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The Nakajima—Zwanzig generalized quantum master equation provides a general, and formally
exact, prescription for simulating the reduced dynamics of a quantum system coupled to a quantum
bath. In this equation, the memory kernel accounts for the influence of the bath on the system’s
dynamics. The standard approach is based on using a perturbative treatment of the system—bath
coupling for calculating this kernel, and is therefore restricted to systems weakly coupled to the
bath. In this paper, we propose a new approach for calculating the memory kernel for an arbitrary
system—bath coupling. The memory kernel is obtained by solving a set of two coupled integral
equations that relate it to a new type of two-time system-dependent bath correlation functions. The
feasibility of the method is demonstrated in the case of an asymetrical two-level system linearly
coupled to a harmonic bath. @003 American Institute of Physic§DOI: 10.1063/1.1624830

I. INTRODUCTION mathematical constructs in comparison to multidimensional

wave functions. Thus, a reaction rate constant may be written

Quantum dynamical effects play a central role in a variy, o ms of the flux—flux correlation functidh® a vibrational

ety of important processes that take place in condensed phagﬁergy relaxation rate constant may be put in terms of the

environments3 Important examples, which are particularl . 18- .
P P P Y force—force correlation functiof? 2° and spectroscopic re-

relevant to chemistry, include proton and electron transfer ; . )
. 17 N 18-43 sponse functions are often expressed in terms of dipole cor-
reactions: %’ intramolecular vibrational relaxatioff; **and

) : elation functions” Those time correlation functions can ob-
optical and infrared chromophore spectroscopy and. . ) - .
- 4479 viously be obtained by averaging over the multidimensional
photochemistry: .
wave functions of the overall system. However, the true chal-

The simulation of quantum dynamics in condensedI lies in findi frocti ionallv feasibl d
phase hosts is one of the most important challenges facin&nge ies In finding effective, computationally feasible, an

theoretical chemistry. A numerically exact solution of the Versatile methods for calculating quantum-mechanical TCFs,
Schralinger equatiof?~84in the case of general many-body by taking advantage of their more averaged nature, in order

systems remains far beyond the reach of currently availabll® @void the obvious, yet hopeless, wave-function-based
computer resources, due to the exponential scaling of thEPUte- _ . . .
computational effort with the number of degrees of freedom ~ The starting point of the RDO approach is based on find-
(DOF). A common approach for dealing with this difficulty N9 compact, yet effective, ways for characterizing the influ-
focuses on computing more reduced quantities, which argnce of the bath on the subsystem’s dynamics. One strategy
directly related to the relevant experimental probes. TwdS based on finding the equation of motion that governs the
such, inter related, reductionist strategies have been found fynamics of the RDO. This equation must include a dissipa-
be particularly useful in practice: tive term that accounts for the influence of the bath. Several
(i) Description in terms of the reduced density operatoversions of the exact reduced equation of motion, also
(RDO)® of a relatively low dimensional subsystem, which is known as the generalized quantum master equation
subject to direct experimental manipulation and/or observa(GQME), have been proposéfi-® However, the use of
tion. The subsystem may correspond to the reaction coordthose GQMEs as such, has been scarce due to the complexity
nate in an electron or proton transfer reaction, a relaxingf the dissipative term. As a result, those GQMEs have been
vibrational mode of a solute molecule, or an optically activemostly used as the starting point of more approximate treat-
transition in a solvated chromophore molecule. One maynents, which lead to a more manageable dissipative term. A
then employ a strategy which combines an accurate descripeery popular approach is based on the assumption that the
tion of the subsystem’s quantum dynamics, with a minimalsubsystem is weakly coupled to the bath, and that its relax-
treatment of the dynamics of the rest of the DQ@ire bath, ation occurs on a time scale which is much longer than that
to the extent that will make it possible to accurately captureof the bath fluctuations. This results in a Markovian quantum
their effect on the subsystem of interest. master equatiofQME), where the influence of the bath
(if) Description in terms of time correlation functions shows up via population and phase relaxation rate constants
(TCF9, which represent much simpler, and averaged overinote that the name QME is reserved in this paper for the
weak coupling limit of the GQME®19395-119 fact, the
dauthor to whom correspondence should be addressed. Electronic mail.atter can be eXpreSSEd in terms of two-time free-bath TCFs,
eitan@umich.edu and as such form a bridge between the RDO and TCF ap-
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proaches. However, one must not lose sight of the fact thaise semiclassical approximations in order to evaluate the IF
the assumptions of weak coupling and Markovity imposein the case of anharmonic baths and nonlinear
serious restrictions on the range of phenomena that can mupling**4>1%° appear promising, although their general
captured by QMEs. For example, QMEs, either Markovianapplicability remains unclear at this preliminary stage of
or non-Markovian, are unable to describe such importantheir development.
phenomena as solvation dynamics and solvent memory ef- The TCF approach relies on finding a relationship be-
fects, which are central to solution chemistry. tween nonequilibrium quantum dynamics and TCFs, which
It should also be noted that the derivation of the QMEcharacterize the equilibrium dynamics of the system. One
has been extended so as to account for fourth order terms melationship, which has been pointed out above, put the
the system—bath couplifitf*6-1%as opposed to the stan- population and phase relaxation rate coefficients of a sub-
dard derivation, which only accounts for second ordersystem weakly coupled to a bath in terms of free-bath TCFs.
termg. Most applications of this approach were restricted toFor example, the expression for the vibrational energy relax-
the spin-boson problem, where important insight has beeation rate constant in terms of a force—force correlation func-
gained. However, the fact that the fourth order terms ardion, falls into this category. Another, distinctly different type
generally expressed in terms of triple integrals over four-timeof relationship can be established with the help of linear-
free-bath TCFs, would make a general computational impleresponse theorf. RT). The latter is based on the fact that the
mentation of this scheme rather difficult. An alternative ap-nonequilibrium relaxation dynamics of a system in the close
proach has been based on optimizing the separation of thecinity of equilibrium, is the same as that of the relaxation
overall system into system and bath, such that weak couplingf its spontaneous fluctuations around equilibrium, i.e., of
is satisfied-°® This approach is most effective when one canthe corresponding TCE® It is important to note that LRT
identify a few local or collective bath coordinates which aredoes not require a separation of the overall system into a
strongly coupled to the system of interest, while weaklysubsystem and a bath, and obviously does not make any
coupled to the other bath modes, and include them in thassumption regarding their coupling. However, LRT is re-
system Hamiltoniad?>'?! Alternatively, one may attempt a stricted to systems in the close vicinity of thermal equilib-
canonical transformation of the overall Hamiltonian, thatrium, which implies that it will be particularly useful in two
may lead to newly defined, and presumably weakly coupledsituations:(1) when the system is subject to a relatively weak
system and bath terms, which mix the original system andexternal perturbation, which shifts the system only slightly
bath coordinate¥?? Both approaches have been demon-relative to its equilibrium state an@) when the system fol-
strated with impressive success in the spin-boson case, whel@vs rate kinetics, such that the rate constant does not de-
it is relatively easy to identify the above mentioned stronglypend on the initial state, and can thereforedo@veniently
coupled bath coordinate, or come up with the suitable caealculated with an initial state which is in the close vicinity
nonical transformation. Unfortunately, accomplishing this forof equilibrium. An important example for the first scenario is
more complex and anharmonic systems appears to be farovided by linear spectroscopy, where the laser field is often
more difficult, and, to the best of our knowledge, representassumed to be a small perturbation. For example, the absorp-
an unresolved problem at the present time. Another recerion spectrum can be expressed in terms of a two-time dipole
attempt at extending the applicability of QMEs beyond theTCF. In fact, this approach can be extended so as to account
weak coupling limit, has been based onapproximatere-  for higher order nonlinear response to the laser field, and put
summation of all the terms in the perturbation expansion, tdt in terms of multitime dipole TCF3’ An important ex-
infinite order'?*~12° Although this approach was found to ample of the second scenario is given by chemical reactions,
yield accurate predictions in the context of charge transferwhere rare event statistics associated with barrier crossing
the general applicability of the approximations underlying itleads to rate kinetics!®
is not clear at the present time. The development of methods for computing quantum-
An alternative to the GQME-based approach, whichmechanical TCFs continues to be at the forefront of theoret-
gained popularity over the last several decades, is based acal and computational physical chemistry research. Several
the path integral formulation of quantum mecharf®!?®  strategies have been proposed in order to address the chal-
and introduces the influence of the bath in terms of an influlenge of providing an effective, computationally feasible,
ence functional(lF).}?° One of the most impressive triumphs and versatile approximate method for calculating quantum-
of this approach over the QME approach, had to do with thenechanical TCFs. Those methods are based on various ap-
fact that theexactIF can be obtained in closed form, in the proaches, including a mixed quantum-classical
case of linear coupling to a harmonic batA-1*3This fact, treatment®~1°® analytical continuatiof?=14:38.157-162can.
in conjunction with important algorithmic advances, such asroid molecular dynamic$!®16:3742163-17%,antum mode
the development of iterative tensor quasiadiabatic propagaoupling theory®t17®=1"® and the semiclassical(SC)
tors (QUAPIs) by Makri and co-workers, have opened the approximatiorf:11:180-197
door to numerically exact calculations of the reduced dynam-  The various approaches mentioned above provide pow-
ics of this type of systemé&s long as one can evaluate the erful tools for dealing with a wide variety of quantum phe-
remaining path integral over the subsystem D&E34-1%  nomena that occur in condensed-phase systems. However,
However, there are many important systems, e.g., liquid scthe assumptions upon which they are based, also make it
lutions, where it is difficult to map the bath Hamiltonian onto difficult to apply those methods to many other important
a harmonic one. Recent attempts by Makri and co-workers tproblems. For example, the computation of the multitime
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dipole correlation functions, required for analyzing nonlinearsystem coordinate¢s The states of the overall system and

