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We show that an earlier domain wall solution of type IIB supergravity provides a
supersymmetric realization of the Randall-Sundrum brane-world, and give its ten-
dimensional interpretation in terms of IIB 3-branes. We also explain how previous
no-go theorems are circumvented. In particular, wheBea$ supergravity scalars
have Ad3 energyE,=<4 and are unable to supporDe=5 positive tension brane,

our scalar hag,=8, and is the breathing mode of tB& compactification. Another
essential element of the construction is the implementation 2§ aymmetry by
patching together compactifications with opposite signs for their 5-form field
strengths. This is thus a 1IB analog of a previdus-5 3-brane realization of the
Horava—Witten orbifold. A mode-locking phenomenon avoids the appearance of
negative energy zero-modes in spite of the necessity@f=d0 negative tension
brane-source. @001 American Institute of Physic§DOI: 10.1063/1.1372698

[. INTRODUCTION

Our purpose in this paper is first to show that the type [IB domain wall solution of Bremer
et al! provides a supersymmetric realization of the Randall-Sundrum brane#wand second
to give its ten-dimensional interpretation in terms of IIB 3-branes.

The idea that our universe may be a 3-brane in a higher-dimensional spacetime has a history
going back nearly two decad&s’ More recently, another viewpoint on this basic idea has grown
out of the Hoava—Witted®** model for M-theory/heterotic string duality, based uponSifz,
orbifold in D= 11 spacetime. This orbifold construction was later realized =85 compactifi-
cation by a concrete solution to semiclassical M-theory, De=,11 supergravity>*3A key point
in this construction was the introduction of flux for the M-theory 4-form field stre@th wound
around the compact dimensions, which were taken to be a Calabi—-Yau 3-fold. The resulting
reduced theory is a specific version of matter-couplBeé=5, N=2 supergravity. This
dimensionally-reduced theory has a scalar potential arising fror® theflux, which rules out flat
space or indeed any maximally symmetric space as a solution to the equations of motion. But this
D=5 reduced theory readily admits domain wall, i.e., 3-brane, solutions. A natural configuration
is a pair of two 3-branes in 4, symmetric configuration; projecting the fields of this theory into
the subspace &, invariant configurations then reproduces the &d@—Witten orbifold. As in the
original D=11/D =10 discussion, the massless brane-wave excitations of this scenario are not
easily deduced by direct analysis of the solution, but one may obtain information about the
zero-modes by anomaly inflow arguments. These may either be carried DBut 9, leading to
the original Hoava—Witten prediction of ® =10, N=1 super Yang—MillsEg gauge multiplet
residing on each of the two fixed planes of the orbifold, with the resulting structure subsequently
reduced toD =5, or one may carry out the anomaly analysis directhDis5, yielding more
general possibilities for gauge structdfe.
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Another theory in which similar constructions can be madB is10 type |IB supergravity.

This has a self-dual 5-form field strength that supports the D3-brane, which is the basis for much
recent discussion of the Maldacena conjecture, linking string theory in the near-horizon region of
the D3-brane to a Yang—Mills theory quantized on the boundary of the associated asymptotic anti
de Sitter space, which is the near-horizon limiting spacetime. In the pure supergravity context,
relations betweerp-branes in higher dimensions and domain walls arising after dimensional
reduction on spheres was developed in Ref. 1, including the case of the D3-brane of type IIB
theory.

Meanwhile, another development was brewing. Randall and Sufdpuoposed a simple
model of physics on 3-branes embeddedir 5 anti de Sitter space, first in a model with two
3-branes, one of positive and one of negative tension. This model was criticized for the apparent
danger of nonphysical modes from the negative tension brane, and also because the modulus
related to the distance between the two branes gave another parameter needing fixing in any
phenomenological analysis. Subsequently, a revision of this scenario was put fdiwavtijch
there was only one 3-brane, of positive tension, essentially obtained from the first scenario by
sending the negative tension brane to the Cauchy horizon of anti de Sitter space. The striking
result found in this second scenario is that, although the fifth dimension of spacetime is now
infinite, the effective gravity theory on the single remaining 3-brane nonethelegs-hdsand not
D=5 leading behavior. The gravitational potential for static sources starts out with a Newtonian
1/r, corrected by terms of ordek ~%/r3, where A is the D=5 cosmological constant. This
“binding of gravity” to the 3-brane happens whenx=5 spacetime has a warped product
structure, with the warp factor, i.e., the factor multiplying the-4 submetric, decreasing as one
recedes on either side from the single Randall-Sundrum 3-brane. This corresponds in general
terms to the 3-brane acting as a positive-tension source on the right-hand side of the Einstein
equations. It was not clear, however, whether this scenario could arise from an explicit solution to
a supergravity theory.

