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We show that an earlier domain wall solution of type IIB supergravity provides a
supersymmetric realization of the Randall–Sundrum brane-world, and give its ten-
dimensional interpretation in terms of IIB 3-branes. We also explain how previous
no-go theorems are circumvented. In particular, whereasD55 supergravity scalars
have AdS5 energyE0<4 and are unable to support aD55 positive tension brane,
our scalar hasE058, and is the breathing mode of theS5 compactification. Another
essential element of the construction is the implementation of aZ2 symmetry by
patching together compactifications with opposite signs for their 5-form field
strengths. This is thus a IIB analog of a previousD55 3-brane realization of the
Hořava–Witten orbifold. A mode-locking phenomenon avoids the appearance of
negative energy zero-modes in spite of the necessity of aD510 negative tension
brane-source. ©2001 American Institute of Physics.@DOI: 10.1063/1.1372698#

I. INTRODUCTION

Our purpose in this paper is first to show that the type IIB domain wall solution of Bre
et al.1 provides a supersymmetric realization of the Randall–Sundrum brane-world2,3 and second
to give its ten-dimensional interpretation in terms of IIB 3-branes.

The idea that our universe may be a 3-brane in a higher-dimensional spacetime has a
going back nearly two decades.4–9 More recently, another viewpoint on this basic idea has gro
out of the Horˇava–Witten10,11 model for M-theory/heterotic string duality, based upon anS1/Z2

orbifold in D511 spacetime. This orbifold construction was later realized in aD55 compactifi-
cation by a concrete solution to semiclassical M-theory, i.e.,D511 supergravity.12,13A key point
in this construction was the introduction of flux for the M-theory 4-form field strengthG[4] wound
around the compact dimensions, which were taken to be a Calabi–Yau 3-fold. The res
reduced theory is a specific version of matter-coupledD55, N52 supergravity. This
dimensionally-reduced theory has a scalar potential arising from theG[4] flux, which rules out flat
space or indeed any maximally symmetric space as a solution to the equations of motion. B
D55 reduced theory readily admits domain wall, i.e., 3-brane, solutions. A natural configur
is a pair of two 3-branes in aZ2 symmetric configuration; projecting the fields of this theory in
the subspace ofZ2 invariant configurations then reproduces the Horˇava–Witten orbifold. As in the
original D511/D510 discussion, the massless brane-wave excitations of this scenario a
easily deduced by direct analysis of the solution, but one may obtain information abou
zero-modes by anomaly inflow arguments. These may either be carried out inD510, leading to
the original Horˇava–Witten prediction of aD510, N51 super Yang–MillsE8 gauge multiplet
residing on each of the two fixed planes of the orbifold, with the resulting structure subseq
reduced toD55, or one may carry out the anomaly analysis directly inD55, yielding more
general possibilities for gauge structure.14

a!Electronic mail: jimliu@umich.edu
30270022-2488/2001/42(7)/3027/21/$18.00 © 2001 American Institute of Physics
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Another theory in which similar constructions can be made isD510 type IIB supergravity.
This has a self-dual 5-form field strength that supports the D3-brane, which is the basis for
recent discussion of the Maldacena conjecture, linking string theory in the near-horizon reg
the D3-brane to a Yang–Mills theory quantized on the boundary of the associated asympto
de Sitter space, which is the near-horizon limiting spacetime. In the pure supergravity co
relations betweenp-branes in higher dimensions and domain walls arising after dimensi
reduction on spheres was developed in Ref. 1, including the case of the D3-brane of ty
theory.

Meanwhile, another development was brewing. Randall and Sundrum2 proposed a simple
model of physics on 3-branes embedded inD55 anti de Sitter space, first in a model with tw
3-branes, one of positive and one of negative tension. This model was criticized for the ap
danger of nonphysical modes from the negative tension brane, and also because the m
related to the distance between the two branes gave another parameter needing fixing
phenomenological analysis. Subsequently, a revision of this scenario was put forward,3 in which
there was only one 3-brane, of positive tension, essentially obtained from the first scena
sending the negative tension brane to the Cauchy horizon of anti de Sitter space. The s
result found in this second scenario is that, although the fifth dimension of spacetime is
infinite, the effective gravity theory on the single remaining 3-brane nonetheless hasD54 and not
D55 leading behavior. The gravitational potential for static sources starts out with a Newt
1/r , corrected by terms of orderL21/r 3, where L is the D55 cosmological constant. Thi
‘‘binding of gravity’’ to the 3-brane happens when aD55 spacetime has a warped produ
structure, with the warp factor, i.e., the factor multiplying theD54 submetric, decreasing as on
recedes on either side from the single Randall–Sundrum 3-brane. This corresponds in
terms to the 3-brane acting as a positive-tension source on the right-hand side of the E
equations. It was not clear, however, whether this scenario could arise from an explicit solu
a supergravity theory.

Links between the Randall–Sundrum model and supergravity were made in Refs. 15–
Refs. 17, 18, theD55 3-brane solutions to the type II theory presented in Ref. 1 were use
make an analogy to the Randall–Sundrum model. The explicit relation between this constr
and the specific Randall–Sundrum model was not fully pinned down, however. This persp
was further elaborated in Refs. 19, 20. Despite the existence of these works, there still seem
some confusion in the literature as to whether the Randall–Sundrum model can in fact be ob
from an explicit supergravity solution.~Note, however, that the equivalence of the graviton pro
gator calculated from closed loops of theN54 SCFT in the Maldacena picture and that calcula
from tree graphs in the Randall–Sundrum picture was already strongly indicative of a supe
metric Randall–Sundrum brane-world.21!

Moreover, there are powerful general arguments22–24 as to why smooth supersymmetric s
lutions obtained fromD55 gauged supergravity coupled to various combinations ofD55 matter
cannot reproduce a Randall–Sundrum scenario with binding of gravity to the 3-brane. A key
here is ‘‘smooth.’’ Although one might well like to replace the Randall–Sundrum scenario,
its delta-function source, by a smooth solution, experience with domain walls in supergravity~i.e.,
codimension-one brane solutions! shows them always to be based upon a linear harmonic func
in the d51 codimension. In order for such a solution to have a localized energy concentr
i.e., a ‘‘brane,’’ some kind of ‘‘kink’’ must be introduced into the linear harmonic function so
to give a location to the domain wall. Thus, the search for a smooth codimension-one so
looks rather unlikely to be successful.~Some rigorous results along these lines have recently b
spelled out in Ref. 25. See also Ref. 26.! Moreover, the remainder of the argument of Refs. 22,
concerns the general behavior of renormalization group flows between critical points of co
supergravity-matter potentials. This gives the impression that even if one were to relax t
quirement of smoothness, there would be no solution leading to the binding of gravity t
3-brane.

In this paper, we shall first explicitly obtain the original~kinked! Randall–Sundrum geometr
from type IIB supergravity. This follows from the work of Refs. 1, 17, 20. This construc



super-
y
solu-
thing
n
e
es that

all–
to

n the

f the
ends

ying
l for
as in

c-
of the
less

, we
ral in

ing to
n that

es
pe IIB
e an
nta-
Klein
ut more
d on
will

taneous

e most
are

re-

3029J. Math. Phys., Vol. 42, No. 7, July 2001 A supersymmetric type IIB Randall–Sundrum . . .
makes essential use17 of the ‘‘breathing mode’’ of theS5 dimensional reduction of type IIB
supergravity of Ref. 1. We shall show why this massive mode escapes the constraints on
symmetric flows by reason of its transforming in a representation with AdS lowest energE0

58.4, thus falling outside the scope of the analysis of Refs. 22, 23. The breathing-mode
tions, although Kaluza–Klein consistent in a purely bosonic context containing just the brea
mode and gravity, do not really correspond to a pureD55 supergravity theory. The constructio
retains an essential memory of itsD510 type IIB origin. This is particularly so when on
considers the superpartners of the breathing mode, which include massive spin two mod
cannot be retained in a consistent truncation to a finite number ofD55 fields.

