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Electron Densities from Gas-Phase Electron Diffraction Intensities. II. 
Molecular Hartree-Fock Cross Sections* 
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Differential cross sections for electron scattering based on molecular Hartree-Fock electron densities 
are compared with cross sections based on the independent-atom approximation for the molecules C2, N2, 
02, F2, and CO. The results show that bonding effects on the electron density manifest themselves to the 
extent of several percent in the scattered intensity at small scattering angles. Furthermore, molecule-to­
molecule variations in the shifts of electron density are clearly reflected in variations in the functional form 
of the scattered intensity. A comparison of the calculated intensities for N. and O2 with preliminary experi­
mental intensities suggests that electron scattering techniques now in development should be able to provide 
information about bonding and electron correlation effects competitive in accuracy with that of current 
quantum-mechanical calculations. 

INTRODUCTION 

In the preceding paper! it was shown that, subject to 
certain limitations, information about the electron 
density of molecules can be obtained from gas-phase 
electron diffraction intensities. The formal treatment of 
Paper I examined the problem of uniqueness and de­
ferred the question as to whether practical information 
could be derived from existing experimental techniques. 
We shall attempt to answer this question in the present 
paper by calculating differential cross sections for a 
series of diatomic molecules. The sensitivity of the 
diffraction approach will be gauged from a comparison 
of results for Hartree---Fock molecules with results for 
hypothetical molecules built up of independent 
Hartree---Fock atoms. Such a comparison not only gives 
a reasonable assessment of the diagnostic capacity of 
scattered intensities for bonding effects but it also 
provides useful guidelines in the selection of analytical 
representations for electron densities in molecules. 
Such representations will be indispensable in the 
transformation of experimental intensities into three­
dimensional electron distributions. 

THEORY 

In Paper I, the function <Ttot(s) was introduced which 
represents the electronic contribution to the total 
scattered intensity for electrons. Furthermore, <Ttot(s) 
was subdivided into two components <Tne(s) and <Tee(S) 
where, for a diatomic molecule A-B, 

<Tne(s) =-2( J drjo(Sr)[ZAP(r)+ZBP(r+rAB)]) vib 

(1 ) 

<Tee(s) =( 1'" drjo(Sr)p(r» . ' (2) 
o vlb 
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1 D. A. Kohl and L. S. Bartell, J. Chern. Phys. 51, 2891 (1969), 
Paper I. 

and 
(3) 

In Eqs. (1) -( 3) , s is the scattering variable, jo (x) is the 
zeroth-order spherical Bessel function, ZA and ZB 
are the nuclear charges, and ( )vib denotes vibrational 
averaging. Nucleus A has been chosen as the origin of 
the coordinate system, and the position of nucleus B is 
given by the vector rAB. The functions per) and 
per) are the electron density and the radial electron­
electron distribution, respectively. If the total intensity 
is separated into elastic and inelastic components, the 
electronic contribution to the elastically scattered 
intensity, <Telast(S), can be expressed as2 

<Telast(S) =<Tne(s) 

+( J drjo(sr) f dr'p(r')p(r+r') )Vib' (4) 

Since the emphasis in this paper is on the influence of 
bonding effects, we shall be concerned with difference 
functions Ll<Ttot(s) , Ll<Tne(s), and Ll<Telast(S) which are 
of the form 

Ll<T(s) =<T(s) _<Tiam(s). (5) 

The reference function O'iam (s) shall be calculated ac­
cording to the independent-atom approximation for 
Hartree-Fock atoms, and O'(s) represents the exact 
value of the particular electronic contribution to the 
scattered intensity. An explicit definition of Ll<Tne(s) IS 

Ll<Tne(s) 

(6a) 

=-2( f drjo(sr)[ZALlP(r)+ZBLlp(r+rAB)])Vib' 

(6b) 

where Llp(r) is the Roux function,3 the function cor-

2 R. A. Bonham, J. Phys. Chern. 71, 856 (1967). 
3 M. Roux, S. Besnainou, and R. Daudel, J. Chim. Phys. 54, 

218 (1956); M. Roux, M. Comille, and L. Bumelle, J. Chern. 
Phys. 37,933 (1962). 
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responding to the difference between the molecular 
electron density and the sum of the densities of the free 
atoms separated by the distance 1'AB. For atoms which 
are aspherical in their ground state by virtue of in­
completely filled shells, ~p(r) can be defined in dif­
ferent ways. To be consistent with the conventional 
diffraction usage of the independent-atom approxima­
tion, we shall adopt the spherical average of the atomic 
electron density in defining ~p(r). 