Links between the Randall-Sundrum model and supergravity were made in Refs. 15-20. In
Refs. 17, 18, th& =5 3-brane solutions to the type Il theory presented in Ref. 1 were used to
make an analogy to the Randall-Sundrum model. The explicit relation between this construction
and the specific Randall-Sundrum model was not fully pinned down, however. This perspective
was further elaborated in Refs. 19, 20. Despite the existence of these works, there still seems to be
some confusion in the literature as to whether the Randall-Sundrum model can in fact be obtained
from an explicit supergravity solutioiNote, however, that the equivalence of the graviton propa-
gator calculated from closed loops of tNe=4 SCFT in the Maldacena picture and that calculated
from tree graphs in the Randall-Sundrum picture was already strongly indicative of a supersym-
metric Randall-Sundrum brane-wodAY.

Moreover, there are powerful general argum&nts as to why smooth supersymmetric so-
lutions obtained fronD =5 gauged supergravity coupled to various combinatiori3 % matter
cannot reproduce a Randall-Sundrum scenario with binding of gravity to the 3-brane. A key word
here is “smooth.” Although one might well like to replace the Randall-Sundrum scenario, with
its delta-function source, by a smooth solution, experience with domain walls in superdravity
codimension-one brane solutigrehows them always to be based upon a linear harmonic function
in thed=1 codimension. In order for such a solution to have a localized energy concentration,
i.e., a “brane,” some kind of “kink” must be introduced into the linear harmonic function so as
to give a location to the domain wall. Thus, the search for a smooth codimension-one solution
looks rather unlikely to be successf(&ome rigorous results along these lines have recently been
spelled out in Ref. 25. See also Ref. 2@loreover, the remainder of the argument of Refs. 22, 23
concerns the general behavior of renormalization group flows between critical points of coupled
supergravity-matter potentials. This gives the impression that even if one were to relax the re-
quirement of smoothness, there would be no solution leading to the binding of gravity to the
3-brane.

In this paper, we shall first explicitly obtain the origin&inked Randall-Sundrum geometry
from type 1IB supergravity. This follows from the work of Refs. 1, 17, 20. This construction
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makes essential uSeof the “breathing mode” of theS® dimensional reduction of type IIB
supergravity of Ref. 1. We shall show why this massive mode escapes the constraints on super-
symmetric flows by reason of its transforming in a representation with AdS lowest eBgrgy
=8>4, thus falling outside the scope of the analysis of Refs. 22, 23. The breathing-mode solu-
tions, although Kaluza—Klein consistent in a purely bosonic context containing just the breathing
mode and gravity, do not really correspond to a fDre5 supergravity theory. The construction
retains an essential memory of iB=10 type IIB origin. This is particularly so when one
considers the superpartners of the breathing mode, which include massive spin two modes that
cannot be retained in a consistent truncation to a finite numbBr=e5 fields.

