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A second-order theory for electrostatic instabilities driven by counterstreaming ion beams is 
developed which describes momentum coupling and heating of the plasma via 
wave-particle interactions. Exchange rates between the waves and particles are derived, 
which are suitable for the fluid equations simulating microscopic effects on macroscopic scales. 
Using a fully kinetic simulation, the electrostatic ion cyclotron instability due to 
counterstreaming H+ beams has been simulated. A power spectrum from the kinetic 
simulation is used to evaluate second-order exchange rates. The calculated heating and 
momentum loss from second-order theory is compared to the numerical simulation. 

I. INTRODUCTION 

Ion beams streaming with supersonic velocity through 
a plasma are found in many magnetospheric and space 
physics environments such as the polar wind,’ the aurora1 
region,2 the solar wind,3 upstream of the Earth’s bow 
shock,4 within the bow shock,’ the boundary layer of the 
Earth’s magnetotaiL plasmasphere during refilling,’ the 
cometary environment,8 and the Jovian’ and Saturnian” 
bow shocks. Such situations can give rise to a number of 
different instabilities, which are driven by the free energy in 
the beams and in turn can heat the beams and the back- 
ground plasma. For example, ion beams propagating par- 
allel to the average magnetic field, BO, have been shown to 
be unstable to electrostatic”-” and to electromagnetict6”* 
ion cyclotron instabilities as well as ion-acoustic 
instabilities.6Y’9-27 

Electrostatic ion cyclotron waves are destabilized by 
electrons** or ions1’T’6*29 streaming along a background 
magnetic field. The electrostatic ion cyclotron instability 
(EICI) can be grouped into two classifications: ( 1) 
current-driven EICI’2*28~30 and (2) ion beam-driven 
EICI.‘1,‘6,‘7,31,32 The current-driven EICI is driven by the 
inverse electron Landau damping of drifting electrons, 
while the ion beam can destabilize EIC waves by both 
resonant16”’ and nonresonant” interactions. Drummond 
and Rosenbluth2* first looked at the stability properties of 
the current-driven EICI and a more detailed treatment 
followed by Kindel and Kennel.‘* They found that for a 
wide range of electron-ion temperature ratios, T~Ti, the 
electrostatic ion cyclotron wave is linearly unstable to 
small currents. Recently, linear stability of the current- 
driven EICI in the aurora1 region33*34 found that EICI can 
provide a possible source of waves and heating observed 
experimentally.35-38 Particle simulations of current-driven 
EIC waves generated by multiple component beams39^1’ 

confirmed the linear theories and showed significant heat- 
ing of the beam and background plasma. 

The ion beam-driven EICI has been studied exten- 
sively in the linear regime”*‘6*‘7~3’ and nonlinear regime.32 
The resonant and nonresonant interaction can destabilize 
the EIC waves leading to wave growth and plasma heating. 
The resonant ion beam-driven EICI is driven by inverse 
Landau damping, which has the lowest threshold; how- 
ever, the growth rate for this case is smaller than that 
driven by reactive coupling between beam cyclotron modes 
and background ion cyclotron modes.16 The nonresonant 
case is characterized by a parallel phase velocity that is 
roughly half the beam speed, while for the resonant case, 
the parallel phase velocity is about the beam speed.‘? Mi- 
ura et al. 32 performed a numerical simulation (three spe- 
cies) of the nonresonant ion beam-driven EICI and found 
that the mean parallel velocity of the beam ions slowed 
down, while the perpendicular temperature increased, 
More recently, Chen and Ashour-Abdaila4’ simulated a 
multicomponent plasma (five species) and observed the 
resonant and nonresonant ion beam-driven EICI, which 
significantly heated the beams and background plasma. 
The heating, however, was not quantified in terms of a 
macroscopic coupling coefficient, and the momentum cou- 
pling was not addressed. 

Because of the small spatial and short temporal scales 
of particle simulations, macroscopic fluid simulations 
(global-scale models) are necessary in order to model 
large-scale regions such as the polar wind, the aurora1 re- 
gion, the solar wind, etc. However, the effects of wave- 
particle interactions are not included in the development of 
the fluid equations and hence must be included through 
coupling coefficients. Palmadesso et aL4* developed plasma 
transport models in the aurora1 region which included 
wave-particle interactions and used simplified heating co- 
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efficients. The fluid simulation showed that wave-particle 
effects can change the macroscopic temperature, momen- 
tum, and density. A further development of coupling coef- 
ficients is needed to include more complex microscopic 
effects on macroscopic scales. 

We consider second-order theory for electrostatic 
microinstabilities in a collisionless plasma with one 
source of free energy (counterstreaming ion beams) to 
evaluate the momentum and temperature exchange rates 
for the specific case of the ion beam-driven electrostatic ion 
cyclotron instability. The calculation assumes a stochastic 
interaction between the field fluctuations and the particles 
and that the fluctuation energy density is small compared 
with the associated species thermal energy. The coefficients 
are explicit functions of the spectral energy density and 
hence comparison with numerical simulation is easily car- 
ried out, given the spectral energy density. A fully kinetic 
particle code is then used to simulate a plasma environ- 
ment which consists of three species: an electron back- 
ground, and two counterstreaming proton beams. The ex- 
change rates are calculated using the wave energy density 
from the numerical simulation, and the momentum and 
temperature variation from second-order theory are com- 
pared to the simulation results. 