optical experiments in liquid solutions, can be very costly,subsystem at timé¢ are completely defined by the density

even after the implementation of rather severe approximaeperatorsp(t) and

tions. It is also becoming increasingly important to consider ., «

the impact of intense laser fields, e.g., in the area of coherent Ps(1)=Trop (1), )

control1%8-292|n addition to that, many relaxation processesrespectively, where Frcorresponds to a partial trace over the

cannot be characterized by rate constants. A direct treatmeffilbert space of the bath.

in terms of the nonequilibrium dynamics of the RDO appears  The initial state of the overall system is assumed factor-

to offer an attractive alternative in such situations. Howeverjzed,

QMEs are restricted to systems weakly coupled to theiren- ~eq

vironments, and miss many important phenomena as a result, P(0) =ps(0)®py, )
The dilemma described above provided the motivationyherep(0) is the initial density operator of the system, and

for the work reported in the present paper. Below, we pro- . .

pose a hew approach which goes back to the formally exact pgi=e ™ PHo/Tr[e™ AMb) (5)

GQME’ and.addresses the question of compqtlng its dISS'pz?é the density operator of the free bath at thermal equilib-

tive part without resorting to the assumptions of weak:

system—bath coupling and Markovity. The analysis is per_rlum. It should be noted that the choice of a factorized initial

formed in terms of the Nakajima—Zwanzig formulation of state, Eq(4), does not limit the generality of the treatment,

e GQUES 0 ynere e o of evluating e ST LSSl Posse b Al 0 i ste v el

dissipative part reduces to computing a memory kernel Sut_ern): inqthe system Hamiltonian. Finally, it is assumed thatg

peroperator. The strategy we propose is based on expressing Y ' Y

thl§ kernel in terms of two-time system-dependent TCFs, <A>ngTrb[ﬁgqj\]:0 (6)

which should be contrasted to the free-bath TCFs that the .

perturbative approach gives rise to. As such, the new agif originally <A>2q¢ 0, one can still satisfy this condition by

proach provides a completely general relationship betweesubstitutingA —(A)J, for A, andFg+(A)3F for Hg in Eq.

the RDO and TCF approaches, which goes beyond currently)].

available LRT-based and QME-based theories, and which is  As is well known, the reduced quantum dynamics of the

applicable to systems that are not accessible to them. system can be described by the formally exact Nakajima—
The structure of the remainder of this paper is as fol-zwanzig GQME®®-°1:93%4 hich assumes the following

lows. The theoretical framework underlying the Nakajima—form under the conditions described aboie the Schie
Zwanzig GQME is outlined in Sec. Il. A new formulation of dinger picture:

its memory kernel in terms of system-dependent TCFs is q ) t

presentedlln Sec. lll. The fea5|blllty of the method is dem- —D(t)=— _Esﬁs(t)_f drK(P)pyt—1). @)
onstrated in the case of a system linearly coupled to a har- dt fi 0

monic bath in Sec. IV. The main conclusions are summa-

_ri t -
rized, and their significance is discussed in Sec. V. Usefufere £s(1)=[Hs,-] and Jod7K(7)ps(t—7) represent the
identities and proofs for some of the formal results used iPath-free(Hamiltonian and bath-induce¢hon-Hamiltonian

the text are provided in Appendices A, B, and C. contributions to the system dynamics, respectively. The
Y memory kernelC(7), is explicitly given by

