
JOURNAL OF CHEMICAL PHYSICS VOLUME 119, NUMBER 23 15 DECEMBER 2003
A new approach to calculating the memory kernel of the generalized
quantum master equation for an arbitrary system–bath coupling
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The Nakajima–Zwanzig generalized quantum master equation provides a general, and formally
exact, prescription for simulating the reduced dynamics of a quantum system coupled to a quantum
bath. In this equation, the memory kernel accounts for the influence of the bath on the system’s
dynamics. The standard approach is based on using a perturbative treatment of the system–bath
coupling for calculating this kernel, and is therefore restricted to systems weakly coupled to the
bath. In this paper, we propose a new approach for calculating the memory kernel for an arbitrary
system–bath coupling. The memory kernel is obtained by solving a set of two coupled integral
equations that relate it to a new type of two-time system-dependent bath correlation functions. The
feasibility of the method is demonstrated in the case of an asymetrical two-level system linearly
coupled to a harmonic bath. ©2003 American Institute of Physics.@DOI: 10.1063/1.1624830#
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I. INTRODUCTION

Quantum dynamical effects play a central role in a va
ety of important processes that take place in condensed p
environments.1–3 Important examples, which are particular
relevant to chemistry, include proton and electron trans
reactions,4–17 intramolecular vibrational relaxation,18–43 and
optical and infrared chromophore spectroscopy a
photochemistry.44–79

The simulation of quantum dynamics in condens
phase hosts is one of the most important challenges fa
theoretical chemistry. A numerically exact solution of t
Schrödinger equation80–84 in the case of general many-bod
systems remains far beyond the reach of currently availa
computer resources, due to the exponential scaling of
computational effort with the number of degrees of freed
~DOF!. A common approach for dealing with this difficult
focuses on computing more reduced quantities, which
directly related to the relevant experimental probes. T
such, inter related, reductionist strategies have been foun
be particularly useful in practice:

~i! Description in terms of the reduced density opera
~RDO!85 of a relatively low dimensional subsystem, which
subject to direct experimental manipulation and/or obser
tion. The subsystem may correspond to the reaction coo
nate in an electron or proton transfer reaction, a relax
vibrational mode of a solute molecule, or an optically act
transition in a solvated chromophore molecule. One m
then employ a strategy which combines an accurate des
tion of the subsystem’s quantum dynamics, with a minim
treatment of the dynamics of the rest of the DOF~the bath!,
to the extent that will make it possible to accurately capt
their effect on the subsystem of interest.

~ii ! Description in terms of time correlation function
~TCFs!, which represent much simpler, and averaged o

a!Author to whom correspondence should be addressed. Electronic
eitan@umich.edu
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mathematical constructs in comparison to multidimensio
wave functions. Thus, a reaction rate constant may be wri
in terms of the flux–flux correlation function,4,5 a vibrational
energy relaxation rate constant may be put in terms of
force–force correlation function,18–20 and spectroscopic re
sponse functions are often expressed in terms of dipole
relation functions.57 Those time correlation functions can ob
viously be obtained by averaging over the multidimensio
wave functions of the overall system. However, the true ch
lenge lies in finding effective, computationally feasible, a
versatile methods for calculating quantum-mechanical TC
by taking advantage of their more averaged nature, in or
to avoid the obvious, yet hopeless, wave-function-ba
route.

The starting point of the RDO approach is based on fi
ing compact, yet effective, ways for characterizing the infl
ence of the bath on the subsystem’s dynamics. One stra
is based on finding the equation of motion that governs
dynamics of the RDO. This equation must include a dissi
tive term that accounts for the influence of the bath. Seve
versions of the exact reduced equation of motion, a
known as the generalized quantum master equa
~GQME!, have been proposed.86–94 However, the use of
those GQMEs as such, has been scarce due to the compl
of the dissipative term. As a result, those GQMEs have b
mostly used as the starting point of more approximate tre
ments, which lead to a more manageable dissipative term
very popular approach is based on the assumption that
subsystem is weakly coupled to the bath, and that its re
ation occurs on a time scale which is much longer than t
of the bath fluctuations. This results in a Markovian quant
master equation~QME!, where the influence of the bat
shows up via population and phase relaxation rate const
~note that the name QME is reserved in this paper for
weak coupling limit of the GQME!.85,91,93,95–115In fact, the
latter can be expressed in terms of two-time free-bath TC
and as such form a bridge between the RDO and TCF
il:
3 © 2003 American Institute of Physics
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proaches. However, one must not lose sight of the fact
the assumptions of weak coupling and Markovity impo
serious restrictions on the range of phenomena that ca
captured by QMEs. For example, QMEs, either Markov
or non-Markovian, are unable to describe such import
phenomena as solvation dynamics and solvent memory
fects, which are central to solution chemistry.

It should also be noted that the derivation of the QM
has been extended so as to account for fourth order term
the system–bath coupling104,116–119~as opposed to the stan
dard derivation, which only accounts for second ord
terms!. Most applications of this approach were restricted
the spin-boson problem, where important insight has b
gained. However, the fact that the fourth order terms
generally expressed in terms of triple integrals over four-ti
free-bath TCFs, would make a general computational imp
mentation of this scheme rather difficult. An alternative a
proach has been based on optimizing the separation o
overall system into system and bath, such that weak coup
is satisfied.106 This approach is most effective when one c
identify a few local or collective bath coordinates which a
strongly coupled to the system of interest, while wea
coupled to the other bath modes, and include them in
system Hamiltonian.120,121Alternatively, one may attempt a
canonical transformation of the overall Hamiltonian, th
may lead to newly defined, and presumably weakly coup
system and bath terms, which mix the original system a
bath coordinates.122 Both approaches have been demo
strated with impressive success in the spin-boson case, w
it is relatively easy to identify the above mentioned stron
coupled bath coordinate, or come up with the suitable
nonical transformation. Unfortunately, accomplishing this
more complex and anharmonic systems appears to be
more difficult, and, to the best of our knowledge, represe
an unresolved problem at the present time. Another rec
attempt at extending the applicability of QMEs beyond t
weak coupling limit, has been based on anapproximatere-
summation of all the terms in the perturbation expansion
infinite order.123–125 Although this approach was found t
yield accurate predictions in the context of charge trans
the general applicability of the approximations underlying
is not clear at the present time.

An alternative to the GQME-based approach, wh
gained popularity over the last several decades, is base
the path integral formulation of quantum mechanics,126–128

and introduces the influence of the bath in terms of an in
ence functional~IF!.129 One of the most impressive triumph
of this approach over the QME approach, had to do with
fact that theexactIF can be obtained in closed form, in th
case of linear coupling to a harmonic bath.130–133This fact,
in conjunction with important algorithmic advances, such
the development of iterative tensor quasiadiabatic propa
tors ~QUAPIs! by Makri and co-workers, have opened th
door to numerically exact calculations of the reduced dyna
ics of this type of systems~as long as one can evaluate t
remaining path integral over the subsystem DOF!.10,134–148

However, there are many important systems, e.g., liquid
lutions, where it is difficult to map the bath Hamiltonian on
a harmonic one. Recent attempts by Makri and co-worker
at
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use semiclassical approximations in order to evaluate th
in the case of anharmonic baths and nonline
coupling11,149,150 appear promising, although their gener
applicability remains unclear at this preliminary stage
their development.