Linear theory is discussed in Sec. II. Second-order the- 
ory is discussed and the momentum and energy exchange 
rates are calculated in Sec. III. The simulation model and 
results are presented in Sec. IV. In Sec. V we summarize 
our principal findings and discuss the consequences for ion 
heating in hydrodynamic simulations. 

II. LINEAR THEORY 

The distribution of thejth species evolves according to 
the Vlasov equation 

(1) 

where the magnetic field is assumed to be a constant, and 
the fluctuation electric field is determined by Poisson’s 
equation, 

V*E=47rp(x,t), (2) 

i.e., we assume electrostatic perturbations only. Carrying 
out a perturbative expansion of the distribution function 
and the electric field using the magnitude of the fluctuating 
electric field as an expansion parameter and assuming that 
lg cit’)](]g(i)], we obtain 

fj(x,V,t) =fi”)(X,t) +fil)(x,v,t) +fi2)(&vst) + ‘* ‘2 

(3) 

E(x,r)=E(‘)(~t)+E(~)(x,t)+..* . , (4) 

To first order in the expansion parameter ( 6E2/87rn T), the 
Vlasov equation becomes 

afl") -s, E"'(x,~). +. 
I (5) 

Integrating Eq. (5) along the particle’s unperturbed orbit 
and taking the zeroth-order velocity moment, we obtain for 
the first-order density 

ePj ( (‘) k,o) = - [k2#‘)(k,a)/4r]Kj(k,co), (6) 

where we have taken the Fourier and Laplace transform of 
Eqs. (l)-(5) and where 4(l) is the electric potential (E 
= -VIP). The plasma susceptibility, Kj for the jth species 
is defined as 

xe~lk.(x’--X)--O(t’-c)] t (7) 

where X)=X(~)) and v’=v( t’) represent the unperturbed 
orbits in the presence of the external fields and where Oj is 
the plasma frequency of species j. From the linearized 
Poisson’s equation, we obtain the linear dispersion relation 

1+ C Kj(k,a) ~0. 
i 

(8) 

By performing the t’ integration in Eq. (7), assuming that 
the zeroth-order distribution satisfies 

$O’= “O’ 
(l2*)‘“VjU~* exp j 

[ -$ ( (V~~--(ii~2+~ Vf)], (9) 

and considering a uniform magnetic field B=&z, the sus- 
ceptibility can be written in a more familiar form: 

Kj(k,ti)=$ l+ 
( 

i 
(U-mfi,rj-k*Uj) 

WC=--00 flbj 

XeAAjIm(Aj)Z({~) (10) 

Aj= P~v;L /Cl; = kfaj Tjl /Till 9 

Uj is the drift speed, vi is the parallel thermal velocity 
(T,,~=m,u~), Ujl is the perpendicular thermal velocity 
($1 =$Tjl /T,,l ), I’,(Aj) =exp( -~j2,)1,(/2,), where I, is 
a modified Bessel function of order m, Z(c) is the plasma 
dispersion function, Qj is the cyclotron frequency (where 
tici= I ~jl ), n/” is the plasma equilibrium density, and kj is 
the Debye wave vector. 

A three-species plasma is considered: [( 1) and (2)] 
two counterstreaming ion beams and (3) charge neutral- 
izing electrons. The calculation is done in the zero momen- 
tum frame for arbitrary beam densities and zero current is 
assumed which implies that U,=O and U,=n,/n1U2, 
where the U’s represent beam velocities parallel ( U2) and 
antiparallel ( U,) to the ambient magnetic field and where 
the n’s are the zeroth-order densities of the beam compo- 
nents. The Doppler-shifted frequency of the cyclotron os- 
cillations of beam 1 and beam 2 is given by 
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FIG. 1. Counterstreaming ion beam modes as a function of k, The high- 
lighted lines are unstable crossing for mJmc= 100 between two of the 
beam modes, (p,q)=[l,-(I ,..., 5)] and (p,4)=[(1,...,7),-l]. 

W= - k,Ul +poci 9 (11) 

w = kJJ2 + qu,i 7 (12) 

where p and q are integers and denote gyrofrequency har- 
monics. When the two frequencies are equal, there is a 
coupling between the beams that drives the oscillations 
(normal modes) unstable. Equating Eqs. ( 11) and ( 12), 
the wave vector 

kz--o&-q)/( ul+ U2) 

and real frequency 

(13) 

OZ-O,(qu* +pu2)/( u1+ U2) (14) 

are obtained. Figure 1 shows the intersection between Eqs. 
(11) and (12) forq=*jnl andp=*lmI,wherenand 
m are integers. The instabilities are generated at these in- 
tersections for the wave vector and frequency approxi- 
mately given by Eqs. ( 13) and ( 14), respectively. Trans- 
forming into the reference frame of beam 1, the phase 
velocity of the instability is o/k,=p( U1+ U,)/(p-q) 
where for q=O the resonant interaction’7’32 is found for 
(p,q) =[( 1,2,...,m),O] intersections. For p=O, the resonant 
interaction is found at the (p,q) =0[( 1,2,...,n)] crossings 
(this can be seen by transforming into the beam 2 rest 
frame): these interactions are sometimes referred to as 
cyclotron/acoustic [ ( 1 ,...,m),O] or acoustic/cyclotron 
P,(l ,...,n)] modes. The cyclotron/cyclotron modes are 
when p and q are nonzero. Here, the cyclotron/cyclotron 
modes include resonant and nonresonant interactions. 
Perkins16 demonstrated that the resonant interaction has 
the lowest threshold; however, the resonant interaction 
usually has a smaller growth rate.16’17 

