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Brownian dynamics simulations of flexible polymers
with spring–spring repulsions

Satish Kumara) and Ronald G. Larsonb)

Department of Chemical Engineering, University of Michigan, 2300 Hayward, 3074 H. H. Dow Building,
Ann Arbor, Michigan 48103

~Received 13 December 2000; accepted 2 February 2001!

We develop a method which incorporates spring–spring repulsions into Brownian dynamics
simulations of flexible polymers. The distance of closest approach between two springs is computed,
and a repulsive force is then applied based on this distance. Repulsive potentials of the exponential
and power-law forms are considered. We demonstrate that our method is capable of accounting for
excluded-volume effects in start-up of extensional flow. Equilibrium simulations indicate that
spring-spring repulsions can be used to prevent the passage of two springs through each other, and
thus maintain the topological integrity of polymer molecules. The method developed here is
expected to be useful for simulating entanglement phenomena in both single and multichain
systems. ©2001 American Institute of Physics.@DOI: 10.1063/1.1358860#
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I. INTRODUCTION

A distinguishing feature of a polymer molecule is i
ability to become entangled with either itself or other po
mer molecules. These entanglements are responsible for
nomena such as knotting1 and reptation2 which contribute to
the remarkable behavior of polymeric liquids.3 In principle,
entanglements could be captured in a molecular-level si
lation by modeling the polymers in atomistic detail or wi
‘‘pearl necklace’’ chains having excluded volume to preve
the passage of one polymer segment through anothe
practice, this is not feasible if one would like to simula
entanglement behavior in relatively long polymers (;1 mm!
over time scales on the order of seconds. At these long t
scales, entanglement behavior can be important in a va
of practical settings including rheological characterizatio
polymer processing, and electrophoretic separation of D
and proteins.3,4 Successful molecular-level simulations re
evant to these examples thus require the use of a m
coarse-grained model for the polymers. One such mode
the bead–spring system which is commonly used in Brow
ian dynamics~BD! simulations ~Fig. 1!. However, a key
limitation of current bead–spring models is that entang
ment behavior is not accounted for since the springs are
to pass through each other. In this paper, we develop an
for overcoming this limitation: the incorporation of spring
spring repulsions into BD simulations.

In a bead–spring model, the beads represent po
where the polymer feels a viscous drag while the spri
allow the polymer to stretch and orient. In addition to a dr
force, each bead is subject to a spring force and a Brown
force. Writing a force balance for each bead and neglec
inertia produces a set of stochastic ordinary differential eq
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tions which can then be integrated with respect to time,

dr i

dt
5~“u!T"r i1

1

z
@F i

spr2F i 21
spr #1

1

z
B~ t !, ~1!

where r i is the position vector of beadi, u is the velocity
field of the solvent,z is the bead drag coefficient,F i

spr is the
force exerted by springi, and B~t ! is the Brownian force.
The spring force is generally a nonlinear function of t
spring extension.5 The Brownian force satisfies th
fluctuation-dissipation theorem and represents the agita
of the solvent, which is modeled as a thermal bath.6 @Hydro-
dynamic interactions between the beads are not include
Eq. ~1! but can readily be incorporated.7,8# Averaging of the
results over time or an ensemble is used to obtain final
formation about polymer conformations. By choosing t
properties of the beads and springs correctly, the rheolog
behavior of polymers can be accurately simulated.9–12

In Eq. ~1! there are no forces which prevent two sprin
from passing through each other, and this can lead to vi
tions of the topological integrity possessed by polymer m
ecules. One way to prevent spring crossings is to make
maximum spring lengths very short while introducing bea
bead repulsive forces~‘‘pearl necklace’’ model!.13,14 How-
ever, the short spring lengths preclude efficient long-ti
simulation of large polymers~e.g., DNA! having contour
lengths on the order of microns. A similar issue arises if o
uses a bead–rod model since the rod lengths are very s
(;1 Kuhn length!. An alternative method for preventin
spring crossings is to incorporate spring–spring repulsi
into BD simulations, which is the idea explored in th
present manuscript.