The TCF approach relies on finding a relationship b
tween nonequilibrium quantum dynamics and TCFs, wh
characterize the equilibrium dynamics of the system. O
relationship, which has been pointed out above, put
population and phase relaxation rate coefficients of a s
system weakly coupled to a bath in terms of free-bath TC
For example, the expression for the vibrational energy rel
ation rate constant in terms of a force–force correlation fu
tion, falls into this category. Another, distinctly different typ
of relationship can be established with the help of line
response theory~LRT!. The latter is based on the fact that th
nonequilibrium relaxation dynamics of a system in the clo
vicinity of equilibrium, is the same as that of the relaxatio
of its spontaneous fluctuations around equilibrium, i.e.,
the corresponding TCF.103 It is important to note that LRT
does not require a separation of the overall system int
subsystem and a bath, and obviously does not make
assumption regarding their coupling. However, LRT is
stricted to systems in the close vicinity of thermal equili
rium, which implies that it will be particularly useful in two
situations:~1! when the system is subject to a relatively we
external perturbation, which shifts the system only sligh
relative to its equilibrium state and~2! when the system fol-
lows rate kinetics, such that the rate constant does not
pend on the initial state, and can therefore beconveniently
calculated with an initial state which is in the close vicini
of equilibrium. An important example for the first scenario
provided by linear spectroscopy, where the laser field is of
assumed to be a small perturbation. For example, the abs
tion spectrum can be expressed in terms of a two-time dip
TCF. In fact, this approach can be extended so as to acc
for higher order nonlinear response to the laser field, and
it in terms of multitime dipole TCFs.57 An important ex-
ample of the second scenario is given by chemical reactio
where rare event statistics associated with barrier cros
leads to rate kinetics.4,15

The development of methods for computing quantu
mechanical TCFs continues to be at the forefront of theo
ical and computational physical chemistry research. Sev
strategies have been proposed in order to address the
lenge of providing an effective, computationally feasib
and versatile approximate method for calculating quantu
mechanical TCFs. Those methods are based on various
proaches, including a mixed quantum-classic
treatment,151–156 analytical continuation,12–14,38,157–162cen-
troid molecular dynamics,9,15,16,37,42,163–175quantum mode
coupling theory,161,176–179 and the semiclassical~SC!
approximation.2,11,180–197

The various approaches mentioned above provide p
erful tools for dealing with a wide variety of quantum ph
nomena that occur in condensed-phase systems. How
the assumptions upon which they are based, also mak
difficult to apply those methods to many other importa
problems. For example, the computation of the multitim
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dipole correlation functions, required for analyzing nonline
optical experiments in liquid solutions, can be very cos
even after the implementation of rather severe approxi
tions. It is also becoming increasingly important to consid
the impact of intense laser fields, e.g., in the area of cohe
control.198–202In addition to that, many relaxation process
cannot be characterized by rate constants. A direct treatm
in terms of the nonequilibrium dynamics of the RDO appe
to offer an attractive alternative in such situations. Howev
QMEs are restricted to systems weakly coupled to their
vironments, and miss many important phenomena as a re

The dilemma described above provided the motivat
for the work reported in the present paper. Below, we p
pose a new approach which goes back to the formally e
GQME, and addresses the question of computing its diss
tive part without resorting to the assumptions of we
system–bath coupling and Markovity. The analysis is p
formed in terms of the Nakajima–Zwanzig formulation
the GQME,86–94,97–101where the problem of evaluating th
dissipative part reduces to computing a memory kernel
peroperator. The strategy we propose is based on expre
this kernel in terms of two-time system-dependent TC
which should be contrasted to the free-bath TCFs that
perturbative approach gives rise to. As such, the new
proach provides a completely general relationship betw
the RDO and TCF approaches, which goes beyond curre
available LRT-based and QME-based theories, and whic
applicable to systems that are not accessible to them.

The structure of the remainder of this paper is as f
lows. The theoretical framework underlying the Nakajim
Zwanzig GQME is outlined in Sec. II. A new formulation o
its memory kernel in terms of system-dependent TCFs
presented in Sec. III. The feasibility of the method is de
onstrated in the case of a system linearly coupled to a
monic bath in Sec. IV. The main conclusions are summ
rized, and their significance is discussed in Sec. V. Use
identities and proofs for some of the formal results used
the text are provided in Appendices A, B, and C.

II. PRELIMINARY CONSIDERATIONS

We consider a system with the following gener
quantum-mechanical Hamiltonian:

Ĥ5Ĥs1Ĥb1Ĥbs, ~1!

where Ĥs is the Hamiltonian of the subsystem of intere
which will be referred to as the system from here on,Ĥb is
the Hamiltonian of the remaining DOF, which will be re
ferred to as the bath from here on, andĤbs is the coupling
between the system and the bath. For simplicity, we ass
the following form for the latter:

Ĥbs5L̂ ^ F̂, ~2!

where L̂ is a bath operator andF̂ is a system operator~a
generalization of the results to the caseĤbs5( jL̂ j ^ F̂ j is
particularly straightforward when@ F̂ j ,F̂k#50 for all j and
k, as in the common case where$F̂ j% are all functions of the
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system coordinates!. The states of the overall system an
subsystem at timet are completely defined by the densi
operatorsr̂(t) and

r̂s~ t !5Trbr̂~ t !, ~3!

respectively, where Trb corresponds to a partial trace over th
Hilbert space of the bath.

The initial state of the overall system is assumed fact
ized,

r̂~0!5 r̂s~0! ^ r̂b
eq, ~4!

wherer̂s(0) is the initial density operator of the system, a

r̂b
eq5e2bĤb/Trb@e2bĤb# ~5!

is the density operator of the free bath at thermal equi
rium. It should be noted that the choice of a factorized init
state, Eq.~4!, does not limit the generality of the treatmen
since it is always possible to alter the initial state via prelim
nary equilibration and/or the use of an additional drivi
term in the system Hamiltonian. Finally, it is assumed tha

^L̂&eq
0 [Trb@ r̂b

eqL̂#50 ~6!

@if originally ^L̂&eq
0 Þ0, one can still satisfy this condition b

substitutingL̂2^L̂&eq
0 for L̂, andĤs1^L̂&eq

0 F̂ for Ĥs in Eq.
~1!#.

As is well known, the reduced quantum dynamics of t
system can be described by the formally exact Nakajim
Zwanzig GQME,86–91,93,94 which assumes the following
form under the conditions described above~in the Schro¨-
dinger picture!:

d

dt
r̂s~ t !52

i

\
Lsr̂s~ t !2E

0

t

dtK~t!r̂s~ t2t!. ~7!

Here, Ls(•)5@Ĥs ,•# and *0
t dtK(t) r̂s(t2t) represent the

bath-free~Hamiltonian! and bath-induced~non-Hamiltonian!
contributions to the system dynamics, respectively. T
memory kernel,K~t!, is explicitly given by

K~t!5
1

\2 Trb$L bse
2 iQLt/\QLbsr̂b

eq%, ~8!

whereL(•)5@Ĥ,•#, Lbs(•)5@Ĥbs,•#, Q512P, and

P~• !5 r̂b
eq

^ Trb~• !. ~9!