Numerical solutions of Eq. (8) for the real and imag- 
inary frequency as a function of wave vector are displayed 

Beam Plasma Interaction: Interaction of p-1 with qs-I 
(cm0. mi/me=1836) 
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FIG. 2. Linear stability analysis for counterstreaming ion beams for the 
(p,q) =( I,- 1) mode where m/m,= 1836, B= W, n&1,=0.667, 
fi2/n,=0.333, u,h,= - 10.0, c/,/0,=20.0, TJT(=~, W~tice=0.5, e 
= So”, and u, = y. The real frequency and growth rate, normalized to the 
ion gyrofrequency, are shown as a function of normalized wave vector ka,. 
The parameters used for the stability analysis remain the same through- 
out the paper except for the mass ratio, mJmn and propagation angle. 

in Fig. 2, where we have assumed TJTi=4, nz/nl = 0.5, 
Uz/v2=20, U& = - 10, 8=86”, and m/me= 1836. Fig- 
ure 2 shows the nonresonant ion cyclotron/cyclotron in- 
stability [(p,q) = ( 1, - 1 )] with a growth rate of y/s1,=0.2. 
Two real frequencies are plotted as a function of wave 
vector in Figure 2: ( 1) the solid curve which is’obtained 
numerically from Eq. (8) and (2) the dashed curve which 
is given by ECq. ( 12). The slopes of the two curves (phase 
velocity) differ at the peak of the growth rate and become 
equal as the growth rate decreases. The strong coupling of 
the two beam modes leads to a variation in the phase ve- 
locity of the wave and hence the real frequency. For 80”, 
the growth rate for the (p,q) = ( 1, - 1) mode 
(~/sZ,=O.OS) is reduced by a factor of 4, while both the 
real frequency given by Eq. ( 12) and the numerical solu- 
tion [Eq. (8)] are approximately equal. 

The particle simulation we will discuss later uses a 
mass ratio of mi/me= 100 rather than 1836, which changes 
the linear theory result presented in Fig. 2. For a mass 
ratio of m/me= 100 and 0=80’, Figs. 3 (w,> 0) and 4 
(a,< 0) show the real frequency and growth rates ob- 
tained from linear theory (all other parameters remain the 
same). The reduction in propagation angle, 8= 80”, pro- 
duces the same ‘“bell-shaped” growth rate as that obtained 
for m/me= 1836 at 19=86”. The cyclotron/cyclotron 
modes for positive frequency (Fig. 3) are given by (p,q) 
= [ ( 1,...,7), - 11, which are nonresonant. The largest 
growth rate, ~/sl,=O.lS, is associated with (p,q) = (4, 
-1). The beam mode for q=-1, Eq. (12), is plotted in 
Fig. 3 along with the real frequency computed numerically; 
both real frequencies have approximately the same linear 
slope. The bold curve with positive slope in Fig. I can be 
identified as this unstable branch (p,q) = [( 1,2,...,m), - 1], 
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Beam Plasma Interaction: Interaction of q=-1 with p=(l-7) 
(6~0, mUmc=lOO) 
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FIG. 3. Linear stability analysis for counterstreaming ion beams for pos-  
itive real f requency ((p,q) =[( 1,...,7),- I]) for m/m,= 100  and  8=80”. 
The real f requency and  growth rate, normal ized to the ion gyrofrequency, 
are shown as a  function of normal ized wave vector ka, 

while the other branches with positive slopes (p,q) 
=[( l,..., m),- (2,-v n)] are stabilized for m/me= 100. 

Figure 4 shows the corresponding unstable negative 
frequency branch (Q-w) =L- (3,4,5)1] for the 
m/me= 100 case, with the maximum growth rate given by 
r/n,= 0.03 associated with (p,q) = ( 1, -4). The growth 
rate for w, < 0 is an order of magnitude smaller than that 
found in Fig. 3. Hence, the waves with positive phase and 
group velocities (Fig. 3) are likely to dominate. The beam 
mode with p= 1, Eq. ( 1  1 ), has approximately the same 
slope for the real frequency as the numerical results shown 
in Fig. 3. The bold curve with negative slope in Fig. 1  can 
be identified as this unstable branch (p,q) = [ 1, - (3,4,5)], 
whereas in the case for positive frequency the other 
branches with negative slopes (p,q) = [ (2 ,..., m), - (2 ,..., n)] 
are stabilized for m/m,= 100. 

