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Vibrational energy relaxation rate constants from linear response theory
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A new approach for the calculation of vibrational energy relaxation rate constants is introduced. The
new approach is based on linear response theory, and is shown to have several distinct advantages
over the standard Landau—Teller formula, which is based on the Bloch—Redfield theory, n@jnely:
weak system—bath coupling is not assumé®j; selectivity in choosing the vibrational energy
relaxation pathway, including non-Landau—Teller pathways, is posdiBlethe validity of rate

kinetics can be explicitly verified4) direct extraction of the high-frequency tail of the force—force
correlation function is avoided. A detailed analysis of the conditions under which the new
expression reduces into the Landau—Teller formula, and an application in the case of bilinear
coupling to a harmonic bath are provided. ZD03 American Institute of Physics.
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I. INTRODUCTION measurement of VER. It is based on performing nonequilib-

) ) _rium classical MD simulations, starting with an excited vi-
One of the most fundamental ways in which the environ-y 5tional  mode. and following its relaxation to

ment affects solution-phase molecular dynaniid®) is via equilibrium?-52 This approach is particularly useful in the
vibrational relaxation. A typical situation involves energy re- .oca of low-frequency vibrational modes and/or high tem-
laxation of an excited vibrational mode, in a solute molecule LA ; o

by energy transfer to other intermolecular and/or intramo-peraturesﬁwlkBT<1)' since:(1) A classical description of

y gy trar ds10 N the relaxing vibrational mode and the relevant accepting
lecular accepting modes:™ The rate of vibrational energy modes is permissible whew/ksT<1; (2) In these cases

relaxation(VER) provides a sensitive probe of intramolecu- VER is fast due to the high density of accepting modes with

lar dynamics and solute—solvent interactions, which are . . .
e ; matching frequencies, and can therefore be directly observed
known to have a crucial impact on other important proper-

. : . . . n the time scales accessible to classical MD simulations.
ties, such as chemical reactivity, solvation dynamics, an -

. Unfortunately, low-frequency vibrations are the excep-
transport coefficients.

Hon rather than the rule, and most molecular vibrations are

VER rates have been measured by time-domain pulse : . .
laser techniques in a variety of hosts, including crystals,Characterlzed by high frequencies, such thai/ksT> 1

liquids, supercritical fluids, glasses, and protding. The _evelr_1 at room temperature. This situation has two important
main experimental observations can be summarized dg'Plications:
follows: (1) VER can become very slow, due to the very low density

(1) In most cases, VER can be characterized Isjinglerate of accepting modes with matching frequencies, and
constant: therefore cannot be simulated on the time scale acces-

(2) VER can occur on a wide range of time scales, extending ~ Sible to classical MD simulation.g., all neat diatomic
from subpicoseconds to minutes; liquids exhibit VER lifetimes of microseconds or

(3) VER can take place via a rich variety of intermolecular longer).

and/or intramolecular pathways. (2) A classical description of the relaxing vibrational mode

and relevant accepting modes becomes inappropriate,

The calculation of VER rate constants has presented the- and has to be replaced by a consistent quantum treatment
oretical chemistry with an ongoing challenge. Early studies  of both.
of VER were based on thendependent binary collision
(IBC) modeft"#%-44which is based on the assumption that The case of a harmonic mode bilinearly coupled to a har-
VER takes place via isolated and uncorrelated collisions witinonic bath, where the classical and quantum VER rate
solvent atoms. However, the questionable validity of this asconstants are identicat, represents an important exception
sumption in the condensed ph#5é’ has led to alternative to the second statement above. However, this rather unique
approaches, which rely on detailed MD simulations. Mostresult is based on the balancing out of two opposing quantum
studies have been based on either one of the following apsffects, and relies on the fact that the coupling is bilinear.
proaches(1) The direct approachwhich is based on non- It has been found that the introduction of anharmonicities,
equilibrium MD simulationsf2) The perturbative approagh in the coupling and/or the bath distorts this balance, and
which is based on extracting the force—force correlationead to deviations by orders of magnitude at high
function from equilibrium MD simulations. frequencies?—>°

The direct approackessentially mimics the experimental The perturbative approachwhich is outlined below,
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rate constants of such high-frequency vibratibh%>>’Its
starting point is based on the following general quantum me-
chanical Hamiltonian of a harmonic vibrational mode
coupled to a bath of accepting modes:

provides an alternative framework for the calculation of VER  _ o )
Clw)= f dre'“"C(7) (7

is the Fourier transfornfFT) of the free bath force—force
correlation functionFFCB,

H=H¢+H,+Hp=Ho+Hps, D C(7)=(8Fq(7)6F),, (8)
where where(A)0=Tr[e’ﬁﬁbA]/Tr[e’Bﬁb], SF=F—(F),, and
A2 A e ~ e
~ P 1 . — aiHpt/h —iH /A
HS:2_+ E/vaZqZ (2) (sFo(t) e oFe . (9)