1 .
— —iQL7Ih ~ e
IIl. PRELIMINARY CONSIDERATIONS K(7)= 72 Tl Lo QLo ®)
We consider a system with the following generalwhere/:(')=[li|,~], Lod)=[Hps,-1, Q=1—P, and
uantum-mechanical Hamiltonian: .
d P()=peTry(-). )

It should be noted tha@ andP are complementary projec-
where H, is the Hamiltonian of the subsystem of interest, tion superqperat_orsng Q; P?=P, and PQ=QP=0),
which will be referred to as the system from here Big,is ~ and thatP is defined withpg? as the reference stateWe

the Hamiltonian of the remaining DOF, which will be re- @lS0 note that the inhomogeneous term is missing from the

ferred to as the bath from here on, aﬁgs is the coupling EﬁtﬂeEJr?cigréﬁ;)te%eﬁﬁﬁij ;;,iur choice of factorized, and

petusen e System et bt Forsmplty, we assurl i cvaniage of i GME, &1, has to do
with the fact that solving it would yield the exact quantum
Hy=A®F, (2)  dynamics of the system. The dynamics of the system is no
longer dictated solely by the bath-free system Hamiltonian,
o B PO H., and requires the Nakajima—Zwanzig memory kernel
generalization of the results to the cadg=>;A;®F; is  (p Eq.(8), as additional input. It should be noted that in
particularly straightforward whepF; ,F]=0 for all j and  many cases, one is not interested in a detailed description of
k, as in the common case Whe{rféj} are all functions of the the bath dynamics as such, but rather in its influence on the

H:HS+Hb+Hb51 (1)

where A is a bath operator anBl is a system operatofa
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system dynamics. Thus, the memory kernel essentially filters
out those aspects of the bath dynamics which influence the F:; Falk)(1, (15
system, and which can actually be probed by performing

measurements on the system. As such, it may be viewed Fhere A

f"‘r?a'F’go“S tp the IF in tr:]e par;[h-lptegrdal appdroacgé Howeverexpressed in terms of quantities of the fof§dre'“k"C(7),
it is interesting to note that the time dependenceC6f) is where w = (e, — e)/%. More specifically, population and

tsrllmpler% be'tf‘g al ﬂ;r:ﬁt'on Otf a,smgiﬁ time variable, ratherphase relaxation rate constants can be expressed in terms of
an a functional of the systems path. the real parts of those integrals=0 and w,#0 corre-

Un{ort_unatelyt,_ the _exacfct merr1|ory I:jernel IS d|ffr|]c_url]t to spond to phase and population relaxation rate constants, re-
compute In praclicé since It INvolves dynamics whic areSpectively, while Lamb-type shifts that modify the Hamil-
induced by the projected Liouvillian of the overall system

- ) 'tonian dynamics are associated with the imaginary parts.
QL. The Nakajima-Zwanzig GQME has therefore been It is important to note that the FBCE(7), embodiesll

used most_ly as the starting_ point for.more approximate ety jnformation needed for determining the influence of the
ments, which lead to simplified versions of the memory ker- ath on the system, provided that the two are weakly
nel. The most popular approach .involves the assumptioh X oupled. This implies, that theonequilibriumdynamics of

weak system—bath coupling, which leads 1o the fOIIoW'ngthe system can be inferred from the free bath equilibrium

approximation: dynamics, whichC(7) is a measure of. This represents a
1 ' . great simplification, since the correlation time is often found
K(1)~Kwc(1)= prb{C bse*'ﬂs”ﬁe*'ﬁb”hﬁbsbgq}. to be much shorter than the system relaxation lifetimes. In-
(10) deed, it is rather remarkable that one does not need to di-
rectly follow the dynamics of the bath on the time scale of

JK)y=¢€ k). The effect of the bath may then be

This leads to a dissipative part of the following form: the system relaxation, in order to describe the latter. It should
. be noted that in cases involving slow relaxation, such as

f drk(7)ps(t—7) vibrational relaxation, this major simplification is absolutely
0 crucial to one’s ability to calculate the relaxation r&fte?>*3

; Those observations reflect the ability of the memory kernel
~ f d7Kwe( 1) ps(t—17) to focus on those features of the bath dynamics which actu-

0 ally influence the system. Unfortunately, the weak coupling

i approach also suffers from two serious shortcomings.
=f dr{C(7)[F,(e 5" Fp(t—1))]+C(—7) (1) The fact thatC(7) corresponds to the dynamics of

0 the free bath indicates that, while the system is affected by
the bath, the reverse action of the system on the bath remains

—iLglh E\
XL p(t=F).FI, (D unaccounted for. This observation highlights the limitations
where of the weak coupling approach, which cannot account for
A A such phenomena as the reorganization of the solvent mol-
C(r)=(eot"Ae Mol A)T (120  ecules around a solute following electron transfer or optical
. ] . excitation.
is a free-bath correlation functioFBCP). (2) Since the bath typically consists of a huge number of

The weak coupling approximation is often accompaniedhoF which are coupled via anharmonic potentials, the cal-
by the complementary assumption that the dissipative systegjation of an exact quantum-mechanical correlation func-
dynamics is much slower than the bath correlation time,  tjon, such a<C(7), is not computationally feasiblavith the
which is defined as the characteristic decay timeCéf)  notable exception of harmonic bathdhus, the calculation
(note that lim_..C(7)=0, since(A)%,=0). Under those of the memory kernel has to rely on approximations, even in
conditions, one may extend the upper limit of the time inte-the limit of weak system—bath coupling.
gral to « (for t>7,), and substitutee'“s”"p(t) for pg(t
—7) in EQ. (12). This results in a Markovian QME of the

following form:
Ill. THE NAKAJIMA-ZWANZIG KERNEL

d i IN TERMS OF SYSTEM-DEPENDENT
mi)s(t): - %ﬁsﬁs(t)—EDﬁs(t), (13 BATH CORRELATION FUNCTIONS
Where In this section, we present a new theoretical framework

for calculating the Nakajima—Zwanzig memory kernel for an

o R 4 N arbitrary system—bath coupling. For the sake of clarity, we
Lpps(t)= fo dr{C(7)[F,(e "™ F)pg(t)]+C(— 1) state some of the main results without proof. The interested
reader is referred to Appendix A for detailed derivations of

X[ ps(t)(e LT EY F1. (14) those results.