The electrostatic ion cyclotron instability saturates for 
large values of the perpendicular to parallel temperature 
ratio TL /TII . Using the same parameters as in Figs. 3  and 
4, Fig. 5  shows the saturation of the EICI for two wave 
vectors, kaicO.43 (solid) and 1.12 (dashed). The largest 
growth rate ( ~/~P~0.15) in Fig. 3  corresponds to 
kai= 1.12 which saturates for r, /TI, z 3. For longer wave- 

Beam Plasma Interaction: Interaction of p=I with q=-(3-5) 
(0~0, mih=lOO) 

200 

kai 

FIG. 4. The  nonnal ized real f requency and  growth rate for negat ive real 
f requency (p,q) =[l,- (3,4,5)] as  a  function of wave vector for 
mi/m,= 100  and  0=80”. 

lengths, kai= 0.43, the growth rate is smaller 
(7~/$=:0.05), however, the instability saturates at much 
larger temperature anisotropies, T, /T,, z 10. This ten- 
dency will be seen in the particle simulation as a shift in the 
dominant wave vector to longer wavelengths. 

Ill. SECOND-ORDER THEORY 

The second-order exchange rates are easily derived 
from the moments of the Vlasov equation. Expanding the 
Vlasov equation to second order and taking an ensemble 
average over a spectrum of waves, one obtains for a homo- 
geneous plasma43 

a(fi*‘> ej VXBO a@*‘) 
dt+;y*- 

J av 

af”) 
-z, (E’*‘(x,t))* +, 

J 
(15) 

where Ba is the background magnetic field and ( ) repre- 
sents an ensemble average over the wave field. A necessary 
criterion for the validity of Eq. ( 15) is the assumption that 
the wave-particle interaction is stochastic so one can av- 
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FIG. 5. Growth rate as a function of temperature anisotropy for two 
wave vectors, ka,=0.43 and 1.12, for mJme= 100 and 0=80”. 

erage over an ensemble of fluctuations with random 
phases. Equation ( 15) describes the slowly varying re- 
sponse to the fluctuating fields during the linear growth 
phase and is assumed to describe the broadly resonant spe- 
cies response after saturation. 

The velocity moments of Eq. ( 15) yield macroscopic 
equations that describe the evolution of the second-order 
density (nj*‘), momentum density (*‘I), and energy den- 
sity [(njTj)(‘)] for the jth species. The first three velocity 
moments of Eq. ( 15) can be written as 

a(n!*‘) 
------0, ii (16) 

a(P;*‘) 
~+~~~~~~2’)-e~j(E’2’)=e~(E”‘~~“), 

3 a(?2 T!*‘) J J 

z at 
=~j(E”).r”))-~jU;(E(l)n~‘)), 

where the right-hand sides of Eqs. ( 17) and ( 18) represent 
wave-particle momentum and temperature exchange rates, 
respectively (note: the ensemble average of the first-order 
variations is zero). Using the following definition for the 
momentum and temperature exchange frequencies, 

VT/=: bT (ej(E”‘*r”‘) --eiU;(E”‘n~“) ), (20) 
J 

Eqs. ( 17) and ( 18) become 

Lqn G+‘) J J 
at = VTpjTj 9 (22) 

where the source terms driving the temporal variation of 
second-order quantities are given in terms of the zeroth- 
order stationary quantities (nj P’ Ti) and their corre- 
sponding exchange frequencies (Ypj and Yrj) . Integrating 
Eqs, (2 1) and (22) yields linear temporal growth ( vpi > 0, 
VTj> 0) or decay (Ypj < 0, VTj < 0) of the second-order mo- 
mentum and temperature. 

The momentum exchange rate for the jth species is 
calculated using Eq. (6) and E(i)= --iic#‘*’ for the electric 
field4’ yielding 

ej(E”‘tt~“)=2 c k4k,w)Im[Kj(k,w)l, 
k 

(23) 

where E is the energy density of the fluctuating fields. The 
momentum exchange frequency is then given by 

vpi-p. -t T  ke(k,wlIm[~#w) I, (24) 

where we have used Eq. ( 19). From the zeroth velocity 
moment of the linearized Vlasov equation it follows di- 
rectly that 

ej(E(1)-rj1))=2 2 &(k,o)Im[oKj(k,w)] 
k 

(25) 

and therefore the temperature exchange rate43 becomes 

where we have used Eq. (20). The exchange frequencies 
are given in terms of the plasma dispersion function, which 
in some regimes can be simplified leading to analytic ex- 
pressions for the exchange frequencies in terms of macro- 
scopic variables such as the particle density ( nj), momen- 
tum (Pj), flow speed (Vi), temperature ( rj), and spectral 
energy density (E). Equation (22) is a scalar equation de- 
scribing the total temperature increase/decrease due to 
wave-particle interactions which is easily related to the 
perpendicular and parallel temperatures, T= l/3( TII 
-I- 2TL ) (one degree of freedom parallel and two degrees of 
freedom perpendicular to the magnetic field). For ob- 
liquely propagating waves, the formalism does not separate 
easily into perpendicular and parallel temperatures. How- 
ever, since the propagation angle is near 90°, most of the 
heating will be in the perpendicular direction; therefore, 
Eq. (22) along with Eq. (26) approximately describe the 
perpendicular heating due to wave-particle interactions. 
For less oblique waves, one must not assume that the heat- 
ing is predominantly in the perpendicular direction. 