We discuss the way in which we account for spring
spring repulsions in Sec. II. In Sec. III, we use the case
start-up of extensional flow to demonstrate that putt
spring–spring repulsions into BD simulations can acco
for excluded-volume effects. In Sec. IV, we develop a

ci-
.
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verify a method for detecting violations of topological inte
rity in BD simulations. Finally, our conclusions are pr
sented in Sec. V.

II. SPRING–SPRING REPULSIONS

The general way in which we account for spring–spri
repulsions involves computing the distance of closest
proach between two springs and imposing a repulsive fo
based on that distance. Consider two springs, referred to
and 2, which have midpointsP1 andP2 . Let R1 andR2 be
the vectors characterizing the direction and length~magni-
tude! of each spring~Fig. 2!. Each spring lies on a line, an
the distance vector between these lines,D, is given by

D5P11t1R12~P21t2R2!, ~2!

wheret1 and t2 are parameters which indicate where we a
along each line. The distance of closest approach betw
the lines is found by minimizing the magnitude ofD with
respect tot1 and t2 . This requires that

]D2

]t1
5

]D2

]t2
50, ~3!

whereD25D"D. Solving Eq.~3! produces the following ex-
pressions fort1 and t2 :

t15
~P12P2!"~R2

2R12R21R2!

R21
2 2R1

2R2
2

, ~4!

t25
~P22P1!"@R1

2R22R21R1#

R21
2 2R1

2R2
2

, ~5!

whereR1
25R1"R1 , R2

25R2"R2 , andR125R1"R2 .
For a spring between beadsi and i 11, we can takePi

5(r i1r i 11)/2 andRi5r i 112r i . If 20.5<t i<0.5, then the
distance of closest approach lies on the spring. Ift i.0.5 or
t i,20.5, we assume that the distance of closest appro
should be measured from a spring end. This is enforced
settingt i50.5 or t i520.5, respectively. Once we have th
appropriate values oft1 and t2 , we can compute the corre
sponding value ofD from Eq. ~2!.

FIG. 1. Bead–spring model of a polymer molecule. Each chain hasN beads
andN21 springs. Ther i are the position vectors of the beads while theRi

characterize the directions and lengths~magnitudes! of the springs.
-
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The next step is to impose a repulsive force between
interacting springs. Spring 1 will feel this force in the dire
tion of D while spring 2 will feel it in the opposite direction
Since BD simulations are carried out by integrating for
balances on beads, the repulsive spring force must be
verted into bead forces. To do this, we use a simple lev
rule relation. For springi, beadi gets a fraction of the force
equal to 0.52t i while bead i 11 gets the remainder. We
denote the magnitude of the repulsive force byF rep and as-
sume that it can be derived from a corresponding poten
U rep, viz., F rep52]U rep/]D. In this work, we describeU rep

with either an exponential function,

U rep5Ae2aD, ~6!

or a power-law function, which we choose to be the rep
sive part of the Lennard-Jones potential,

U rep54eS s

D D 12

, ~7!

whereA ande are the strengths anda ands are the ranges
for the potentials. Similar potentials have been used in p
vious BD simulations with bead–bead repulsions.15–17 Once
the magnitudes and directions of all the repulsive forces
ing on a given bead are known, they are divided byz and
added to the right-hand side of Eq.~1!. In our simulations,
we consider single polymer molecules~i.e., dilute solutions!
in which each spring interacts with every other nonadjac
spring. The method developed here could also be applie
multichain systems in order to simulate the dynamics of n
dilute solutions.