It should be noted thatQ andP are complementary projec
tion superoperators (Q 25Q, P 25P, and PQ5QP50),
and thatP is defined withr̂b

eq as the reference state.91 We
also note that the inhomogeneous term is missing from
GQME in Eq. ~7! because of our choice of factorized, an
hence uncorrelated, initial state.91

The main advantage of the GQME, Eq.~7!, has to do
with the fact that solving it would yield the exact quantu
dynamics of the system. The dynamics of the system is
longer dictated solely by the bath-free system Hamiltoni
Ĥs , and requires the Nakajima–Zwanzig memory kern
K~t!, Eq. ~8!, as additional input. It should be noted that
many cases, one is not interested in a detailed descriptio
the bath dynamics as such, but rather in its influence on
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system dynamics. Thus, the memory kernel essentially fil
out those aspects of the bath dynamics which influence
system, and which can actually be probed by perform
measurements on the system. As such, it may be viewe
analogous to the IF in the path-integral approach. Howe
it is interesting to note that the time dependence ofK~t! is
simpler, being a function of a single time variable, rath
than a functional of the system’s path.

Unfortunately, the exact memory kernel is difficult
compute in practice since it involves dynamics which a
induced by the projected Liouvillian of the overall syste
QL. The Nakajima–Zwanzig GQME has therefore be
used mostly as the starting point for more approximate tr
ments, which lead to simplified versions of the memory k
nel. The most popular approach involves the assumptio
weak system–bath coupling, which leads to the followi
approximation:

K~t!'KWC~t!5
1

\2 Trb$L bse
2 iLst/\e2 iLbt/\Lbsr̂b

eq%.

~10!

This leads to a dissipative part of the following form:

E
0

t

dtK~t!r̂s~ t2t!

'E
0

t

dtKWC~t!r̂s~ t2t!

5E
0

t

dt$C~t!@ F̂,~e2 iLst/\F̂ r̂s~ t2t!!#1C~2t!

3@~e2 iLst/\r̂s~ t2t!F̂ !,F̂#%, ~11!

where

C~t!5^eiĤ bt/\L̂e2 iĤ bt/\L̂&eq
0 ~12!

is a free-bath correlation function~FBCF!.
The weak coupling approximation is often accompan

by the complementary assumption that the dissipative sys
dynamics is much slower than the bath correlation time,tc ,
which is defined as the characteristic decay time ofC(t)
~note that limt→`C(t)50, since ^L̂&eq

0 50). Under those
conditions, one may extend the upper limit of the time in
gral to ` ~for t.tc), and substituteeiLst/\r̂s(t) for r̂s(t
2t) in Eq. ~11!. This results in a Markovian QME of the
following form:

d

dt
r̂s~ t !52

i

\
Lsr̂s~ t !2LDr̂s~ t !, ~13!

where

LDr̂s~ t !5E
0

`

dt$C~t!@ F̂,~e2 iLst/\F̂ !r̂s~ t !#1C~2t!

3@ r̂s~ t !~e2 iLst/\F̂ !,F̂#%. ~14!

LD can be put in the Bloch–Redfield form,95,96by expressing
F̂ in terms of the eigenprojectors ofĤs
rs
e

g
as
r,

r

e
,
n
t-
-
of

d
m

-

F̂5(
k

Fkluk&^ l u, ~15!

where Ĥsuk&5ekuk&. The effect of the bath may then b
expressed in terms of quantities of the form*0

`dteivkltC(t),
where vkl5(ek2e l)/\. More specifically, population and
phase relaxation rate constants can be expressed in term
the real parts of those integrals (vkl50 andvklÞ0 corre-
spond to phase and population relaxation rate constants
spectively!, while Lamb-type shifts that modify the Hamil
tonian dynamics are associated with the imaginary parts

It is important to note that the FBCF,C(t), embodiesall
the information needed for determining the influence of
bath on the system, provided that the two are wea
coupled. This implies that thenonequilibriumdynamics of
the system can be inferred from the free bath equilibri
dynamics, whichC(t) is a measure of. This represents
great simplification, since the correlation time is often fou
to be much shorter than the system relaxation lifetimes.
deed, it is rather remarkable that one does not need to
rectly follow the dynamics of the bath on the time scale
the system relaxation, in order to describe the latter. It sho
be noted that in cases involving slow relaxation, such
vibrational relaxation, this major simplification is absolute
crucial to one’s ability to calculate the relaxation rate.18–23,43

Those observations reflect the ability of the memory ker
to focus on those features of the bath dynamics which a
ally influence the system. Unfortunately, the weak coupl
approach also suffers from two serious shortcomings.

~1! The fact thatC(t) corresponds to the dynamics o
the free bath indicates that, while the system is affected
the bath, the reverse action of the system on the bath rem
unaccounted for. This observation highlights the limitatio
of the weak coupling approach, which cannot account
such phenomena as the reorganization of the solvent m
ecules around a solute following electron transfer or opti
excitation.

~2! Since the bath typically consists of a huge number
DOF which are coupled via anharmonic potentials, the c
culation of an exact quantum-mechanical correlation fu
tion, such asC(t), is not computationally feasible~with the
notable exception of harmonic baths!. Thus, the calculation
of the memory kernel has to rely on approximations, even
the limit of weak system–bath coupling.

III. THE NAKAJIMA–ZWANZIG KERNEL
IN TERMS OF SYSTEM-DEPENDENT
BATH CORRELATION FUNCTIONS

In this section, we present a new theoretical framew
for calculating the Nakajima–Zwanzig memory kernel for
arbitrary system–bath coupling. For the sake of clarity,
state some of the main results without proof. The interes
reader is referred to Appendix A for detailed derivations
those results.

The first step is to rewrite the Nakajima–Zwanz
memory kernel in the following form, which is completel
equivalent to the standard form in Eq.~8! ~cf. Appendix A!:
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K~t!5
1

\2 Trb$L bse
2 i (L2LbsP)t/\Lbsr̂b

eq%. ~16!

We also note that~cf. Appendix A!

e2 i (L2LbsP)t/\5e2 iLt/\

1
i

\ E
0

t

dt8e2 iL(t2t8)/\LbsPe2 i (L2LbsP)t8/\.

~17!

Substituting Eq.~17! into Eq. ~16! then yields the following
identity:

K~t!5K1~t!1 i E
0

t

dt8K1~t2t8!K2~t8!, ~18!

where

K1~t!5
1

\2 Trb$L bse
2 iLt/\Lbsr̂b

eq% ~19!

and

K2~t!5
1

\
Trb$e

2 i (L2LbsP)t/\Lbsr̂b
eq%. ~20!

We next substitute Eq.~17! into Eq. ~20!, which leads to the
following integral equation forK2(t):

K2~t!5K3~t!1 i E
0

t

dt8K3~t2t8!K2~t8!, ~21!

where

K3~t!5
1

\
Trb$e

2 iLt/\Lbsr̂b
eq%. ~22!

Equations~18! and~21! represent the main result of th
paper. They establish a closed form relationship between
sought after memory kernel,K~t!, which is explicitly depen-
dent on the projection operatorP, and K1(t) and K3(t),
which are independent of it. It is important to note th
K2(t) is an auxiliary quantity in the sense that it can
obtained by solving Eq.~21!, provided thatK3(t) is known.
K2(t) can then be substituted into Eq.~18!, which is solved
for K~t!, provided thatK1(t) is known. Thus, findingK~t!
translates into calculatingK1(t) and K3(t), followed by
solving Eq.~21! for K2(t), and Eq.~18! for K~t!.

