation is prohibitively expensive.respond to the path-integral analog of the GQME-based ap-
The agreement between the MQCL and LSC-MM results isproach described above, which also takes advantage of the
clearly not as good as in the case of the actual system dyelatively short memory time of the battA general discus-
namics (see Fig. 1 This suggests that the actual systemsjon of the pros and cons of the GQME and IF approaches

dynamics is not very sensitive to the fine details of the SD-Can be found in Ref. 45_One could also go in the oppOSite
BCFs. This observation is also consistent with similar Obserdirection, and exp|ore other types of mixed quantum-

vations discussed in Ref. 57. classical equations of motion that may originate from other
approximations for the IF.
V. SUMMARY We have also proposed a methodology which combines

Many advances in path-integral and mixed quantumine MQCL equation with the GQME equation. This strategy
classical techniques for simulating many-body quantum dy€ircumvents the prohibitively high computational cost in-
namics have been made over the last few years. For the mog@!ved in solving the MQCL equation for long times, by only
part, those advances were made independently, and relativefiping it for calculating the, typically short-lived, memory

little effort was put into understanding the relationship be-kernel of the GQME. The memory kernel can then be used as
input for a numerically exact solution of the GQME, which

is feasible as long as the system basis set is not extensive. We
have also reported a comparison between the MQCL and
LSC-MM approximations as ways for calculating the
memory kernel. In a previous study, we have found that sev-
i MQCL eral trajectories become unstable within the framework of the
=+ MQCL LSC-MM approximation, and needed to be discarded. This

L
T T T

oo
[ 3%

<

o &
o W

Im{K, (D] x10°(aw)

2r 1 unphysical instability can be traced back to the MM map-
0' ping, and the number of trajectories exhibiting it was found
—me o LSC-MM to rapidly increase with tim&’ The MQCL treatment de-
2 — ++MQCL scribes the system in terms of the original basis set, and
4 P S — therefore does not suffer from this problem. At the same
0 5000 10000

time, the MQCL equation is more demanding computation-
ally, and especially so at long times. Both methods yielded
FIG. 3. The imaginary parts df+—|iC(7)|++)) and((+—|K(9|--)) (up-  almost identical results in the case of the model system stud-
per pane), and ((+—|K(7)|+—)) (lower panel, for a TLS coupled to a jed in this paper. More applications would be needed in order

linear chain of 11 Helium atoms. Note that —|K(n|~+)=0 in this ) oain further insight into the optimal balance between ac-
case(see lower panel of Fig. 2 for its real parShown are the results

obtained via the MQCL approximation, and LSC-MM mettitiee latter are ~ CUracy, _feaSib”ith and self-consistency (_)f those two meth-
adopted from Ref. 57 ods. It is nevertheless clear that pursuing such a MQCL-

t(au)
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GQME approach would allow for the simulation of

Q. Shi and E. Geva

The e dependence of the integrand in EQ9) is con-

nonequilibrium quantum dynamics of a system with an arbitzined in a bath- -dependent faCtQQ+A/2|e_'be/ﬁ|Q

trary coupling to an anharmonic environment, beyond the
domains of linear response theory and the Bloch-Redfield

equatior®>®’ Many exciting applications fall into this cat-

+A2)(Q'—A'/2e" b "|Q—-A/2), and a  system-

dependent factor  (1(Q')|e 'eHa(Q +A"2)/A | (Q"))

egory, including nonadiabatic dynamics and optical chro-x(m(Q’)|e'Ha(Q'=4"2/4n(Q")). The contribution to Eq.
mophore spectroscopy in liquid solution and other anhar{36) that arises from the zero-order system term and first-
monic media. Those and other applications are the subject gfrder bath term is given by

ongoing work in our group, and will be reported in future

publications.
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APPENDIX A: THE DERIVATION OF THE MQCL
EQUATION IN THE DIABATIC CASE

This appendix outlines the derivation of E@.8) from

Eq. (17). To this end, we expand each of the three

e-dependent factors that appear in E4j7) in powers ofe,

ex;{—iftﬂdrU(r)/ﬁ}
t

Sl eU()+e,

5 (A1)
(sle i Hs/M|s (s |l s))
i ~ “
=6 k0t g6(5i,k<3||Hs|Sj>_ 8 j(silHgls)) +- -,
(A2)
H(Q—Q4)(P—Piiy)
=6(Q—Qps(P—Py— 6[ S(P—Py)8'(Q—Qy)
(9P )6'(P—P (9Q (A3)