In order to ensure that topological integrity is mai
tained, the repulsive force must diverge as the interspr
separation vanishes. The force associated with Eq.~7! satis-
fies this requirement but is computationally expensive
implement since its steepness requires the use of very s
time steps.16,18 This problem becomes particularly acu

FIG. 2. Vectors used in modeling spring–spring interactions. TheRi char-
acterize the directions and lengths~magnitudes! of the springs while thePi

are the position vectors of the spring midpoints.
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when trying to verify that the obtained results converge
the time step gets smaller. Much larger time steps can
taken if Eq.~6! is implemented, but there is no guarantee t
spring-spring crossings will be prevented. Recognizing
difficulties associated with Eq.~7!, we use Eq.~6! to validate
the idea of incorporating spring–spring repulsions into B
simulations. We do this by performing simulations f
start-up of extensional flow and showing that our resu
agree with experimental data and with simulations which
more conventional repulsive bead forces rather than sp
forces~Sec. III!. We then use Eq.~7! in computationally less
expensive equilibrium simulations to show that topologi
integrity can indeed be maintained by applying sprin
spring repulsions~Sec. IV!.

III. START-UP OF EXTENSIONAL FLOW

Much effort has been devoted to BD simulations
polymers in extensional flows.9–13,18–21These flows are of
great interest because they play a central role in poly
processing operations and rheological measurement t
niques. In one recent work, Li and Larson used BD simu
tions to study start-up of uniaxial extensional flow of dilu
polystyrene~PS! Boger fluids.12 A bead–spring model wa
used to describe the polymer, and bead–bead repuls
were incorporated to study the effects of solvent qual
Here, we perform a similar study but use spring–spring
pulsions in place of bead–bead repulsions.

We now discuss in more detail the form of each of t
terms in Eq.~1!. In our simulations, the spring forces a
described by Cohen’s Pade´ approximation to the inverse
Langevin function,22

F i
spr5

kBT

bK
l i

32l i
2

12l i
2

, ~8!

where

l i5
ur i 112r i u
NK,sbk

, ~9!

NK,s is the number of Kuhn steps per spring,bK is the Kuhn
step length,kB is Boltzmann’s constant, andT is the absolute
temperature. For uniaxial extensional flow, the velocity g
dient is

~“u!T5S ė 0 0

0 2 ė/2 0

0 0 2 ė/2
D , ~10!

where ė is the extension rate. The Brownian force term
given by

B~ t !5A6zkBT

Dt
ni~ t !, ~11!

whereni(t) is a vector in which each component is a rando
number drawn from a uniform distribution over@21,1# and
Dt is the size of the simulation time step. As in Ref. 12, E
~1! is integrated using the forward Euler method.
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The experimental data to which we will compare o
simulation results is for polystyrene with a molecular weig
of ;23106 g/mol in both theta and good solvents.23,24 The
theta solvent is a solution of low-molecular-weight PS
dioctyl phthalate and the good solvent is ‘‘piccolastic,’’
low-molecular-weight PS. The parameters used in our sim
lation are mostly the same as those used by Li and Lar
and are listed in Table I.10,12 To simulate behavior in theta
solvents, we leave out all spring–spring repulsions and u
20-bead chain. To simulate behavior in good solvents,
apply Eq.~6! to describe spring-spring repulsions and a
use a 20-bead chain. The parameters in Eq.~6! are chosen so
that the equilibrium time-averaged radius-of-gyrati
matches that of the experiments for PS in a good solv
~;55%–60% greater than the theta value!.12,25The appropri-
ate values that accomplish this areA57kBT and a54/b,
where b5ANK,sbK

2 is the root-mean-square spring lengt
We note that the potential range,a, is comparable to the
root-mean-square spring length, as was the case in sim
tions using bead–bead repulsions.16,17 This allows one to
take time steps which are relatively large. In both the th
and good solvent cases, we apply ensemble averaging to
tain final results; the ensemble size is 50. Initial conditio
are obtained by sampling the results of the code in the
sence of flow at intervals approximately equal to one rel
ation time.