Further insight into the significance ofK1(t), K2(t),
and K3(t) is obtained by considering their behavior in th
limit of weak system–bath coupling. Thus, assuming t
LbsP andLbs in the exponents of Eqs.~20! and~22!, respec-
tively, can be neglected, one finds thatK2(t) and K3(t)
vanish

K2~t!'K3~t!'
1

\
Trb$e

2 i (Ls1Lb)t/\Lbsr̂b
eq%50, ~23!

where the last equality in Eq.~23! is due to the fact tha

^L̂&eq
0 50. As a result,

K~t!'K1~t!'
1

\2 Trb$L bse
2 i (Ls1Lb)t/\Lbsr̂b

eq%, ~24!
he

t

t

which is the same as the weak coupling limit of the memo
kernel,KWC(t) @cf. Eq. ~10!#. Thus, going beyond the weak
coupling limit will be manifested by shiftingK~t! relative to
K1(t), as well as the creation ofK2(t) andK3(t).

The main advantage ofK1(t) andK3(t) over the origi-
nal K~t!, has to do with the fact that they do not contain t
projection operatorP. However, even with this simplifica
tion, computingK1(t) and K3(t) is obviously not trivial,
due to the real-time quantum dynamics of the overall syst
embodied bye2 iLt/\. It is therefore important to estimate th
computational cost of calculatingK1(t) andK3(t) in prac-
tice. To this end, it is useful to rewrite the Nakajima
Zwanzig GQME in terms of the eigenrepresentation ofF̂ @cf.
Eq. ~2!#. SinceF̂ is most commonly given by a function o
the system coordinates, we will assume below that the s
tem position representation can be used for this purpose~the
extension to other representations is straightforward!. Thus,
we assume thatF̂5F( x̂), where x̂ is the system position
operator, which for the sake of simplicity will be assumed
be one dimensional, such thatF( x̂)ux&5F(x)ux& and 2`
,x,`. We will also employ a Liouville space-based d
scription and tetradic notation,57 where a system RDO is
represented by a state vector in Liouville space

^̂ xa ,xbur̂s&&[Trs@~ uxa&^xbu!†r̂s#[^xaur̂suxb&, ~25!

and a system superoperator by a matrix

^̂ xa ,xbuKux1 ,x2&&[Trs@~ uxa&^xbu!†Kux1&^x2u#. ~26!

The Nakajima–Zwanzig GQME, Eq.~7!, and the inte-
gral equations, Eqs.~18! and ~21!, can then be rewritten in
terms of thex representation such that

d

dt
^̂ xa ,xbur̂s&&

52
i

\ E dx1E dx2^̂ xa ,xbuLsux1 ,x2&&^̂ x1 ,x2ur̂s&&

2E
0

t

dtE dx1E dx2^̂ xa ,xbuK~t!ux1 ,x2&&

3 ^̂ x1 ,x2ur̂s~ t2t!&&, ~27!

^̂ xa ,xbuK~t!ux1 ,x2&&

5 ^̂ xa ,xbuK1~t!ux1 ,x2&&1 i E
0

t

dt8E dxIE dxII

3 ^̂ xa ,xbuK1~t2t8!uxI ,xII&&^̂ xI ,xIIuK2~t8!ux1 ,x2&&,

~28!

and

^̂ xa ,xbuK2~t!ux1 ,x2&&

5 ^̂ xa ,xbuK3~t!ux1 ,x2&&1 i E
0

t

dt8E dxIE dxII

3 ^̂ xa ,xbuK3~t2t8!uxI ,xII&&^̂ xI ,xIIuK2~t8!ux1 ,x2&&.

~29!
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The corresponding matrix elements ofK1(t) andK3(t) are
explicitly given by

^̂ xa ,xbuK1~t!ux1 ,x2&&

5
1

\2 $F~x1!@F~xa!2F~xb!#^L̂~2,b,a,1;t!L̂&eq
0

2F~x2!@F~xa!2F~xb!#^L̂L̂~2,b,a,1;t!&eq
0 % ~30!

and

^̂ xa ,xbuK3~t!ux1 ,x2&&

5
1

\
$F~x1!^ Î b~2,b,a,1;t!L̂&eq

0

2F~x2!^L̂ Î b~2,b,a,1;t!&eq
0 %, ~31!

where the averagê̄ &eq
0 is the same as in Eq.~6! and

Ĝ~2,b,a,1;t!5^x2ueiĤ t/\uxb&Ĝ^xaue2 iĤ t/\ux1&. ~32!

Ĝ is a bath operator, which in our case corresponds to ei
L̂ or Î b ~the latter is the unit operator in the bath Hilbe
space!.

It is important to note that all the information needed f
determining the influence of the bath on the system is n
contained in quantities of the form̂Â(2,b,a,1;t)L̂&eq

0 ,
whereÂ is eitherL̂ or Î b . It should also be noted that thos
quantities satisfy the following time-reversal symmetry:

@^B̂~2,b,a,1;t!Â&eq
0 #* 5^ÂB̂~1,a,b,2;t!&eq

0 , ~33!

when Â and B̂ are Hermitian. We denote those quantities
system-dependent bath correlation functions~SDBCFs!, for
reasons that will become clear shortly. Although those SD
CFs are distinctly different from the standard free-bath c
relation functions,̂ Â(t)L̂&eq

0 @e.g., Eq.~12!#, they are di-
rectly related to them in the weak coupling limi
More specifically,L̂(2,b,a,1;t) and Î b(2,b,a,1;t) reduce

into ^x2ueiĤ st/\uxb&^xaue2 iĤ st/\ux1&e
iĤ bt/\L̂e2 iĤ bt/\ and

^x2ueiĤ st/\uxb&^xaue2 iĤ st/\ux1& Î b in this limit, such that

^L̂L̂(2,b,a,1;t)&eq
0 and ^L̂(2,b,a,1;t)L̂&eq

0 turn into

^x2ueiĤ st/\uxb&^xaue2 iĤ st/\ux1&C(t) and ^x2ueiĤ st/\uxb&
3^xaue2 iĤ st/\ux1&C(2t), respectively, and both

^ Î b(2,b,a,1;t)L̂&eq
0 and ^L̂ Î b(2,b,a,1;t)&eq

0 turn into

^x2ueiĤ st/\uxb&^xaue2 iĤ st/\ux1&^L̂&eq
0 , and vanish@in accord

with the fact thatK3(t)50 in the weak coupling limit#. Re-
placing the FBCFs with SDBCFs signals the transition
yond the weak coupling limit, which must be accompan
by explicitly accounting for the reverse action of the syst
on the bath. This is accomplished in two ways:~1! the dy-
namics in the SDBCFs is determined by the overall Ham
tonian,Ĥ, rather than the free bath Hamiltonian,Ĥb and~2!
the propagators are ‘‘system-state selective,’’ in the se
that they sum over system trajectories that are constraine
move forward fromx1 to xa , and backward fromxb to x2 .

It is important to note that, like FBCFs, SDBCFs are a
expected to lose memory and decay to zero at tim
longer than a characteristic correlation time, i.
er

w

s

-
r-

-
d

-

se
to

s
,

^Â(2,b,a,1;t)L̂&eq
0 →^Â(2,b,a,1;t)&eq

0 3^L̂&eq
0 50 at t.tc .