Another memory ofD =10 supergravity in the supersymmetric realization of the Randall—
Sundrum geometry resides in tdg symmetry of this geometry. This geometry is very similar to
the Z, symmetric configuration of two M-theory 3-branesn=>5 that explicitly realizes the
Horava—Witten construction as an M-theory brane solutfori.In the M-theory solution, th&,
symmetry is central to the appearance of the orbifold, and it also plays a critical role in the
preservation of unbrokel =4 supersymmetry on the brane world-volum&¥he same is true in
the double 3-brane type IIB solution that we present as the supergravity realization of the
Randall-Sundrum geometry: continuity of the unbroken supersymmetry Killing spinor depends
on the way the&Z, symmetry is implemented. In particular, in the M-theory ¢ass well as in the
type 1B constructiorf, the constant parameter determining the flux of the relevant underlying
form field isZ, odd, and so flips sign upon crossing either of the 3-branes; this flip is crucial for
the continuity of the unbroken supersymmetry parameter. Accordingly, in the type IIB case as in
the M-theory case, thB =5 theory is really obtained from a dimensional reduction qaa of
Kaluza—Klein ansze, one on each side of tile symmetric spacetime. Although this construc-
tion requires the presence of brane sources for the form-field flux, it is natural in the context of the
higher-dimensional M- or type IIB theory. This split ansatz, however, means that it is much less
natural to view the geometry as arising in a sinble5 theory.

Having shown how to obtain the Randall-Sundrum model from type IIB supergravity, we
next set out to study the brane-wave oscillations of the solution. This analysis is quite natural in
the type IIB analog of the M-theor¥, symmetric double 3-brane constructiti'® Although, as
in Ref. 2, this configuration involves both a positive and a negative tension brane, thus leading to
concerns about negative energies, we show that there is a “mode-locking” phenomenon that
reduces the zero-modes to just @pesitive energyD =4, N=4 Maxwell multiplet in the case of
one singly charged brane. This happens becausgtoeld modes turn out to be nonzero modes
constrained to be related to Kaluza—Klein massive modes by the Bianchi identities for the type 11B
5-form field strengttH 5, and for the gravitational curvature. Thus, one does not have to make an
explicit projection by hand into Z,-invariant subspace of fields: this projection happens sponta-
neously, by normal Kaluza—Klein dynamical mechanisms freezing out massive Kaluza—Klein
modes. The type IIB models considered here have the great advantage that one can carry out more
of the Kaluza—Klein analysis explicitly than in the analogous discussion of M-theory reduced on
Calabi—Yau space<:13But it is to be expected that an analogous mode-locking mechanism will
operate there as well. And in that case, the mode-locking can be expected to lead to a spontaneous
appearance dd =4 chirality, thus generalizing the appearance of chirality by expligiprojec-
tion.

IIl. SUPERSYMMETRIC DOMAIN WALLS AND RENORMALIZATION GROUP FLOWS

While there are many ways of representing a metric on anti de Sitter space, perhaps the most
natural form of the metric from a domain wall point of view is given in terms of Poincare
coordinates,

ds?=e 2%y, , dx* dx’+dy?. (2.2

Written in this manner, the Minkowski signature boundary of AdS is reached whenr-,
while the pointy— oo is instead a null surface, the AdS Killing horizon. In the AdS/CFT corre-



3030 J. Math. Phys., Vol. 42, No. 7, July 2001 Duff, Liu, and Stelle

spondence, this metric is viewed as the near-horizon geomeddyoaiincident D3-branes, which
is described byV=4 super Yang—Mills living on the boundary. Furthermore, the distance to the
boundary is regarded as an energy; from the bulk point of yiew—« is a flow to the UV, while
y—o is a flow to the IR.

The Randall-Sundrum brane-world is obtained by taking two Poingatiehes of AdS, both
given by (2.1), and joining them at the brane locatign=0. The resulting Randall-Sundrum
metric has the form

ds?=e 2My  dx* dx’+dy?, (2.2

and its geometry gives rise to a localized graviton on the “Planck” brane. Presented as “an
alternative to compactification,” much has been made of the fact that this scenario binds gravity
even though the direction has an infinite extent. Nevertheless, it is apparent from the form of
(2.2) that the Planck brane only lives in a tiny portion of AdS, and that movement away from the
brane flows towards the Killing horizon and not towards the Minkowski boundary of AdS. Had
one instead chosen to join together the 0 regions of(2.1), the resulting geometry would
preserve the vast majority of the original space, including the entire portion of AdS near the
boundary. This then would yield a divergent “localization” volume and give rise to a brane of
opposite character to the Randall-Sundrum brane, namely one that does not bind gravity.