Figure 3 shows the results of our calculation in the fo
of a plot of the Trouton ratio vs the Hencky strain. Th
Hencky strain is simply the product of the extension rate a
time while the Trouton ratio is the ratio of the uniaxial e
tensional viscosity to the zero-shear viscosity,h ū/h0 .26 The
uniaxial extensional viscosity is the ratio (s112s22)/ ė, with
‘‘1’’ in the stretch direction, where the stress tensor is giv
by5

s5hs~“u1~“u!T!1n (
i 51

N21

^F i
sprRi&2n~N21!kBTd.

~12!

Here,n is the number of polymer molecules per unit volum
hs is the solvent viscosity,N is the number of beads,d is the
unit tensor, and the angle brackets represent an ense
average. For both solvents, Fig. 3 shows good agreem
between our simulations and the experiments. We also

TABLE I. List of parameters used in the BD simulations for extension
flow. The first four parameters are the same for both solvents. The
number of Kuhn steps in the chain is given byNK .

NK52626
bK50.001 803mm

T5298 K
Dt5531027 s

Theta solvent Good solvent

z/kBT ~s/mm2! 367.5 3335
n ~molecules/mm3! 239.8 160.5
h0 ~Pa s! 30.96 87.5

ė ~s21! 5.05 4.9
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that there is good agreement in the good-solvent case
tween our simulations and those where bead–bead repuls
are used with parameters chosen to obtain a similar equ
rium coil size~i.e., a time-averaged radius-of-gyration 55%
60% greater than the theta value, cf. Fig. 6 of Ref. 12!. There
is a tendency for our simulations to underpredict the Trou
ratio for the theta solvent at larger Hencky strains, but thi
also seen in the simulations that use bead–bead repulsio12

The good agreement between our results and both the ex
mental data and the simulations with bead–bead repuls
indicates that incorporating spring–spring repulsions is
valid alternative to bead–bead repulsions as a means o
cluding excluded-volume effects in BD simulations. In ad
tion, spring–spring repulsions can serve to impose entan
ment constraints, as discussed in the next section.

IV. STUDY OF TOPOLOGICAL INTEGRITY

In order to ensure that the topological integrity of pol
mer molecules is maintained, one must have a way of det
ing spring crossings. We do this by determining whether
movement of a given spring intersects any other spring
illustrated in Fig. 4. After a bead is moved fromr i(t) to
r i(t1Dt), we consider two triangular subregions: o
formed by r i(t), r i(t1Dt), and r i 11(t) and the other by
r i(t), r i(t1Dt), andr i 21(t1Dt). If a spring not attached to
beadi intersects either of these subregions, a spring cros
has occurred.

Following the notation of Sec. II, the line passin
through a spring can be described asPi1t iRi . The plane
containing one of the subregions described above is give
the equation (x2r i(t))"n50, wheren is a normal vector to
the subregion. Now, lettingx5Pi1t iRi , we can solve fort i

and obtain the intersection point,x* . If ut i u.0.5, then the
spring does not intersect the plane. Ifut i u<0.5, the spring

FIG. 3. Trouton ratio vs Hencky strain for start-up of extensional flow. T
dashed line represents our simulation results for the good solvent an
crosses are the corresponding experimental values. The dotted line r
sents the results of a simulation where bead–bead repulsions are used~Ref.
12!. The solid line represents our simulation results for the theta solvent
the circles are the corresponding experimental values. The dashed–d
line represents the results of a simulation where bead–bead repulsion
used~Ref. 12!.
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does intersect the plane and we now have to determ
whether or notx* lies in the subregion. This is easily don
by considering the vectorsx* 2r i(t) andx* 2r i(t1Dt) and
the angles they form with the vectors which make up
sides of the triangular subregion.