Furthermore, in many systems of practical interest, such
room temperature liquid solutions, the corresponding co
lation time of the SDBCFs is expected to be relatively sho
This implies that, as in the weak coupling limit, one does n
need to directly follow the dynamics of the bath on the tim
scale of the system’s relaxation, in order to describe the
ter. It should also be noted that the cost of calculating
single SDBCF is comparable to that of computing a sin
FBCF, since the majority of the DOF accounted for in t
overall Hamiltonian belong to the bath. Thus, at lea
roughly speaking, the computational cost of calculating
exact memory kernel is in fact comparable to that involv
in calculating its weak coupling limit.

However, it should be emphasized that the weak c
pling treatment also decouples the system dynamics from
bath dynamics, such that a single FBCF,C(t), is required in
order to account for the effect of the bath on the system. T
is no longer true beyond the weak coupling limit, since t
SDBCFs entangle the DOF of the system and the bath. A
result,K~t!, as well asK1(t) andK3(t), would generally be
given in terms of a matrix withN4 elements, in the case of a
N state system. The effective number of elements can
brought down somewhat, toN3(N21)/2 in the case ofK~t!
andK1(t), andN2(N211)/2 in the case ofK3(t), by taking
advantage of the following symmetries:

~i! ^̂ xa,xbuK(t)ux1,x2&&5 ^̂ xa,xbuK1(t)ux1,x2&&50 when
xa5xb . This is clear from Eq.~30! in the case of
K1(t), and results from the fact thatuxa&^xau com-

mutes withF̂ in the case ofK~t!.
~ii ! ^̂ xa ,xbuK1(t)ux1 ,x2&&* 5 ^̂ xb ,xauK1(t)ux2 ,x1&&,

^̂ xa ,xbuK3(t)ux1 ,x2&&* 5 ^̂ xb ,xauK3(t)ux2 ,x1&&, and
^̂ xa ,xbuK(t)ux1 ,x2&&* 5 ^̂ xb ,xauK(t)ux2 ,x1&&. This is
clear from Eqs.~30! and~31! in the case ofK1(t) and
K3(t), and results from the fact thatr̂s must remain
Hermitian throughout the time evolution in the case
K~t!.

Thus, the computational effort required to generate the in
required for computing the memory kernel is larger by
factor of aboutN4/2 in comparison to the weak couplin
limit. Such scaling will obviously impose restrictions on a
tual applications. However, there is a very large number
applications that involve systems with a relatively smallN,
such as in electron transfer processes, optical spectrosc
and vibrational relaxation, where the additional compu
tional effort would be manageable.

The actual calculation ofexactquantum mechanical cor
relation functions in a many-body system is obviously n
generally feasible, regardless of whether it is a FBCF o
SDBCF. However, several strategies have been propo
over the last few decades in order to address the challeng
providing an effective, computationally feasible, and ver
tile approximate methods for calculating quantum
mechanical real-time correlation functions~cf. Sec. I!. Many
of those methods work better at short times, and will the
fore be ideally suited for calculating the SDBCFs requir
for calculating the memory kernel. The combination of t
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theory presented herein with those methodologies will
reported elsewhere.

IV. APPLICATION TO A SYSTEM LINEARLY COUPLED
TO A HARMONIC BATH

In this section, we demonstrate the computational fe
bility of calculating the Nakajima–Zwanzig memory kern
in the case of a system linearly coupled to a harmonic b
The main advantage of this model has to do with the fact
the exact SDBCFs, and hence the memory kernel, can
computed in this case, via the QUAPI method of Makri a
co-workers.10,134–146However, we would like to emphasiz
that the approach is by no means restricted to this spe
model, and that the memory kernel can also be compute
the case of nonlinear coupling to an anharmonic bath, p
vided that reasonable estimates of the SDBCFs are availa

The overall Hamiltonian for the model under conside
ation is given by

Ĥ5Ĥs8~ x̂!

1(
j

F ~ P̂( j )!2

2M ( j ) 1
1

2
M ( j )~v ( j )!2S Q̂( j )2

c( j )F~ x̂!

M ( j )~v ( j )!2D 2G ,

~34!

where$Q̂( j )%, $P̂( j )%, $v ( j )%, and$M ( j )% are the coordinates
momenta, frequencies, and masses of the bath modes
Ĥs8( x̂) only depends on the system DOF. A complete char
terization of the bath is provided by its spectral density fu
tion, defined by

J~v!5
p

2 (
j

~c( j )!2

M ( j )v ( j ) d~v2v ( j )!. ~35!
e

i-

h.
at
e

fic
in
o-
le.
-

nd
c-
-

The system, bath, and system–bath terms, as define
Eq. ~1!, are easily identified as

Ĥs~ x̂!5Ĥs8~ x̂!1(
j

~c( j )!2

2M ( j )~v ( j )!2 F2~ x̂!, ~36!

Ĥb5(
j

F ~ P̂( j )!2

2M ( j ) 1
1

2
M ( j )~v ( j )!2~Q̂( j )!2G[(

j
Ĥb

( j ) ,

~37!

and

Ĥbs5F2(
j

c( j )Q̂( j )G ^ F~ x̂![L̂ ^ F~ x̂!, ~38!

where^L̂&eq
0 50 is satisfied. We also define

Ĥenv5(
j

F ~ P̂( j )!2

2M ( j ) 1
1

2
M ( j )~v ( j )!2

3S Q̂( j )2
c( j )F~ x̂!

M ( j )~v ( j )!2D 2G
[(

j
Ĥenv

( j ) ~39!

for later use.
Consider first the SDBCF̂ Î b(2,b,a,1;t)L̂&eq

0 , which
entersK3(t) @cf. Eq. ~31!#. Employing the quasiadiabati
splitting of Ĥ into Ĥs8 and Ĥenv, one can put it in terms of
the following path integral expression:
^ Î b~2,b,a,1;t!L̂&eq
0 5E dx1

1
¯E dxN21

1 E dxN21
2

¯E dx1
2^xN

1ue2 iĤ se/\uxN21
1 &¯^x1

1ue2 iĤ se/\ux0
1&

3^x0
2ueiĤ se/\ux1

2&¯^xN21
2 ueiĤ se/\uxN

2&FI~x0
1 ,...,xN

1 ,xN
2 ,...,x0

2!, ~40!

wheree5t/N, x0
15x1 , xN

15xa , x0
25x2 , xN

25xb ,

FI~x0
1 ,...,xN

1 ,xN
2 ,...,x0

2!5Trb@ r̂b
eqUenv~0,t!Uenv~t,0!L̂# ~41!

is the IF, andUenv(t,0) (Uenv(0,t)) is the forward~backward! time evolution operator from time 0~t! to timet ~0!, under the
HamiltonianĤenv@x(t)#, wherex(t)5$x0

1 ,...,xN
1% (x(t)5$xN

2 ,...,x0
2%).

FI(x0
1 ,...,xN

1 ,xN
2 ,...,x0

2), can be evaluated analytically. To this end, we note that

FI~x0
1 ,...,xN

1 ,xN
2 ,...,x0

2!}Trb@e2bĤbUenv~0,t!Uenv~t,0!L̂#

52(
j

c( j )E dQ( j )Q( j )^Q( j )ue2bĤb
( j )

Uenv
( j ) ~0,t!Uenv

( j ) ~t,0!uQ( j )&

3)
kÞ j

E dQ(k)^Q(k)ue2bĤb
(k)

Uenv
(k) ~0,t!Uenv

(k) ~t,0!uQ(k)&, ~42!
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and thate2bĤb
( j )

Uenv
( j ) (0,t)Uenv

( j ) (t,0) can be considered as
single time evolution operator along a trajectory that cons
of the following three segments:

~1! 0→t: Froward real-time propagation, under the Ham
tonian of a forced harmonic oscillator with driving forc
F@x1(t)#, wherex1(t)5$x0

1 ,...,xN
1%.

