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Brownian dynamics simulations of flexible polymers
with spring—spring repulsions
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We develop a method which incorporates spring—spring repulsions into Brownian dynamics
simulations of flexible polymers. The distance of closest approach between two springs is computed,
and a repulsive force is then applied based on this distance. Repulsive potentials of the exponential
and power-law forms are considered. We demonstrate that our method is capable of accounting for
excluded-volume effects in start-up of extensional flow. Equilibrium simulations indicate that
spring-spring repulsions can be used to prevent the passage of two springs through each other, and
thus maintain the topological integrity of polymer molecules. The method developed here is
expected to be useful for simulating entanglement phenomena in both single and multichain
systems. ©2001 American Institute of PhysicgDOI: 10.1063/1.1358860

I. INTRODUCTION tions which can then be integrated with respect to time,

A distinguishing feature of a polymer molecule is its

ability to become entangled with either itself or other poly- dry T 1 o oor csprqy L
mer molecules. These entanglements are responsible for phe- dt =(Vu)'ri+ Z[Fi —FELl Z B(1), @

nomena such as knottihgnd reptatiohwhich contribute to
the remarkable behavior of polymeric liquiti$n principle,

en.tanglements .COUId be captureo! in a m_oIgcuIar-IgveI Si.mb%'ield of the solvent{ is the bead drag coefficierf;™ is the
lation by modeling the polymers in atomistic detail or with force exerted by spring and B(t) is the Browni,.lan force.

pearl necklace” chains having excluded volume to prevent.l.he spring force is generally a nonlinear function of the

the passage pf one polymer_ segment thrc_)ugh an_other. Isnpring extensiod. The Brownian force satisfies the
practice, this is not feasible if one would like to simulate

e . fluctuation-dissipation theorem and represents the agitation
entanglement behavior in relatively long polymersi um) o
; ._of the solvent, which is modeled as a thermal BgtHydro-
over time scales on the order of seconds. At these long tim

scales, entanglement behavior can be important in a varie8 n?{; 'EUT grgcrtelggfl bggviiigrtrga?gg]dz\zreani?‘t w:)c;ltuhdeed n
of practical settings including rheological characterization, q: y P ging

. . . esults over time or an ensemble is used to obtain final in-
polymer processing, and electrophoretic separation of DN : . .
. 34 . . ormation about polymer conformations. By choosing the
and proteins:* Successful molecular-level simulations rel- ; : .
. roperties of the beads and springs correctly, the rheological
evant to these examples thus require the use of a more . .
. behavior of polymers can be accurately simulated.
coarse-grained model for the polymers. One such model is : .

: T . In Eq. (1) there are no forces which prevent two springs
the bead—spring system which is commonly used in Brown; ; . :
. . . . . from passing through each other, and this can lead to viola-
ian dynamics(BD) simulations(Fig. 1). However, a key .. - .

S . . tions of the topological integrity possessed by polymer mol-
limitation of current bead—spring models is that entangle- : : ,

L ) . ecules. One way to prevent spring crossings is to make the
ment behavior is not accounted for since the springs are freé

to pass through each other. In this paper, we develop an idEir?laxmum spring lengths very short while introducing bead—

: RN . : . ead repulsive forceg‘pearl necklace” model*** How-
for overcoming this limitation: the incorporation of spring— . 7 .
) . . . . ever, the short spring lengths preclude efficient long-time
spring repulsions into BD simulations.

In a bead—-spring model, the beads represent point?.'mmatlon of large polymerge.g., DNA having contour

. : . Tengths on the order of microns. A similar issue arises if one
where the polymer feels a viscous drag while the springs ;

) . uses a bead—rod model since the rod lengths are very short
allow the polymer to stretch and orient. In addition to a drag

force, each bead is subject to a spring force and a Brownia‘fl Kuhn length. An alternative method for preventing
e ) pring . spring crossings is to incorporate spring—spring repulsions
force. Writing a force balance for each bead and neglectm%qto BD simulations. which is the idea exolored in the
inertia produces a set of stochastic ordinary differential equa- N P
present manuscript.
We discuss the way in which we account for spring—
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YPhone: (734 936-0772; Fax: (734 763-0459; electronic mai: SPFiNg—spring repulsions into BD simulations can account
rlarson@engin.umich.edu for excluded-volume effects. In Sec. IV, we develop and

wherer; is the position vector of bead u is the velocity
spr
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FIG. 1. Bead—spring model of a polymer molecule. Each chaim\hasads
andN—1 springs. The; are the position vectors of the beads while Bye
characterize the directions and lengthsagnitudes of the springs.

verify a method for detecting violations of topological integ- FIG. 2. Vectors used in modeling spring—spring interactions. Rthehar-

rity in BD simulations Finally our conclusions are pre- acterize the directions and lengttmagnitudes of the springs while thé;
sented in Sec. V ' ! are the position vectors of the spring midpoints.