The plasma dispersion function, Z(p), in the suscepti- 
bility can be expanded in a power series for small argu- 
ment, 1514 1, or in an asymptotic series for large argu- 
ment, 1 LJ [ ) 1, leading to simplified analytic expressions for 
the exchange frequencies. The imaginary part of the sus- 
ceptibility for the two beam species for / 5 f < 1, using Eqs. 
(13) and (14), can be written as 

k? Im[K,(k,o)] =c r”* (271 
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ti 
Im[K,(k,w) ] =g r’12 (28) 

which can be further simplified using Eqs. ( 11) and ( 12) 
for the Doppler-shifted frequency. The momentum ex- 
change rate in the perpendicular direction, yei, is zero 
since there is no zeroth-order momentum (P,,,=O) in that 
direction. However, the exchange frequencies parallel to 
the ambient magnetic field are nonzero. Using Eqs. (27) 
and (28) along with Eqs. (11) and (12), the momentum 
exchange rates are obtained, 

‘VA1 
---&= -2TP2 7 

:;i (Ggy(l+$) 

@q(m) p 
xcos2e c - 

Pt4 n1T* (p-d2 ’ 
P>Q 

fl(o) 4 
xcos2e c - 

p,q n2T2 W-d*’ 

(29) 

(30) 

P>4 

where p and q are the mode numbers and 0 is the angle 
between the magnetic field and the wave vector. The sum is 
over unstable ion cyclotron wave modes, determined by 
linear theory, where p and q represent the ion cyclotron 
harmonics of beams 1 and 2, respectively. The requirement 
that p > q yields k, > 0 from Eq. ( 13). Similarly, the tem- 
perature exchange frequencies are found by computing the 
imaginary part of the Doppler-shifted frequency times the 
susceptibility, resulting in 

@q(o) p2 
cos2 8 c - 5, 

P*4 ~ITI W-4) 

P>9 
(31) 

-+(a) q2 
cos2 8 2 - f, 

Pv4 nJ2 (p---4) 

P>4 
(32) 

where we have assumed rp4/w=i~ 1 and where we have used 
Es. (26). 

The momentum exchange frequencies in the opposite 
limit, ] < ] > 1, using the following for the imaginary part of 
the susceptibility: 

become 

VRl -= - 
wci 

(35) 

vR2 
-= 
wci 

rm(A*)m& 
’ ,j, (a,-kcos Ou,-tz, .)2’ (36) 

Cl 

and where the temperature exchange frequencies are given 
by 

(37) 

x ,=8, 
rm(A*)m2Wzi 

(O -km BU2-mw .)2 ’ (38) 
r a 

where knowledge of the relative beam velocity, angle of 
propagation, temperature, and wave spectral energy den- 
sity are needed in order to fully evaluate the exchange 
frequencies. 

For the case shown in Fig. 2 (m/m,= 1836, 8=86”), 
the cyclotron/cyclotron instability [ (p,q) = ( 1, - 1 )] has 
1 c ] = 1 over the range of k space with y > 0. The dominant 

contribution to the susceptibility in this case requires a 
different procedure for the evaluation of the exchange fre- 
quencies than those described by Eqs. (29)-( 32) ( I c I (1) 
and Eqs. (35)-( 37) ( 15 I > 1). Instead, the evaluation of 
Eqs. (24) and (26) must be done numerically. Figure 6 
shows the normalized momentum exchange frequencies 
[Y/(Eti,.i/n,T,)] for beam 1 (dashed) and beam 2 (solid) 
as a function of wave vector. Both momentum exchange 
frequencies calculated in this manner are negative, with the 
absolute value used in the graphical display. The negative 
value of the exchange frequencies implies from Eq. (2 1) a 
decrease in the momentum density of each beam due to the 
generation of ion cyclotron waves. The momentum ex- 
change frequencies have a peaked value of 2.8 for beam 1 
and 3.0 for beam 2 and fall off rapidly with k. Note that the 
exchange frequencies are calculated only over the range of 
k for which y> 0 (cf. Fig. 2). The temperature exchange 
frequencies are calculated similarly and are shown in Fig. 
7. The temperature exchange frequencies [YT/(EW,i/l?lT,)] 
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Momentum Exchange Frequencies 
(oo,mi/ma=1836) 

I.0 
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FIG. 6. The second-order momentum exchange frequencies for beam 1 
(solid) and beam 2 (dashed) normalized to the gyrofrequency and spec- 
tral energy density for (p,q) = ( l,- 1) as a function of wave vector for 
m/me= 1836 and 0=86”. 

are two to three orders of magnitude larger and have the 
same functional form on k as the momentum exchange 
frequencies. Beam 2 has a peaked value of 1.15 X 103, 
which is approximately two times larger than that of beam 
1, 5.61 x 102. 

For the case shown in Figs. 3 and 4 (mi/m,= 100, 
8= SO’), the exchange rates must be calculated numerically 
because I < [ = 1 over the entire range of k space with y > 0. 
Figure 8 shows the momentum exchange frequencies for 

Temperature Exchange Frequencies 
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FIG. 7. The second-order temperature exchange frequencies for beam 1 
(solid) and beam 2 (dashed) normalized to the gyrofrequency and spec- 
tral energy density for (p,q) = ( l,- 1) as a function of wave vector for 
m/me= 1836 and 6= 86”. 