~2! t→0: Backward real-time propagation, under t
Hamiltonian of a forced harmonic oscillator with drivin
force F@x2(t)#, wherex2(t)5$xN

2 ,...,x0
2%.

~3! 0→2 i\b: Imaginary-time propagation, under th
Hamiltonian of a free harmonic oscillator.

The propagator of such a driven harmonic system is kno
in closed form,127 thereby enabling us to obtain an exa
closed form expression forFI(x0

1 ,...,xN
1 ,xN

2 ,...,x0
2). A

more detailed discussion of technical issues associated
this calculation is provided in Appendix B.

The remaining path integral over the system DOF, E
ts

n

ith

.

~40!, can be performed via direct numerical quadrature, p
vided that the number of states is not excessive

^ Î b(2,b,a,1;t)L̂&eq
0 is characterized by a relatively short co

relation time. This is made possible by the quasiadiab
splitting of Ĥ into Ĥs8 and Ĥenv, which leads to a relatively
smooth integrand. For the same reason, the calculation
also be performed with relatively large time slices.

Next, consider the second type of SDBC

^L̂(2,b,a,1;t)L̂&eq
0 , which entersK1(t) @cf. Eq. ~30!#. Like

^ Î b(2,b,a,1;t)L̂&eq
0 , ^L̂(2,b,a,1;t)L̂&eq

0 can also be written
in terms of a path integral expression of the form of Eq.~40!,
but with a different IF

FL~x0
1 ,...,xN

1 ,xN
2 ,...,x0

2!

5Trb@ r̂b
eqUenv~0,t!L̂Uenv~t,0!L̂#. ~43!

This IF can then be written in the following form:
sion for
ven in

stem with

limit.
FL~x0
1 ,...,xN

1 ,xN
2 ,...,x0

2!}Trb@e2bĤbUenv~0,t!L̂Uenv~t,0!L̂#

5(
j ,l

c( j )c( l )E dQ( j )E dQ( l )Q( j )Q( l )^Q( j )ue2bĤb
( j )

Uenv
( j ) ~0,t!uQ( l )&

3^Q( l )uUenv
( j ) ~t,0!uQ( j )& )

kÞ j ,l
E dQ(k)^Q(k)ue2bĤb

(k)
Uenv

(k) ~0,t!Uenv
(k) ~t,0!uQ(k)&. ~44!

In this case, we need to treat two propagators, rather than a single one, namely^Q( j )ue2bĤb
( j )

Uenv
( j ) (0,t)uQ( l )& and

^Q( l )uUenv
( j ) (t,0)uQ( j )&, each of which can be evaluated in closed form. The remaining double Gaussian integral overQ( j ) and

Q( l ) is somewhat cumbersome, but otherwise straightforward, and leads to an exact closed form expres
FL(x0

1 ,...,xN
1 ,xN

2 ,...,x0
2). The double Gaussian integrals which are used in the evaluation of those terms are gi

Appendix C.
As an example, we present the results obtained via the approach discussed above, in the case of a two-level sy

the following Hamiltonian:

Ĥs5Vŝx1eŝz , ~45!

which is coupled to the harmonic bath via the operatorF( x̂)5 x̂5ŝz . Here,ŝx5u1&^2u1u2&^1u and ŝz5u1&^1u2u2&
3^2u, whereŝzu6&56u6&. It should be noted thatŝz plays the role of the system coordinate,x̂, in this case, such that the
system can be described on a two-point grid, and the spatial integral,*dx, turns into a sum over those two states,( j 56 . We
also note thatĤs85Ĥs in this case, sinceF2( x̂)[ŝz

25 Î s is constant.
The superoperatorK~t! is represented by a 434 matrix in terms of the$u11&&,u12&&,u21&&,u22&&% representation.

However, as noted in Sec. III,^̂ 11uK(t)ux1x2&&5 ^̂ 22uK(t)ux1x2&&50, and^̂ 12uK(t)ux1x2&&5 ^̂ 21uK(t)ux2x1&&* , such
that there are only four independent matrix elements, which will be chosen as^̂ 12uK(t)u11&&, ^̂ 12uK(t)u22&&,
^̂ 12uK(t)u12&&, and^̂ 12uK(t)u21&&. Those elements are also compared to their counterparts at the weak coupling
The latter can be obtained explicitly, and anticipating the following application, are given below for the case wheree5V:

^̂ 12uKWC~t!u11&&52
2&

\2 sin~2Vt!Fcos~2Vt!2
i

&
sin~2Vt!G Im C~t!

^̂ 12uKWC~t!u22&&5 ^̂ 12uKWC~t!u11&&

^̂ 12uKWC~t!u21&&52
2

\2 sin2~2Vt!ReC~t!

^̂ 12uKWC~t!u12&&5
4

\2 Fcos~2Vt!2
i

&
sin~2Vt!G 2

ReC~t!. ~46!
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The results reported below were obtained fore5V
51.0, b\V55.0,

J~v!5j
p

2
ve2v/vc, ~47!

j50.1 andvc /V57.5. K1(t) and K3(t) have been ob-
tained by dividing each value oft into 10 or less equal seg
ments, and calculating the corresponding path integrals
direct multiple summation. Each element ofK1(t) and
K3(t) has been calculated on a 300 point time grid with
time step of 0.01V21. Equation~21! has been solved fo
K2(t), via an iterative procedure, withK2(t)5K3(t) as the
initial guess ~10–20 iterations were required for conve
gence!. The resultingK2(t) was then substituted into Eq
~18!, so as to obtainK~t! on the same 300 point time grid
The matrix representingK~t! has been kept in memor
throughout the subsequent numerical solution of the GQM
which was carried out by the second-order Runge–Ku
method.203 The same time step of 0.01V21 has been used
andr̂s over the previous 300 steps has been kept in mem
in order to evaluate the time derivative.

The real and imaginary parts of̂̂12uK(t)u11&&,
^̂ 12uK(t)u22&&, ^̂ 12uK(t)u12&&, and ^̂ 12uK(t)u2
1&& are shown in Figs. 1 and 2, respectively. A close insp

FIG. 1. The real parts of̂^12uK(t)u11&& and ^^12uK(t)u22&& ~up-
per panel!, ^^12uK(t)u12&& ~middle panel!, and ^^12uK(t)u21&&
~lower panel!. Also shown are the corresponding predictions in the we
coupling ~WC! limit ~solid lines!. Note that ^^12uK(t)u11&&
5^^12uK(t)u22&& at the WC limit.

FIG. 2. The imaginary parts of̂ ^12uK(t)u11&& and ^^12uK(t)u
22&& ~upper panel!, and ^^12uK(t)u12&& ~lower panel!. Note that
Im^^12uK(t)u21&&50 in this case~see lower panel of Fig. 1 for its rea
part!. Also shown are the corresponding predictions in the WC limit~solid
lines!. Note that̂ ^12uK(t)u11&&5^^12uK(t)u22&& at the WC limit.
ia

,
a

ry

-

tion of those figures lead to the following observations:
~1! All four elements decay to zero at long times, wi

correlation times which are comparable to that ofC(t).
~2! With the exception of̂ ^12uK(t)u12&&, all ele-

ments vanish att50. This is consistent with the explici
expressions we obtained for the weak coupling limit, E
~46!, and appears to remain valid beyond it.