Thus, Eq.(6) puts the population relaxation rate constant in

is the Hamiltonian of the vibrational mode under investiga-terms of the FT, at the vibrational frequency, of the quantum-
tion (§, P, u, andw are the corresponding coordinate, mo- mechanical FFCF, which is evaluated with the vibrational

mentum, reduced mass, and frequency, respeciively mode frozen at its equilibrium positiorg ¢ 0).
N e As is well known, the population dynamics in E¢)
. (PH2 . leads to an exponential decay of the vibrational en&t§y°8
= (1) (N)
Ap=2, o +V(QW,...QM) 3

d . - d 1 .
—(6H= N+ 1/2hw—P,=— —(5H,), 10
is the Hamiltonian of the bath, which consists of the other dt< ) nzo ( ) “at’n T1< ) (10
intermolecular and intramolecular degrees of freedom N N .
n o ) A R =H. — = Bliw_
[{Q(I)}, {P(I)}, {M(I)}, andV(Q(l),...,Q(N)) are the corre- WhereéHS HS <HS>01 and<H3>0 ﬁw/Z-l—ﬁw/(e l)

. . -~ is the vibrational energy at thermal equilibrium. The central
sponding coordinates, momenta, masses, and potential en-_ .. " . o

) quantity in Eq.(10) is the VER rate constant, T{, which is
ergy, respectivelly and

given by theLandau-Teller (LT) formulg®4®
Hps=egF(Q®W,...QM) (4 1_1-e g "
T, Pho 2u (). (D

is the system—bath coupling term, whetds the system—
bath coupling parameter. The system—bath coupling term, The popularity of the LT formufs 3-38:51:53:55-57.63,65,69-82
Hys, is assumed to be linearized in the vibrational coordi-should probably be attributed to the fact that it significantly
nate,q, which implies that VER takes place via the emissioncuts on the computational effort in comparison to the direct
of one vibrational quantum. The force on the vibrationalmethod. It does so in three major ways:
mode,F(Q™,...Q™), may be, and often is, a highly non- (1) The |ifetime of the FFCF (~subpicoseconds is
linear function of the bath coordinates. The highly nonlinear typically much shorter than the VER lifetime
nature of the force and the large frequency mismatch be- (>picoseconil Thus, simulating the dynamics for a very
tween the vibrational mode and the majority of the accepting  ghort time can provide information on the rate of the
modes, implies that the bath absorbs the energy via a mul- . ,ch slower VER.
tiphononlike process. o _ (2) The perturbative method requires an equilibrium MD
Given the general Hamiltonian above, the perturbative — gimyjation, which allows for more efficient sampling in
approach is based on the following three assumptions: comparison to the nonequilibrium simulation required by
weak systerbath coupling to the extent that Fermi’s golden the direct method.
rule appliesy2) separation of time scalesuch that the VER (3) The time step in a direct simulation of VER is dictated
lifetime is much longer than the correlation time of the bath- by the vibrational frequency, which usually corresponds
induced force;(3) the rotating wave approximation (RWA) to the fastest time scale. The FFCF is evaluated with the

which amour_1ts to the rem_oval of rapidly oscillating terms  \ibrational mode frozeng=0), thereby making it pos-
and decoupling of population relaxation from phase relax-  gipje to use a much larger time step.

ation. Under these conditions, the Bloch Redfield theory
(BRT) leads to the following Master equation for the vibra- Nevertheless, @onsistentcalculation of the VER rate con-

tional populations:->8~%7 stant via the LT formula also give rise to two major difficul-
ties:
mpn: Knn+1Pnt1tKnon-1Pns (@) Extracting the very small high-frequency Fourier com-
ponents of the FFCF can become extremely difficult
—(Kn+1ontKn-1.0)Pn, ©) due to statistical noise accompanying all real-life
where simulatiqnsl. .
(b) A numerically exact calculation of the quantum FFCF,
n+1 B . or for that matter of any other many-body quantum
Knnt1= €Ky 1. n= 2% EC(w). (6) correlation function, is beyond the reach of current

state-of-the-art numerically-exact quantum dynamics
Here, 8= (kgT) %, and simulations®®
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One approach for overcoming the numerical problem ofous quantum correction factors can differ by orders of mag-
calculating the high-frequency FT of the computed FFCF, isnitude, in particular when high-frequency vibrations are
based on the extrapolation of the exponential gap law, whicinvolved>*°®"°For example, Egoroet al. have recently es-
usually emerges at low frequencies, to much highetimated 17, for O, in liquid O,, at 70 K, and found the
frequencie$*8® Another, essentially equivalent, approach isfollowing spread of values that were based on different quan-
to combine a short time expansion of the FFCF with a patum correction factors: 0.00095% (standarg, 0.015s?!
rameterized ansatz that exhibits an exponential gap law béharmonig, 270 s'* (Egelstafj, 4030 s (Schofield (The

havior at high frequencies, and whose FT can be calculateeixperimental

value under these conditions isT{1/

analytically®>76.77:81.86-90\n alternative approach for over- =360 s'). Similar disparity has also been observed in other
coming the numerical noise is based on signal processingystems*3 It should be noted that the Egelstaff and a

techniques, designed to isolate the desired(fRE signal

mixed harmonic-Schofield quantum correction factors have

from the nois€>91-*3However, even with the most powerful been found to produce rather accurate results at high fre-
signal processing techniques, one is still unable to evaluatguencies in this and other model systeth®°4 However,

the FT at the required frequency for such systems asnO

the ad hoc nature of this approach makes it difficult to assess

liquid O,.”® Yet another recent attempt to deal with this the reasons for its success, or to predict how well it will
problem was based on the hypothesis that high-frequencgerform in other systems. It should also be noted that several