An invaluable aid in the discussion of bonding effects 
on the scattered intensity is the relationship between 
the average potential energy 1J of the scatterer and the 
total intensity. It can be shown that ~1J, the dif­
ference in potential energy between the actual molecule 
and the reference state (the independent-atom mole­
cule) is given by2 

~1J= ~lco dS~CTtot(S), 
7r 0 

(7) 

where the potential energy is in atomic units, 110 is the 
Bohr radius in angstroms, and S is given in (ang­
stroms)-l. Although the reference state does not 
correspond to a proper molecular wavefunction, its 
potential energy is well defined and can be calculated 
exactly. The potential energy of the real molecule can 
be obtained, with the aid of the vi rial theorem, from 
spectroscopic measurements of the total energy. 

Roux functions for all the molecules considered were 
obtained from Bader4 in tabulated form and then were 
fitted by least squares with the functional form 

~p(r) =~p(1', (J) = 2: 2: ank1'k exp( -Ank1')p,,(cos(J) 
n k;?:n-l 

+2: 2: bnk(r')kexp(-'Ynk1")P,,(cos(J'), (8) 
n k;?:n-l 

where p .. (x) is the Legendre polynomial of degree n, 
nucleus A is the origin of the coordinate system, 

1" = (1'2+1'AB2- 21'1'AB cos(J) 1/2, 

1'= (1"2+ 1'AB2-21"1'AB cos(J') 1/2, 

and a"k, Ank, bnk , "Ink are adjustable parameters. For a 
homonuclear diatomic molecule, symmetry requires 
that ank=bnk and Ank='Ynk. Since the volume integral 
over all space of the electron density is equal to the 
number of electrons, the volume integral of ~p(1') 
must equal zero. Expressions for evaluating ~CTne(S) 
and ~CTelast (s) in terms of this representation are given 
in the Appendix. Because the molecular electron­
electron charge distribution has not yet been computed 
from the Hartree-Fock wavefunctions (and because it 
would necessarily be rather poor even if it were com­
puted), ~CTtot (s) was not calculated. On the other 
hand, ~CTtot(S) has been measured experimentally for 
two of the molecules, Ne and Oe, but no experimental 

4 R. F. W. Bader, W. H. Henneker, and Paul E. Cade, J. Chern. 
Phys. 46, 3341 (1967). 

data for ~CTne(S) or ~CTclast(S) are yet available. In a 
later section, the resemblance between the calculated 
values of ~CTne(S) and ~CTelast(S) and the experimental 
values of ~CTtot(S) will be discussed. 

An average of ~CTne(S) and ~CTelast(S) must be taken 
over the vibrations of the molecule before the functions 
are directly comparable with experiment. For a rigorous 
result, the dependency of the Roux function on the 
internuclear separation would have to be known. 
Unfortunately, the required vibrationally averaged 
Hartree-Fock distributions have not been calculated. 
Nevertheless, it is possible to make an approximate 
correction for this effect as follows. It may be assumed 
that the molecules vibrate harmonically with an rms 
amplitude 1, where t is known. If the densities i t the 
vicinity of the nuclei follow the motion of the nuclei, 
the main effect of the vibration is to introduce the 
James thermal factor exp( -12s2/2) into each term 
containing a spherical Bessel function in the expressions 
for ~CTn.(S) and ~CTelast(S). 

Although the correction to the intensity could have 
been obtained directly by integrating the Roux func­
tion numerically, the intermediate step of expressing 
~p(r) in terms of Eq. (8) was carried out. This repre­
sentation has the usual advantages associated with 
analytical expressions and, in addition, is of a form 
allowing an approximate correction for vibrational 
effects to be made. Moreover, as proposed in Paper I, 
if molecular electron densities could be accurately 
described by a sufficiently small number of terms in 
Eq. (8), it would be possible to deduce electron densi­
ties from scattering experiments. The number of terms 
required to represent the Roux functions in this study 
should indicate the likelihood of success of such a 
procedure. Another potentially valuable application is 
as follows: The representation of the Roux function by 
Eq. (7) subdivides the molecular density into "atomic" 
parts. With a judicious choice in this subdivision, it 
may be found that the aspherical character of bonded 
atoms is approximately transferable from molecule to 
molecule. The resultant aspherical densities might lead 
to a significant improvement over the usual inde­
pendent-atom approximation in scattering theory. 
Furthermore, the form of ~p(r) introduced here 
would provide a mathematically tractable scheme for 
introducing aspherical scattering factors into the 
calculation of electron and x-ray diffraction intensities. 