_ . o _ The first step is to rewrite the Nakajima—Zwanzig
Lp can be putin the Bloch—Redfield fortn?°by expressing  memory kernel in the following form, which is completely
F in terms of the eigenprojectors éf; equivalent to the standard form in E@) (cf. Appendix A):
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1 which is the same as the weak coupling limit of the memory
K(m)= 2 Tro{ L T LR Lo pp (16)  kernel,Kyc(7) [cf. Eq.(10)]. Thus, going beyond the weak-
coupling limit will be manifested by shiftingC(7) relative to
We also note thatcf. Appendix A K1(7), as well as the creation df,(7) and K5(7).

irHh The main advantage &f,(7) and/Cs(7) over the origi-
nal K(7), has to do with the fact that they do not contain the
b _ , . , projection operatof?. However, even with this simplifica-
I a—iL(r—7")Ih —i(L-L 7'Ih . . . . ..
+ gfodT e T L eI e TR, tion, computing/C;(7) and KC5(7) is obviously not trivial,
due to the real-time quantum dynamics of the overall system,
(17 embodied by '£7% It is therefore important to estimate the

Substituting Eq(17) into Eq. (16) then yields the following ~COmPputational cost of calculating, () andXs(7) in prac-

e i(L—LpP)rih — g

identity: tice. To this end, it is useful to rewrite the Nakajima—
Zwanzig GQME in terms of the eigenrepresentatioffr ¢tf.
K(r)=Ky(7)+i deTle(T_ TKo(7), (18 Edq.(2] SinceF is most commonly given by a function of
0 the system coordinates, we will assume below that the sys-
where tem position representation can be used for this purftbee
extension to other representations is straightforyvartus,
1 we assume thaE=F(X), whereX is the syst iti
_ iLolh , ystem position
Kalr)= Trb{ﬁ bs® Loy} (19 operator, which for the sake of simplicity will be assumed to
q be one dimensional, such th&(X)|x)=F(x)|x) and —
an <x<. We will also employ a Liouville space-based de-
1 LVl e scription and tetradic notatiot, where a system RDO is
Ka(m)= 5 Tryie E= Lo L Do (200 represented by a state vector in Liouville space
We next substitute Eq17) into Eq.(20), which leads to the (Xa Xol PN =Trg (1Xa)(Xp|) "Bs]=(Xal Ps| X (25

following integral equation fofCx(7): and a system superoperator by a matrix

ICZ(T):K:S(T)'FiJ’OTdT,K:g(T— (7', (21) (X Xl KClx1 X )=Trel (1xa)(xp]) "KCIx1)(Xa]]. (26)

The Nakajima—Zwanzig GQME, Ed7), and the inte-
gral equations, Eqg18) and (21), can then be rewritten in
terms of thex representation such that

where
1
Ks(r)= —Trb{e T Lo ppt (22

Equations(18) and(21) represent the main result of this dt«Xa’Xb'pS»
paper. They establish a closed form relationship between the i
sought after memory kernef;(7), which is explicitly depen- ___ f f A
dent on the projection operatd?, and K;(7) and Ks(7), 7 ) 9% ) dxelaxel Coxa X xlpo)
which are independent of it. It is important to note that ‘
KC,(7) is an auxiliary quantity in the sense that it can be —j dff dxlf AXo{(Xa ,Xp| ()| X1, X))
obtained by solving Eq.21), provided that;(7) is known. 0
K,(7) can then be substituted into E@.8), which is solved X (Xq Xol pe(t— 7)), 27)
for KC(7), provided that'C;(7) is known. Thus, findingC(7)
translates into calculatingC,(7) and K3(7), followed by {(Xa  Xp| ()X, %20
solving Eq.(21) for K,(7), and Eq.(18) for (7).

Further insight into the significance &,(7), (7), _ N
and IC3(7) is obtained by considering their behavior in the = {axpla(n) Xy xe) i fodT f de dx
limit of weak system—bath coupling. Thus, assuming that

LpsP and L, in the exponents of Eq$20) and(22), respec- X (Xa Xol Koo (7= ) X0 Xy Xl Koo () [xa, X2)),
tively, can be neglected, one finds thiap(7) and K5(7) (28
vanish d

an

1
Ka(7)~Ka(1)~ 2 Trp{e ET DL HER =0, (23)  (xq, Xp| Ko 7) X1, X2)

where the last equality in Eq23) is due to the fact that = (X6 Koo 7) [ X X+ erT,f dxlf dx,
(A)%=0. As a result, 0

X {Xa Xp Kag(7= 7" )X Xy X)X o (77) [ X1, X))

K(1)~Ky(7)~ 2 Tl Lo LG, (24 29
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The corresponding matrix elements/6{f(7) and KC;(7) are
explicitly given by

«Xa 1Xb| ’Cl( ’T)le 7X2>>

1 - A
= 2 F[F(xa) ~F () [(A(2b.a.Lin A)g,

—F(x)[F(Xa) —F(x) {AA(2b,a,1;7))3 (30
and
<<Xa =Xb| ’CS( ’T)le 7X2>>
1 n A\0
:%{F(Xl)“b(zrblayl;T)A>eq
—F(x)(ATy(2b,a,1;7))eg (31)

where the average --)g, is the same as in E¢6) and

I'(2p,a1;7)= (x2|e‘ﬁT’ﬁ|xb)f<xa|e*‘ﬁf’ﬁ|x1). (32

Q. Shi and E. Geva

(A(2Db,a,1;7) A )%~ (A(2)b,a,1;7))3x (A)g=0 at 7> 7.
Furthermore, in many systems of practical interest, such as
room temperature liquid solutions, the corresponding corre-
lation time of the SDBCFs is expected to be relatively short.
This implies that, as in the weak coupling limit, one does not
need to directly follow the dynamics of the bath on the time
scale of the system’s relaxation, in order to describe the lat-
ter. It should also be noted that the cost of calculating a
single SDBCF is comparable to that of computing a single
FBCF, since the majority of the DOF accounted for in the
overall Hamiltonian belong to the bath. Thus, at least
roughly speaking, the computational cost of calculating the
exact memory kernel is in fact comparable to that involved
in calculating its weak coupling limit.

However, it should be emphasized that the weak cou-
pling treatment also decouples the system dynamics from the
bath dynamics, such that a single FBCK,r), is required in
order to account for the effect of the bath on the system. This
is no longer true beyond the weak coupling limit, since the

[" is a bath operator, which in our case corresponds to eithé8BDBCFs entangle the DOF of the system and the bath. As a
A or 1, (the latter is the unit operator in the bath Hilbert result,C(7), as well asC;(7) andK’s(7), would generally be

space.

given in terms of a matrix wittN* elements, in the case of an

It is important to note that all the information needed for N state system. The effectig/e number of elements can be
determining the influence of the bath on the system is novprought down somewhat, t8°(N—1)/2 in the case ok()

contained in quantities of the fornfA(2)b,a,1;7)A)g,,

whereA is eitherA or . It should also be noted that those

guantities satisfy the following time-reversal symmetry:

[(B(2b,a,1;7)A)3,]* =(AB(1a,b,2;7))o, (33

andkC,(7), andN?(N?+1)/2 in the case ok5(7), by taking

advantage of the following symmetries:

(i) (X Xol K(7) [X1,%2)= (Xa, Xb| K1(7)[X1,X2))=0 when
Xa=Xp. This is clear from Eq(30) in the case of
K1(7), and results from the fact thdx,)(x,| com-

whenA andB are Hermitian. We denote those quantities as
system-dependent bath correlation functi¢8®BCFg, for (i)
reasons that will become clear shortly. Although those SDB-
CFs are distinctly different from the standard free-bath cor-
relation functions(A(7)A)g, [e.0., Eq.(12)], they are di-
rectly related to them in the weak coupling limit.

mutes withF in the case ofC(7).