~3! The equivalence of ^̂ 12uK(t)u11&& and
^̂ 12uK(t)u22&& is not satisfied beyond the weak couplin
limit. The imaginary part is observed to be particularly se
sitive to the departure from the weak coupling limit, wi
Im^̂ 12uK(t)u11&& and Im̂^12uK(t)u22&& significantly
lower and higher, respectively, relative to the weak coupl
result.

In Fig. 3, we show the relaxation of the population
state u1&, P1(t)5^1ur̂s(t)u1&, to equilibrium, starting
from the initial stater̂s(0)5u1&^1u. Shown are the numeri
cally exact result, as obtained from a direct implementat
of the iterative tensor QUAPI method of Mak
et al.,10,134–146the result obtained via solving the Nakajima
Zwanzig GQME, and the prediction of the weak couplin
treatment. The fact that the asymptotic equilibrium value
P1 clearly deviates from the weak coupling prediction, i
dicates that the system–bath coupling cannot be treate
weak in this case. The fact that the GQME-based result
sentially coincides with the exact result is reassuring, a
demonstrates the ability of the GQME-based method to g
an accurate description of dissipative quantum dynamics
yond the weak coupling limit. It should be noted that bo
the exact and GQME-based method use the QUAPI met
for calculating the dynamics over short time segments,
order to generate the dynamics on a longer time scale. In
case of the GQME approach, this short time segment is n
rally defined as the correlation time of the SDBCFs, which
about 1 order of magnitude shorter than the actual lifetime
P1 ~compare the time axes of Fig. 3 and Figs. 1 and 2!. The
same time represents the range of the nonlocal coupling
tween paths in the case of the iterative tensor propag
method, which is dictated by the influence functional. W
will compare the scaling of those two ways of accounting
the finite range of the bath memory in the next Sec. V.

k

FIG. 3. The relaxation ofP1(t)5^1ur̂s(t)u1& to equilibrium. Shown are
the predictions of the Nakajima–Zwanzig GQME~solid line!, the exact
result as obtained via the iterative tensor propagator method of Makriet al.
~solid circles!, and a prediction based on the WC treatment~dashed line!.
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V. CONCLUSIONS

The proposed GQME-based approach offers several
portant advantages for simulating quantum dynamics
condensed-phase systems:

~1! The validity of the Nakajima–Zwanzig GQME is no
restricted to Markovian dynamics in the limit of wea
system–bath coupling, as in the case of standard Marko
QMEs, or to systems which are in the close vicinity of eq
librium, as in the case of LRT. As a result, it can account
the quantum dynamics of a system, which is stron
coupled to an anharmonic environment, and possibly sub
to a strong time-dependent perturbation. For example, it
be used to describe the response to an intense laser pul
a polar solute molecule embedded in a polar liquid solve

~2! The RDO provides a complete description of t
state of the system. Thus, one can now calculate all obs
ables of interest from a single simulation~e.g., one can ob-
tain the phase and population relaxation at the same tim!.
Furthermore, rare event statistics cease to be a problem
cause the RDO automatically accounts for complete
semble averaging. For example, one can obtain a ba
crossing rate constant from a direct and short nonequilibr
simulation, without resorting to the reactive flux method~the
length of the simulation is determined by the time it takes
system to establish rate kinetics, rather than by the very s
time scale set by the rate constant for barrier crossing!.

~3! The input regarding the bath dynamics is kept to
minimum via the memory kernel, which essentially filte
out those aspects of the bath dynamics that the syste
sensitive to. It is important to note that our methodology
obtaining the memory kernel is completely general, and is
no means restricted to harmonic systems. The accurac
the result obviously depends on that of the SDBCFs, wh
serve as input, and numerically exact SDBCFs can only
obtained in the case of systems linearly coupled to a h
monic bath~e.g., via the QUAPI method!. However, one can
easily envision calculating those SDBCFs with the help
approximate schemes, such as those provided by SC
analytical continuation methods. It is important to note th
many of those techniques are restricted to calculating co
lation functions, or give predictions of deteriorating qual
at longer times when used to directly simulate nonequi
rium dynamics. Thus, one expects to obtain significan
more reliable predictions by restricting the use of tho
methods to calculating the SDBCFs, which are often re
tively short lived, and solving the Nakajima–Zwanz
GQME in a numerically exact manner, which ought to
feasible due to the small size of the system.

~4! It is important to note that our formulation puts th
memory kernel in terms of two-time, rather than multitim
SDBCFs. Previous attempts to go beyond the limit of we
system–bath coupling by including higher order terms in
perturbation expansion, involve multidimensional time in
grals over free-bath multitime correlation functions~e.g.,
four-time correlation functions in the case of the fourth-ord
QME!.104,116–119This appears to be the price one has to p
for using a zero Hamiltonian which does not include t
system–bath coupling. A similar type of quantity shows
when one goes beyond LRT,57,150 in order to account for
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nonlinear response functions~e.g., in the theory of four-wave
mixing experiments, which can be attributed to the fact t
the zero order Hamiltonian does not include the field–ma
interaction!. Such multitime correlation functions are notor
ously difficult to compute even from classical MD simul
tions. Our approach seems to avoid them because of its
herently nonperturbative nature, which leads to an equiva
formulation in terms of two-time system-dependent, as
posed to free-bath, correlation functions.

The new approach is similar in spirit to the path integ
IF approach. Like the IF, the memory kernel provides a f
mally exact compact parameterization of the influence of
bath on the system dynamics. Particularly relevant for co
parison is the IF-based iterative tensor propagator metho
Makri and co-workers,138–141,143,145which is based on using
the IF for the time interval that corresponds to the correlat
time. Furthermore, one can use path integral IF technique
order to compute the SDBCFs, which provide the input
the calculation of the memory kernel~e.g., see our calcula
tion of the SDBCFs in the case of linear coupling to a h
monic bath in Sec. IV!. However, despite those similarities
the GQME-based approach appears to have several im
tant advantages over the full blown IF approach.

~1! The GQME-based approach provides a more fav
able ‘‘packaging’’ of the information regarding the influenc
of the bath over the system’s dynamics. More specifically
N is the number of states~e.g., corresponding to the state
included in the discrete variable representation!, andkmax is
the number of time slices that the correlation time is divid
into, then the storage of the IF scales like (2N)2kmax ~within
the iterative tensor propagator method of Makri a
co-workers138–141,143,145!, while that of the memory kerne
scales like;N4kmax. This favorable scaling is intimately
related to the fact that the memory kernel can be expresse
terms of;N4 two-time correlation functions, whereas the
is a function of the 2kmax variables that correspond to th
discrete representation of the system’s path. Thus, while
relatively straightforward to store the memory kernel of
system with relatively largeN andkmax in memory through-
out the simulation, this is not the case for the IF. The rec
attempt by Golosovet al. to improve the scaling of the itera
tive tensor method, so as to make it go like;N4kmax, in-
stead of (2N)2kmax, is interesting to note in this respect.147,148

However, it should be emphasized that their ‘‘memory eq
tion algorithm’’ involves approximations, which have led
noticeable deviations when tested against benchma
whereas our approach is exact~for example, see the compar
son to a benchmark in Fig. 3!.