Il. SPRING-SPRING REPULSIONS The next step is to impose a repulsive force between two

The general way in which we account for spring—springinteracting springs. Spring 1 will feel this force in the direc-
repulsions involves computing the distance of closest aption of D while spring 2 will feel it in the opposite direction.
proach between two springs and imposing a repulsive forc&ince BD simulations are carried out by integrating force
based on that distance. Consider two springs, referred to asbglances on beads, the repulsive spring force must be con-
and 2, which have midpoint®; andP,. Let R; andR, be  Verted into bead forces. To do this, we use a simple lever-
the vectors Characterizing the direction and |en@ﬂagni- rule relation. For Spring, beadi getS a fraction of the force
tude of each springFig. 2). Each spring lies on a line, and equal to 0.5-t; while beadi+1 gets the remainder. We

the distance vector between these lif@sjs given by denote the magnitude of the repulsive force§” and as-
sume that it can be derived from a corresponding potential

D=P1+ 4R~ (P +1:Ry), (2 yree iz, F'®=— jU™¥4D. In this work, we describé)™®
wheret, andt, are parameters which indicate where we arewith either an exponential function,
along each line. The distance of closest approach between U'eP=pgaD (6)
the lines is found by minimizing the magnitude bf with ’
respect tat; andt,. This requires that or a power-law function, which we choose to be the repul-

5 5 sive part of the Lennard-Jones potential,
dD* D 0 @ b
&tl atz ’ Ul’ep:46(% , (7)

whereD?=D-D. Solving Eq.(3) produces the following ex-
pressions fot, andt,: whereA and e are the strengths and and o are the ranges

for the potentials. Similar potentials have been used in pre-

_(Pi— P,)-(R5R; — Rp1Ry) vious BD simulations with bead—bead repulsidnis.’ Once

! R2,— R?R3 ’ @ the magnitudes and directions of all the repulsive forces act-
ing on a given bead are known, they are dividedbsnd
(P,—P)[R2R,— RyiRy ] added to the right-hand side of E). In our simulations,
tr= R2 _ RZR2 ) ) we consider single polymer moleculés., dilute solutions
21 TR in which each spring interacts with every other nonadjacent
whereR§= Ri*Rq, R§= Ry>:R,, andR;,=R*R;. spring. The method developed here could also be applied to

For a spring between beadsindi+1, we can takeP; multichain systems in order to simulate the dynamics of non-
=(r;+rj41)/2 andR;=r;,;—r;. If —0.5<t;=<0.5, then the dilute solutions.
distance of closest approach lies on the spring; 0.5 or In order to ensure that topological integrity is main-
t;<—0.5, we assume that the distance of closest approadained, the repulsive force must diverge as the interspring
should be measured from a spring end. This is enforced bgeparation vanishes. The force associated with(Bgsatis-
settingt;=0.5 ort;=—0.5, respectively. Once we have the fies this requirement but is computationally expensive to
appropriate values df; andt,, we can compute the corre- implement since its steepness requires the use of very small
sponding value oD from Eq. (2). time steps®!® This problem becomes particularly acute
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when trying to verify that the obtained results converge agABLE I. List of parameters used in the BD simulations for extensional

the time step gets smaller. Much |arger time steps can b@ow. The first four parameters are the same for both solvents. The total
. S ) . number of Kuhn steps in the chain is given Ky .
taken if Eq.(6) is implemented, but there is no guarantee that

spring-spring crossings will be prevented. Recognizing the Ny = 2626

difficulties associated with Eq7), we use Eq(6) to validate bx=0.001 803um

the idea of incorporating spring—spring repulsions into BD T=298 K

simulations. We do this by performing simulations for At=5x107s

start-up of extensional flow and showing that our results Theta solvent Good solvent
agree with experimental data and with simulations which usée £IkaT (sfurmd) 3675 3335
more conventional repulsive bead forces rather than spring ,, moleculesem?®) 239.8 160.5
forces(Sec. Ill). We then use Ed.7) in computationally less 7o (Pa$ 30.96 875
expensive equilibrium simulations to show that topological e (s 5.05 4.9

integrity can indeed be maintained by applying spring—
spring repulsiongSec. V).