Another memory ofD510 supergravity in the supersymmetric realization of the Rand
Sundrum geometry resides in theZ2 symmetry of this geometry. This geometry is very similar
the Z2 symmetric configuration of two M-theory 3-branes inD55 that explicitly realizes the
Hořava–Witten construction as an M-theory brane solution.12,13 In the M-theory solution, theZ2

symmetry is central to the appearance of the orbifold, and it also plays a critical role i
preservation of unbrokenD54 supersymmetry on the brane world-volumes.13 The same is true in
the double 3-brane type IIB solution that we present as the supergravity realization o
Randall–Sundrum geometry: continuity of the unbroken supersymmetry Killing spinor dep
on the way theZ2 symmetry is implemented. In particular, in the M-theory case13 as well as in the
type IIB construction,27 the constant parameter determining the flux of the relevant underl
form field is Z2 odd, and so flips sign upon crossing either of the 3-branes; this flip is crucia
the continuity of the unbroken supersymmetry parameter. Accordingly, in the type IIB case
the M-theory case, theD55 theory is really obtained from a dimensional reduction on apair of
Kaluza–Klein ansa¨tze, one on each side of theZ2 symmetric spacetime. Although this constru
tion requires the presence of brane sources for the form-field flux, it is natural in the context
higher-dimensional M- or type IIB theory. This split ansatz, however, means that it is much
natural to view the geometry as arising in a singleD55 theory.

Having shown how to obtain the Randall–Sundrum model from type IIB supergravity
next set out to study the brane-wave oscillations of the solution. This analysis is quite natu
the type IIB analog of the M-theoryZ2 symmetric double 3-brane construction.12,13 Although, as
in Ref. 2, this configuration involves both a positive and a negative tension brane, thus lead
concerns about negative energies, we show that there is a ‘‘mode-locking’’ phenomeno
reduces the zero-modes to just one~positive energy! D54, N54 Maxwell multiplet in the case of
one singly charged brane. This happens because theZ2-odd modes turn out to be nonzero mod
constrained to be related to Kaluza–Klein massive modes by the Bianchi identities for the ty
5-form field strengthH [5] and for the gravitational curvature. Thus, one does not have to mak
explicit projection by hand into aZ2-invariant subspace of fields: this projection happens spo
neously, by normal Kaluza–Klein dynamical mechanisms freezing out massive Kaluza–
modes. The type IIB models considered here have the great advantage that one can carry o
of the Kaluza–Klein analysis explicitly than in the analogous discussion of M-theory reduce
Calabi–Yau spaces.12,13 But it is to be expected that an analogous mode-locking mechanism
operate there as well. And in that case, the mode-locking can be expected to lead to a spon
appearance ofD54 chirality, thus generalizing the appearance of chirality by explicitZ2 projec-
tion.

II. SUPERSYMMETRIC DOMAIN WALLS AND RENORMALIZATION GROUP FLOWS

While there are many ways of representing a metric on anti de Sitter space, perhaps th
natural form of the metric from a domain wall point of view is given in terms of Poinc´
coordinates,

ds25e22gyhmn dxm dxn1dy2. ~2.1!

Written in this manner, the Minkowski signature boundary of AdS is reached wheny→2`,
while the pointy→` is instead a null surface, the AdS Killing horizon. In the AdS/CFT cor
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spondence, this metric is viewed as the near-horizon geometry ofN coincident D3-branes, which
is described byN54 super Yang–Mills living on the boundary. Furthermore, the distance to
boundary is regarded as an energy; from the bulk point of viewy→2` is a flow to the UV, while
y→` is a flow to the IR.

The Randall–Sundrum brane-world is obtained by taking two Poincare´ patches of AdS, both
given by ~2.1!, and joining them at the brane locationy50. The resulting Randall–Sundrum
metric has the form

ds25e22guyuhmn dxm dxn1dy2, ~2.2!

and its geometry gives rise to a localized graviton on the ‘‘Planck’’ brane. Presented a
alternative to compactification,’’ much has been made of the fact that this scenario binds g
even though they direction has an infinite extent. Nevertheless, it is apparent from the form
~2.2! that the Planck brane only lives in a tiny portion of AdS, and that movement away from
brane flows towards the Killing horizon and not towards the Minkowski boundary of AdS.
one instead chosen to join together they,0 regions of~2.1!, the resulting geometry would
preserve the vast majority of the original space, including the entire portion of AdS nea
boundary. This then would yield a divergent ‘‘localization’’ volume and give rise to a bran
opposite character to the Randall–Sundrum brane, namely one that does not bind gravity.

In fact, the above observation motivated the authors of Ref. 28 to view the Randall–Sun
geometry as a warped compactification of F-theory on a Calabi–Yau four-fold. In this pictur
warped geometry arises from the presence of D3-branes situated on the elliptically fibered C
Yau manifold. The five-dimensional Randall–Sundrum universe then corresponds to the no
pact four-dimensional spacetime with the addition of a singley coordinate which provides a
preferred slicing of the internal space along flows between separated stacks of D3-brane
thus sees that the Randall–Sundrum brane itself is not identified with any one of the D3-b
but is instead viewed as an effective geometry that arises in interpolating between the near-h
locations of the D3-branes. In terms of the parametrization in~2.2!, the D3-branes are located a
the horizons,y56`, and the apparent infinite extent of they coordinate is simply a result of th
warping of the compact space by the D3-branes themselves. The localization of gravity i
explained by the compactness of the underlying F-theory construction. Heterotic and M-t
realizations based on warped Calabi–Yau compactifications have been examined in Ref.

Returning to a five-dimensional picture, there have been many attempts to expla
Randall–Sundrum scenario from a supersymmetric domain-wall point of view. The advanta
this approach is that one can generally ignore the added complications of the compactifica
the underlying IIB theory, and instead focus only on brane constructions in the resultingD55
gauged supergravity theory. However, as we emphasize below, it is important to realize tha
is no reason~other than simplicity! to expect that the relevant degrees of freedom lie only in
massless supergravity sector. In fact, as emphasized in Refs. 22, 23, massless gauged sup
precludes the localization of gravity on a brane. Thus massive fields are a necessity.

For the Randall–Sundrum picture to be realistic, where the Planck brane is a dyna
object, it would have to be supported by bulk scalar fields. Thus, in the language of bulk r
malization group flow, we seek a brane solution with stable flows to AdS critical points in th
on both sides of it. This approach has been studied extensively in both the AdS/CFT30,31 and
brane-world22,23,32,33pictures, with considerable overlap. Nevertheless, the distinction betw
flows of massless and massive scalars has not always been made clear, so we wish to do s

Since we demand that the flow away from the brane is towards an AdS backgroun
scalars must reach some fixed values corresponding to a critical point in the potential.
independent of any specific model, at that point, we may expand the scalars about thei
values. However before doing so, it is worth realizing that representations in AdS differ
those in a flat background.

Recall that, for AdS5, general representations ofSU(2,2) may be labeled byD(E0 , j 1 , j 2)
whereE0 is the lowest energy~which may be given in terms of the natural mass scale of the A
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background!. For scalars,D(E0,0,0), unitarity requiresE0>1 with E051 corresponding to the
singleton representation. General unitarity bounds forSU(2,2) as well as for theSU(2,2uN/2)
superalgebras have been obtained in Refs. 34–39~see also Ref. 40!. For a scalar field in AdS5, the
mass is given in terms ofE0 by m25E0(E024), so that ‘‘massless’’ scalars in fact correspond
E054. Of course, negative mass squared is not to be feared in an AdS background, provid
Breitenlohner–Freedman bound41 is satisfied. For this case it corresponds tom2>24, which is
saturated forE052.

To be specific, we now consider the case of a brane supported by a single scalar cou
gravity, where the Lagrangian takes the form

e21L5R2 1
2 ]f22V~f!. ~2.3!

While one may generalize by including more scalars, this single scalar example is suffici
bring out our conclusion. The resulting equations of motion have the form

RMN5 1
2 ]Mf ]Nf1 1

3 gMNV~f!, ¹2f5]fV~f!. ~2.4!

Note that we do not insist that~2.3! necessarily originates from a supersymmetric theory. Ho
ever, in many cases we are of course interested in supersymmetry. This suggests the ident
of a putative ‘‘superpotential’’W(f) with

V5~]fW!22 2
3 W2, ~2.5!

and the putative ‘‘transformations,’’

dcm5F“m2
1

6&
WgmGe, dl5

1

2
@g•]f1&]fW#e. ~2.6!