{Xa Xp| Ko (7)[Xq X2 = {(Xp . Xa| K1(7) X2, X1),

{(Xa Xp| Ka(7)[Xq X)) * = {(Xp ,Xal K3(7) X2, %1)), and
({(%a Xl K(7) [ X1, X2)* = (Xp Xal K(7) [X2,X1 ). This is
clear from Eqs(30) and(31) in the case ofC;(7) and
K3(7), and results from the fact that must remain

More specifically, A (2,b,a,1;7) and 1,(2)b,a,1;7) reduce
into  (x|eMst|x,)(x,| e~ st |x;)elHo# R e~ ang
(Xo|€Ms|x) (X @ M| x )y in this limit, such that
(AA(2b,a,1;7))%, and (A(2b,a1;)A)g, tun into
Ol ) e M) Cr)  and  (xoleM
X(xale Ms"|x,)C(—7), respectively, and  both
(Ip(2b,a,1;)A), and (Aly(2b,a,1;7))3, turn into
(%] €M |xp) (X, € s x)(A )2, and vanishin accord
with the fact thatC;(7) =0 in the weak coupling limjt Re-

Hermitian throughout the time evolution in the case of
K(7).

Thus, the computational effort required to generate the input
required for computing the memory kernel is larger by a
factor of aboutN#/2 in comparison to the weak coupling
limit. Such scaling will obviously impose restrictions on ac-
tual applications. However, there is a very large number of
applications that involve systems with a relatively smll

such as in electron transfer processes, optical spectroscopy,
and vibrational relaxation, where the additional computa-

placing the FBCFs with SDBCFs signals the transition betional effort would be manageable.

yond the weak coupling limit, which must be accompanied

The actual calculation aéxactquantum mechanical cor-

by explicitly accounting for the reverse action of the systemyelation functions in a many-body system is obviously not

on the bath. This is accomplished in two way$) the dy-

generally feasible, regardless of whether it is a FBCF or a

namics in the SDBCFs is determined by the overall Hamil-SDBCF. However, several strategies have been proposed

tonian,H, rather than the free bath Hamiltonidt, and(2)

over the last few decades in order to address the challenge of

the propagators are “system-state selective,” in the sensproviding an effective, computationally feasible, and versa-

that they sum over system trajectories that are constrained tde approximate methods

move forward fromx; to x,, and backward fronx, to X,.

for calculating quantum-
mechanical real-time correlation functio(d. Sec. ). Many

It is important to note that, like FBCFs, SDBCFs are alsoof those methods work better at short times, and will there-
expected to lose memory and decay to zero at timefore be ideally suited for calculating the SDBCFs required

longer than a characteristic correlation time,

i.e.,for calculating the memory kernel. The combination of the
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theory presented herein with those methodologies will be  The system, bath, and system—bath terms, as defined in
reported elsewhere. Eq. (1), are easily identified as

IV. APPLICATION TO A SYSTEM LINEARLY COUPLED
TO A HARMONIC BATH . N (cth)?

Hs(?):Hs(X)JFE —M(TWFZ(X) (36)
In this section, we demonstrate the computational feasi-

bility of calculating the Nakajima—Zwanzig memory kernel

in the case of a system linearly coupled to a harmonic bath.

The main advantage of this model has to do with the fact that iy 2 1 M(J)(w(,)) (OW)2 }EE 0

the exact SDBCFs, and hence the memory kernel, can be ] '

computed in this case, via the QUAPI method of Makri and (37)

co-workerst®134-146However, we would like to emphasize

that the approach is by no means restricted to this specifi@nd

model, and that the memory kernel can also be computed in

the case of nonlinear coupling to an anharmonic bath, pro-

vided that reasonable estimates of the SDBCFs are available. Hy= [ - ¢!
The overall Hamiltonian for the model under consider- !

ation is given by

(p(l))Z

®F(X)=A®F(X), (39)

where(A)g,=0 is satisfied. We also define

H=H{(%)
(P<J>)2 1o
(P12 1 _ cCOF(R) |2 Hen=2 | Spar T 5 MO (@)
_(,)_+ M 1) ((1))2 Q(l)_m) i
iy CVFR®) |2
(34 | QP MuLmyz
where{QWY, {PW}, {w1}, and{M 1} are the coordinates,
momenta, frequencies, and masses of the bath modes, and EZ RO (39)
J

H HZ(X) only depends on the system DOF. A complete charac-
terization of the bath is provided by its spectral density func-,

tion, defined by for later use.

Consider first the SDBCRiy(2b,a,1;7)A)2;, which
entersKC3(7) [cf. Eq. (31)]. Employing the quasiadiabatic
), (35  splitting of H into A, andH,,,, one can put it in terms of
the following path integral expression:

(cly?
J(w)= z —(—r(-j5(w D)

(In(2b,a,1;7)A)eq= del deN 1J dxy-_q JdX1<X+|e IHS€/ﬁ|XN (X1 le” 'Hsflﬁ|x )
X (5[50 ) g1l €5 X L6 1 X X ), (40)
wheree=7/N, X§ =X1, X =Xa, Xg =Xz, Xy =Xp,

FLXE vee e Xpy Xy e X0 ) =T PEU e 0,7) Uenf 7,0)A ] (41)
is the IF, andU ¢, (7,0) (U (0,7)) is the forward(backward time evolution operator from time @) to time 7 (0), under the
HamiltonianH o[ (1) ], wherex(t)={xg ,... XN} (X()={Xy,... Xg }).