VER is dominated by the few instantaneous nearest neighba@ilternative approaches for

calculating the quantum-

solvent atomg? This approach has been demonstrated withmechanical FFCF have been proposed recently, which are

relative success in the case of a homonuclear diatomic soluteased on centroid dynamfts
integral simulation€® These promising approaches have

in an atomic Lennard-Jonef.J) liquid. However, this

821%23nd imaginary-time path

method presently suffers from the following two shortcom-been applied quite successfully to several model systems,
ings: (1) It fails for vibrational frequencies below a certain although their general applicability and feasibility is not yet
critical frequency, which may be difficult to estimate in gen- known.

eral; (2) It is not clear how useful this approach would be in

The above mentioned difficulties involved in using the

cases involving polar interactions and polyatomic solute and.T approach have motivated us to explore other approaches

solvent.

for the calculation of the VER rate constant. In this paper, we

The second difficulty involved in using the LT formula present such an alternative approach, which is based on lin-
for calculating the VER rate constant has to do with theear response theoif.RT). The plan of this paper is as fol-

fact that one has to deal with thguantumFFCF, rather

lows: The expression for the VER rate constant within the

than theclassical FFCF. The most popular approach for new approach is derived in Sec. Il. Its relationship with the
dealing with this difficulty is to first evaluate the classical LT formula is established in Sec. Ill. In Sec. IV we demon-
VER rate constant, TF', and then multiply the result strate the application of the new method to a simple model

by a frequency-dependentuantum correction factor
Ag(w) 1,53,54,56,57,75,79,92-101

system involving bilinear coupling to a harmonic bath. We
conclude with a general discussion of the pros and cons of

the LRT and LT approaches to VER in Sec. V.

T—leQ(w)T—(l;I. (12
The classical VER rate constant is given by
— ’8 ‘~Cl
T01=5, C @), (13
where  CYw)=J"_ dre'“"CC(7) and  Co(t)

=(6Fo(t) 6F)§'is theclassicalFFCF (- --)$' corresponds to  (a)
averaging over the classical Boltzmann phase space distribu-
tion and the time evolution ofFy(t) is governed by classi-

cal mechanics The important point is tha€®(t) can be (b)
evaluated with relative ease from classical MD simulations.

It should be noted that Eq12) amounts to nothing more
than a reformulation of the original problem, since knowl-
edge of the exact quantum correction factb(w), is
equivalent to, and as difficult to obtain as, the exact quantum
FFCF. However, educated guessesAgf(w) can be intro-
duced, which are based on the known general properties of
guantum correlation function®.g., all quantum corrections
must satisfy detailed balancand/or the knowledge of what
Ag(w) looks like in the very few cases where it is known
exactly. However, a unique and general quantum correction
factor is not known, and the estimates provided by the vari-

Il. VIBRATIONAL ENERGY RELAXATION RATE
CONSTANTS FROM LINEAR RESPONSE THEORY

The new approach to VER proposed below is inspired by
the reactive-flux method for calculating solution-phase reac-
tion rate constant®>~1%’and was motivated by the follow-
ing similarities between VER and barrier crossing:

Both VER and barrier crossing often follow rate
kinetics which can be characterized by a single rate
constant.

Barrier crossing often occurs on a very slow time scale,
due to the underlying rare event statistics. Hence, a
direct approach, which would be based on nonequilib-
rium MD simulations, is usually impractical even if
classical mechanics is used. The reactive-flux method
circumvents this problem by expressing the reaction
rate constant in terms of the flux—flux or the flux—
Heaviside correlation functiort§3-1%’whose lifetimes
are much shorter in comparison to the reaction rate.
This situation is reminiscent of the perturbative ap-
proach to the calculation of VER rate constants, where
the lifetime of the FFCF is much shorter than that
of VER.
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(c) Similarly to VER of high-frequency vibrations, it is <5|':| ) (1)
often important to account for quantum effects, suchas - %>~
tunneling and the zero point energy, when calculating (oHg)(0)

the rates of reactions that involve light particles, SUChSubstituting Eq.(16) into Eq. (18), and using the explicit

as proton transfer. In both cases, the quantum eﬁeCtéxpression for the vibrational energy flux

can be expressed in terms of a quantum mechanical
correlation function. PO

e K=k at t<k L. (18)

pF, (19)

A careful examination reveals, however, that despite ) .
these similarities, the LT approach to VER and the reactivethen leads to the following general expression for the VER
flux method are based on two different sets of assumptiond@t€ constant:

The LT formula originates from BRTor equivalently from BAN( SA(— 1AM BET(t
Fermi’s golden rulg whereas the reactive-flux method is k:gfodM (A ! .)\)[p A]( )>qu (20)
based on LRt%1%The BRT is based on the assumption of K [HAN(SA(—ihN) SHg)eq

weak system—bath coupling, which should be clearly distin-

guished from the assumption of proximity to equiliprium, sion for the VER rate constant, and as such represents the
regardless of the strength of the sysidmath coupling iy result of this paper. In analogy to the reactive-flux for-

which underlies LRT. Stimulated by the success of the réacqalism, one expects the correlation function in E2f) to be

ttl)ve flux m\?ltzh;d' Z”%”OF'”G the apove mentioned S'm'rllam'fsexplicitly time-dependent during an initial short time period,
etween and barrier Crossing processes, we there 0'f'SIIowing which it will reach a “plateau”(except for rapid
set out to develop a new reactive-flux-like approach to VERscillations that can be averaged out via the RWReaching