Identification of the above transformations with those of an actual supergravity theory req
some care.42 In particular, from anN52 ~i.e., minimal supersymmetry inD55! point of view, the
field f may reside in either a vector, tensor or hypermatter multiplet, with possibly different fo
of coupling to the fermions. In all cases, the fields (gmn ,cm) and (f,l) would be part of a~not
necessarily consistent! truncation of the actual supergravity theory.

As emphasized previously in discussions of holographic renormalization group flows
equations of motion following from a domain-wall ansatz take on a simple form. Starting wit
metric

ds25e2A(y)hmn dxm dxn1e2B(y) dy2, ~2.7!

one obtains the following equations:

A825 1
24 f822 1

12 e2BV, A92A8B852 1
6 f82, ~2.8!

f91~4A82B8!f85e2B ]fV,

where primes denotey derivatives. The first two equations were obtained by combining com
nents of the Einstein equation. Note that the three equations are not all independent, and
it convenient to focus only on the first two.

In codimension-one, the second metric factore2B is redundant, and may be removed b
defining a new coordinateỹ5*eB dy ~keeping in mind that explicit domain wall solutions ofte
have a simpler form when presented in terms of a metric with thee2B factor!. We proceed by
settingB50, so the equations resulting from~2.8! take the form
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A952 1
6 f82, A825 1

24 f822 1
12 V, f914A8f85]fV. ~2.9!

As emphasized in Refs. 31, 30, the first of these equations indicates thatA9<0, with saturation of
the inequality corresponding to sitting in the pure AdS vacuum. For the present case, this h
consequence that the functionA(y) must be concave-down, which is in fact exactly what
needed to support a ‘‘kink-down’’~i.e., positive tension! Randall–Sundrum brane of the form
~2.2! with a continuous metric function.

To study the behavior of the flow to the IR fixed point, we may expand about the fixed v
f* , of the scalar. To quadratic order, the potential then has the form

V5212g21 1
2 m2~f2f* !21¯ , ~2.10!

where the constant factor is chosen to give the conventional normalization of the AdS curv

RMNPQ52g2~gM PgNQ2gMQgNP!. ~2.11!

While in some casesg may coincide with the coupling constant of gauged supergravity, we
take it to parametrize the AdS background at the specific fixed point in which we are inter

We now insert~2.10! into the second equation of~2.9! to find thatA(y)'6gy, at least up to
linear order inf. Thus we recover the expected linear behavior giving rise to an AdS backgro
Continuing with thef equation of motion, and again working to linear order inf ~which amounts
to making the substitutionA8'6g!, we find

f964gf82m2f'0, ~2.12!

which has in general two solutions:

f'f* 1ce2E0A(y), and f'f* 1ce2(42E0)A(y), ~2.13!

whereE0521A(m/g)214>2 is given exactly by the mass/E0 relation for a scalar field in AdS
space. Additionally, for either flow, the metric function behaves like

A'6gy2 1
24 ~f2f* !2. ~2.14!

Finally, this allows us to examine the IR flow, corresponding to the behavior in the directiA
→2`. We see that IR stability is ensured forE0.4 by taking the second solution of~2.13!,
while the flow is always unstable for 2<E0,4, and the massless case,E054, is marginal.

As a result, the above analysis indicates thatE0.4 is a necessary condition for IR stability
and hence for the construction of a Randall–Sundrum brane. Note, furthermore, that this
was derived without having to appeal to supersymmetry. Thus it holds in general for both BP
non-BPS flows. However, as we see below, BPS flows impose a further condition on the re
signs of the terms in the superpotential. This powerful and completely general result was
present, although hidden in the discussion of Refs. 22, 23. However, in Refs. 22, 23, only s
residing in massless vector multiplets ofN52 gauged supergravity~i.e., theD(2,0,0,0) represen-
tation, where the last value denotes theU(1)r charge! were considered. In particular, the autho
of Ref. 22 relied on the relation (] i] jW)cr51/3gi j Wcr ~in our normalization! arising from very
special geometry. Such scalars always haveE052, yielding the negative reported result. Cu
ously, while it may not have been appreciated that scalars in the decomposition of anN58 gauged
supergravity multiplet reside inN52 tensor and hypermatter multiplets as well as vector mul
lets, suchN58 scalars all haveE052, 3 or 4 so that they also do not lead to IR stable bran

Turning now to the case of a supersymmetric flow, it is straightforward to see from~2.6! that
the Killing spinor conditions yield the first order equations,
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A856
1

3&
eBW, f857&eB ]fW, ~2.15!

for a domain wall preserving exactly half of the supersymmetries. This result may in fact al
derived without using the transformations~2.6!, but instead by a traditional BPS argument f
finding static minimum energy configurations.30,33 Combining both equations gives rise to a h
lographic renormalization group flow,

df

dA
526

]fW

W
, ~2.16!

consistent with the second order equations~2.8!. In this case, we expand the superpotential as

W563&g~11 1
12 l~f2f* !21¯ !, ~2.17!

corresponding to the potential~2.10!, providedl is identified with eitherE0 or 42E0 . Note that
this introduces a two-fold ambiguity. However this is in fact somewhat artificial, since knowl
of the actual supersymmetric theory would fully determine the superpotential~but see, e.g., Ref
43 for a discussion on the relation betweenV and W without supersymmetry!. In contrast to
~2.13!, the supersymmetric flow condition,~2.16!, gives only a single approach to the fixed poin

f'f* 1ce2lA(y). ~2.18!

As a result, for a BPS flow, not only do we requireE0.4, but also we learn from the abov
analysis thatl542E0 must be negative in the superpotential~2.17!. The requirement ofl,0
was previously noted in Ref. 22.

This connection betweenE0 and the behavior of a scalar field in AdS was initially made
investigations of the Maldacena conjecture,44,45whereE0 was related to the conformal dimensio
of appropriate operators on the CFT side of the AdS/CFT conjecture. In this case,~2.12! taken
with exact equality is simply the massive scalar equation in the reference AdS background~2.1!.
This in itself highlights the similarity between the brane-world scenario and the AdS/CFT
jecture. In some sense, the Randall–Sundrum brane, being inserted at some fixed location
cuts off the flow to the UV and hence may be described by a Maldacena CFT cut off at
energy scale related to the location of the brane.

III. BREATHING MODE DOMAIN WALLS AND THE BRANE-WORLD

Based on the preceding analysis, it is clear that consideration of the massless sectoN
52, 4 or 8! gauged supergravities alone does not lead to realistic brane-world configura
However, for a five-dimensional model originating from IIB theory, many other degrees of
dom may come into play. While roundS5 compactifications of IIB supergravity yieldN58
gauged supergravity at the massless level, this is also accompanied by a Kaluza–Klein to
massive states. In general, consistent truncations of sphere reductions are a delicate ma46,47

However it is consistent to include the breathing modew in the truncation: although it lives in a
massive supermultiplet, it is nevertheless a gauge singlet. Domain walls supported by the
ing mode have been investigated in Refs. 1, 17, 20, and have recently been suggested as
realizations of the brane-world scenario. Note that we usew to denote the breathing mode rath
thanf, in order to emphasize that it is distinct from theD510 dilaton of the type IIB theory.

To make a connection with the Randall–Sundrum model, we examine type IIB string th
compactified onS5. This sphere reduction, with the inclusion of a single squashing mode a
with the breathing mode, was investigated in Ref. 1. Focusing only on the scalar mode
resulting five-dimensional Lagrangian is

e21L55R2 1
2 ]w̃22 1

2 ] f̃ 22V~ w̃, f̃ !. ~3.1!
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The scalar potential has the form

V~ w̃, f̃ !58m2e~10/A15!w̃1e~4/A15!w̃~m2e~6/A10! f̃2R4e~1/A10! f̃ !, ~3.2!

where the constants (m,m,R4) are parameters of the compactification.1

While this potential may now be expanded in the form of Eq.~2.10!, it is perhaps more
enlightening to first express it in the form of a ‘‘superpotential’’ according to~2.5!. We find

W52&me~5/A15!w̃2e~2/A15!w̃S&me~3/A10! f̃1
R4

2&m
e2 ~2/A10! f̃ D . ~3.3!