RESULTS 

The Hartree-Fock Roux functions were fitted by a 
series of terms, as indicated in Eq. (8), using a least­
squares method5 to obtain the parameters ank and 
Ank. Since the magnitude of the Roux function was 
largest near the nuclei, initial fittings dealt mainly with 

5 T. G. Strand, D. A. Kohl, and R. A. Bonham, J. Chern. Phys. 
39, 1307 (1963). 
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FIG. 1. (a) Roux functions for a series of diatomic molecules. The Roux function or density difference map represents the effect of bond 
formation on the electron density of the molecule: --, positive contours in atomic units; - - -, negative contours; •.. , zero contours. 
The positions of the nuclei are identified by X. (b) The changes in the scattered intensity corresponding to the Roux functions: --, 
tiO"ne(s), the change in the planetary electron-nuclear interference terms; - - -, tiO"p\ •• t(s), the change in the elastic scattering; 
0.5% of the total atomic scattered intensity. 



TABLE I. Least-squares parameters for the Roux functions." 

C2 b N2 b O,b F2 b co· 0 
;.. -------

a,,,, Xnk ank Xnk ank Xnk ank hnk 
Ul 

nk (bnk) ( "Ink) (bnk ) ( "Ink) (bnk ) ( "Ink) (bnk ) ( "Ink) ank Xnk bnk "Ink '"d 
::q 

00 -1.3336 28.600 -2.7000 11. 900 -3.5162 31.446 1.5648 34.269 -3.0389 16.742 -6.5091 30.258 ;.. 
Ul 

o 1 -25.9884 19.400 29.9022 16.000 -4.3054 7.191 -6.1726 7.662 11.4243 15.258 M 

o 1 11. 5351 11. 931 -0.9718 8.053 0.4230 4.823 -1.1383 4.242 M 
t" 

o 1 -2.7036 4.681 -1.9774 4.450 M 

02 4.2841 5.041 3.4446 4.810 2.7062 5.801 6.1306 7.555 -20.5784 9.258 n 
>-3 

o 2 0.4306 3.242 f'j 

0 
1 1 -13.6539 16.328 31. 6251 39.878 260.0093 18.910 287.6208 20.112 9.6173 31.721 36.9556 35.045 Z 
1 1 -1. 2985 5.891 71. 8363 20.845 -68.3586 9.409 -88.5010 10.717 38.2344 20.136 134.2255 20.791 t! 

1 1 1.3500 1.790 -7.2214 7.615 4.7722 8.074 15.6813 15.336 -22.7448 8.661 
H 

.." 

1 1 0.4814 3.870 -3.3745 6.000 -2.9792 5.441 -1.7061 6.023 .." 
f'j 

1 2 -2.1042 5.039 -12.9149 6.465 10.2672 5.194 ;.. 

1 2 23.0654 6.952 8.5465 5.297 
n 
>-3 

1 3 -2.2272 2.720 
H 

0 

2 1 -3.9178 11.499 15.8709 29.878 13.1902 16.480 34.6102 25.087 -5.3441 13.676 9.0627 5.111 Z 

2 1 -25.3648 14.574 -15.6631 8.980 -81.3146 8.079 9.5424 3.943 
H 

Z 
2 1 7.9955 9.394 -5.7056 7.800 -7.4240 6.483 >-3 

M 
2 1 13.4487 4.765 Z 
2 2 -68.0394 9.600 1.3500 4.485 -170.7564 10.596 

Ul 
H 

2 2 7.1850 5.379 >-3 
H 

3 3 -11.3424 6.300 15.1373 6.150 64.1155 6.650 16.3245 5.664 12.8231 5.000 10.7984 6.000 M 
Ul 

• Parameters are defined by Eq. (8) of the text for rand r' given in angstroms and the units of the b The symmetry of homonuclear diatomic molecules requires bnk =ank and "Ink =Xnk in Eq. (8) • H 

Roux functions are electrons per cubic angstrom. The Raux functions can be converted to atomic units e The origin of the coordinate system is at the carbon nucleus. H 

by dividing by 6.749. 

