Generalized parastatistics and internal symmetry
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We exhibit generalized parastatistical double commutation relations which allow a solution less
restrictive than Green’s ansatz. This leads to local interaction terms in the Lagrangian consistent
with an internal symmetry among Green indices. The generalized commutation relations are
covariant under this symmetry transformation rather than invariant. The formulation may be
applicable to the generation problem as well as supersymmetric model building.

PACS numbers: 05.30. —-d

I. INTRODUCTION

Green' generalized the usual quantum statistics by pos-
tulating double commutation relations among fields as alter-
native solutions of Heisenberg’s equation of motion. Taking
paraboson relations in this discussion, define

H=1Y o, {a,.al}, (1)
k
and require
[Ha ] = — o.a,. (2)

One has generalized conditions’
[{al !ak‘}’ak” 1= —25-xay,
[{ak @y} 1=0
[{ak @y 1k ] = 26x ety + 26y p-axs (3)

[{alt 9alT(' }’alt” ] =0.
Parafermi relations are similar with all commutators on the
lhs of Egs. (3) and (1). We exhibit these later in Eqs. {31)-(34).
A solution of Egs. (3) is given by Green’s ansatz

r
a, =Y ay (4)
i=1

where the commutation relations among operators with the
same Green index are normal boson relations, while those of
different Green components are “abnormal,”

[40,al"] =6,x» etc., (5a)
and

{aal} ={a\al’} =0 (i#)). (5b)
Greenberg and Messiah? showed that the ansatz, Eq. (4), is a

unique solution in the case of a unique vacuum state, |0),
such that

a,]0) =0, (6a)
and derived

alat|0) = S by 10), (6b)
which can be written

&a},0) = By.p|0) (6¢)

for integer p.

One may ask the significance of the simple sum in Eq.
(4) in light of the fact that Eq. (5) indicates that Green compo-
nents af) and a{?" are independent operators. The form of Eq.
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(4) is due to the postulated double commutators in Eq. (3),
and may be unsatisfactory because it results in an undue
constraint on the theory. In Sec. II of this article we genera-
lize the double commutator to accommodate mixing of the
Green components as independent fields. In Sec. III we con-
sider local interaction terms with the Green index represent-
ing an internal symmetry. A discussion follows in Sec. IV.
Il. GENERALIZATION OF PARASTATISTICS

Define the Hamiltonian and equations of motion for
boson fields 4 |/,

H=}Y o, {40407} (7)

and
[HAD] = — 0,40, (®)

where i = 1, 2, ..., p. The solution to Eqs. (7) and (8) is given
by

[({40A40}Al ) = =26, S v, (9a)
[{A AL },A W] =2y - zpiﬂA l:'

+28,,- 3 P4, (9b)
[{40.40}4)] =0, (9¢)

with Hermitian conjugation of the above, where ¥ and p are
complex numbers. From Egs. (7) and (8),

> Ve =6 (10)

The Jacobi identity
[{4,8},C]1 + [{BC}A4]1+ [{C4},B]=0, (1])
applied to Eq. (9), gives

pi =" (12)
We further impose a symmetry relation

Pl =ph, (13)
which implies, from Eq. (12),

v =1 (14

Similar to Greenberg and Messiah,? we derive further

© 1983 American Institute of Physics 1603



constraints due to the existance of a unique vacuum. We
have, from Eq. (9),

[{a0ayyalap”)
= — 25,4 (Z viA ‘,;")A e

n

+ 26,4 AL (Z (7)) *4 L",’*). {15)

Assume there exists a unique vacuum, |0}. Then it is easy to
show that

4710y =0 (16)
from Heisenberg’s equation of motion, provided w, #0 (an
exception occurs for zero modes, w, = 0, which may lead to
symmetry breaking). From Eq. (9) this implies there exists
numbers C{,. such that

AAYTN0) = C{, |0). (17)
Taking the vacuum expectation value on both sides of Eq.
(17) yields

Cix =Ci%. (18)
Operating both sides of Eq. (15) on the vacuum yields
(CLs ) ¥l — (C )*Clle

= — 2y 3 PICTE + 20 S (P EC e (19)

The lhs of Eq. (19) vanishes due to Eq. (18), and inspection of
the rhs of Eq. (19) gives the condition

C;{,k’ = Cijfsk,k', (20)
with

Ci= (CH)*, (21)
and implies the equation

3 Cml= 3 (e 22)

Up to this point all relations are implied by Egs. (9), (12),
and (16). In order to find an explicit solution to Eq. (22), we
rewrite Eq. (17) with Eq. (20),

APAY0) =8,,.CY0). (23)

From the assumed uniqueness of the physical vacuum, we
observe that it is natural to postulate

Cci=85. (24)