Note that there is a slight sign ambiguity in inverting~2.5!; here we have chosen the signs so th
W has a critical point at

e~3/A15!w̃
* 5

m

2m S R4

6m2D 3/5

, e~5/A10! f̃ * 5
R4

6m2 , ~3.4!

corresponding to that ofV as well. Expansion ofW then gives

W523&mS m

2mD 5/3S R4

6m2D F12
1

3
~ w̃2w̃* !21

1

2
~ f̃ 2 f̃ * !21¯G . ~3.5!

A comparison with~2.17! then demonstrates explicitly that the breathing modew̃ hasE058 while
the squashing modef̃ hasE056. Curiously, the two modes enter with opposite signs inW. While
this N58 symmetric critical point is indeed a minimum of the potential, it is only a saddle p
of W.

The consequences for the resulting supersymmetric flow were investigated in the pr
section. For supersymmetric flows, this critical point is IR stable for the breathing mode, wh
is unstable for the squashing mode. This indicates explicitly that simply having a domain
supported by a scalar withE0.4 may be insufficient to ensure the stability of a supersymme
Randall–Sundrum configuration. Nevertheless, we have now seen why use of the massive
ing mode of sphere reductions has been successful in constructing brane-world domain wa17,20

avoiding the limitations on supersymmetric flows presented in Refs. 22, 23.
To proceed, we now truncate out the squashing mode by settingf̃ 50 and R456m2

5(6/5)R5 . After dropping tildes, the resulting potential for the breathing mode is simply

V~w!58m2e~10/A15! w2R5e~4/A15! w, ~3.6!

and has an AdS minimum at

e~6/A15! w
* 5

R5

20m2 . ~3.7!

HereR5 is the curvature scalar of the roundS5, arising from the type IIB Kaluza–Klein ansatz1

ds10
2 5e2aw ds5

21e2bw ds2~S5!, H [5]54me8awe [5]14me [5]~S5!, ~3.8!

where

a5 1
4A 5

2, b52 3
5a. ~3.9!

This also indicates thatm is essentially the 5-form flux of the Freund–Rubin compactificati
Thus the two parametersm andR5 of the five-dimensional potential,~3.6!, have their origin in the
Kaluza–Klein compactification from ten dimensions. Note that the Kaluza–Klein ansatz~3.8! for
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the H [5] field strength implies that the Freund–Rubin parameterm must be odd under transfor
mations y→2y. In order for this to be realized as a symmetry of the type IIB theory,
‘‘lower’’ D55 transformation must be accompanied by an orientation-reversing transformat
S5, so that the self-dual structure ofH [5] is preserved, but withm→2m. By the ‘‘skew-whiffing
theorem,’’46 both orientations have the same~maximal! supersymmetry in the case ofS5. For any
other compactifying 5-manifold the supersymmetries would not match.

For a complete truncation of the sphere compactification down toD55, in which all Kaluza–
Klein modes except for the breathing mode are discarded, the two parametersm andR5 satisfy
trivial Bianchi identities, and hence must be constant. In this case only a single combination
two is actually physical. The constant parameterR5 may then be viewed as a necessary dim
sionful parameter for measuring coordinate distances on the five sphere~much as one would have
to introduce a length scaleL for toroidal compactification, where periodic coordinates are ide
fied asy5y12pL!. The actual invariant~physical! size of the five sphere is then set by th
expectation of the breathing modew. To see formally howR5 may be scaled away, consider a sh
of w along with a scaling ofm,

w→w1A 15
4 logl, m→ml2 5/4. ~3.10!

This transformation has the effect of multiplyingR5 by l in the potential~3.6!, so that an
appropriate choice ofl may be used to scaleR5 to any desired value. A particularly natural choic
would be to setR5520m2, so that the AdS critical point is reached atw* 50. From a ten-
dimensional point of view, the transformation~3.10! results in

ds10
2 5l5/8@e2aw ds5

21e2bwl21 ds2~S5!#,
~3.11!

H [5]5l5/2@4me8awe [5]14ml2 5/2e [5]~S5!#,

which is thus a rescaling ofS5 combined with aD55 ‘‘trombone’’ symmetry.
However, as we will discuss in the following section, if one no longer truncates ou

additional Kaluza–Klein modes, then bothm andR5 no longer need to be taken as constant.
this case, attempts to scale awayR5(x) would result in a dynamical scaling byl(x). In this sense
one simply trades one parameter for another, and cannot fully eliminateR5 . With this in mind, we
maintain both parametersm andR5 in the solution below.

Breathing-mode domain wall solutions follow by making the standard ansatz~2.7! and by
solving the resulting equations~2.8!. As mentioned above, keeping two independent factors in
ansatz,A(y) andB(y), is redundant. ForB50, the solution was presented in Ref. 17, while it w
originally presented in Ref. 1 with a different choice of coordinates. The advantage of the or
choice is its highlighting of a linear harmonic function as a natural feature of codimension
p-brane solutions. This solution has the basic form1

e2 ~7/A15! w5H, e4A5e2B5b̃1H2/71b̃2H5/7, H5e2 ~7/A15! w01ky, ~3.12!

where

b̃15h1

28m

3uku
, b̃25h2

14A5R5

15uku
. ~3.13!

Hereh1,2561 are in general independent choices of signs for the solution. For our purpose
are fixed by requiring an appropriate AdS limit forw→w* . This givesh252h1 andh1 chosen
so thate4A.0 in order for the metric to be real at a given initial value ofy.

The linear harmonic functionH is restricted to be nonnegative. Examination of the solut
indicates that the AdS horizon is located atH5H* [e27w

*
/A15, wheree4A vanishes. For initial

H.H* the five-dimensional space asymptotically flattens out asH→`, with a corresponding
limit for the scalar fieldw→2`, yielding an asymptotically vanishing scalar potential. This c



omain

e
at

or

njec-
ion of

ation.
r run
g an

an

ink is
p-
ue for
is jump

shed

nd
ctua-

e
the

. The

e

pe IIB
ion of

di-

ations
is
rsym-

3036 J. Math. Phys., Vol. 42, No. 7, July 2001 Duff, Liu, and Stelle
is the second branch of Ref. 17, where it was referred to as a hybrid type II and dilatonic d
wall. On the other hand, for initialH,H* , the solution soon runs into a singularity atH50.
Note, however, that if one starts with a solution withH.H* initially and signsh1,2 chosen so as
to makee4A.0 initially, but then follows the evolution ofH within the spacetime through th
H5H* horizon, the metric in the region withH,H* becomes complex, so one should really tre
the region below the horizon using different, appropriately chosen coordinates. Both theH.H*
andH,H* cases have a natural interpretation in the lifting of~3.12! to ten dimensions. In the IIB
theory, ~3.12! lifts directly to the geometry ofN coincident D3-branes with total chargek̃
5m(20/R5)5/2.1 The two regionsH:H* then correspond to the regions either ‘‘outside’’
‘‘inside’’ the D3-brane horizon. This furthermore demonstrates that the first,H.H* , case is
nothing but the conventional near-horizon limit occurring prominently in the Maldacena co
ture. The second,H,H* , case is unphysical as it stands, however, as it sees a different reg
the D3-brane geometry containing a singularity.

Neither case by itself provides a suitable framework for a Randall–Sundrum configur
While in one direction one may reach an AdS horizon, in the other direction one will eithe
into a singularity or on out into unbounded flat space. One obvious possibility for obtainin
asymptotically AdS space on both sides of a domain wall is to reflect the solution aty50,
imposing thus ay→2y Z2 symmetry. The resulting two-sided domain wall, supported by
absolute value kink in the linear harmonic function,

H5e2 ~7/A15! w01kuyu, ~3.14!

was in fact how the solution was originally presented in Ref. 1. The presence of such a k
rather natural for a codimension-one object. Supergravityp-brane solutions are generally su
ported byd-function sources at the locations of the branes themselves, and this remains tr
domain walls. Passing through a domain wall, one jumps through a sheet of charge, and th
in charge manifests itself in a change in the slope of the linear harmonic function.A priori, the
slope could take any values on the two sides of the domain wall, but clearly theZ2 symmetric
jump fromk to 2k is a natural configuration. We shall see that this configuration is distingui
also by preserving unbroken supersymmetry.