Equation(18) can be obtained by substituting those expan-
sions back into Eq(17), and calculating the overall first-

order term ine. The first-order term in Eq(Al) gives rise
to the term —(i/A)[Vps(Q,Si) — Vus(Q,Sj)]oij(Q,P;t);
the first-order term in Eq(A2) gives rise to the term
—(i/h) [ (si|Hglsk) 01(Q,P;t) — i (Q, P;t)(su[Hsls) 1;
and the first-order term in EqA3) gives rise to the term

{Hﬁv,a',j(Q,P;t)}.

APPENDIX B: THE DERIVATION OF THE MQCL
EQUATION OF MOTION IN THE ADIABATIC CASE

This appendix outlines the derivation of E@6) from

1 ) )
’ ’ 1 A—IPAIR AP A 1R
>k kEYm, fdQ de JdAJ’dA e e

X(1(Q)[k(Q")XmM(Q"[j(Q))
X(Q+A/2le 1 Ho/h|Q + A /2)

X(Q'—A'[2le M Q- AoV (Q' P"it).  (B)

We start by considering the term that corresponds+d and
m=j in Eq. (B1),

1 ) )
’ ’ 1 a—iPA/RAIP A IR
_2wﬁfdededAfdAe e

X(Q+A/2le M/ |Q +A"/2)

X(Q' —A'/2lei M| Q— A1) (Q,P';1)

fdQ fdP’o- (Q',P":1)8(Q'—Q—ePIM)

X S(P' =P+ eV{(Q")), (B2)

where the linearization approximation in E@5) has been
employed. Expanding thé functions to first order ire then
yields the following contribution to Eq.36):

{_Ei

Ny 3
+
M JQ

JQ P (B3)

i (Q,P;t).

Next, consider the term that correspondsktéi andm
=j in Eq. (B1),

1 A—iPA/R |PA/ﬁ
ZWﬁZJdQJdPJdAJdA

X (i(Q)[K(Q")WQ+A/2le Holi| Q" + A" /2)

X(Q' —A'[2el o/t Q— A1) (Q,P;1), (B4)

where we have used Eq31) in order to substitute
(1(QN]i(Q))y=1. According to Eq(32), the first nonvanish-
ing term in the expansion ¢f(Q)|k(Q")) is of first order in
e. Thus, the first-order term in the expansion of E84) in
powers ofe involves the following zero-order bath term:

[<Q+A/2|efiel:|b/h|Ql+Ar/2><Qr_Ar/2|eieI:|b/h|
—A/2)]e=0=0[Q-Q"+(A—A")2]

XQ-Q'—(A-A")/2]=6Q-Q")s(A-A"). (BY)

Eq. (29). To this end, we apply the linearization approxima- Thus, the corresponding contribution to Eg6) is given by

tion to the relevant termgsee Eqs(31)—(35)], and find the
overall first-order term in the expansion of EQ9) in pow-
ers ofe.

P
=2 digy o¥/(Q.Pi). (B6)
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Similarly, the term that correspondske-i andm#j in Eq.
(B1) leads to the following contribution to E¢36):

> d Ea.W(Q P;t) (B7)

& kj M ik bt/

It should be noted that the terms in E§.1) that correspond

to k#i andm#]j do not contribute to E¢36), since the first

nonvanishing term in the expansion is of second orded. in
The contribution to Eq(36) that arises from the zero-

order bath term and first-order system term can be put in theg.

following form:

(P—P")A/%
27rﬁkm fdP fdAe

X (1(Q)|eHalQr &%) (Q))

X (m(Q)|eieHal @211 j(Q)y ol (Q,P':1). (B8)

The term in the sum that correspondkei andm=|j then
makes the following contribution to E¢36):

—i0y(Qal(Q.P; t>+ <I(Q)| 5liQ)
HQ.Pit)
+(iQl 5 |J(Q)>)J—p (B9)

The terms in the sum that correspondkt®i andm=j or
k=i andm#j make the following contributions to E¢36):

YQ,P;t)
> <k(Q)| |J<Q>>k‘—
1 Vv oV (Q,P;t) (B10)
. bs O-|m y Ty
2 2 ((Ql5gImQ) —=5—.

Finally, as was noted above, terms wkk:i and m#j do
not contribute to Eq(36).
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