_F_o_llowmg the_ standard procedure of LRT, we _consm_ierthe plateau signals the onset of rate kinetics, and the VER
an initial state which correspond to thermal equilibrium with

To the best of our knowledge, E(RO) is a new expres-

P rate constant will be given by the corresponding value of the
respect to the perturbed Hamiltoniaht-fA, correlation function. From BRT we know that the length of

this transient time period is set by the lifetime of the

FFCF% Hence, one would have to run the simulation for

roughly the same length of time as would be required for
calculating the FFCF.

o~ B(H+TA)

p(0)= Tr[e—‘B('ﬁAT]' (14

Here,H is the actual Hamiltonian of the overall systéao.

Eq.(1)], f is a coupling parameter, ardis the perturbation,

which will be kept unspecified for the time being. We next|||. THE LANDAU-TELLER LIMIT
assume that the perturbaticﬂﬁ,\, is small enough, such that

5(0) can be substituted by its expansion to first ordef,in ~ The VER rate constant in E¢20), k, should be clearly
distinguished from that given by the LT formula,T4/in Eq.

(11). In this section we provide a detailed analysis of the
, (15 conditions under which Eq20) reduces into the LT formula.
The LT formula is based on the three major assumptions
underlying the BRT:

~ e_qu
p(0)~ Z

B ~
1—f dNSA(—ikN)
0

where Z=Tr(e #"), SA=A—(A)eq (Ao Tr(e #HA)/
Z, and A(—iain)=e*Ae M. A measurement of VER is (1) Weak systerbath coupling to the extent that Fermi's
initiated by turning the perturbation off && 0, and monitor- golden rule applies. o
ing the expectation value of the vibrational energy as a funct?) Separation of time scalesuch that the VER lifetime is
tion of time, as it progresses toward its equilibrium value. ~ Much longer than the lifetime of the FFCF. The reduced

Substitutingp(0) from Eq.(15) then yields dynamics becomes effectively Markovian under these
conditions, and as a result the relaxation follows rate
(SHY(=Tp(0)SH(1)] Kinetics.
(3) The RWA which amounts to the the averaging out of
=—fdeA<5A(—ih)\)5I:| ) (16 rapidly oscillating terms of frequencye«? and decou-
0 siseqr pling of population relaxation from phase relaxation.

Whereﬂs(t):eiﬁt/ﬁﬂse*iﬁt/ﬁ_ Thus, our goal would be to explicitly show that the LT for-

Our basic hypothesis is that VER follows rate kinetics, Mula emerges when these assumptions are imposed on Eq.

and can therefore be characterized by a rate condtant, (20). _ _
In order to proceed, one first has to expanith Eq. (20)

<5|:| y(t) to second order in the system—bath coupling parameter,
A—S= Kt (17) [cf. Eqg. (4)]. For simplicity, we chose to concentrate on a
(S6H)(0) restricted class of relatively simple perturbations which have

) ) the following form:
The VER rate constank, can then be written in the follow-

ing way: A=(8—(8)eg"=(50)", N=12,3,.... (21)
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The first interesting observation is that the LT formula only (1) Within BRT, rate kinetics is obtained at the Markovian

emerges from Eq20) whenn is even. The reason for this
can be traced back to the fact that, for an ogddhe o term
vanishes in the expansion ofHg)(t)=—f(a/u) Ed\
X (SA(—i%N)[PF](t))eq- Thus, in the case of an odud,
VER occurs via a non-LTnon-BRT) pathway, induced by

higher order terms in the perturbation expansion, which are

associated with multiple-time force correlation functigos
Appendix A for more details This observation demonstrates

how one can take advantage of the flexibility with regard to

choosing the perturbation in E€R0), in order to selectively
explore different VER pathways.
For the choice of an even value of the & term is the

lowest nonvanishing term in the expansionkof
k= a’k@+o(a?). (22

’k® can then be shown to reduce intoT1/of the LT

limit, which is reached whert becomes larger than
the lifetime of the FFCF, denoted by.. 7. is in fact
the correlation time of the relevant bath fluctuations,
which is very short in liquidg~ps), particularly in com-
parison to the VER lifetimeT; . In the case of Eq20),

7. corresponds to the plateau time that signals the onset
of rate kinetics. Assuming that> 7. in Eq. (23) then has
two implications:(1) The transient term7(t), vanishes
[C(—t—iRN)—0 att>7.]; (2) the limit of the time
integrals in the term£(t) andR(t) can be extended to
o}

Decoupling the population and phase relaxations within
BRT also requires the averaging out of terms which ro-
tate rapidly with the frequency«2(the RWA). Applying
this approximation to Eq(23) leads to the removal of
the rotating terniR(t).