The experimental data to which we will compare our
1Il. START-UP OF EXTENSIONAL FLOW simulation results is for polystyrene with a molecular weight
of ~2x10° g/mol in both theta and good solverts®* The
Much effort has been devoted to BD simulations oftheta solvent is a solution of low-molecular-weight PS in
polymers in extensional flows*'*~*'These flows are of dioctyl phthalate and the good solvent is “piccolastic,” a
great interest because they play a central role in polymejow-molecular-weight PS. The parameters used in our simu-
processing operations and rheological measurement teclition are mostly the same as those used by Li and Larson
niques. In one recent work, Li and Larson used BD simulaand are listed in Table**? To simulate behavior in theta
tions to study start-up of uniaxial extensional flow of dilute splvents, we leave out all spring—spring repulsions and use a
polystyrene(PS Boger fluids!” A bead—spring model was 20-bead chain. To simulate behavior in good solvents, we
used to describe the polymer, and bead-bead repulsiorgply Eq.(6) to describe spring-spring repulsions and also
were incorporated to study the effects of solvent quality.use a 20-bead chain. The parameters in(Bpare chosen so
Here, we perform a similar study but use spring—spring rethat the equilibrium time-averaged radius-of-gyration
pulsions in place of bead—bead repulsions. matches that of the experiments for PS in a good solvent
We now discuss in more detail the form of each of the(~55%-60% greater than the theta vall@?® The appropri-
terms in Eq.(1). In our si}mulations, the spring forces are ate values that accomplish this ate=7kgT and a=4/b,
described by Cohen’s PadﬂpprOXimation to the inverse where b:\/w is the root-mean-square Spring |ength
Langevin functiorf? We note that the potential range, is comparable to the

KT 3-)\2 root-mean-square spring length, as was the case in simula-
Fopr=—B_ S (8)  tions using bead—bead repulsidfis/ This allows one to
by 1-X\; take time steps which are relatively large. In both the theta
where and good solvent cases, we apply ensemble averaging to ob-
tain final results; the ensemble size is 50. Initial conditions
)\:|ri+1—ri| ) are obtained by sampling the results of the code in the ab-
I

Nk sby sence of flow at intervals approximately equal to one relax-

. T ation time.
Nis IS the number of Kuhn steps per sprifi, is the Kuhn Figure 3 shows the results of our calculation in the form

e oo o sty a1 I of th Trovion rao vs he el sian. The
b ' ' v Hencky strain is simply the product of the extension rate and

dient is time while the Trouton ratio is the ratio of the uniaxial ex-
e O 0 tensional viscosity to the zero-shear viscosifyl 77,.2° The
(Vu)'=| 0 —e2 0 , (10) unla_X|aI extensmna_l wsg:osﬁy is the ratio{;— 05,)/ €, yvlth_
] “1” in the stretch direction, where the stress tensor is given
0 0 —¢r2 by®
where e is the extension rate. The Brownian force term is N-1
given by o= ngVu+(Vu)N+v > (FPR)Y—»(N-1)kgTé.
=1

6.kgT 12
B = \ g (), (11 12

Here, v is the number of polymer molecules per unit volume,
wheren;(t) is a vector in which each component is a random is the solvent viscosity\ is the number of beads,is the
number drawn from a uniform distribution ovetr-1,1] and  unit tensor, and the angle brackets represent an ensemble
At is the size of the simulation time step. As in Ref. 12, Eq.average. For both solvents, Fig. 3 shows good agreement
(1) is integrated using the forward Euler method. between our simulations and the experiments. We also see
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r;_ 1(t+ At)

ri41(0

FIG. 4. Triangular subregions used in determining violations of topological
integrity. When bead moves fromr;(t) to r;(t+At), we can form two
triangular subregions: one with, ,(t) and the other with; _,(t+At). The

solid lines represent springs and form one edge of each subregion while the
dashed lines denote the other edges.