Because almost all of the springs have to be chec
after each bead moves, implementing the above procedu
rather time consuming. Thus, here we use it only in equi
rium calculations, which take much less time than the ext
sional flow calculations. We carried out calculations bas
on the good solvent PS system discussed in Sec. III. For
repulsive potential based on Eq.~7!, we find thate5kBT and
s50.71b gives the appropriate radius-of-gyration27 ~i.e., a
time-averaged radius-of-gyration 55%–60% greater than
theta value!. We note that the potential range,s, is compa-
rable to that used in Ref. 18, where a Lennard-Jones po
tial was applied. When we implement a spring-spring rep
sive force based on the exponential potential, Eq.~6!, we
detect a number of topological violations. This is expec
since the repulsive force has a finite maximum value wh
can be overcome if the forces driving two springs towa
each other are sufficiently strong. When we use a repuls
force based on the power-law potential, Eq.~7!, we detect no
topological violations. Thus, incorporating spring-spring r
pulsions into BD simulations can maintain the topologic
integrity of polymer molecules if the repulsive force diverg
as the interspring distance vanishes. We note that due to
steepness of Eq.~7!, the time step required for a stable run
two orders of magnitude smaller than what one can use w
Eq. ~6!.

V. DISCUSSION AND CONCLUSIONS

In this work, we have demonstrated the feasibility
incorporating spring–spring repulsions into BD simulatio
of flexible polymers. Our simulation results are in goo
agreement with experimental data on start-up of extensio
flow as well as with previous simulations using bead–be
repulsions, and we have shown through equilibrium simu
tions that our method is capable of maintaining topologi
integrity if one uses a potential which diverges as the int
spring distance vanishes@e.g., Eq.~7!#. We note that the
good agreement for extensional flow occurs in spite of
fact that we use an exponential potential, which does

the
re-

d
ted
are

FIG. 4. Triangular subregions used in determining violations of topolog
integrity. When beadi moves fromr i(t) to r i(t1Dt), we can form two
triangular subregions: one withr i 11(t) and the other withr i 21(t1Dt). The
solid lines represent springs and form one edge of each subregion whil
dashed lines denote the other edges.
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guarantee that topological integrity is maintained. This i
signal that self-entanglements such as knotting are prob
not important in the experiments, and justifies the use
bead–bead repulsions in previous simulations.12 This may
not be true in other experiments where the polymers
longer or less swollen. There, we expect that the probab
of self-entanglements will be much higher. More genera
our results imply that if simulations using bead–bead int
actions produce results in agreement with analytical or
perimental results, then self-entanglement phenomena
probably not important.

The principal limitation of these simulations is the ne
to take very small time steps when using the power-law
tential. We find in some simulations that two springs oc
sionally get so close together that there is a very large re
sion, resulting in a large increase in the radius-of-gyrati
This suggests that smaller time steps are needed so tha
springs more gradually feel the repulsive force. We th
that one way to overcome this problem in an efficient m
ner is to use an adaptive time-stepping scheme, and we
currently developing such a code. Large speed-ups may
be obtained by more efficiently accounting for spring–spr
repulsions through the use of cell structures and link
lists.28

Another challenge for future work is to determine if it
possible to maintain topological integrity without swellin
the equilibrium coil size. This might be accomplished
adding an attractive component to the spring–spring re
sions~analogous to what is done in simulations where th
are only bead–bead interactions18! or by using bead–bea
attractions in addition to spring–spring repulsions. Su
simulations would be useful for studying polymer entang
ments in theta solvents.

In addition to providing a tool for studying self
entanglements of polymers, the method we have develo
should prove useful in simulating the behavior of semidilu
and concentrated polymer solutions over relatively long ti
scales. At present, such simulations are unable to repro
experimental observations because they do not accoun
entanglements.29,30 Incorporating spring–spring interaction
into BD simulations will also help in the modelling of dilute
solution electrophoresis, where entanglements betwee
DNA molecule and a polymer molecule help determine se
ration efficiency.4 Improved BD simulations of all of thes
situations would greatly benefit a diverse range of appli
tions including rheological characterization, polymer pr
cessing, and genomics.
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