First, notice that the uniqueness of the physical vacuum
would lead to a less restrictive condition C; = C;5;; (C; > 0).
But this condition can be reduced to Eq. (24) by normaliza-
tion of the fields 4 ;ﬂ\/_Cv, A .. Secondly, we should point
out that C Y= 8 implies that the vacuum is a superposition of
states containing arbitrary numbers of particles. This can be
seen by repeated application of the operator 4,4 | on the
vacuum, |0). From Egs. (22) and (24) we have

Voo = (H7)* (25)

In order to find an explicit solution for 77’ we take the
special case

7’21 = Z aimﬁmjwlm §mn . (26)
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Conditions Eqgs. (10), (12), (13), (14), and (25) then imply
ﬁ = aT’ § =t a"” (27)

where a is a unitary matrix. We prove this in the Appendix.
Hence, the matrix y is given by

w = q,

il
Vr{ = z aim aj,"r‘n alm a:‘m . (28)
m

Comparison of Egs. (5), (9a), and (28) implies 4, can be writ-
ten

A=Y a,al, (29)
j

where a is a Green component satisfying the commutation
relations (5). We have shown that Eq. (29) is a unique solu-
tion of the double commutators (9), under the vacuum con-
straints (16) and (24), the symmetry relation (13}, and the
ansatz (26).

Note that mathematically a more general solution in
the form of Eq. (26) exists without the symmetry relation,
Eq. (13). Using an argument similar to the proof in the Ap-
pendix, Egs. (9), (10), and (25) imply the nonsingular solu-

tion,
) Qi@ EmET
jl o N im T mi2lm > mn 30
£ ; @al. (30)

where £ is a unitary matrix and « is an arbitrary nonsingular
matrix. Equation (30) results from the fact that Eq. (9a) and
the equation

({454 1B = = 2600 X V2BY,

where
) a; .
Ay = ~—aj,
; Jla'a),
and

Bi=Y&d (=1

are not differentiated in Heisenberg’s equation of motion (8).
The physical interpretation of this solution is clear, in that
the symmetry of the Hamiltonian is reflected in the commu-
tation relations defining the particles.

The entire argument above can be duplicated for para-
fermions. We exhibit the key relations:

[[BU.BY].BL ] =26, 4 z n7B\,  etc., (31)
and

T =S BiB BB Yo (32)
with B unitary. The operator B |} can be represented by

BY =3 B,bY, (33)

J

where

{606} =64\ (34a)

[60607) = [6Wb02] =0 (i#) (34b)

Equations (28) and {29) for parabosons, as well as Egs.
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(32) and (33) for parafermions, imply the covariance of the
commutation relations (9) and (31) under unitary transfor-
mation of the Green components of the parafields. That s,

A;‘“=2A”Aﬁ{’ (35)
J
corresponds to Eq. (9) with
W= 3 AzARAL ALY (36)
Iy

A similar equation holds for parafermions. (For this reason,
we call Egs. (9) and (31) covariant commutation relations.) It
should be noted that Green’s parastatistical commutation
relations, as well as normal commutation relations, are in-
variant under unitary transformations.

It should be noted that, without the assumption of Eq.
(26), solutions for ¥’ exist which are associated with relative
single commutations relations more general than Green’s
ansatz. An example of this is shown in the next section.

lll. LOCAL INTERACTIONS

From Egs. (29) and (33) it is suggested that the Green
index can be viewed as an internal symmetry index. One is
then led to the question of local interaction terms which sa-
tisfy an internal symmetry. We exhibit an example of an
interaction obeying an SU(2) symmetry.

Consider paraboson and parafermion fields, ¢; and ¢,
(i = 1,2,3) (¢ could be scalar or gauge boson), which are vec-
tors under SU(2) with “/’ a Green index as defined in Egs. (9)
and (31). Also, define canonical Green components ¢ ¢ and
Y% (i = 1,2,3), which satisfy normal Green commutation re-
lations Egs. (5) and (34). By an SU(2) symmetry on the Green
index we mean that & and £ [in Eq. (29) and (33), respective-
ly] are orthogonal matrices. In other words,

V=3B 6= a8l ij=123. (37)
g J

Assume relative commutation relations between ¢ and ¢ 2,
(i=123):

[#6F] =0 (38a)
and

{vad5t=0 #) (38b)

Consider the interaction term (ij,k = 1,2,3)

fijk'zn'll’j¢k :fijk'}lg#‘ﬁi =17’%'/’§¢§ — (39)

where the first equality follows from SU(2) invariance. Lo-
cality of the interaction term in Eq. (39) follows due to the
fact that the rhs contains Green fields of different indices,
and provided relative commutation relations between para-
fields are of the normal type, Eq. (38). (As a result, ¢ $and ¢¥
commute with this interaction at spacelike separation.) A
Klein transformation,’