Fi(Xg - - XN XN -+ %o ), Can be evaluated analytically. To this end, we note that

FL(XE 1eee X0 Xy 0 eee g )< Trf € AHOU (0,7 U g O)A ]

= _Ej: C(J)J dQWQW(QWe=A Ul (0,r) U (7,0)|Q1))

XI[' JdQ(k)<Q(k)|e*ﬁH (k)\xo 7.)U(k) TO)|Q(k)> (42)
#]
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and thate—ﬁﬁff)u(eig\)(o,T)Ugg\)(ﬂo) can be considered as a (40), can be performed via direct numerical quadrature, pro-
single time evolution operator along a trajectory that consistyided that the number of states is not excessive and
of the following three segments: (Il b(2,b,a,1;r)A>gq is characterized by a relatively short cor-
(1) 0—7: Froward real-time propagation, under the Hamil- relz?m.on tmﬂe._ThsA :S mage p055|_ble by the qua5|a(j|abat|c
tonian of a forced harmonic oscillator with driving force splitting _Of H into Hg andHep,, which leads to a relat|yely
smooth integrand. For the same reason, the calculation can

F[x. ()], wherex () ={Xg ,... Xy }- ) . . .
. ; ; Iso be performed with relatively large time slices.
2 0: Backward real-time propagation, under the @ i
@ 7= W I propagati ” Next, consider the second type of SDBCF,

Hamiltonian of a forced harmonic oscillator with driving

force F[X_(t)], wherex_(t)=1{xy ... Xo }. (A(2b,a,1;7)A)gq, which entersC,(7) [cf. Eq. (30)]. Like
(3) 0——ikB: Imaginary-time propagation, under the {lb(Z,b,a,l;T)ng_, (A(Z,b,a,l;T)A_)gq can also be written
Hamiltonian of a free harmonic oscillator. in terms of a path integral expression of the form of &),

but with a different IF
The propagator of such a driven harmonic system is known
in closed form,*’ thereby enabling us to obtain an exactF ,(x{ ... X Xy .... X5)
closed form expression foF|(Xg ,... Xy Xy ,---Xg ). A A A
more detailed discussion of technical issues associated with = Trp[ PEU end 0,7) AU g 7,00 A 1. (43
this calculation is provided in Appendix B.
The remaining path integral over the system DOF, Eq.This IF can then be written in the following form:

FA(Xg ee XN XN ,...,xg)ocTrb[efﬁ';bUem)(O,r)f\Uem)(r,O)f\]
:% C(J)C(I)f dQ(J)f dQ(I)Q(J)Q(I)<Q(J)|e BHY U(eln)\xolT)|Q(|)>

%(QIuR 01 TT [ datQ®le #4000l 0lQ%). @9
#1,

In this case, we need to treat two propagators, rather than a single one, né@iéhe #"o’Ul(0,7)|Q") and
(QWUY(7,0)|QW), each of which can be evaluated in closed form. The remaining double Gaussian integi@fidwerd
QM is somewhat cumbersome, but otherwise straightforward, and leads to an exact closed form expression for
FA(Xg ,---Xn XN -+ X ). The double Gaussian integrals which are used in the evaluation of those terms are given in
Appendix C.

As an example, we present the results obtained via the approach discussed above, in the case of a two-level system with
the following Hamiltonian:

H=Qb,+€d,, (45)

which is coupled to the harmonic bath via the operd(k) =%=d,. Here,o,=|+ ) —|+|—=)(+| ando,=|+){(+|—|—)
X(—|, whered,| =)= =|=). It should be noted thak, plays the role of the system coordinake,in this case, such that the
system can be described on a two-point grid, and the spatial intggral,turns into a sum over those two statgs,... . We
also note thaH,=Hy in this case, sinc&?(X)=a2=1, is constant.

The superoperatofC(7) is represented by a4 matrix in terms of the[|+ +),|+—),|—+),|— —))} representation.
However, as noted in Sec. I+ +|K(7)|XX2)y = (= — | K(7)|X1X2)) =0, and{(+ — | K(7) | X1 X2 )= {— + | K(7) | Xo2X1 )* , such
that there are only four independent matrix elements, which will be chosef+as|K(7)|++), {+—|K(7)|——)),
{+—|K(7)|+ =), and{(+ —|K(7)|— +). Those elements are also compared to their counterparts at the weak coupling limit.
The latter can be obtained explicitly, and anticipating the following application, are given below for the caseswléere

((+—|ICWC(7-)|++>>=—zh—‘?Sin(ZQT) COS(ZQT)—ésin(ZQT) ImC(7)

(+ = [Kwe( D] = =)=+ = [Kwc( )|+ +)

<(+—|ICWC(7-)|—+>>=—hgzsinz(ZQT)ReC(T)

(+ = Kwe(n)]+ =)= iz cog2Q7)— i—sin(ZQ 7) ZReC(T). (46)
h V2
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— GQME
0.81 + Exact T
--- Weak coupling
= 0.6f 1
~%
P04t 1
4
v,
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FIG. 3. The relaxation oP, (t)={+|p(t)|+) to equilibrium. Shown are

the predictions of the Nakajima—Zwanzig GQMEolid line), the exact
result as obtained via the iterative tensor propagator method of Malaii
(solid circleg, and a prediction based on the WC treatm@atshed ling

FIG. 1. The real parts of(+ —|K(7)|+ +)) and{((+ —|K(7)|——)) (up-
per panel, {{(+—|K(7)|+—)) (middle panel, and ({(+—|K(7)|—+))
(lower panel. Also shown are the corresponding predictions in the weak
coupling (WC) limit (solid lineg. Note that ((+—|K(7)|++))
={(+—K(7)| = —)) at the WC limit. tion of those figures lead to the following observations:

(1) All four elements decay to zero at long times, with
The results reported below were obtained for Q correlation times which are comparable to thatGdfr).

=1.0, BAQO=5.0, (2) With the exception of{(+ —|K(7)|+ —)), all ele-
ments vanish at-=0. This is consistent with the explicit
J(w)zgzwew/wc, (47 expressions we obtained for the weak coupling limit, Eq.
2 (46), and appears to remain valid beyond it.
£€=0.1 andw./Q=7.5. K4(7) and Ks() have been ob- (3) The equivalence of (+—[K(7)[++) and