N 
'XJ 
'-0 -a 
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this region. Gradually, points at larger radii were 
added and additional adjustable parameters were 
introduced. About 1300 points were included, in all, to 
ensure that ~p(r) was well characterized. The norm­
alization condition was not imposed until the final 
stages. Final parameters are listed in Table I. The 
extreme asymmetry of the Roux function near the 
nuclei made it necessary to employ a relatively large 
number of parameters (see Fig. 7 of Ref. 4). Ap­
proximately one-third of the parameters served only 
to represent the region within 0.151 of the nuclei, 
although this region makes very little contribution to 
the scattered intensity. The Roux functions and the 
calculated values of ~<Tnc(S) and ~<Tclast(S) are given in 
Fig. 1. The magnitude of the correction to the scattered 
intensity is illustrated in terms of the dotted envelope, 
the amplitude of which indicates 0.5% of the total 
atomic or "noninterference" scattered intensity. The 
goal of current experimental work is to achieve ac­
curacies in the vicinity of 0.1 %. 

It is difficult to define an appropriate goodness-of-fit 
criterion in view of the extreme range of variation of 
the Roux functions in the spatial region of interest. 
Because the primary purpose in this phase of the study 
was to obtain ~<Tne(S) rather than to obtain an exact 
fit of ~p(r), the accuracy of the calculated values of 
~<Tne(S) was selected as the primary criterion. The 
error in ~<Tne( s) was determined at various stages in the 
least-squares refinement by numerically integrating 
Eq. (6b) using the residuals between the ~p(r) given 
by Bader et al.4 and the ~p(r) given by Eq. (8) to de­
termine the residuals in ~<Tne(s). The final values of 
~<Tne( s) and ~<Telast( s) plotted in Fig. 1 represent a 
blend of purely analytical results with corrections from 
the numerical integration. Some judgment had to be 
used in the application of the corrections because the 
numerical integration was affected by the finite range 
of integration for small s values and by the finite grid 
spacing for large s values. The normalization condition 
on ~p(r) requiring that ~<Tne(s) be zero at s=O pro­
vided a means of judging the accuracy of the numerical 
integration. Except for small s values, s::;21-I

, the 
peak values of ~<Tne(S) and ~<Telast(S) given by the an­
alytical expressions are accurate to about 10%. Be­
tween s = 0.5 and s = 2, it was necessary to rely on the 
corrections indicated by the numerical integration. 
The Roux functions at large radii may prove to be 
appreciably influenced by the vibrations of the nuclei, 
an effect which has been neglected in these calculations. 
Therefore, the error in these regions of the Roux 
function most troublesome to fit may not be sig­
nificant. Be that as it may, it is quite apparent that, 
although a good qualitative representation of ~p(r) 
can be made with a small number of terms in Eq. (8), 
appreciable inaccuracies remain even if a fairly large 
number of terms is taken. Inasmuch as a convergent 
least-squares analysis of ~<Tne( s) in terms of the trans­
form of Eq. (8) requires that the number of terms be 

limited, it is likely that deductions about the three­
dimensional form of ~p(r) from experiment will be 
correspondingly limited. 

DISCUSSION 

The sine transform which connects ~<Tne(s) and 
~p(r) implies a reciprocal relationship between the two 
functions. A delocalized feature in ~p(r) [or ~<Tnc(S)J 
corresponds to a localized feature in ~<T m (s) [or 
~p(r)]. Moreover, charge shifts at small (large) radii 
will result in contributions to ~<Tne(s) at large (small) s 
values. A component of the Roux function of the form 
!n(r)Pn(cos(J) corresponds to a contribution to ~<Tne(s) 
of the form gn(S) [OnO+jn(srAE)]. (See the Appendix.) 
As a consequence of the characteristic lack of nodes in 
the function gn(s) in the s range of interest, the nodal 
pattern of ~<Tne( s) is determined by the spherical Bessel 
functions jn(srAE) , where rAE is the bond distance. 
For a bond length of 1.21-1

, the first node of jn(srAE) 
occurs at widely separated values of s, namely, 2.6, 
3.7,4.8, and 5.8 1-1 for n=O, 1, 2, and 3, respectively. 
Because of the overriding effect on the intra-atomic 
over the interatomic contributions in the n=O case, 
the zeroth-order component in ~<Tne( s) has local 
extrema but it has no nodes. Therefore, each Legendre 
polynomial corresponds to a distinct nodal pattern in 
s space. The sensitivity of ~<Tne(s) to the details of the 
Roux functions is apparent from Fig. 1. Variations in 
the form of ~p(r) from molecule to molecule are re­
flected in the variations in ~<Tne(s). Examination of 
each of the ~<Tne(s) curves with respect to the 0.5% 
envelope shows that the bonding effects are appreci­
able, especially at small s values. 