)

formula once we impose the additional two assumptions offhus, under these two approximations’k®) reduces into

BRT (separation of time scales and the RYW&/e will now
demonstrate this fon=2, i.e., for a perturbation of the form

A=(a—(q)eg®=(50)>. The expansion d to second order

in « is a rather lengthy exercise. An outline of the derivation

is provided in Appendix A, and only the final result is given
below,

k@)= [ L(1)+R(t)+T(1)], (23
where,
1 t i ! —iwT
E(t):,uﬁ_wRe[ fodre C(T)—deTe C(T)},
(24
R(t)=M—wzﬁhw(eﬁﬁ“—l)(l—e‘ﬁh‘")
xRe{ eZiwtfthe—iMC(T)
0
_e—2imtftd7einc( T)] , (25)
0
and
—_ 1 1 1 — Bho\ i
T(t)_,u_w Bﬁ_w( —e P1)sin(wt)
xReJBd)\C(—t—iﬁ)\)e"ﬁ“’
0
—|m[e—iwtfﬁdm(—t—ihme*ﬁw
0
1
—(1— —Bhwya—iot
(1—e )e B
xfﬁd)\C(—t—ih)\))\e“‘”H. (26)
0

The LT formula emerges from Ed23) when the two
additional approximations of BRT are imposed on it:

a?lim,_., £(t), which correspond to the VER rate constant.
It is then easy to show, with the help of the following iden-
tities:

" rior 1. 1 "y Clw")
fo 7€ C(T)—E(:(w)-l-z—ﬁ_i'Pf_DO wa)'—w’
(27)
C(—w)=e P"C(w), (28
that
1—e Phe B _
(2) i .
a?k aztan:cﬁ(t) Bho Z/LC(w)' (29

which is identical to IT, in the LT formula, Eq.(11).

IV. APPLICATION IN THE CASE OF BILINEAR
COUPLING TO A HARMONIC BATH

In this section, we demonstrate the application of Eq.
(20) to a simple model system involving bilinear coupling to
a harmonic bath, for which Eg$l1) and(20) can be calcu-
lated analytically. The facts that the classical and quantum-
mechanical LT-based VER rate constants are iderticand
that non-LT pathways do not contribute in this case, offer
other attractive simplifications. It should be noted, however,
that Eq.(20) is by no means limited to harmonic baths and/or
bilinear coupling.

The bath is assumed to consist of independent harmonic
modes,

N
Hb:z
i=1

and the force is assumed linear in the bath coordinates,

(B2

W+%M“’(w“’)2(é“’)2 : (30

N
E=— chpm, (30)

=1
For this model, the quantum mechanical and classical VER
rate constants, as obtained from the LT formula, @&d), are
identical and given by*°
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FIG. 1. Classical nonequilibrium VER profiles for a harmonic oscillator FIG. 2. The calculation of thé&lassical VER rate constant via E¢20), for

bilinearly coupled to a harmonic bathkolid lines. The plots are in a semi- a harmonic oscillator bilinearly coupled to a harmonic b@iiid lines, for

log format, such that linearity corresponds to rate kinetics. The calculationshe indicated different values of the frictio/uww.=0.002,0.20,2.00. The

were performed fow/w.=3 andB%iw.=4. The three panels correspond to dashed lines correspond to cumulative time averages over the solid lines

the indicated different values of the friction/ ww.=0.002,0.20,2.00. Also  (after reaching the plateguvhose goal is to recover the RWA and eliminate

shown are the VER profiles predicted by the LT form(datted line$. the oscillatory terms. Also shown are the predictions based on the LT for-
mula, (1T;)e YTt (dotted line, see text for further discussiofhe plateau
region is shown in greater detail in the inserts. The calculations were per-
formed forw/w.=3 andBhw.=4.

1 Jw)
=—=—, (32
T, po . L .
. ) formula, can be explained by the application of the RWA in
whereJ(w) is the bath spectral density, the latter. If these rather small oscillations are averaged out, a
- (c)2 . seemingly exponential VER is found in all values of the
Jw)= EZ W&(m—w(')). (33)  friction considered, as indicated by the apparent linearity of