Momentum Exchange Frequencies 
(o>O,mi/me=lOO) 

kai 

FIG. 8. The second-order momentum exchange frequencies for beam 1 
(solid) and beam 2 (dashed) normalized to the gyrofrequency and spec- 
tral energy density for positive real frequencies as a function of wave 
vector for m/me= I00 and 8= 80”. 

the case shown in Fig. 3. (w, > 0). Here the range in k over 
which such frequencies are valid is much broader. The 
contribution to the momentum exchange frequency for 
beam 2 [Bq. ( 12)] is peaked at two cyclotron resonances 
which correspond to (p,q) = [( 1,2), - 1 )], while beam 1 
[Eq. ( 1 1 )] has several maxima at the crossings of the un- 
stable branch associated with cf= - 1 and higher harmon- 
ics,p=(l ,...,7). The momentum exchange frequencies are 
negative, have a maximum at (p,q) = ( 1, - 1) of 0.27 and 
0.53 for beam 1 and beam 2, respectively, and decrease in 
magnitude at higher k. 

The contribution of the cyclotron/cyclotron instability 
for w, < 0 to the momentum exchange frequencies involv- 
ing (p,q) = [ 1, - (3,4,5)] is shown in Fig. 9. Beam 2 (solid) 
asymptotes to a constant value of 0.06 whereas beam 1 
(dashed) has peaks corresponding to (p,q) = (1, - (3,4,5 )) 
and has a maximum value of 0.0 13. These contributions to 
the momentum exchange frequencies are an order of mag- 
nitude smaller than that for the cyclotron/cyclotron insta- 
bility for c+> 0. Thus, the ion cyclotron waves (o,< 0) 
propagating antiparallel to the magnetic field (v& Ul, 
where uB is the group velocity) do not scatter the beams as 
effectively as the ion cyclotron waves propagating parallel 
to the magnetic field (w,> 0; uJ Uz). The normalized tem- 
perature exchange frequencies [VT/( c@,i/nt T1 )] for the 
same case are shown in Fig. 10. Results for positive fre- 
quencies are shown in the figure and have approximately 
the same functional dependence on k as the momentum 
frequencies (Fig. 8); however, the temperature frequencies 
are larger in magnitude by two to three orders of magni- 
tude. For beam 1, the normalized temperature exchange 
frequency have a maximum at (p,q) = ( 1, - 1) of 5.6 x 10’ 
and 2.0~ lo* for beam 1 and beam 2, respectively. The 
momentum and temperature exchange frequencies for 
m/me= 1836 and 8=86” (Figs. 6 and 7) are approxi- 
mately six to ten times larger than that found for 
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FIG. 9. The second-order momentum exchange frequencies for beam 1 
(solid) and beam 2 (dashed) normalized to the gyrofrequency and spec- 
tral energy density for negative real frequencies as a function of wave 
vector for m/m,= 100 and 0=80”. 

m/me= 100 and 8=80” (Figs. 8 and 10). As with the 
momentum exchange rates, the negative frequency contri- 
butions to the temperature exchange rates are much 
smaller (factor of 10) and are not explicitly shown here. 

To evaluate the exchange rates for the simulation pa- 
rameters (m/me= IOO), we keep only the one term in Eqs. 
(24) and (26), the largest contributors to the exchange 
frequencies (p,q) = ( 1, - 1). We obtain the following, 
where E is the wave energy in the dominant mode: 

& 
z= -2.7x IO-’ - 

n+‘T ’ 
(39) 

Temperature Exchange Frequencies 
(0O,mi/me=lOO) 
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FIG. 10. The second-order temperature exchange frequencies for beam 1 
(solid) and beam 2 (dashed) normalized to the gyrofrequency and spec- 
tral energy density for positive real frequencies as a function of wave 
vector for m/m,= 100 and 8=80”. 

“ci nil., 

& 
2=5.6x 10’ - 

ntT~ ’ 

2=2.0x lo* -!-, 
nlT1 

(40) 

(41) 

(42) 

where knowledge of the energy density is necessary in or- 
der to fully evaluate the exchange frequencies. As we have 
used the peak exchange rates (in k), we expect these for- 
mulas may overestimate the actual exchange frequencies. 
From Eqs. (39)-(42), one can conclude that beam 2 
(fast/tenuous) loses momentum and increases in temper- 
ature faster than beam 1 (slow/dense) for a given spectral 
energy density. To proceed further, the energy density 
must be calculated, either using experimental data, numer- 
ically, or analytically using various approximations. In the 
following section, the energy density is calculated numer- 
ically, and Eqs. (39)-( 42) are compared to the numerical 
simulation results. 

IV. SIMULATION 

In this section results of a particle-in-cell simulation of 
the ion beam-driven electrostatic ion cyclotron instability 
are presented. The cyclotron/cyclotron instability has been 
simulated previously by Miura et ai. and more recently 
by Chen and Ashour-Abdalla4’ with two ion species 
(H+ and O+ ), each species involving both beam and back- 
ground components. Unlike the previous calculations that 
used guiding-center electrons and particle ions, here we 
carry out fully kinetic simulations using WAVE.~ The sim- 
ulations are done in the electron rest frame which corre- 
sponds to the zero momentum frame. The plasma is ini- 
tially spatially homogeneous in space; the system is 
quasineutral with zero net current. Periodic boundary con- 
ditions for the fields and the plasma are assumed, and only 
electrostatic perturbations are allowed. The simulations 
has one spatial coordinate, while the fields and particle 
velocities are calculated in three dimensions. 