In fact, the above observation motivated the authors of Ref. 28 to view the Randall-Sundrum
geometry as a warped compactification of F-theory on a Calabi—Yau four-fold. In this picture, the
warped geometry arises from the presence of D3-branes situated on the elliptically fibered Calabi—
Yau manifold. The five-dimensional Randall-Sundrum universe then corresponds to the noncom-
pact four-dimensional spacetime with the addition of a singleoordinate which provides a
preferred slicing of the internal space along flows between separated stacks of D3-branes. One
thus sees that the Randall-Sundrum brane itself is not identified with any one of the D3-branes,
but is instead viewed as an effective geometry that arises in interpolating between the near-horizon
locations of the D3-branes. In terms of the parametrizatiof2i®), the D3-branes are located at
the horizonsy= =, and the apparent infinite extent of theoordinate is simply a result of the
warping of the compact space by the D3-branes themselves. The localization of gravity is then
explained by the compactness of the underlying F-theory construction. Heterotic and M-theory
realizations based on warped Calabi—Yau compactifications have been examined in Ref. 29.

Returning to a five-dimensional picture, there have been many attempts to explain the
Randall-Sundrum scenario from a supersymmetric domain-wall point of view. The advantage of
this approach is that one can generally ignore the added complications of the compactification of
the underlying 1IB theory, and instead focus only on brane constructions in the redbltiry
gauged supergravity theory. However, as we emphasize below, it is important to realize that there
is no reasoriother than simplicity to expect that the relevant degrees of freedom lie only in the
massless supergravity sector. In fact, as emphasized in Refs. 22, 23, massless gauged supergravity
precludes the localization of gravity on a brane. Thus massive fields are a necessity.

For the Randall-Sundrum picture to be realistic, where the Planck brane is a dynamical
object, it would have to be supported by bulk scalar fields. Thus, in the language of bulk renor-
malization group flow, we seek a brane solution with stable flows to AdS critical points in the IR
on both sides of it. This approach has been studied extensively in both the AFS/EEMNd
brane-world??33233pictures, with considerable overlap. Nevertheless, the distinction between
flows of massless and massive scalars has not always been made clear, so we wish to do so below.

Since we demand that the flow away from the brane is towards an AdS background, the
scalars must reach some fixed values corresponding to a critical point in the potential. Then,
independent of any specific model, at that point, we may expand the scalars about their fixed
values. However before doing so, it is worth realizing that representations in AdS differ from
those in a flat background.

Recall that, for Ad§ general representations 8fU(2,2) may be labeled b (Eg,j1,]2)
whereE, is the lowest energgwhich may be given in terms of the natural mass scale of the AdS
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backgroungl For scalarsD(Eg,0,0), unitarity require€,=1 with E,=1 corresponding to the
singleton representation. General unitarity boundsStl(2,2) as well as for thesU(2,2N/2)
superalgebras have been obtained in Refs. 34s@9also Ref. 40For a scalar field in Ads; the
mass is given in terms &, by m>=Ey(E,—4), so that “massless” scalars in fact correspond to
Eo=4. Of course, negative mass squared is not to be feared in an AdS background, provided the
Breitenlohner—Freedman boutds satisfied. For this case it correspondsmt= — 4, which is
saturated foilEy= 2.

To be specific, we now consider the case of a brane supported by a single scalar coupled to
gravity, where the Lagrangian takes the form

e 1L=R—-30¢*>— V(o). (2.3

While one may generalize by including more scalars, this single scalar example is sufficient to
bring out our conclusion. The resulting equations of motion have the form

RuN= 39 Ind+ 5GunV(B), VZp=3,4V(). (2.9

Note that we do not insist th&®.3) necessarily originates from a supersymmetric theory. How-
ever, in many cases we are of course interested in supersymmetry. This suggests the identification
of a putative “superpotential’'W(¢) with

V=(d4W)?— W2, (2.5

and the putative “transformations,”
oyp,=|V ! ON= ! +v2 2.6
b=V, oz VY€ —E[V'IM d4W]e. (2.6

Identification of the above transformations with those of an actual supergravity theory requires
some caré? In particular, from arN=2 (i.e., minimal supersymmetry i =5) point of view, the
field ¢ may reside in either a vector, tensor or hypermatter multiplet, with possibly different forms
of coupling to the fermions. In all cases, the fieldg, {,,) and (¢,\) would be part of &not
necessarily consistentruncation of the actual supergravity theory.