the solid lines in Fig. 1(in fact, a closer inspection reveals
The actual calculations reported below were based on claslight deviations from linearity af/ ww.= 2.0, which could
sical mechanics. Analytical treatment was made possible bgrobably not be experimentally resolye@he VER rate con-
transforming to the normal mode representation ofdber-  stant, which correspond to the slopes of the solid lines in Fig.
all Hamiltonian,H. An Ohmic spectral density with an ex- 1, is captured rather well by the LT formula at small and
ponential cutoff was used, intermediate values of the friction 7{uw.=0.002,0.2).
W)= pawe—oloc (34) These cases demonstrate the consistency between the predic-
’ tions of EqQ.(20) and the LT formula under conditions where
where w. is the bath cutoff frequency angl is the friction  the latter is valid. However, a significant deviation between
coefficient (at the limit w.—). All the calculations were the nonequilibrium VER and the prediction of the LT for-
performed forow/w.=3 andBhw.=4. mula appears at the higher frictiom{uww.=2.0). Thus, the
Figure 1 shows the relaxation of the vibrational energy,case ofy/ nw.=2.0 provides an example for VER that fol-
on a semilog plot, as obtained from a calculation oflb@-  lows rate kinetics under conditions of strong system-—bath
equilibrium dynamics, with the initial perturbationqg( coupling, where the LT formula is not valid.
—<q>eo)2 (solid lines. Also shown in Fig. 1 are the predic- In Fig. 2, we show the results obtained by using &4)
tions based on the LT formul@otted line$. The results are in order to calculate the VER rate constant, for the same
exhibited for three values of the friction,n/uw.  three values of the friction as in Fig. 1. It should be noted
=0.002,0.2,2.0. The classical equilibrium valuegidf) are  that Eq.(20) is directly related to the time-derivative of the
given by B(Hg)eq=1.0001,1.0072, and 1.0824 fof/ ww.  nonequilibrium curves in Fig. 1as long akt<1). As ex-
=0.002,0.2,2.0, respectively. It should be noted that BRTpectedk exhibits an initial transient time dependence, which
predictsB(Hs)eq= B(Hs)o=1, which corresponds to the ze- is perturbation-dependent, before reaching a “plateau,”
roth order term in the expansion 0Fg).q in powers ofa.  which signals the onset of rate kinetie®lid lines. It should
This prediction is consistent at the lowest value of the fric-be noted thak oscillates at a frequency ot2at the plateau,
tion consideredy/ww.=0.002. However, significant devia- which can be explained by the absence of the RWA. These
tions occur at the higher frictionsy/ uw.=0.2,2.0. These oscillations can be averaged out rather effectively, resulting
deviations are indicative of the breakdown of the weakwith the sought after VER rate constaiashed lines The
system—bath coupling assumption, and departure from thiatter coincides with the prediction of the LT formuldotted
region of parameter space where the LT formula is valid. Thdines) at the lowest value of the frictiony/uw.=0.002.
oscillations exhibited by the solid lines in Fig. 1, as opposedHowever, significant deviations appear as the friction in-
to the smooth exponential relaxation predicted by the LTcreases. It should be noted that Eg0) is based on the
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assumption thakt<1, such thatke *'~k [cf. Eq. (18)]. relax via different pathways, which may correspond to
This means that the plateau value should decrease slowly different VER rate constants. Thus, carefully choosing
like e™', When comparing to the LT formula, we therefore the initial perturbation can allow us to selectively focus
use (1T;)e V"1, One can clearly see that the LT formula on one VER pathway at a time.

overestimates the VER rate constant as the friction increase&€) Modern methodologies for computing approximate
which is consistent with the nonequilibrium relaxation exhib-  quantum mechanical real-time correlation functions are

ited in Fig. 1. often restricted to, or work better for, certain classes of
correlation functions. One can therefore take advantage
V. DISCUSSION of the flexibility in choosingA in order to fine tune the

expression for the VER rate constant, and put it in terms

The above analysis links the two major theoretical of a convenient correlation function. An example for
frameworks for obtaining rate constants, namely BRT and  such an application, in the case of the centroid molecular
LRT, in the case of VER. It shows that the LT formula, dynamics(CMD) method, will be discussed in a separate
originally derived from BRT, can also be obtained from LRT  paper.
under the following conditionsi1) an appropriate choice of
the perturbed staté2) taking the limit of weak system—bath The flexibility allowed for by the new approach actually goes
coupling (second order inv); (3) the RWA. This result en- beyond the choice oA. For example, we show in Appendix
sures thathe new LRT expression, Eq. (20), will give the B how the choice of a non-Kubo-transformed initial state of
same result as the LT formula, Eq. (11), as long as the unthe form
derlying assumptions of BRT are valiHowever, it should
be emphasized that E(RO) is by no means equivalent to the
LT formula, and that the former has several important advan-
tages over the latter:

(-:‘_B}:I 1 . B amBH SR
p(0)=T+i[6Ae +e PP SA] (35

can also lead to the LT formula in the appropriate limit.

(@) Equation(20) is, in some sense, an intermediate be-  To summarize, the goal of this paper was to introduce a
tween the direct method and the perturbative methodnew LRT-based method for calculating quantum mechanical
As for the perturbative method, the correlation function VER rate constants, and establish its relationship to the stan-
in Eq. (20) can be obtained by simulating the equilib- dard LT approach. We have also discussed the advantages of
rium dynamics for a short length of time, which is dic- the LRT approach over the LT approach, and concluded that
tated by the lifetime of the FFCF, rather than that of thethe former is more general, flexible and informative than the
actual VER. At the same time, the simulation should belatter. Both methods appear comparable with respect to the
performed with a flexible vibrational mode, similarly to computational effort that they require. More specifically,
the direct method. Including a flexible vibrational they both require an equilibrium MD simulation over a pe-
mode implies a shorter time step, which parallels theriod of time which is dictated by the lifetime of the FFCF.
increasing difficulty involved in obtaining the high- LRT requires that the simulation is performed with flexible
frequency tail of the FT of the FFCF within the LT vibrational modes, which would appear to enhance the com-
approach. The question of which method is more com{utational effort in comparison to the LT approach, where the
putationally intensive in this respect will be addressedsimulation is done with frozen vibrational modes. However,
in a future paper. a higher frequency also translates into more computational