5P E =¥ — I)N’ * M (iy,k cyclic, ¥; unchanged), (40)

where & is the number operator of the jth quantum number,
will change the relative commutation to all commutators:

[0 /5] =0, (alliy). (41)
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This will violate locality of the interaction term in Eq. (39)
with ¢ £ replaced by ¢ ¥'; e.g., PEYEd ;¢ and V8 YA & € anti-
commute at spacelike separation instead of commute. This
indicates that this Klein transformation has a physical impli-
cation in the sense that ¥ and ¢ ' cannot form a local O(3)
Yukawa interaction. Of course, if ¥ in Eq. (40) is altered by a
Klein transformation similar to ¢ ¢ in Eq. (40}, all commuta-
tion relations remain the same and locality of the interac-
tions is maintained. Equations (40) and (41) reveal the rela-
tionship between locality of interactions and commutation
relations between parafields.

As is mentioned earlier, we note that the fields 4, of the
Yukawa interaction in Eq. (39) can be Lorentz scalar or vec-
tor fields. The latter case naturally arises in the case of gauge
field theory to which our discussion can be applied. In other
words, the symmetry between Green indices can be a local
symmetry. Also note that a scalar ¢ ¢ interaction, which is
essential in spontaneously broken gauge theory, is easily
made local; for example,

2

(s0n).

The above results can be generalized to a lemma: Any
group invariant interaction between generalized Green com-
ponents is local provided suitable relative double commuta-
tion relations are chosen among the components. We show
this for SO(V ) and SU(N ) symmetries. In general, two types
of identifications of the Green index with an internal symme-
try representation are possible; e.g., either spinor or vector
representations. If the vector (adjoint) representation ¢ ¢ is
chosen for fields satisfying single commutation-anticommu-
tation relations, Eq. (5) [and Eq. (34) for parafermions)], the
spinor representation ¢ 3, where

1
L WY 42
é5 7 Ei 5% (42)

satisfies only double commutation relations. [In Eq. (42)
{107 | are the generators of SU(V ).] On the other hand, if the
spinor representation ¢ ¥ is assumed to satisfy single com-
mutation-anticommutation relations, one has single com-
mutation-anticommutation relations for ¢ §* by the com-
posite rule:
{5yt ={s50r"t={62L05}={s¥85"} =0
(43)
for B #y and B,y #«; and the rest commute at spacelike se-
paration. In this case, the fields in an adjoint representation

¢ =3 050 (44)
afp

satisfy only double commutation relations (9), in which ¥ is
more general than the solution in Eq. (26).

The interaction term which is local (the group-invariant
term associated with the lemma above), in the case of spinor
fields satisfying Eq. (43), is given by

R AZT (45)
aB
Equation (45) is local because terms with repeated indices
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commute with all other fields at spacelike separation. Simi-
larly, in a theory in which only vector and tensor fields exist,
the commutation relations in Eq. (38) yield group-invariant
local interaction terms. In the case of only the vector (ad-
joint) representations allowed, one has only the SU(2) group,
with local interaction equation (39), or its generalization,
SU(2) X ---- X SU(2). This is the only case where the group
invariant interaction does not have repeated indices on the
fields. Incidently, the uniqueness of the SU(2) group, men-
tioned above, is a property of group invariance and is inde-
pendent of the statistics.

Taking the viewpoint that locality of interactions is an
essential ingredient in constructing a field theory, one notes
that general double commutation relations (9) and (31) may
break the internal symmetry between Green components by
causing invariant terms to be nonlocal. A mechanism based
on this idea may replace the Higg’s mechanism for spontan-
eously breaking internal gauge symmetry with mass and
mass-splitting generated dynamically. This concept of dyna-
mical symmetry breaking by a locality condition may also be
applied to a global internal symmetry or supersymmetry.

IV. DISCUSSION

The liberation of the Green index as described in Sec. I1
made possible the assignment of an internal symmetry to
that index. Note that the 4 s do not obey bilinear commu-
tation relations in contrast to normal parastatistics in which
physical fields satisfy bilinear commutation relations (Green
components). We are departing from the usual point of view
in parastatistics that says that only the full parastatistics
field has independent status, not the individual components.
We also noted that the double commutation relations pro-
posed in the text, Egs. (9) and (31), are covariant under group
transformations, while the canonical commutation rela-
tions, as well as ordinary parastatistical double commuta-
tion rules, are invariant. In fact, this invariance is the reason
for the restricted form of the Green ansatz. This implies the
object ¥ in the double commutation relations [Egs. (9) and
(31)] forms a basis for the representations of the symmetry
group [see Eq. (36)]. The three conditions on ¥¥, Egs. (10),
{13}, and (25}, are invariant conditions which are analogous
to the tracelessness condition on tensor representations of
the symmetry group. This condition selects irreducible re-
presentations.