For either the plain unkinked~3.12! or the kinked~3.14! solution, the slopek may be scaled
away by takingy→y/uku andxm→xmuku1/4. This explains why the apparent domain wall chargek

is not directly related to lifted quantities such as the D3-brane chargek̃. However, note that this
scaling does not eliminate the sign ofk, thus leaving a distinction between the slope-up a
slope-down possibilities. For discussions of multiple domain wall configurations or brane flu
tions, it is more convenient to retaink.

If one chooses to restrict the coordinatey in ~3.14! to range only over the interval2y0<y
<y0 , identifying the pointsy0 and2y0 , then one obtains aZ2 symmetric solution that can serv
as the background for aZ2 orbifold construction. This orbifold construction is analogous to
treatment of M-theory 3-branes given in Refs. 12, 13 as a brane realization of the Horˇava–Witten
S1/Z2 orbifold, and has also been proposed in the Randall–Sundrum context in Ref. 20
identification ofy0 and 2y0 essentially reproduces the original Randall–Sundrum model2 with
both an attractive and a repulsive brane~if one choosesk,0, then the attractive brane is the on
located aty50). From the five-dimensional point of view, they→2y Z2 map is a parity flip. As
we have mentioned above, however, this alone is not a good symmetry of the underlying ty
theory. In order for this transformation to be compatible with the round-sphere compactificat
the IIB theory, thisZ2 transformation must combine the flip iny with an orientation-reversing
transformation27 of the S5. For example, an allowable transformation flips all six of the coor
nates transverse to the underlyingD510 D3-brane. The net effect is to sendm→2m as well as
y→2y.

This orientation reversal has important consequences for the supersymmetry transform
~2.6!, since the superpotentialW also flips,W→2W, under these transformations. Actually, th
is what one wants, because if the superpotential were to not to flip in this way, then all supe
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metries would be broken by the domain wall, and it would then no longer be BPS. To see
consider for example thedl transformation for the solution~3.12! with the linear harmonic
function ~3.14!. By truncating out the squashing mode from~3.3!, one arrives at the breathing
mode superpotential:

W5&mF2e~5/A15! w25A R5

20m2 e~2/A15! wG . ~3.15!

Written as above, this clearly changes sign asm→2m. On the other hand, If one were to assum
instead thatW remains invariant, one would find

]wW5
2

3
A30mFe~5/A15! w2A R5

20m2 e~2/A15! wG
5

A30

14
ukuH21~ ub̃1uH2/72ub̃2uH5/7!

52
1

&
uw8ue2B, ~3.16!

where the signsh1,2 have been chosen to obtain the outside~i.e., H.H* ! AdS solution. Inserting
this into ~2.6! we would find

dl5 1
2e

2B~g ȳw82uw8u!e, ~3.17!

where ȳ denotes a local Lorentz index. Because of the absolute value in the linear har
function ~3.14!, w8 changes sign on opposite sides ofy50. Therefore the assumption of a
invariantW would leave no possibility of obtaining a Killing spinor that is consistently defined
both sides ofy50. If one were to attempt to patch together separate Killing spinors on both
of y50, in the case of an invariantW, the y:0 projections on the supersymmetry parame
would be into mutually orthogonal components, (11g ȳ)e150 vs (12g ȳ)e250. However, since
the superpotentialdoeschange sign under theZ2 , the absolute value in~3.17! is in fact not
present, and we accordingly find global Killing spinors of the forme5eA/2(11g ȳ)e0 . Similar
considerations apply at the location of the second kink in theZ2 invariant background. If one
expands the theory in modes about thisZ2 invariant background, keeping only theZ2 invariant
modes, the resulting theory is equivalent to one defined on anS1/Z2 orbifold.

As we have just demonstrated, the domain wall solution is always one half supersymm
with or without the absolute value kink. In particular, theZ2 orbifolding has not destroyed an
further supersymmetry beyond the original half-BPS solution. On the other hand, there
restoration of supersymmetry either in the presence of a kink. Consider taking a simultaneou
k→0 andw0→w* . Without the kink, this limit would yield pure AdS, i.e., the D3-brane ne
horizon limit in which full supersymmetry is restored. But with the kink, one obtains insteadZ2

symmetric patching of AdS, with a Randall–Sundrum brane located, say, aty50. The presence o
the orbifold fixed point prevents the full supersymmetry from being restored. However, th
fully expected when a domain wall is present. Although theZ2 symmetrization introduces a
absolute value into functions, the Killing spinor equations are of first order, and so do not se
d-function singularities. As long as the conditions~2.15! are satisfied, the solution remains supe
symmetric.

Of course the second order equations of motion will see thed-function brane source. For th
solution ~3.14!, we find that the extra source terms aty50 are
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TMN
brane5

3k

14
~2b̃1

2e~3/A15! w015b̃2
2e2 ~3/A15! w027ub̃1b̃2u!d~y!dM

m dN
n gmn ,

~3.18!

Qbrane524A5

3

3k

14
~ b̃1

2e~3/A15! w01b̃2
2e2 ~3/A15! w022ub̃1b̃2u!d~y!,

assumingb̃1b̃2,0 as indicated above. These ‘‘brane sources’’ enter in the equations of moti

RMN2 1
2 gMNR5TMN

w 1TMN
brane, ¹2w5]wV~w!1Qbrane, ~3.19!

where

TMN5 1
2 ~]Mw]Nw2 1

2 gMN]w2!2 1
2 gMNV~w!. ~3.20!

Depending on the sign ofk, the branes have either positive or negative energy density. How
in both cases the relation between charge and tension is the same, so the branes may be st
in BPS configurations.

We have thus seen that the kinks at the brane locations have different consequen
supersymmetry and for the equations of motion. Since the supersymmetry variations and
spinor conditions are of first order, the kinks give rise to possibly discontinuous quantities, b
d-function singularities. On the other hand, the equations of motion will be sensitive to
additionald-function sources. Although one may view the equations of motion as a compositi
two supersymmetries, there is no contradiction in the presence and absence of thed-function terms
since the Killing spinor equations only give rise to a subset of the full equations of motion. T
this consider again for simplicity thedl transformation~2.6!,

dl5 1
2 @g•]f1&]wW#e5 1

2 e2B@w8g ȳ1&eB ]wW#e. ~3.21!

Partial breaking of supersymmetry then demands the BPS conditionw852&eB ]wW, relating
the scalar to its potential. One may of course choose the other sign if so desired. However
a global choice, and must be consistent in all patches of space. Similarly, vanishing
gravitino relates the metric to the scalar potential,A85eBW/3&, as given in~2.15!. Now consider
deriving the second orderA9 equation of motion by taking a derivative ofe2BA8,

e2B~A92A8B8!5
1

3&
W8. ~3.22!

For a continuousW, one simply uses the chain rule,W85]wW f8, and substitutes in thew8
equation to arrive at theA9 equation of motion given in~2.8!. However, the assumption of
continuousW is actually too strong. For theZ2 invariant case, whereW changes sign at the bran
~say aty50), one would also pick up a source term upon differentiating, resulting in

A92A8B852
1

6
w821

&

3
eBWd~y!. ~3.23!

Thus, while supersymmetry implies most of the equations of motion, it does not in fact dete
all of them. In fact, for higher codimension branes, there is even more slack between th
conditions and the equations of motion. The harmonic function condition, of primary import
in brane constructions, is generally a consequence of the equations of motion, annot
supersymmetry.48,49



the

ranes,
ppro-

tfor-
ution

e

ion
al

try,
rane

in ten

the

e six-
ity at
onser-

3039J. Math. Phys., Vol. 42, No. 7, July 2001 A supersymmetric type IIB Randall–Sundrum . . .
IV. D3-BRANES AND THE WORLD IN TEN DIMENSIONS

Until now we have focused almost exclusively on the five-dimensional viewpoint of
Randall–Sundrum scenario. Since the breathing-mode domain wall has its origins in theS5 com-
pactification of IIB theory, it has a natural interpretation in terms of IIB D3-branes.1 Following
this connection from the brane-world geometry to breathing-mode branes and then to D3-b
one is led to a realization of the Randall–Sundrum scenario in terms of IIB theory in an a
priate D3-brane background.