It might be thought that the magnitude of the bond­
ing effects would be reduced if the Roux functions were 
defined with respect to aspherical valence-state atoms 
as was done in Ref. 3 rather than with respect to the 
spherically averaged independent atoms adopted here. 
This is not necessarily true. The Roux function for 
F2 , for example, depends strongly upon the choice of the 
reference function. (Compare Fig. 1 of this paper with 
Fig. 3 of Ref. 4.) Yet, it appears that the two extremes 
(valence-state and spherical reference atoms) have 
entirely comparable magnitudes. Curiously, for F2, the 
Roux function for the one reference density is ap­
proximately the negative of the Roux function for the 
other! Obviously, in the case of N2, the valence-state 
atoms are spherical, making the alternative reference 
functions identical. In any event, the spherical-atom 
reference state is found to be a reasonable one. The 
shifts of density implied by the Roux functions are 
large enough to justify the selection of the more con­
venient reference density. 

For all of the molecules, ~<Tne(s) is small relative to 
S4 I tot (s) , the total scattering function, beyond s 
values of about 10 A-I. Even for accurate intensity 
measurements, the uncertainty in ~<Tne(S) would prob­
ably equal or exceed ~<Tne(S), itself, at the larger 
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scattering angles. This indicates that the scattered 
intensities are not sensitive to bonding effects near the 
nuclei if the small r behavior of the Hartree-Fock 
Roux functions is representative. Apart from this, 
the primary limitation on the determination of electron 
densities is the problem of the uniqueness of the trans­
formation from ~O"ne(s) to ~p(r). As was shown in the 
preceding paper, the basis set of Eq. (8) by no means 
guaran tees a unique transformation. In particular it 
was shown that any of the terms can be exactly re­
placed by a sum of spherical terms (n=O) without 
altering ~O"n"(S). Nevertheless, the nodal behavior of 
~O"ne(s) provides strong clues about the properties of the 
correct solution of the transformation. If the oscil­
lations in ~O"ne(s) did not arise from an angular de­
pendency in ~p (r) identifiable with higher-order 
Pn(cosO) terms, they would have to be due to an 
enhanced shell structure around the atoms. In order to 
investigate whether the model ascribing intensity 
fluctuations solely to shell structure reveals any tell­
tale deficiencies, let us assume that the calculated 
function ~O"ne( s) for F2 arises from a Roux function, 
~po*(r, 0), which depends only on terms with n=O. 
The resultant solution, calculated according to the 
procedure described in the preceding paper, is plotted 
in Fig. 2 in terms of radial profiles of ~po*(r, 0) along 
the directions O=45 a , 90a , and 180a • Although ~po*(r, 0) 
reproduces the scattered intensity exactly, it is a 
physically unacceptable solution. For one thing, it 
corresponds to a negative probability of finding elec­
trons in several regions beyond 1.3 A. Moreover, it 
implies an absurdly dense and sharp spherical shell of 
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FIG. 2. Radial profiles of r2flpo*(r, () for F2• The Hartree-Fock 
Roux function and flpo* (r, (), the spherical shell description of 
the difference in electron density, represent different charge 
distributions for the molecule F2 but they produce identical 
elastically scattered intensities; ---, ()= 180°; - - -, ()= 90°; 
.0 0 0, ()=45°. A comparison of the spherical solution with the 
atomic radial distribution, the dotted line, shows that the spheri­
cal-shell description is physically unacceptable. 
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FIG. 3. Bonding and correlation effects on the scattered in­
tensity for N2. The calculated corrections arising from the bonding 
effect on the electron density: --, flO'ne(s), the change in the 
planetary electron-nuclear interference terms; - - -, flO' elaot (s) , 
the change in the elastic scattering. The dotted curve, flO'tot(s), 
was derived from experimental measurements of the total inten­
sity. Of the three curves illustrated, only the experimental one 
includes electron-correlation effects as well as one-electron bonding 
effects. 

electrons around each nucleus starting, suspicously, 
at a radius corresponding to the internuclear separ­
ation. The extreme ~po*(r, 0) solution, therefore, is 
easily recognized as spurious. This does not means that 
the uniqueness of the transformation is not a severe 
limitation. It does suggest that any dominant contri­
butions to ~O"ne( s) may be identifiable with the correct 
Legendre components and semiquantitatively determin­
able. 