tained by dividing each value afinto 10 or less equal seg- -+ —|K(7)|——)) is not satisfied beyond the weak coupling
ments, and calculating the corresponding path integrals viimit. The imaginary part is observed to be particularly sen-
direct multiple summation. Each element éf,(7) and sitive to the departure from the weak coupling limit, with
K3(7) has been calculated on a 300 point time grid with alm{+ —|K(7)|+ +) and Im(+ —|K(7)| — — ) significantly
time step of 0.01) 1. Equation(21) has been solved for lower and higher, respectively, relative to the weak coupling
K,(7), via an iterative procedure, witki,(7)=/5(7) as the  result.
initial guess(10-20 iterations were required for conver- In Fig. 3, we show the relaxation of the population of
gence. The resultingkC,(7) was then substituted into Eq. state |[+), P, (t)=(+|ps(t)|+), to equilibrium, starting
(18), so as to obtairk’(r) on the same 300 point time grid. from the initial statghs(0)=|+ )(+|. Shown are the numeri-
The matrix representingC(7) has been kept in memory cally exact result, as obtained from a direct implementation
throughout the subsequent numerical solution of the GQMEgf the iterative tensor QUAPI method of Makri
which was carried out by the second-order Runge—Kuttgyt g|,10134-146he result obtained via solving the Nakajima—
mett‘o‘fog’ The same time step of 0.0 * has been used, zwanzig GQME, and the prediction of the weak coupling
andps over the previous 300 steps has been kept in memoryeaiment. The fact that the asymptotic equilibrium value of
in order to evaluate the time derivative. P. clearly deviates from the weak coupling prediction, in-
The real and imaginary parts of+—[K(7)|++).  gicates that the system—bath coupling cannot be treated as
(+—IK(D]= =) (+—[K(D|+ =), and (+—[K(D|= ek in this case. The fact that the GQME-based result es-
+)) are shown in Figs. 1 and 2, respectively. A close InSpeC'sentially coincides with the exact result is reassuring, and
demonstrates the ability of the GQME-based method to give
0.2 ‘ : : an accurate description of dissipative quantum dynamics be-
- yond the weak coupling limit. It should be noted that both

0.1 the exact and GQME-based method use the QUAPI method
0 for calculating the dynamics over short time segments, in
= order to generate the dynamics on a longer time scale. In the
05 . ; i
Z case of the GQME approach, this short time segment is natu-
- 0 rally defined as the correlation time of the SDBCFs, which is
E 05} about 1 order of magnitude shorter than the actual lifetime of
0

‘ ot | P, (compare the time axes of Fig. 3 and Figs. 1 ahdrde
same time represents the range of the nonlocal coupling be-
FIG. 2. The imaginary parts of(+—|K(7)|++)) and ((+—|K(7)|  tween paths in the case of the iterative tensor propagator

——)) (upper pane| and ({(+—|K(7)|+—)) (lower pane). Note that ik oie A ; ;
Im((+—[(7)| - + ) =0 in this casdisee lower panel of Fig. 1 for its real method, which is dictated by the influence functional. We

parb. Also shown are the corresponding predictions in the WC lisatid Wil compare the scaling of those two ways of accounting for
lines. Note that({(+ — |C(7)|+ +))=((+ —|K(r)| — —)) at the WC limit.  the finite range of the bath memory in the next Sec. V.
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V. CONCLUSIONS nonlinear response functiols.g., in the theory of four-wave

The proposed GQME-based approach offers several imr:nixing experiments, which can be attributed to the fact that
portant advantages for simulating quantum dynamics iﬁhe zero order Hamiltonian does not include the field—matter
condensed-phase systems: Interaction. Such multitime correlation functions are notori-

(1) The validity of the Nakajima—Zwanzig GQME is not ously difficult to compute even from classical MD simula-
restricted to Markovian dynamics in the limit of weak tions. Our approach seems to avoid them because of its in-

system—bath coupling, as in the case of standard |\/larkoviataerently_non_perturbative natu_re, which leads to an equivalent
QMESs, or to systems which are in the close vicinity of equi-iormulation in terms of two-time system-dependent, as op-

librium, as in the case of LRT. As a result, it can account forP0S€d to free-bath, correlation functions. ,
the quantum dynamics of a system, which is strongly The new approach is similar in spirit to the path integral

coupled to an anharmonic environment, and possibly subjedf @PProach. Like the IF, the memory kernel provides a for-
to a strong time-dependent perturbation. For example, it cafnally exact compact parameterization of the influence of the

be used to describe the response to an intense laser pulse,RGth on the system dynamics. Particularly relevant for com-
a polar solute molecule embedded in a polar liquid solventParison is the IF-based iterative tensor propagator method of

(2) The RDO provides a complete description of theMakri and co-yvorKer§?8‘141'143’14%hich is based on using
state of the system. Thus, one can now calculate all obser\}be IF for the time interval that corresponds to the corr_elatlon
ables of interest from a single simulati¢e.g., one can ob- time. Furthermore, one can use path mtegrgl IF technlques in
tain the phase and population relaxation at the same)timeCrder to compute the SDBCFs, which provide the input for
Furthermore, rare event statistics cease to be a problem, b€ calculation of the memory kerng.g., see our calcula-
cause the RDO automatically accounts for complete ention of the SDBCFs in the case of linear coupling to a har-
semble averaging. For example, one can obtain a barridponic bath in Sec. 1Y, However, despite those similarities,
crossing rate constant from a direct and short nonequilibriunih® GQME-based approach appears to have several impor-
simulation, without resorting to the reactive flux metigne  tant advantages over the full blown IF approach.
length of the simulation is determined by the time it takes the ~ (1) The GQME-based approach provides a more favor-
system to establish rate kinetics, rather than by the very slo@bPle “packaging” of the information regarding the influence
time scale set by the rate constant for barrier crogsing ~ ©f the bath over the system’s dynamics. More specifically, if

(3) The input regarding the bath dynamics is kept to aN is the number of state@.g., corresponding to the states
minimum via the memory kernel, which essentially filters included in the discrete variable representati@mdkay is
out those aspects of the bath dynamics that the system {§€ number of time slices that the correlation time is divided
sensitive to. It is important to note that our methodology forinto, then the storage of the IF scales likeNjZ“max (within
obtaining the memory kernel is completely general, and is byhe iterative tensor propagator method of Makri and
no means restricted to harmonic systems. The accuracy §P-workers®*~1#L1431% while that of the memory kernel
the result obviously depends on that of the SDBCFs, whictscales like~N*kna,. This favorable scaling is intimately
serve as input, and numerically exact SDBCFs can only béelated to the fact that the memory kernel can be expressed in
obtained in the case of systems linearly coupled to a haterms of~ N“ two-time correlation functions, whereas the IF
monic bath(e.g., via the QUAPI methddHowever, one can is a function of the R, variables that correspond to the
easily envision calculating those SDBCFs with the help ofdiscrete representation of the system’s path. Thus, while it is
approximate schemes, such as those provided by SC arélatively straightforward to store the memory kernel of a
analytical continuation methods. It is important to note thatsystem with relatively larg&l andk,, in memory through-
many of those techniques are restricted to calculating corresut the simulation, this is not the case for the IF. The recent
lation functions, or give predictions of deteriorating quality attempt by Golosoet al. to improve the scaling of the itera-
at longer times when used to directly simulate nonequilibtive tensor method, so as to make it go likeN*Kay, iN-
rium dynamics. Thus, one expects to obtain significantlystead of (N)Zmax is interesting to note in this respeét:*4®
more reliable predictions by restricting the use of thoseHowever, it should be emphasized that their “memory equa-
methods to calculating the SDBCFs, which are often relation algorithm” involves approximations, which have led to
tively short lived, and solving the Nakajima—Zwanzig noticeable deviations when tested against benchmarks,
GQME in a numerically exact manner, which ought to bewhereas our approach is ex#ftir example, see the compari-
feasible due to the small size of the system. son to a benchmark in Fig)3