The calculation uses 10 000 electrons and ions distrib- 
uted uniformly over the simulation domain. The simula- 
tion axis is directed along the electric field vector at an 
angle of 80” from the magnetic field. The system length is 
taken to be 4&/w,, (electron inertial lengths), approxi- 
mately six times the wavelength of the dominant instabil- 
ity. The calculation uses 64 computational cells with a time 
step of At w,,=O.OS with c+./w,=O.5 and iV,=30000, 
where N, is the number of time steps. The drift speeds for 
the two ion beams are U,/v, = - 10.0 and U2/v2= 20 with 
a normalized beam density of n,/n,=0.667 and 
n2/n,=0.333, respectively. The thermal velocity of the 
electrons is taken as vJc=O.OS and for m/m,= 100 and 
T~Ti=4, the ion thermal velocities become v1=v2 
=0.0025. These parameters correspond to those shown in 
Figs. 3, 4, and 8-10. 

Figure 11 shows the time history of the normalized 
fluctuating electrostatic field energy density averaged over 
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FIG. 11. The  fluctuating electric field energy density as  a  function of 
time. The numerical simulation uses the same parameters as  the Iinear 
stability analysis and  mi/m,= 100,  @=80”, N,=N,= 10  OCQ uJc=O.OS, 
L,=4.8c/o, N,=64, A&+=0.05, and  N,=30 OCQ. 

the entire simulation domain, S*E/( 8nn, T, ). The fluctua- 
tion level grows by an order of magnitude from 
6*E/( 8r~, T1) ~0.006 to 0.06 between approximately 600 
to 12ooW;‘. The initial field growth, t=600$‘, is prima- 
rily in the N=6 Fourier mode which corresponds to (p,@) 
= (4, - 1) and has the largest growth rate, consistent with 
Fig. 3. From 900 to 12OOw;‘, the dominant mode shifts to 
longer wavelengths (to N = 3)) which corresponds to (p,q) 
= ( 1, - 1). The fluctuating electric field energy density sat- 
urates at t=: 1200~$‘. During the interval 900-1200$.’ 
the average normahzed spectral energy density for N= 3 is 
found to be S*E,/( 8mlT1) ~0.01, Given this fluctuation 
level, the second-order theory exchange frequencies [F&s. 
(39)-(42)] can be evaluated. During this interval using 
the corresponding spectral energy density for N=3, one 
finds the momentum exchange rates for the two beams to 
be ‘Vpl/W,iz - 2.7 X 10m3 and V~/W,~ZZS -5.3 X 10e3. In 
similar fashion one computes the theoretical temperature 
exchange rates: v&wCi=0.56 and Vn/Wci~2.00. 

Figure 12 shows the average velocity parallel to the 
magnetic field as a function of time in the simulation where 
the velocities are normalized to their initial values. The 
solid and dashed lines correspond to beam 1 (slow/dense) 
and beam 2 (fast/tenuous), respectively. The background 
noise in the simulation slightly scatters the beams initially; 
however, scattering does not become significant until the 
instability grows out of the noise, which, occurs approxi- 
mately by 6000;~. From Fig. 12, we see that beam 2 losses 
momentum at a faster rate than beam 1, which is consis- 
tent with the analytic results from second-order theory 
[Eqs. (39)-(42)]. Between 900 and 1200~~1~’ the slopes of 
the normalized momentum for the ion beams are approx- 
imately linear, which corresponds to the regime of appli- 
cability of the second-order theory [Eqs. (21) and (22)]. 
Performing a linear fit for the momentum of the two ion 
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FIG. 12. The  normal ized momentum for beam 1  (solid) and  beam 2  
(dashed) as  a  function of time from the particle simulation. 

beams, one obtains the following for the momentum ex- 
change frequencies vPl/w, _ .- - 1.22~ low3 and vp2/wCi 
z5 - 1,41X 10-3. 

The simulation results for perpendicular heating of the 
counterstreaming ion beams are shown in Fig. 13. As with 
the parallel velocity, the perpendicular temperatures for 
the two beams change only by a small amount prior to 
6OOw;‘, followed by large changes as the waves grow. The 
change in the temperature (as with the velocity) is largest 
for the faster, more tenuous beam. By 12OOw~‘, the field 
energy saturates (T, */Tit 2~ 10). Linear theory for this 
case (Fig. 5) indicates that the fastest growing mode (N 
=6) saturates at a small value of T, /T,, ( = 3), but that 
the longer wavelength (N= 3) mode continues to grow 
until T, /TII z 10. Both the shift in the wavelength and the 
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FIG. 13. The  normal ized temperature for beam 1  (solid) and  beam 2  
(dashed) as  a  function of time from the particle simulation. 
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FIG. 14. Ion phase space plots at w&= 1200 from the particle simulation. 