Up to this point we have been considering the effect 
of the electron density, a one-electron property, on the 
scattered intensity. The total intensity, in its inelastic 
part, depends also upon the electron-electron distribu­
tion function, a two-electron property. For atoms, it is 
known that Hartree-Fock wavefunctions yield ac­
curate electron densities and that the principal defect 
of Hartree-Fock wavefunctions is, by definition, their 
failure to take into account electron correlation effects . 
For the atoms helium and beryllium, Bartell and 
Gavin6 showed that the correlation defect has a very 
marked influence upon the total intensity even though 
the error in the Hartree-Fock electron density is 
negligible. Therefore, the difference between the exact 
total scattered intensity and the independent-atom 
total intensity based on Hartree-Fock atoms must 
depend upon the atomic correlation defect as well as 
upon the bonding effects on the electron-electron and 
electron-nuclear distributions. In terms of expressions 

6 L. S. Bartell and R. M. Gavin, Jr., J. Am. Chern. Soc. 86, 
3493 (1964); J. Chern. Phys. 43, 856 (1965); R. M. Gavin, Jr., 
and L. S. Bartell, ibid. 44, 3687 (1966) i 45, 4700 (1966). 
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introduced earlier we can write CONCLUSIONS 

~O"tot(S) =~O"el"st(S)+~O"inela.t(S) (9a) 

= [~O"ne(S) +~O"eeelast(S) J+~O"eeinelast(s), (9b) 

where the inelastic component of the electron-electron 
function ~O"eeinelast( s) manifests the influence of cor­
relation. The practical necessity of adopting an un­
correlated atomic reference function in the derivation 
of ~O"tot(s) from experiment means that ~O"tot(s) must 
tend to exceed ~O"elust (s) in the s range where atomic 
correlation has been found to be important.6 It is 
reasonable to expect that both functions, nevertheless, 
will display the interference effects arising from the 
structure in the Roux function. 

For N2 and 02, ~O"tot(s) has been measured.7 As 
anticipated, the electron-nuclear interference features 
lead to a similarity in shape between the calculated 
~O"ne(s) and ~O"dust(S) and the experimental ~O"tot(s) 
functions, as is shown in Figs. 3 and 4. Although the 
experiment represents an admittedly crude attempt 
to measure bonding effects, it is a successful attempt in 
several respects. Not only are the interference ripples 
of ~O"tot(s) at least qualitatively correct but so also is 
the potential energy derived from ~O"tot (s) according 
to Eq. (7). The electron diffraction experiments yield 
a potential-energy difference between the actual 
molecule and the independent-atom molecule of 
-39.2 eV for N2 and -42.0 eV for O2. Spectroscopic 
measurements lead to values of -28.2 and -32.4 eV, 
respectively, for the same molecules. Although the 
accuracy of the preliminary diffraction values is not 
high, it is much higher than the accuracy obtained 
from a Hartree-Fock molecular wavefunction which 
gives potential-energy differences of +3.8 and +3.2 
eV. Therefore, even if ~O"tot(s) had been calculated 
with the Hartree-Fock wavefunction for the mole­
Cllles, quantitative agreement with the experimental 
curves could not have been expected. 

Because of the similarity between the curves for N2 
shown in Fig. 3, it seems improbable that there is any 
substantial disagreement between the exact one­
electron density and the Hartree-Fock electron density. 
Results for the H2 molecule, which was studied at the 
same time as N2 and 02, were also in good agreement 
with calculated values of ~O"tot (s), as previously 
reported.7 There being no contradictory evidence, it 
seems likely that the existing measurements of ~O"tot(s) 
capture, qualitatively, the essential features relatable 
to bonding effects. Current efforts to reduce experi­
mental uncertainties by an order of magnitude look 
promising. An improvement in accuracy by such a 
factor would lead to quantitative information on the 
shifts of electron distribution associated with the 
formation of bonds. 