(b) Unlike the perturbative approach, an approach basework in the LT approach, due to the rapidly increasing diffi-
on Eqg. (200 can tell us if rate kinetics is a valid culty of evaluating the high-frequency tail of the FT of the
assumption—failure to reach a well defined plateau in-FFCF. We therefore expect the new method to be at least as
dicates that the VER cannot be characterized by a rateomputationally feasible as the LT method. Finally, taking
constant. It should be noted that within the LT ap-into account the additional advantages of LRT seems to sug-
proach, rate kinetics is an outcome of the inter-relatedgest that there may be cases where it could be the method of
assumptions of weak system—bath coupling ancdchoice for treating high-frequency VER rate constants.
Markovity. However, rate kinetics may arise from other
sources. For example, rate kinetics may well be the
outcome of rare event statistics, as in the case of barriehCKNOWLEDGMENT
crossing, or may correspond to higher order terms in
the system—bath coupling, as in the case of choosing an e
odd value ofn in Eq. (21). In such cases, the LT for-
mula will not give the correct VER rate constant, but
Eq. (20) will! APPENDIX A: THE DERIVATION OF THE

() Equation(20) actually corresponds to a family of ex- | ANDAU-TELLER FORMULA FROM LINEAR
pressions for the VER rate constant, which differ with ReSPONSE THEORY

respect to the choice of initial perturbatiod, This
flexibility translates into several advantages:

This project was partially supported by the National Sci-
e Foundation FOCUS Center, Grant No. 0114336.

In this section we outline the derivation of the LT for-
. mula, Eqg.(11), from the LRT expression for the VER rate
(1) Initial states that correspond to different choicef\afan  constant, Eq(20). To this end, we choose the perturbation
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A=(58)"= (8 (O)eq” (A1)

Substituting it into Eq(20) then yields

%f@dh Tr{e FHa(38)2(—ifiM)[PE](D)}

k= _ . (A2)
JEdN Tr{ie PH6(8§)%(—ihN)SH)

In order to proceed, one has to find the leading terms vikhen
is expanded in powers af. It can be readily shown that the
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Thus,

{ j N Trie#1 o(58)2(— iR [PE (D}
0
1

B - N
- JO d\ Tr{[e PM11(83(—1AN) —(62)0) Po(D Fo(t)}

B ~ A
; Jo d\ Tr{e BRo[ 5(58)%(— i7N) T1Po(t) Eo(t))

B ~ A
; jo dX Tr{e Ao 62(~ iAN) — (62)o) PET2(1)}.

(A5)

leading term in the expansion of the denominator is of zeroth

order in @, while that in the expansion of the numerator is In order to proceed, one has to substitute the corresponding
second order imv. Thus, the leading term in the expansion of zeroth and first order terms from Eq#4) into Eq. (A5).

k is also of second order ia, and the corresponding coeffi- The resulting equation can then be further simplified to yield

cient is given by

1 (efto-1)% 1

k) =_—— —
ph?z efie 7070

X f’gdxTr{e—ﬁ%(m)?(—ihx)[pf:](t)} . (A3)

0 1

Here, Z0=Try(e #"s), Zo=Tr,(e #"v), and[---]; is the
first order term, with respect ta, of the corresponding ex-
pression. It should be noted that#, 5(8§)%(—iA\) and
[PF](t) all depend explicitly ona, and have nonvanishing
first order terms when expanded in powersaof

R N B TP '
g AH=g=FHo_ o ﬁf dpe” P~ AogRe Aifo| +0(a?),
0

fi
5(5(1)2(—iﬁ)\)=q(2>(—ih)\)—<q2>o+aﬂ—w%(—im\)

X

A
f d)\l(e()\—)\l)ﬁw
0
—e (MO E L (—ifiNy)

+0o(a?),

2 .
+W<F)0q0(—|h)\)

~ ~ i t A~ ~
[BF 10 =Po0Fo(t)+ - | dtulAn(t)polt ot Fo(t)

— Po(t)Go(ty) Fo(D)Fo(ty) ]+ 0(a?). (A4)

Here, (A)o= Tr(Ae AM0)/Z0 and Ay(7)=eHo" Ag~Ho7h

Eq. (23). More specifically, the first two terms on the R.H.S.
of Eq. (A5) give rise to the transient term(t) of Eq. (26),
while the third term give rise to the rotating terR(t) in
Eq. (25, and the LT term/£(t) in Eq. (24).

We next consider what happens when one substitutes the
perturbationA= 54=8—(§)eq into Eq. (20),

%f@dx Tr{e AR sg(—iAN)[PE](D)}

k= _ . (A6)
JEdN Tr{ie PHsg(—ihin) SH)

It can be readily shown that in this case the leading terms in
the expansion of the denominator and numerator are of first
order ina. Thus, the leading term in the expansiorkas of
zeroth order, and is given by

kO =— o sin(wt). (A7)

This term obviously cannot describe rate kinetics. The next
term after the leading term in the expansiorka$ of second
order ina, and correspond to the ratio of the third order term
in the expansion of the numerator and the first order term in
the expansion of the denominator. Although this term may
well lead to rate kinetics, it will not be LT-like. This is be-
cause the force enters into this term in the form of two-time
force correlation functions{Fq(7;)Fo(7)F)o, rather than
the one-time force correlation functiotf o(7)F),, that ap-
pear in the LT formula.