While the lifting of the breathing mode brane to patches of the D3 geometry is straigh
ward, the resulting configuration has unusual features. Following Ref. 1, lifting of the sol
given in ~3.12! proceeds by identifying a ten-dimensional Schwarzschild coordinate,

r5A20

R5
H3/28. ~4.1!

Using the charge relationk̃5m(20/R5)5/21 and the Kaluza–Klein ansatz~3.8!, one finds the
resulting ten-dimensional metric,

ds10
2 5b̃2

1/2S 12
k̃

r4D 1/2

dxm
2 1S 12

k̃

r4D 22

dr21r2 dV5
2 , ~4.2!

which is that ofN D3-branes of total chargek̃.8,9 A further change of coordinates,r 45r42 k̃, may
be performed to transform this into standard isotropic form,

ds10
2 5Ab̃2HD3

21/2dxm
2 1HD3

1/2~dr21r 2 dV5
2!, ~4.3!

with a harmonic functionHD3511 k̃/r 4. Note that the constantb̃2 may easily be scaled out of th
longitudinal coordinates.

For theZ2 symmetric configuration, obtained by kinking the linear harmonic function,~3.14!,
we see thatH is a double valued function ofy. This has the consequence that the lifting relat
~4.1! is similarly double valued; opposite sides of the breathing-mode brane lift to identicr
values. While the orbifold picture corresponds to a single slice of the D3-brane geomer
P@r2 ,r1#, the full circle compactification instead corresponds to two copies of the D3-b
geometry patched together atr2 andr1 . Note that the AdS horizon, located atH* , lifts to the
D3-brane horizon, located atr* 5 k̃1/4. Thus taking the Randall–Sundrum configuration~kink-
down with H.H* ! and pushing the second brane off to the Cauchy horizon corresponds
dimensions to taking two copies of the near-horizon geometry ofN D3-branes, and gluing them
together at a valuer0 of the Schwarzschild coordinate corresponding to the initial valueH0 of the
linear harmonic function.

For this Randall–Sundrum configuration, it is instructive to ‘‘unfold’’ the doubled metric~4.3!
by defining a new radial coordinatejP@2r 0 ,r 0# such thatr 5r 02uju. After scaling outb̃2 from
~4.3!, the lifted Randall–Sundrum metric has the form

ds10
2 5S 11

k̃

~r 02uju!4D 2 1/2

dxm
2 1S 11

k̃

~r 02uju!4D 1/2

„dj21~r 02uju!2 dV5
2
…. ~4.4!

The positive tension brane is located atj50, while the negative tension brane is pushed off to
AdS horizon atj56r 0 ~the two values are identified under theZ2 orbifolding!. As seen explicitly
here, this act of patching together two stacks of D3-branes essentially compactifies th
dimensional space transverse to the branes, and also introduces a curvature discontinuj
50, the location of the patching. Furthermore, this compactification introduces a charge c
vation condition, implying that the net D3 charge must vanish. Thus the resulting kink atj50



e

t
educ-

how
th
a

the
pace
ed on a
rum

luza–

rce
mpact
the

ndall–
l point
e

e
one
Ref.

e
of a

re

g
ds to

ic

3040 J. Math. Phys., Vol. 42, No. 7, July 2001 Duff, Liu, and Stelle
must include a stack of 2N negative tension D3-branes, with22N units of charge soaking up th
N1N units of charge from the two stacks of positive tension D3-branes.

The question arises, however, whether placing this stack of 2N negative tension D3-branes a
j50 is sufficient for generating the kinked Randall–Sundrum geometry. Furthermore, the r
tion of D3-brane tension fromD510 toD55 yields the simple resultTD555TD510. In addition
to giving rise to the tension discrepancy pointed out in Ref. 27, it also leaves unexplained
positiveD55 tension arises from negativeD510 tension. As it turns out, the resolution to bo
issues is the realization that theZ2 orbifolding, or the doubling of spacetime, itself gives rise to
positive tension contribution atj50, the location of the kink. Of course, it is easy to see that
net tension has to be positive, as that is what is required to ‘‘fold up’’ or compactify the s
transverse to the branes. The resulting picture is one of negative tension D3-branes trapp
positive tensionZ2 orbifold plane giving rise to a composite description of the Randall–Sund
configuration.50

By starting with a brane-world scenario on a circle, one obviously obtains a compact Ka
Klein geometry, corresponding to expanding IIB theory about aM 1,33S13S5. TheS1 coordinate
y lifts to the radial coordinater, living in a restricted annular range between the two D3 sou
shells in a double D3-brane background. Of course there is no surprise in starting with a co
geometry and lifting it to another compact scenario. However, by taking the limit of placing
second brane at the Cauchy horizon of AdS, one effectively decompactifies the original Ra
Sundrum geometry of Ref. 2 into the picture of Ref. 3. Nevertheless, from a ten-dimensiona
of view, this corresponds to simply extending the range ofr a finite distance so as to reach th
doubled D3-brane horizon: the internal space remains compact~at least if the inside-horizon bran
cores are disregarded!. By smoothing out the patching of the double D3-brane configuration,
presumably obtains a warped compactification with an internal six-manifold in the spirit of
28.

To complete this D3-brane picture of the brane-world, we present the limit in which thZ2

symmetric supergravity solution literally reproduces the Randall–Sundrum configuration
single positive-tension ‘‘kink-down’’ brane between two patches of anti de Sitter space.3 Starting
from the D55 3-brane metric~3.12! with b̃2.0, b̃1,0, k,0, we want to take a limit ask
→02 . However, the inverse power ofk in b̃1 andb̃2 ~3.13! makes this appear singular. The cu
for this is to take a coordinated limit ask→02 and w→w* . We implement this explicitly by
taking

e2 ~7/A15! w05S 20m2

R5
D 7/6

1buku, b.0. ~4.5!

Note that forb.0, one hase2 (7/A15) w0.e2 (7/A15) w
* , i.e., H0.H* . Accordingly, for finitek

,0, the harmonic functionH decreases from its valueH0 , reaching the Cauchy horizon valueH*
at y5yh . This is the natural point at which to make an identificationyh↔2yh , putting the
second~negative tension! 3-brane at the horizon. For finitek, one thus has a ‘‘semi-interpolatin
soliton’’ in the sense that one of the asymptotic limits of the solution, but not both, correspon
a vacuum solution of the theory, in this case the AdS space with asymptotic scalarw* . At the
Randall–Sundrum brane, however, there is no horizon.

Taking the joint limit defined by~4.5! ask→02 , the difference between the two harmon
functions ine2A partially cancels, giving an expression proportional tok, which cancels thek in
the denominators ofb̃1 and b̃2 . The resulting metric function is then given by

e4A54mS R5

20m2D 5/6

~b2uyu!5
4

L
~b2uyu!, ~4.6!

where L5m21(20m2/R5)5/6 and they coordinate remains restricted to a compact range,uyu
,b. This corresponds to the line element
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ds25
2

AL
~b2uyu!1/2hmn dxm dxn1

L2

16

dy2

~b2uyu!2 . ~4.7!

The apparent infinite range of the fifth dimension51 is obtained by making a change of variable

b2uyu5be24u ỹu/L, xm5S L

4b D 1/4

x̃m, ~4.8!

resulting in the five-dimensional metric,

ds25e22u ỹu/Lhmn dx̃m dx̃n1dỹ2, ~4.9!

which is literally the Randall–Sundrum solution.2,3 This sign of the kink (k,0) thus corresponds
to a binding of gravity to the 3-brane aty50, with a metric corresponding to segments of pure a
de Sitter space everywhere off this brane surface.

In taking the above Randall–Sundrum limitk→02 , w0→w* , the ten-dimensional coordinat
r is restricted to a progressively limited range neark̃, or, equivalently,r is progressively restricted
to a range nearr 50. Thus, from aD510 perspective, the ‘‘infinite’’ Randall–Sundrum scenari3

corresponds to shrinking the outer~RS! brane source tightly around the inner horizon bra
Clearly, what is infinite and what is infinitesimal in this subject is frame-dependent.