' ' . . . . L
0 2 4 6 8 10 12 14 16
Hencky strain

does intersect the plane and we now have to determine

FIG. 3. Trouton ratio vs Hencky strain for start-up of extensional flow. Thewhether or noix* lies in the subregion. This is eaS"y done
dashed line represents our simulation results for the good solvent and ttbe ideri th tops® —r.(t dx* — 1 (t+ At d
crosses are the corresponding experimental values. The dotted line rep y consiaering the vecto ri(t) andx ri( ) an

sents the results of a simulation where bead—bead repulsions aréResed  the angles they form with the vectors which make up the
12). The solid line represents our simulation results for the theta solvent angides of the triangular subregion.
the circles are the corresponding expgrimental values. The dashed—dotted Because almost all of the springs have to be checked
line represents the results of a simulation where bead—bead repulsions aref'_ . . .
used(Ref. 12. after each bead moves, implementing the above procedure is
rather time consuming. Thus, here we use it only in equilib-
rium calculations, which take much less time than the exten-
that there is good agreement in the good-solvent case beional flow calculations. We carried out calculations based
tween our simulations and those where bead—bead repulsions the good solvent PS system discussed in Sec. Ill. For the
are used with parameters chosen to obtain a similar equilibrepulsive potential based on E@), we find thate=kgT and
rium coil size(i.e., a time-averaged radius-of-gyration 55%— ¢=0.71b gives the appropriate radius-of-gyratférii.e., a
60% greater than the theta value, cf. Fig. 6 of Rej. There time-averaged radius-of-gyration 55%—60% greater than the
is a tendency for our simulations to underpredict the Troutortheta valug We note that the potential range, is compa-
ratio for the theta solvent at larger Hencky strains, but this igable to that used in Ref. 18, where a Lennard-Jones poten-
also seen in the simulations that use bead—bead repul€ionstial was applied. When we implement a spring-spring repul-
The good agreement between our results and both the expegive force based on the exponential potential, &), we
mental data and the simulations with bead—bead repulsiorgetect a number of topological violations. This is expected
indicates that incorporating spring—spring repulsions is aince the repulsive force has a finite maximum value which
valid alternative to bead—bead repulsions as a means of irtan be overcome if the forces driving two springs toward
cluding excluded-volume effects in BD simulations. In addi- each other are sufficiently strong. When we use a repulsive
tion, spring—spring repulsions can serve to impose entanglderce based on the power-law potential, Ef, we detect no

ment constraints, as discussed in the next section. topological violations. Thus, incorporating spring-spring re-
pulsions into BD simulations can maintain the topological
IV. STUDY OF TOPOLOGICAL INTEGRITY integrity of polymer molecules if the repulsive force diverges

L . as the interspring distance vanishes. We note that due to the
In order to ensure that the topological integrity of poly- steepness of Eq7), the time step required for a stable run is
mer molecules is maintained, one must have a way of detecfy , o gers of magnitude smaller than what one can use with
ing spring crossings. We do this by determining whether theEq. ().
movement of a given spring intersects any other spring, as
illustrated in Fig. 4..After a bea}d is moved froq(t) -to V. DISCUSSION AND CONCLUSIONS
ri(t+At), we consider two triangular subregions: one
formed byr;(t), r;(t+At), andr;,,(t) and the other by In this work, we have demonstrated the feasibility of
ri(t), ri(t+At), andr;_,(t+At). If a spring not attached to incorporating spring—spring repulsions into BD simulations
beadi intersects either of these subregions, a spring crossingf flexible polymers. Our simulation results are in good
has occurred. agreement with experimental data on start-up of extensional
Following the notation of Sec. Il, the line passing flow as well as with previous simulations using bead—bead
through a spring can be described Bs-t;R;. The plane repulsions, and we have shown through equilibrium simula-
containing one of the subregions described above is given bijons that our method is capable of maintaining topological
the equation X—r;(t))-n=0, wheren is a normal vector to integrity if one uses a potential which diverges as the inter-
the subregion. Now, letting=P;+t;R;, we can solve fot;  spring distance vanishd®.g., Eq.(7)]. We note that the
and obtain the intersection point’. If |t;/>0.5, then the good agreement for extensional flow occurs in spite of the
spring does not intersect the plane.|tfi<0.5, the spring fact that we use an exponential potential, which does not
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