This somewhat surprising result originates from the fact
that the perturbatiol = 80=0§—(0)eq amounts to shifting
the harmonic potential without changing its frequeithis
should be contrasted to the quadratic perturbation in Eq.
(A1) that does change the frequeicYhus, the equilibrium
energy of the oscillator at thermal equilibrium, to zero-order
in the system—bath coupling, does not change whensg
=0—(0)eq- As a result, VER becomes dominated by higher
order terms. More specifically, one has to remember that

the numerator in Eq(20) corresponds tdli|s>ETr(;'35I:|S)
[cf. Eqg. (18)], and that the BRT can only account for terms

which are up to second order i in the expansion ops.
The zero-order term in the expansionlgfEq. (A7), comes
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from the first order term in the expansion d?-ls). Such (S =TI ASH1)]. (B2)

':_ermsfcg]rrespotnd 'nche_E’ RT toa l?jath-mduck:]ed renirjnagz?l-t should be noted that E4B2) applies to any initial state,
lon of the system Hamillonian and as such cannot lea ?egardless of its proximity to equilibrium, and is therefore

relaxation dynamics. The second order term in the expansiolqlore general than the standard LRT. LRT can obviously
of k comes from the third order term in the expansion of . ' - -
be retrieved from Eq. (B2) by substituting A

(H,) which is not accounted for py the BRT. Such higher- _ _f [Bdre(B-NA she- Mz
than-second-order terms are obtained when one goes beyond e A ’ o

second order perturbation thedf, and represent non-LT Provided that(sH)(t) follows rate kinetics, one can
VER pathways. Thus, the above analysis indicates thaf'€n Put the rate constant in the following form:
non-LT pathways can be accessed and studied by preparing ARt
the system in certain initial nonequilibrium states. It should | — _ MAH( )]_
also be noted that the second order term in the expansion of TH{ASH]

(Hs) vanishes because of the asymmetry of the perturbatio should be noted that the actual value of the rate constant,
A=45(q, and that non-LT VER will emerge for other asym- and even the actual validity of rate kinetics, may depend on
metrical forms ofA, such asA=(5§)" with n=3,5,7,... . the choice ofA. An example for this has been given above
It is also interesting to note that the emergence Olyjthin the LRT, whereA=5g and A=(5)2 have been
non-LT VER is intimately related to the fact that the systemgnhown to lead to different VER rate constants. At the same
and bath are initially correlated and that the state of the batfime, it is plausible that choices of the deviation from equi-
is in fact affected by the system. Under the assumptions Ofprium other than that dictated by LRT can be used in order
the BRT, an uncorrelated initial state of the ford{0)  to optain the same rate constant. Such alternatives may also
=(e*ﬁHb/2g)®ﬁs(O) will generally lead to LT VER, except be easier to handle and simulate than the Kubo-transformed
for the trivial case where the vibrational mode is initially form dictated by LRT.
equilibrated,ﬁs(0)=e*BHS/ZS. However, the initial state in We now demonstrate this idea for a deviation from equi-

LRT, Eq. (15), includes additional system—bath correlatedlibrium of the following form:

(B3)

terms which arise from the system—bath coupling term, Eq.  _ f . -
(4). More specificallyp(0) in Eq.(15) can be written in the A=—5-(4( 84)%e Pl +e P s(59)%). (B4)
following way:
o A w Substituting Eq(B4) into Eq. (B3) yields

p(0)= ®p0(0)+ "5 (0), A8 e .

P( ) g Ps ( ) nZl a p ( ) ( ) . z Re([pF](t)&(ﬁq)2>eq (BS)
where ) K Re(S(58)?0Hg)eq

e Afs B A As for the LRT expression, the leading term in the expansion

~(0)0)= _ i )

ps(0)= z? (1 ffo dX Ao 'h)‘))’ (A9 4tk is second order iy, and is given by
is independent ofy, and 5((0) represents thath order kA= L' () +R(D+T' (1], (B6)

system—bath correlated term, which intrinsically cannot bevhere
written in the form e*ﬁHb/ZS)(@ﬁSA(O). Thus, LT VER.is L= 1 (1—eﬁh“’)Rﬁ’ ftheinC(T)
bound to emerge when 'Ifrgo)(O)éHS)#O, e.g., whem is 2uhw 0

even in Eg. (21). However, situations where .

Tr(p{Y(0)8H) =0, e.g., in the case of an odd valuerofn +eﬁﬁwf dre““‘TC(r)],

Eqg. (21), will be dominated by the higher order correlated 0

terms and lead to non-LT VER.

’ — Bho _
R'(O)== g (@)

APPENDIX B: VIBRATIONAL ENERGY RELAXATION ) t )
WITH A NON-KUBO-TRANSFORMED INITIAL X Re| e‘ﬁﬁ‘"ez"“tf dre '*7C(7)
STATE 0

The initial statg of the overall system can be written in e 2ot f drel“C(n)},
terms of the following general form: 0

e P , h . B .

p(0)= 5 +A, (B1) T (t)=msm(2wt)jo dANC(—i%N)

where the deviation from equilibriumA, must satisfy X [elf~Mho @=(F=Nhe] (B7)

Tr(&):O, A_TZA, and as long ap(0) is positive. Follow-  The termsR ' (t) and7" (t) can then be averaged out via the
ing a LRT-like procedure then yields the following expres-RWA, while the term£’(t) reduces into the LT formula at
sion for the relaxation ofHg) to equilibrium: t>7..
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