It is instructive to see in addition the scaling of the ‘‘brane sources’’~3.18! in the Randall–
Sundrum limit. Takingk→02 , we find

TMN
brane52

24

L2 d~y/b!dM
m dN

n gmn52V* d~y/b!dM
m dN

n gmn , ~4.10!

while Qbrane50. This vanishing of the scalar charge is in fact forced on us sincew decouples from
the solution in this limit. This brings up a key observation that it is not so much the brea
modew that supports the brane, but ratherH [5] flux corresponding to D3 charge. In addition, it
also the behavior ofH [5] flux that saves the BPS condition withQbrane50; the variationdl
becomes trivial~as it must for a decoupling scalar!, while the gravitino transformation become
that of pure AdS but with a sign flipW* →2W* at y50 ~corresponding to a Freund–Rub
compactification with oppositeS5 orientations!. This preservation of supersymmetry further su
ports the D3-brane origin of the Randall–Sundrum brane-world,via the double 3-brane configu
ration that we have presented.

The above successful reproduction of the Randall–Sundrum scenario with a ‘‘kink-do
~i.e., positive tension! domain wall embedded intoD55 anti de Sitter space depends crucia
upon use of the breathing modew, which we have shown to transform in a necessaryE0.4 anti
de Sitter representation. Noted as a possibility for a Randall–Sundrum scenario in Refs. 1
this mode escapes the analysis of Refs. 22, 23 because it belongs to a massive spin-two m
and thus does not belong to an intrinsicallyD55 supergravity theory. This is because the f
multiplet of the breathing mode’s superpartners cannot be retained in a ‘‘consistent’’ Ka
Klein reduction, since it involves a massive spin two mode, which never can be kept in a c
tent reduction on spheres.52 With respect to theD55, N58 supersymmetry, the breathing mod
belongs to a multiplet containing 20 copies of the following sets of fields: 1 spin 2, 4 spin 3/
spin 1, 20 spin 1/2, 15 spin 0. With respect to aD55, N52 decomposition, it belongs to a lon
massive vector supermultiplet53 which is another way of explaining why it escaped the analysis
Refs. 22, 23. Since the breathing mode is anSO(6) singlet, only the inclusion of the breathin
mode’s nonsinglet superpartners leads to difficulties with Kaluza–Klein consistency; truncat
the purely bosonic theory involving justD55 gravity and the breathing mode is fully consiste
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V. MODE LOCKING AND SPONTANEOUS REDUCTION TO AN ORBIFOLD

TheZ2 symmetric scenario presented above, with two branes of opposite tension and op
magnetic charge, corresponding to~3.14!, is clearly similar to the brane constructions of Horˇava–
Witten orbifolds in M-theory given in Refs. 12, 13. The analogous type IIB situation has the
advantage that one can work out explicitly many features of the dynamics, whereas the ana
discussions in M-theory reduced on Calabi–Yau 3-folds must necessarily remain rather im
Here, we wish to explore further the properties of thisZ2 symmetric solution, and see to whic
extent it naturally corresponds to an orbifold compactification.

The orbifold compactification may be viewed as a compactification on a circle with an
tional projection of all the fluctuations intoZ2 even states only. In a Kaluza–Klein spirit, howeve
one can investigate the possibility of removing the enforcedZ2 projection, in order to see what th
theory does purely of its own accord when compactified about the double 3-brane backg
Thus, we start without making anyZ2 projections, but still shall take they direction to be a circle.
As explained above, from a ten-dimensional point of view, the D3-branes now have no non
pact transverse directions. Thus there is an added cohomology constraint, which deman
there cannot be any nonzero net magnetic charge in the compact transverse space. Unlike
warped compactifications, which allow for additional fields and nontrivial topology, we s
maintain our focus on the roundS5 and the breathing mode of the compactification. Then,
simplest allowed configuration on the circle is to have a simple pair of 3-branes with opp
magnetic charges. Placing the branes at opposite points on the circle gives rise to aZ2 symmetric
configuration. However, without imposing theZ2 orbifold symmetry, it would appear that th
branes are free to move independently. But we shall now demonstrate that this is not the
instead, there is a mode-locking phenomenon that links the fluctuations of the two 3-branes
Z2 invariant combination.

Consider they coordinate to be periodic with length 2l , making the identification aty
5r1↔2r2 . For bosonic fields on this circle, one must impose continuity conditions at both
locations of the 3-branes. Demanding continuity of the scalar fieldw and the metric componen
e2A at y50 and also aty5r1↔y52r2 , one has four continuity conditions to satisfy. In th
discussion we shall take the overall periodicity length 2l to be fixed, sor11r252l . From
continuity of the scalar fieldw, one simply obtains aty50 that the valuew0 must be a common
limit of w as one approaches they50 RS brane either from the left or from the right. Continu
at y5r1↔2r2 implies continuity of the harmonic functionH, so one obtainsuk1ur25uk2ur2 , or,
using r11r252l , that uk1 /k2u5 2l /r1 21. Imposing as well the periodicity conditions on th
metric functione2A at y50 andy5r1↔2r2 , one obtains the continuity conditions

Uk2

k1
U5 um2u2AR5(2)

20
e~23/A15! w0

um1u2AR5(1)

20
e~23/A15! w0

5

um2u2AR5(2)

20
~e~23/A15! w01uk2ur2!

um1u2AR5(1)

20
~e~23/A15! w01uk1ur1!

. ~5.1!

These conditions are solved by matching relations form andR5 between the two regions:

m25S 2l

r1
21D 21

m1 , AR5(2)5S 2l

r1
21D 21

AR5(1). ~5.2!

Accordingly, if one now makes a standard soliton-physics ansatz by letting theZ2-odd modu-
lus r1 become dependent upon theD54 coordinatesxm, then upon substitution back into the fie
equations, one obtains the effective equation forr1(xm). Because the oscillations of this coord
nate are linked by~5.2! to the Kaluza–Klein ansatz parametersm andR5 , however, this specific
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modulus has special restrictions on its oscillations. Bothm andR5 are curvature components, an
are thus subject to Bianchi identities. To see this form, consider the Kaluza–Klein ansatz~3.8!,
together with the Bianchi identity

dH[5]1
1
2 e i j F [3]

i F [3]
j [0. ~5.3!

Letting m→m(x) and substituting the original ansatz~3.8!, one obtains directly a suppression
m fluctuations,]mm(x)50. For this reason, parameters entering into generalized Kaluza–K
ansätze like ~3.8! have been sometimes been called ‘‘nonzero modes.’’13 In order to see the
dynamics of such modes in more detail, one should restore the massive Kaluza–Klein mod
are normally set to zero in a compactification. In the case ofm, this means replacing the ansa
~3.8! by

H [5]54m~x!e8awe [5]14m~x!e [5]~S5!1h[5] , ~5.4!

whereh[5] represents the fluctuating massive Kaluza–Klein modes. Re-performing the analy
the Bianchi identity~5.3! for this generalized ansatz, one now shows that a nonvanishing]mm
must be proportional toez1z2z3z4z5 ] [z1

humuz2z3z4z5] , wherehmz2z3z4z5
is a Kaluza–Klein massive

mode, with mass determined as usual by the inverse radius of theS5 internal sphere, i.e., corre
sponding to the length scale of theD55 anti de Sitter space. Thus,m(x), and hencer1(x) are in
fact Kaluza–Klein massive modes, and become ‘‘frozen out’’ at energies lower than the
scale. Similar considerations apply to the nonzero modeR5 , which is the Ricci scalar of the
internal S5 sphere, upon use of the gravitational curvature Bianchi identity. Specifically, in
simple case with Kaluza–Klein massive modes set to zero, if one sets to zero theD55 Bianchi
identity “

M(RMN2 1/2gMNR)50 and uses the dimensionally reduced field equations, one fi
for R5→R5(xm), the constraint]nR5 exp(1/2A5/3w)2m ]nm50, thus locking out the low energy
R5(xm) fluctuations as well.