~2! The structure of the IF approach forces a descript
of the system dynamics in terms of path integrals. Howev
this may not be the most cost-effective framework for sim
lating the dynamics of what is usually a relatively sm
quantum system. At the same time, the description of
system dynamics via the GQME is formulated in terms
operators, and is therefore free of such constraints. Th
once the memory kernel is known, either with or without t
help of a path-integral-based methodology, one is free
choose the most optimal numerical technique for solving
GQME.
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The new formulation of the Nakajima–Zwanzig memo
kernel in terms of SDBCFs developed herein, combined w
recent advances in techniques for calculating quant
mechanical correlation functions, and the distinct advanta
of a methodology based on the Nakajima–Zwanzig GQM
open the door to many exciting applications that would ha
been difficult to pursue otherwise. Such applications inclu
electronic and vibrational relaxation, chromophore spectr
copy, and chemical reactivity, in solution. Those and ot
applications are the subject of ongoing work in our grou
and will be reported in future publications.
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APPENDIX A: REFORMULATION OF THE
NAKAJIMA–ZWANZIG KERNEL

In this Appendix, we provide the detailed proofs of som
of the results that were utilized in Sec. III. We start by pro
ing that Eq.~16! is equivalent to Eq.~8!. The proof is based
on the following identity:

QLQ5Q~L2LbsP!. ~A1!

The proof of Eq.~A1! is based on the following observa
tions: ~1! QLsQ5QLs , since PLsP5LsP 25LsP; ~2!

QLbQ5QLb , since @Ĥb ,r̂b
eq#50; ~3! QLbsQ5Q(Lbs

2LbsP). One can then show that e2 iQLt/\Q
5Qe2 i (L2LbsP)t/\:

e2 iQLt/\Q5F Î 2
i

\
QLt2

1

2\2 QLQLt21...GQ
5Q2

i

\
QLQt2

1

2\2 ~QLQ!2t21¯

5Q2
i

\
Q~L2LbsP!t2

1

2\2

3@Q~L2LbsP!#2t21¯

5QF Î 2
i

\
~L2LbsP!t2

1

2\2 ~L2LbsP!2t2G
5Qe2 i (L2LbsP)t/\, ~A2!

where the second equality is based on the identityQ 25Q,
the third is based on Eq.~A1!, and the fourth on the identity
PQ50. SubstitutingQe2 i (L2LbsP)t/\ for e2 iQLt/\Q in Eq.
~8!, and noting that Trb@LbsQ#5Trb@Lbs#, which is in turn
based on the fact that^L̂&eq

0 50, leads to Eq.~16!.
We next prove the identity in Eq.~17!. To this end, con-

sider the following time derivative:

d

dt
@eiLt/\e2 i (L2LbsP)t/\#5

i

\
eiLt/\LbsPe2 i (L2LbsP)t/\.

~A3!
h
-

es
,
e
e
s-
r
,

e
-

-

The identity in Eq.~17! can be obtained by integrating bot
sides of Eq.~A3! from 0 to t, followed by multiplication by
e2 iLt/\ from the left.

Finally, we note that Eqs.~18! and ~21! are obtained by
a straightforward substitution of the identity in Eq.~17! into
Eqs. ~16! and ~20!, respectively, and noting that Trb@ÂPB̂#

5Trb@Âr̂b
eq#Trb@B̂#.

APPENDIX B: THE CALCULATION
OF FI„x 0

¿ ,...,x N
¿ ,x N

À ,...,x 0
À
…

The key to calculatingFI(x0
1 ,...,xN

1 ,xN
2 ,...,x0

2) is the

evaluation of̂ Q( j )ue2bĤb
( j )

Uenv
( j ) (0,t)Uenv

( j ) (t,0)uQ( j )& @cf. Eq.
~42!#. The latter can be obtained analytically in closed fo
~for the sake of clarity, we drop the indexj from this point
on!127

^Que2bĤbUenv~0,t!Uenv~t,0!uQ&

5F Mv

2p\ sinh~b\v!G
1/2

e2AQ21BQ1C, ~B1!

where

A5
Mv

\ sinh~b\v!
@cosh~b\v!21#, ~B2!

B5
ic

\ sinh~b\v!
E

G
dt8F~ t8!

3@sin~vt8!2sin~v~ t81 i\b!!#, ~B3!

and

C52
ic2

\v sinh~b\v!
E

G
dt8E

G8(t8)
dt9F~ t8!F~ t9!

3sin~v~ t81 i\b!!sin~vt9!2
ic2

2Mv2 E
G
dt8F2~ t8!.

~B4!

Here, G corresponds to the integration over the followin
contour in the complex plane: 0→t→0→2 i\b, G8(t8) is
its segment that ends att8, andF(t)5F@x(t)#, such that

x~ t !5H x1~ t ! for 0→t

x2~ t ! for t→0

0 for 0→2 i\b

. ~B5!

The remaining integrals overQ(k) in Eq. ~42! are Gaussian,
and can be performed analytically based on the follow
well known identities:

E
2`

`

dyye2ay21by5Ap

a

b

2a
eb2/4a,

E
2`

`

dye2ay21by5Ap

a
eb2/4a. ~B6!

In the actual calculation,x(t) is discretized, such tha
x(t)→(x0

1 ,...,xN
1 ,xN

2 ,...,x0
2)[(x0 ...x2N11). Since F(t)

has a fixed value in each time slice, one can perform the
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corresponding time integrals in the coefficientsB andC analytically. This leads to the following working expressions forB
andC:

B5
ic

\v sinh~b\v! (j 50

2N

F~xj !@cos~vt j !2cos~v~ t j 11!!2cos~v~ t j1 i\b!!1cos~v~ t j 111 i\b!!#, ~B7!

C52
ic2

\v sinh~b\v! H (
j 51

2N11

(
k50

j 21
F~xj !F~xk!

v2 @cos~v~ t j 111 i\b!!2cos~v~ t j1 i\b!!#@cos~vtk!2cos~vtk11!#

1 (
j 51

2N11
F2~xj !

v2 S cos~vt j !@cos~v~ t j 111 i\b!!2cos~v~ t j1 i\b!!#

2
1

4
@cos~v~2t j 111 i\b!!2cos~v~2t j1 i\b!!# D J . ~B8!

APPENDIX C: INTEGRALS USED IN THE EVALUATION OF ŠL̂„2,b ,a,1; t…L̂‹eq
0

The following integrals are useful for evaluatingFL(x0
1 ,...,xN

1 ,xN
2 ,...,x0

2) in Eq. ~44!:

E
2`

`

dXAE
2`

`

dXB exp@2A~XA
21XB

2 !2BXAXB2CXA2DXB#XAXB

5
B2~B1CD!12AB~C21D2!24A2~B2CD!

~4A22B2!2

2p

A4A22B2
expH 2

BCD2A(C21D2)

4A22B2 J , ~C1!

E
2`

`

dXAE
2`

`

dXB exp@2A~XA
21XB

2 !2BXAXB2CXA2DXB#XA5
BD22AC

~4A22B2!2

2p

A4A22B2
expH 2

BCD2A(C21D2)

4A22B2 J ,

~C2!

E
2`

`

dXAE
2`

`

dXB exp@2A~XA
21XB

2 !2BXAXB2CXA2DXB#5
2p

A4A22B2
expH 2

BCD2A(C21D2)

4A22B2 J . ~C3!
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