As emphasized previously in discussions of holographic renormalization group flows, the
equations of motion following from a domain-wall ansatz take on a simple form. Starting with the
metric

ds?=e*My , dx* dx"+e?®M) dy?, (2.7

one obtains the following equations:
A!2:21_4¢12_ %EZBV, A'—A'B =— %¢12, (28)
” ’ ’ 1 _ 2B
¢"+(4A'—B')op' =€ 3,V,

where primes denotg derivatives. The first two equations were obtained by combining compo-
nents of the Einstein equation. Note that the three equations are not all independent, and we find
it convenient to focus only on the first two.

In codimension-one, the second metric fac&sP is redundant, and may be removed by
defining a new coordinafg= [e®dy (keeping in mind that explicit domain wall solutions often
have a simpler form when presented in terms of a metric withefifefacton. We proceed by
settingB=0, so the equations resulting frofR.8) take the form
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A'=—3¢'%, A2=3¢"—5V, ¢"+AA @' =d,V. (2.9

As emphasized in Refs. 31, 30, the first of these equations indicate&"ted, with saturation of
the inequality corresponding to sitting in the pure AdS vacuum. For the present case, this has the
consequence that the functigk(y) must be concave-down, which is in fact exactly what is
needed to support a “kink-down’(i.e., positive tensionRandall-Sundrum brane of the form
(2.2) with a continuous metric function.

To study the behavior of the flow to the IR fixed point, we may expand about the fixed value,
¢, , of the scalar. To quadratic order, the potential then has the form

V= - 12974 P (p— i), (210
where the constant factor is chosen to give the conventional normalization of the AdS curvature,

RMNPQ:_gz(gMPgNQ_gMQgNP)- (2.11

While in some caseg may coincide with the coupling constant of gauged supergravity, we only

take it to parametrize the AdS background at the specific fixed point in which we are interested.
We now insert2.10 into the second equation @2.9) to find thatA(y)~ * gy, at least up to

linear order ing. Thus we recover the expected linear behavior giving rise to an AdS background.

Continuing with theg equation of motion, and again working to linear ordegiwhich amounts

to making the substitutioA’ ~ *=g), we find

¢"+4gp’ —m?p~0, (2.12
which has in general two solutions:
p~¢,+ce FAY) | and ¢~¢, +ce (4 EIAD), (2.13

whereEy,=2+(m/g)?+4=2 is given exactly by the madsj relation for a scalar field in AdS
space. Additionally, for either flow, the metric function behaves like

A~=gy— 25(d— )% (2.14

Finally, this allows us to examine the IR flow, corresponding to the behavior in the dire&tion
——oo. We see that IR stability is ensured fBg>4 by taking the second solution ¢2.13),
while the flow is always unstable forRE,<4, and the massless ca&g,= 4, is marginal.
As a result, the above analysis indicates tgt-4 is a necessary condition for IR stability,
and hence for the construction of a Randall-Sundrum brane. Note, furthermore, that this result
was derived without having to appeal to supersymmetry. Thus it holds in general for both BPS and
non-BPS flows. However, as we see below, BPS flows impose a further condition on the relative
signs of the terms in the superpotential. This powerful and completely general result was in fact
present, although hidden in the discussion of Refs. 22, 23. However, in Refs. 22, 23, only scalars
residing in massless vector multipletsidf 2 gauged supergravity.e., theD(2,0,0,0) represen-
tation, where the last value denotes th€l), charge were considered. In particular, the authors
of Ref. 22 relied on the relationd(d;W) .= 1/3g;;W,, (in our normalizatioh arising from very
special geometry. Such scalars always hgye 2, yielding the negative reported result. Curi-
ously, while it may not have been appreciated that scalars in the decompositioN ef&igauged
supergravity multiplet reside iN=2 tensor and hypermatter multiplets as well as vector multip-
lets, suchN=38 scalars all hav&,=2, 3 or 4 so that they also do not lead to IR stable branes.
Turning now to the case of a supersymmetric flow, it is straightforward to see(dinthat
the Killing spinor conditions yield the first order equations,
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1
A’=i%eBW, ¢’ =7v2eBa,W, (2.15