It was emphasized that locality of the group-invariant
interaction terms is associated with a specific subset of possi-
ble double commutators [Eqgs. (38) and (43) and group trans-
formations on components in these equations]. Also men-
tioned was the fact that the spinor rules for commutators
[Eq. (43)] and the vector rules [Eq. (38)] resulted in a different
formulation of the theory. An interesting question is
whether the two formulations lead to different physical re-
sults. Note that if canonical commutation relations for the
fields are assumed, the vector and spinor f- rms of the field
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[related by Eq. (44)] both satisfy canonical commutation re-
lations. This follows due to the invariance of the canonical
commutation relations under the internal symmetry group.

It may be possible that this type of symmetry could exist
between the three generations of quark and leptons. How-
ever, it should be mentioned that the representations of the
Higgs scalars for symmetry breaking between Green compo-
nents are constrained. This is due to the fact that anticom-
mutivity between the scalars of different components (or,
more generally, double commutators) does not allow a con-
stant shift in the scalar fields, unless anticommuting ¢-
numbers (Grassmann algebra) are introduced. Therefore,
the Higgs in standard spontaneously broken gauge theories
would have to be either a singlet, or the adjoint representa-
tion; or, more generally, a tensor of even rank, in the Green
index symmetry. (For example, the spinor representation is
not allowed.) For this reason, symmetry breaking of the hori-
zontal gauge symmetry, which explains mass splittings
between generations, is subject to the constraints described
above, if the generation symmetry is associated with general-
ized Green indices. In Sec. IIT we suggested the basis of a
possible alternative symmetry breaking mechanism.

Also, this concept may be applicable to a supersymme-
tric theory with parastatistics. This has been considered by
the authors elsewhere.*
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APPENDIX: REPRESENTATION OF MATRIX v/

We want to find the representation for ¥’ satisfying
conditions (10), (12), (14), and (25):

S i =84, (A1)
yi =4, (A2)
Yl = ()™ (A3)

In this Appendix all summation of indices are explicitly
shown and a double index does not imply summation. As-
sume the form

7/51 = Z aimﬂmj Wim §mn L (A4)

where a,B,w,£ are nonsingular. This corresponds to a de-
composition of an ordinary matrix,

Vj = z aimﬁmj

or, in matrix notation, ¥ = af3. Equation (A4)is probably the
most general form compatible with the symmetry require-
ments; Eqs. (A1}-{A3).

Multiplying Eq. (A2) by B ' ,..' and summing over j
and », we obtain

Ay Wiy, = Qi Wiy, - (AS)
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This implies, by nonsingularity of w,

w=ak, {A6)
where E is a diagonal matrix which can be absorbed into the
definition of 8 or £. As a result, without loss of generality, we
write

w=a. (A7)
Multiplying Eq. (A1) by a; '¢ ,; ' and summing over /and n
yields

@€ ~"); = 8,(Ba);. (A8)
Define the diagonal matrix, D,

a~'¢ ~'=D=(5,d,), (A9)
where

d,=(Ba);. (A10)
Note d; #0 because of the nonsingularity of (£a). Therefore,

E=D"'a" (All)

Multiplying Eq. (A3) by (@™ "), (£ ~"),,(8"); ' and summing
over [, ¢, and i yields

8,81 By = (@")la'E N la'é '), (A12)
From §,, on the Ihs of Eq. (A12) one has that (¢~ '£ ") and
('€ ~') on the rhs are diagonal matrices, which then implies
((B")~'a) on the lhs is diagonal. Define

a”'¢'=F,, o' '=F,,

and (A13)
B la=F,.

Substituting Eq. (A13) into Eq. (A 12), one obtains
B=F,F,F;'a (Al4)

Note that the F; are not independent and are related by

FlF =1 (A15)
and

F;'FIFF,=1. (A16)
Equations (A 10) and (A 14) imply

ala=F,D'=G, (A17)

where G is a positive definite diagonal matrix. From Eq.
(A14), using Eq. (A17),
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Ba = F\FyF ; 'F,D ~'=F, (A18)

where Fis diagonal. Therefore, from Eq. (A10) and the fact
that F is diagonal, we have

F=D. (A19)
In other words,

B=Da"". (A20)
Recalling Eq. (A8), £ = D ~'a~!, wearrive at the expression

Ve =Y Wi Qi Oy (A21)
where

ala=G. (A22)
Define

a =aX, (A23)

which results in

a'a’ = X'a'aX = X'GX. (A24)
Choose
X=JG ', (A25)

using the fact that G is a positive definite diagonal matrix,
and note that X is diagonal. We arrive at Eq. (27) in the text
by substituting

a=a'X"" (A26)

into Eq. (A21). Notice that X cancels, yielding Eq. (A21)
{removing primes) with

ata = 1. (A27)
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