7 D. lI.. Kohl and R. A. Bonham, J. Chern. Phys. 47, 1634 
(1967). . 

For many years it has been considered unlikely that 
useful three-dimensional information on molecular 
electron densities could be obtained from gas-phase 
scattered intensities. The results of this paper put the 
role of electron scattering as a means of studying bond­
ing and correlation effects into a more proper per­
spective. We have demonstrated that even in molecules 
more complex than H2 (a case treated elsewhere7) 

the scattered intensity is measurably sensitive to 
bonding effects. It is also evident that the amount of 
information about the electron density which can be 
derived from vapor-phase experiments is subject to 
some fundamental limitations. On the other hand, 
there is no problem of uniqueness in the transformation 
from per) to O"ne(S), and the scattered intensity may 
prove to be more suitable as a test of computed electron 
densities than as a means for determining densities 
directly. Most of the accurately measured molecular 
properties can be represented by a single number. 
Quantum-mechanical calculations of these properties, 
with the exception of the total energy, are for the most 
part not known to represent definite upper or lower 
bounds. A comparison between calculated and experi­
mental values usually only establishes that the two 
values agree or disagree. If the two results agree, it may 
be accidental and the agreement may worsen when an 
"improved" wavefunction is used for the calculations. 
The exact scattered intensity cannot be in complete 
agreement at all scattering angles with a scattered 
intensity derived from an incorrect wavefunction. 
Therefore, electron scattering may prove to be one of 
the best observables in addition to the total energy for 
determining the quality of computed wavefunctions. 

APPENDIX: ANALYTICAL EXPRESSIONS FOR 
O"ne(S) AND O"cl""t(S) 

For the special case of diatomic molecules, the 
molecular electron density PM(r) has cylindrical 
symmetry about the internuclear axis. It is assumed 
that PM(r) can be written as 

where rAB is the internuclear vector between nucleus 
A and nucleus B and that PA(r) and PB(r) have the 
functional form 

LPn(cosO) Lankrkexp(-Ankr). CA2) 
k 

First consider O"ne(s), which is given by 
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where joe x) is the zeroth-order spherical Bessel function 
and ZA(ZB) is the nuclear charge on nucleus A(B). 
The expression given in Paper I for homonuclear 
diatomic molecules is easily extended to give 

Une(S) = - 87r[ZAgoA(S) +ZBgoB(S) 

+ZA L gnB(S)jn(STAB)+ZB L gnA(S)jn(STAB)J, 
n n 

-).5 

-1.0 

-05 

. ...... . 
......•... 

..... 
"'\ 

........ \ ............... . . ... 

.......... . 
""'\ 

(A4) ).0 

where 

gn(S) = (2s)nn! L ank( -d/dAnk)k-n+I(s2+Ank2)-n-l 
k 

and the superscripts denote which set of parameters is 
involved. To obtain the expression for Uelast (s) it is 
necessary to evaluate 

Xexp(is·r) f dr'PM(r')PM(r+r'), (AS) 

where JdQ. denotes integration over all orientations 
of the vector s. Introducing the expression in Eq. 
(Al) for PM(r) and making numerous substitutions, 
one obtains 

where 

Xexp( -is·r) f dYPA(Y) exp(is·y), 

FBB(S) = f drpB(r) exp( -is·r) f dYPB(Y) 

Xexp(is.y) , 

Xexp( -is·r) f dYPB(Y) exp(is.y), 

and 

FBA(s) =exp( -is·rab) I drpB(r) 

Xexp( -is·r) I dYPA(Y) exp(is·y). (A6) 

For the functional form of PA(r) and PB(r) one ob-

s-
FIG. 4. Bonding and correlation effects on the scattered intensity 

for O2• See Fig. 3 for meaning of curves. 

tains8 

I drp(r) exp(ips.r) =% ~ (pi) npn(cosO.)gn(s) , 

(A7) 

where p= ±l and gn(s) is defined above. The average 
over all orientations of the terms FAA(S) and FBB(S) 
gives 

and 

~ f dQ8FBB(S) = (47r)2 L (2n+ l)-l[gnB(s) J2. 
% n 

(A8) 