Given that theZ2 odd modes are linkedvia Bianchi identities to massive Kaluza–Klei
modes, one expects the theory to settle down into a low energy effective theory thatZ2

symmetric. Strictly speaking, all that has been demonstrated above so far is that theD54 deriva-
tives]mm, ]mR5 are locked out at low energies. In order to show that the theory settles down
a Z2 symmetric lowest energy configuration, one would need either to analyze in detail the e
functional for the compactified theory, or to study in more detail the equations of motion o
massive modes. It is likely that the analysis ofZ2 odd modes can only be done fully consisten
if one keeps the entire Kaluza–Klein towers of massive states.

However, one can get an idea of the situation that is obtained with non-Z2-symmetric con-
figurations if one considers in a little more detail the question of supersymmetry preservatio
patched background with the matching conditions~5.1!, ~5.2!. Locally, in a patch, there is no
difficulty in finding a Killing spinor. However, once one declares that the overall compact pa
the spacetime isS53S1, one is required to impose continuity and periodicity conditions both
bosons and for fermions.

In the Z2 symmetric configuration of the two 3-branes, we have already demonstrated
discussing the unbroken supersymmetry transformation of Sec. III,

dl5 1
2 e2B~g ȳw82w8!e, ~5.5!

that there is a consistently defined and continuous unbroken supersymmetry transformation
Z2 even global Killing spinore5eA/2(11g ȳ)e0 . Now consider the form of thebrokensupersym-
metry transformations in the double 3-brane background. As one can see from the supersy
algebra the anticommutator$Qbroken,Qpreserved% involves a translation in the fifth coordinatey,
which is clearlyZ2 odd. Indeed, the broken supersymmetry parameters will haveZ2 odd projec-
tion conditions. ThisZ2 odd character is canceled, however, in expressions for Goldstone s
zero modes like~5.5!, by theZ2 odd character ofw8. Combining the Goldstino expression fo



ssion
o-
tino

ms for
form a

oldsti-
e
as
meter
with

ro-
o, one
etry

’’ in

the
ready
orbifold
t

stem

amics
nsion

n mas-
rvature

super-
tion to

dall–

a
, that
the

3044 J. Math. Phys., Vol. 42, No. 7, July 2001 Duff, Liu, and Stelle
y.0 with theZ2 map fory,0 amounts to inserting an absolute value sign aroundw8 in ~5.5!,
taking a broken supersymmetry parameter fore. Thus, overall, the Goldstino zero mode isZ2

even, as it must be in a consistent truncation. Note that the ‘‘kink’’ in the Goldstino expre
resulting from~5.5! with the replacementw8→uw8u corresponds to the sign flip of the superp
tential W. That W flips without necessarily passing through zero is what allows the Golds
mode to be normalizable in the present case, thus circumventing the normalizability proble
Goldstinos described in Ref. 54. Overall, the zero modes of the double 3-brane geometry
singleD54, N54 super Maxwell multiplet.

Now consider what happens if one tries to expand around a non-Z2-symmetric configuration
of 3-branes. For the Killing spinor itself, one may observe thate5eA/2(11g ȳ)e0 is in fact still
continuous and well-behaved in the nonsymmetric case, since the metric functione2A is by
construction matched at the branes. However the situation is different for the candidate G
nos. For a non-Z2-symmetric configuration the derivativew8 differs by more than a sign as on
crosses a 3-brane: in this case one hasuk2uÞuk1u, so there is a nonunimodular factor present
well. This prevents one from having continuity both of the unbroken supersymmetry para
and of the Goldstinos. Thus, although things look locally like one has a BPS configuration
unbroken supersymmetry for a non-Z2-symmetric configuration, analysis of the putative ze
mode supermultiplets finds them to be inconsistent with the available matching conditions. S
is led to conclude that only theZ2 symmetric configuration has a proper unbroken supersymm
and zero-mode multiplets transforming correctly with respect to it.

The configuration with globally unbroken supersymmetry should be the proper ‘‘vacuum
this double 3-brane sector of type IIB theory compactified onS5. A fuller analysis of this spon-
taneous reduction to aZ2 invariant effective theory on the basis of energy functionals and
equations of motion for the Kaluza–Klein massive modes would be desirable. But it is al
clear that this double 3-brane model displays a remarkable spontaneous appearance of an
structure. This happens not by insistent projection into aZ2 invariant sector of the theory, bu
naturally by virtue of the Kaluza–Klein dynamics of the theory.

Our discussion has indicated that the original Randall–Sundrum model2 arises naturally when
the fifth dimensiony direction is taken to be compact, and one may view the model as a sy
of two D3-branes transverse to the internalS13S5. From theD55 point of view, there are two
branes: one with positive and one with negative tension, constrained by Kaluza–Klein dyn
to live at diametrically opposed points on the circle. While the presence of a negative te
brane might appear troublesome, we have shown that it does not contribute to the naı¨vely antici-
pated negative energy modes; these are nonzero modes and mix with higher Kaluza–Klei
sive modes. The negative tension 3-brane has the effect of protecting the spacetime from cu
singularities in the geometry that might reside behind the Cauchy horizon. Of thea priori two
independent types of motion of the 3-branes along theS1 direction, only theZ2 even modes,
corresponding to an overall ‘‘rotation’’ of both branes along the circle, localized in theD54
coordinatesxm, correspond to genuine zero modes.

VI. CONCLUSIONS

We have found that an appropriately constructed D3-brane configuration provides a
symmetric and dynamically stable Randall–Sundrum scenario. This is achieved in a solu
the D510 type IIB supergravity equations which can be given aD55 interpretation, but is not
fully a D55 solution, for it employs an intrinsically massive Kaluza–Klein mode, theS5 breath-
ing mode. This mode has AdS energyE058, satisfying the boundE0.4 that is required for an
asymptotic approach to AdS space from a downwards-facing warp-factor kink in a Ran
Sundrum scenario. There is also aZ2 flip in the sign of the Freund–Rubin parameterm. This is
natural enough in aD510 context wherem is a field-strength value, but it is less natural from
D55 viewpoint, wherem normally would appear as a parameter. We have found, moreover
although one can decide to exclude theZ2 odd modes when expanding the theory around
presentedZ2 invariant background, and thus reproduce anS1/Z2 orbifold reduction, it is not
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actually necessary to make this projection by hand. Bianchi identities for the curvature v
entering in the solution relate theZ2 odd modes to Kaluza–Klein massive states of the theory,
so they decouple naturally at low energy. Although charge conservation on the circle re
branes to come in oppositely charged pairs, we have seen that one can recover a singl
Randall–Sundrum model by pushing the second brane off to the Cauchy horizon~i.e., by taking
w15w* for the second brane!. From theD510 point of view, however, this corresponds
shrinking an outer RS shell of D3 brane tightly around an inner ‘‘horizon’’ D3 brane of oppo
charge and tension. Clearly, an important problem is whether this geometry can be realize
string theory context.

Note added in proof.As this paper was in the final stages of preparation, a very interes
paper appeared55 that sheds light on the relationship between constructions such as those of
12, 13 or the present paper and the supersymmetry scheme of Ref. 56, which was oth
puzzling. In Ref. 55 supersymmetry in orbifolds, and in particular theD55 case of interest here
is discussed. In order to obtain a continuous Killing spinor at orbifold singularities~necessary for
the Killing equation to be realized everywhere, including at the singular points!, Ref. 55 intro-
duces a 5-form ‘‘theory of nothing’’ field strength, which has just a constant as a solution
allows for this variable to be only piecewise constant. This allows for aZ2 sign flip in the
prepotential that is critical for having a preserved supersymmetry allowing coupling to supe
ter. This sign flip was not made in the discussion of Ref. 56, leading to problems with m
coupling. This difficulty of Ref. 56, and the resolution of Ref. 55 was also investigated in Refs
58 and independently worked out by Ref. 59. We anticipate that a fuller Kaluza–Klein trea
of the type IIB theory, including all fermions and making a careful reduction of the type
supersymmetry transformations, will show that theD55 supersymmetry realization adopted
Ref. 55 can also be viewed as the natural dimensional reduction of the type IIB theory usinZ2

symmetrized ansatz of the type employed in Refs. 12, 13 and the present paper. In particu
expect that the 5-form ‘‘theory of nothing’’ field introduced in Refs. 58, 55 can be identified
the D55 residue of the type IIB self-dual 5-form field strength.
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