large value of r, /T,l when the fluctuations saturate are 
consistent with a quasilinear evolution of the system. At 
later time, heating of both beams continues because of the 
continued high fluctuation levels after saturation (Fig. 11). 
This effect is accentuated due to the one-dimensional (l- 
D) nature of the calculation that constrains the decay of 
the fluctuations. The temperature exchange frequencies are 
calculated by using a linear fit to the perpendicular tem- 
perature of the ion beams. These rates are found to be 
~~~/w~~~O.38 and ~~/w~~~O.71. 

Finally, to show details of the heating process, in Fig. 
14 we plot u,,-x, v,-x, and u,-x phase space for the two 
ion beams (beam 1, left panels; beam 2, right panels) at 
opf’= 1200, when the waves saturate. Here x corresponds 
to the direction of k so that y is nearly along B. In the 
u,,-x plot we see only weak spatial bunching. In the two 
velocity directions perpendicular to B, however, we see 
strong ion heating. As in Chen and Ashour-Abdalla4’ the 
heating results from coherent trapping motion, as seen by 
the vortices. The fact that the center of the vortices occurs 
at v X~ U,/3 indicates that the instability is “nonresonant” 
(w/k11 =: VJ2 in the background ion frame32). From the 
phase space plots it is also evident that the heating of beam 
2 is somewhat larger than that of beam 1. Some of the 
coherent features are, of course, an artifact of the 1-D 
nature of the simulation. 

V. SUMMARY 

In this paper, we have considered second-order theory 
for electrostatic microinstabilities in a collisionless plasma 
with one source of free energy (counterstreaming ion 
beams) and have analytically derived momentum and en- 
ergy exchange frequencies for the ion beams in two limits: 
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(1) For /{[xl, Eqs. (29)-(32), and (2) for lL~l>l, Eqs. 
(35)-( 38). Both limits of the coefficients depend on mac- 
roscopic parameters such as density, temperature, angle of 
propagation, magnetic field strength, as well as the fluctu- 
ation spectrum. The coefficients can be evaluated at (p,q) 
= ( 1, - 1) for most applications, which simplifies the ex- 
pressions by removing the summation over unstable 
modes. 

However, the cyclotron/cyclotron instability simu- 
lated in this paper is nonresonant with 1 <I z 1, which re- 
quires the exact evaluation of the exchange frequencies, 
Eqs. (24) and (26). In this case, the coefficients, normal- 
ized to the gyrofrequency and to the spectral energy den- 
sity, are thus evaluated numerically. The largest contribu- 
tion to the second-order theory exchange frequencies, 
given by (p,q) = (l,- l), yields ~~,/W,i=: -2.7~ 10m3, 
Vpl/Od” -5.3 X 10e3, vT,/Wci~O.56, and v?z/W~i~2.00 
for the momentum and temperature exchange frequencies 
for each beam, respectively. 

The simulation of the cyclotron/cyclotron instability 
in Sec. IV shows significant parallel momentum loss (Fig. 
12) and heating (Fig. 13) of the two ion beams. Taking a 
linear fit of the normalized momentum and temperature, 
the numerically simulated exchange frequencies are found 
to be v~,/w,~z - 1.22 x 10w3, Vp2/Wd~ - 1.41 X 10-3, 
Vrt/W~i~O+38, and Vn/ti,~O.71. The ratio of second- 
order theory (S) results to numerical simulation (N) re- 
sults thus yields ( v&vPiN) =2.2, ( vms/vmN) = 3.7, 
(~r,~/vr~~) = 1.5, and ( vTLS/vnZN) =2.8. Therefore, ex- 
change rate coefficients determined from second-order the- 
ory give values that agree to within a factor of approxi- 
mately 4 to those obtained from the numerical simulation. 
This range of agreement is acceptable because, as discussed 
earlier, our theoretical estimates tend to be too large. In 
addition, in the simulation the spectral energy density is 
relatively low (i.e., the noise level is relatively high). In 
this case we expect the noise to act as an effective collision 
frequency, reducing the growth rates, and corresponding 
exchange rates, of the instability. 

While the phase space dynamics of the simulation pre- 
sented in Sec. IV suggest that some coherent phenomena 
(i.e., trapping) occur, the evolution of the fluctuation spec- 
trum to longer wavelengths and the saturation of the in- 
stability at r, /T,, z 10 are consistent with quasilinear sta- 
bilization. As noted by Miura et a1.32 two-dimensional 
simulations of the cyclotron/cyclotron EIC instability 
yield a broad wave spectrum (again suggesting a more 
quasilinear evolution), but overall similar final values of 
macroscopic quantities to those found in 1-D calculations. 
It is evident that the second-order exchange rates, along 
with an equation for the time evolution of the fluctuation 
energy density can be solved together to obtain a self- 
consistent quasilinear evolution of the system. Particle sim- 
ulations, such as the calculations done in this paper, which 
are much more costly than solving the evolutionary equa- 
tions, can occasionally be used to check the solutions. Car- 
rying out such quasilinear calculations over a wide range of 
parameters will then allow the development of transport 
coefficients that are only a function of macroscopic param- 
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eters. These transport coefficients can in turn be used in 
fluid simulations of polar wind phenomena on long time 
and large distance scales. The development of such a time- 
dependent quasilinear model to allow the parametrization 
of these coefficients is our next goal, 
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