The expression for the cross terms reduces to 

x L imgmB(S) ! (21+l)i~h(sTAB)Pnml (A9) 
m I~O 

and 

X! (2t+l)(-i)]I(STab)Pnm1, 
I~O 

where 

The function P nml is zero unless the indices form a 

8 M. Abramowitz and 1. A. Stegun, Handbook of Mathematical 
Functions (U.S. Government Printing Ollice, Washington, D.C., 
1965), Eq. 10.1.47, p. 440. 
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triangle whose perimeter is an even number,9 so that 
for small values of nand m only a few terms from 
the infinite sum are nonzero. The final expression for 
O"elast (s) is given by 

O"elast(S) =O"ne(S)+;Y2(s) 

=O"ne(S) + 16-11"2 ( L (2n+1)-!{[gnA(S)J2 
n 

+[gnB(S)J2}+ L L gnA(S)gmB(S) :t (21+1) 
n I~O 

9 A. Erdelyi et al., Tables of Integral Transforms (McGraw-Hill 
Book Co., New York, 1954), Vol. 2, p. 280. 
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With the aid of analytic expressions for atomic electron 
densities!O of the form 

it is possible to obtain ~O"elast(S) by evaluating Eq. 
(AlO) with and without the parameters for the Roux 
function. 
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Absorption and fluorescence spectra of Co2+ in the tetrahedral (Td ) site of ZnAbO. spinel (gahnite) at 
low temperatures have been observed and analyzed. The resulting energy-level diagram includes four quartet 
states and nine doublets, and has been interpreted first in terms of a weak field formalism without spin-orbit 
coupling. In this analysis the "free-ion" levels for Dq=O were deduced and compared with those for a free 
ion outside the influence of the crystalline environment. The reduction in the electrostatic interaction param­
eters F2 and F. in the crystal is due to the effect of covalency. A second approach has been used to analyze 
the fine structure of the energy levels in terms of a strong field spin-orbit formalism. The fine structure 
can be explained for all the bands on the basis of simple spin-orbit splitting, but the possibility of a Jahn­
Teller distortion of the 4 T'a state cannot be entirely eliminated. 

I. INTRODUCTION 

The absorption spectra of tetrahedral Co2+ complexes 
have been studied in varying amounts of detail, both 
in solutions and in crystals. Crystal spectra are neces­
sary for an analysis of the details of spin-orbit split­
ting, but in every case, so far, the site symmetry of the 
Co2+ has been less than Td • The ligand-field analyses 
have, therefore, been handicapped by the presence of 
low-symmetry components whose effects cannot readily 
be separated from the effects of spin-orbit coupling. 
It is therefore of considerable interest to examine in 
detail the energy levels of Co2+ in an undistorted tetra­
hedral site. In the present paper we report the absorp­
tion and emission spectra of Co2+ in ZnAI20 4 , where 
the tetrahedral site has no distortion, and we give a 
detailed ligand-field analysis of the results. 

II. THEORY 

In the first paper of this series! the strong-field spin­
orbit matrices of Eisenstein2 were llsed to analyze the 

* Present address: National Standards Laboratory, CSIRO, 
Chippendale, N.S.W., Australia. 

1 J. Ferguson, J. Chern. Phys. 39, 116 (1963). 
2 J. C. Eisenstein, J. Chern. Phys. 34, 1628 (1961). 

absorption spectra of crystals contammg the CoC142-

complex ion. The same theory is also used in the 
present paper to discuss details of the spin-orbit struc­
ture of the spin- allowed absorption bands. However, 
as we have pointed out elsewhere3 the strong-field ma­
trices are inconvenient for the analysis of the doublet 
states of Co2+ and Cr3+ because in the diagonalization 
of the matrices with Dq=O (the free-ion case) using 
the electrostatic interaction parameters Band C a 
good agreement with the observed free-ion levels is 
not achieved. A much better agreement between ob­
served and calculated free-ion term energies can be 
obtained by adding a Trees correction to the expres­
sions for the term energies in the weak-field matrix 
diagonal terms. The remaining discrepancies between 
theory and experiment can then be ascribed, quite 
safely, to the effects of configuration interaction which 
are neglected in our work. Therefore, because the Trees 
correction can be easily included this waY,3 we chose 
to make an analysis of the over-all spectrum in terms 
of a weak-field formalism, based on the matrices of 
Finkelstein and Van Vleck.4 It is only because we did 

3 J. Ferguson and D. L. Wood, Mol. Phys. (to be published). 
4 R. Finkelstein and J. H. Van Vleck, J. Chern. Phys. 8, 790 

(1940). 