(4) It is important to note that our formulation puts the (2) The structure of the IF approach forces a description
memory kernel in terms of two-time, rather than multitime, of the system dynamics in terms of path integrals. However,
SDBCFs. Previous attempts to go beyond the limit of weakhis may not be the most cost-effective framework for simu-
system—bath coupling by including higher order terms in thdating the dynamics of what is usually a relatively small
perturbation expansion, involve multidimensional time inte-quantum system. At the same time, the description of the
grals over free-bath multitime correlation functiofs.g., system dynamics via the GQME is formulated in terms of
four-time correlation functions in the case of the fourth-orderoperators, and is therefore free of such constraints. Thus,
QME).104116-119This appears to be the price one has to payonce the memory kernel is known, either with or without the
for using a zero Hamiltonian which does not include thehelp of a path-integral-based methodology, one is free to
system—bath coupling. A similar type of quantity shows upchoose the most optimal numerical technique for solving the
when one goes beyond LRT°in order to account for GQME.
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The new formulation of the Nakajima—Zwanzig memory The identity in Eq.(17) can be obtained by integrating both
kernel in terms of SDBCFs developed herein, combined withsides of Eq(A3) from 0 to 7, followed by multiplication by
recent advances in techniques for calculating quantume™ 7" from the left.
mechanical correlation functions, and the distinct advantages Finally, we note that Eqg18) and(21) are obtained by
of a methodology based on the Nakajima—Zwanzig GQMEa straightforward substitution of the identity in Ed.7) into
open theldoor to many exciting applications t'hat'woul'd haveegs. (16) and (20), respectively, and noting that Q[APE]
been dlf_flcult to pursue other\lee_. Such applications include_ Trol ApS Try[ B1.
electronic and vibrational relaxation, chromophore spectros-
copy, and chemical reactivity, in solution. Those and otheAPPENDIX B: THE CALCULATION
applications are the subject of ongoing work in our group,OF FI(Xg v, X} Xy, Xg)

and will be reported in future publications. The key to calculqti_ng:,(xg Lo XN XN 1e - Xg ) IS the
evaluation of{ QW)|e~#H5' U (0,7) U (7,0) QW) [cf. Eq.
ACKNOWLEDGMENT (42)]. The latter can be obtained analytically in closed form

) ) ) _ (for the sake of clarity, we drop the indgxfrom this point
This project was supported by the National SC|enceon)127

Foundation FOCUS Center, through Grant No. PHY-

0114336. (Qle BHoU (0,7 U ol 7,0)|Q)
M w 1/2 )
APPENDIX A: REFORMULATION OF THE =\ 2w snh gha) e AQTBRTC (B1)
NAKAJIMA-ZWANZIG KERNEL
In this Appendix, we provide the detailed proofs of someWhere
of the results that were utilized in Sec. Ill. We start by prov- B Mo
ing that Eq.(16) is equivalent to Eq(8). The proof is based ki sinh Bho) [coshphw) 1], (B2)
on the following identity: )
ic
QLI=Q(L—LypsP). (A1) B= SR Bha) frdt F(t")
The proof of Eq.(Al) is based on the following observa- _ ) ) o
tions: (1) QLQ=0QL,, since PLP=LP?=LP; (2) X[sin(wt’) = sin(w(t’ +i4))], (B3)
QL,0=0L,, since [Hy,pp=0; (3) QLyQ=9(Lys and
—LpP). One can then show thate '¢7"Q ic2
= Qe (£~ L)l C=—r—"—— J dt’J dt’F(t)F(t"
_ hiwsinh(Bhw) Jr It (EOF(")
. ~ 1
e 19 Q= 11—+ QLT— 525 QLOLT +...|Q ic2
Xsinw(t'+ifB))sin(wt”)— ZJ dt'F2(t").
. 1 2Mw r
i
= Q- £ QLOT— —5(QLQ)* T+ (B4)

Here, I' corresponds to the integration over the following

i H . H ! ! 1
=Q- gQ(ﬁ—ﬁbsP) T o f:ontour in the complex plane:-0t—0——iaB, I''(t') is
its segment that ends &t, andF(t)=F[x(t)], such that
X[Q(L= LpP) PP+ x.(t) for 0—t
. 1 x(t)y=4 x-(t) for t—0 : (B5)
_ o _ o _ 2
=9|l h(ﬁ LosP) T th(ﬁ LpsP) 72} 0 for 0 —ihp
= Qe (L~ Lol (A2)  The remaining integrals ove®® in Eq. (42) are Gaussian,

and can be performed analytically based on the following

where the second equality is based on the ider@f= Q, well known identities:

the third is based on E@Al), and the fourth on the identity

PQ=0. SubstitutingQe™“~ 4”7 for e~ 124710 in Eq. by \/E b 2
(8), and noting that Tf £,0]=Try[ Lod, Which is in turn __dyye V322
based on the fact th4t\ )o,=0, leads to Eq(16).
We next prove the identity in Eq17). To this end, con- * —ay2+by_ « | b%aa
. . . AT dye e’ '™, (B6)
sider the following time derivative: —w a

In the actual calculationx(t) is discretized, such that
X(£) = (Xg 1 Xpp 1 Xpy - X0 ) =(Xg- - Xons 1) Since F(t)
(A3) has a fixed value in each time slice, one can perform the

di[ewf/hef (£ LogP)rih] = ;i_eicr/ﬁ,ﬁbspe— (L~ LogP) Tl
;
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corresponding time integrals in the coefficieBtsand C analytically. This leads to the following working expressions Bor

andC:

. 2N
IC

B= 2 SnGha) Sinh B o) 120 F(x;)[cog wt;) —cog w(tj,1))—cogw(tj+ifB))+codw(tj,1+ihB))],

" hosinh Bho)

2N+1

s, o

ic2 2L FOgF ()
=1 k=0

F2(x))

=1

_ %[cos{w(thH-l-iﬁﬂ))—cos{w(ZtJ +iﬁ,8))]) ] .

—wz—<cos(wtj)[cos(w(thJrihﬂ))—cos{w(tj+iﬁ,B))]

APPENDIX C: INTEGRALS USED IN THE EVALUATION OF (A(2,b,a,1;7)A),

The following integrals are useful for evaluatifig,(Xg ,... Xy Xy »---Xg ) in Eq. (44):
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