for a domain wall preserving exactly half of the supersymmetries. This result may in fact also be
derived without using the transformatio(®.6), but instead by a traditional BPS argument for
finding static minimum energy configuratioffs>> Combining both equations gives rise to a ho-
lographic renormalization group flow,

d¢ 9,W

dA= 6 W (2.19
consistent with the second order equati¢28). In this case, we expand the superpotential as

W=*3v2g(1+ HA(p— )2 +--1), (2.17

corresponding to the potentié2.10, provided\ is identified with eithelE, or 4—E,. Note that

this introduces a two-fold ambiguity. However this is in fact somewhat artificial, since knowledge
of the actual supersymmetric theory would fully determine the superpotébtiakee, e.g., Ref.

43 for a discussion on the relation betweénand W without supersymmetjy In contrast to
(2.13, the supersymmetric flow conditiofR.16), gives only a single approach to the fixed point,

¢%¢*+Ce—)\A(Y). (2.18

As a result, for a BPS flow, not only do we requigg>4, but also we learn from the above
analysis that =4—E, must be negative in the superpotential17). The requirement ok <0
was previously noted in Ref. 22.

This connection betweeB, and the behavior of a scalar field in AdS was initially made in
investigations of the Maldacena conjectté®>whereE, was related to the conformal dimension
of appropriate operators on the CFT side of the AAS/CFT conjecture. In this (@ak8, taken
with exact equality is simply the massive scalar equation in the reference AdS backgfobnd
This in itself highlights the similarity between the brane-world scenario and the AdS/CFT con-
jecture. In some sense, the Randall-Sundrum brane, being inserted at some fixed location in AdS,
cuts off the flow to the UV and hence may be described by a Maldacena CFT cut off at some
energy scale related to the location of the brane.

Ill. BREATHING MODE DOMAIN WALLS AND THE BRANE-WORLD

Based on the preceding analysis, it is clear that consideration of the massless sebttor of (
=2, 4 or 8§ gauged supergravities alone does not lead to realistic brane-world configurations.
However, for a five-dimensional model originating from 1IB theory, many other degrees of free-
dom may come into play. While roun8® compactifications of 1B supergravity yieltl=8
gauged supergravity at the massless level, this is also accompanied by a Kaluza—Klein tower of
massive states. In general, consistent truncations of sphere reductions are a delicat® thatter.
However it is consistent to include the breathing maede the truncation: although it lives in a
massive supermultiplet, it is nevertheless a gauge singlet. Domain walls supported by the breath-
ing mode have been investigated in Refs. 1, 17, 20, and have recently been suggested as possible
realizations of the brane-world scenario. Note that we qi$e denote the breathing mode rather
than ¢, in order to emphasize that it is distinct from tbe= 10 dilaton of the type 1IB theory.

To make a connection with the Randall-Sundrum model, we examine type |IB string theory
compactified or8®. This sphere reduction, with the inclusion of a single squashing mode along
with the breathing mode, was investigated in Ref. 1. Focusing only on the scalar modes, the
resulting five-dimensional Lagrangian is

e 1Ls=R— 39%%— 1of2—V(%,T). (3.1
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The scalar potential has the form

V(Zb,? ) — 8m2e(10/\s“l_5)?p+ e(4/\31_5)’<}(M2e(6/\3T0)f _ R4e(1/\s‘TO)f), (32)

where the constantsr(,u,R,) are parameters of the compactification.
While this potential may now be expanded in the form of E10), it is perhaps more
enlightening to first express it in the form of a “superpotential” according2&). We find

AN R 10\
V2 el 3T ﬁe— (2107 | | (3.3
M

W=2v2m é5/v“1—5)2;> _ e(2/v“1_5)“;,

Note that there is a slight sign ambiguity in invertit®)5); here we have chosen the signs so that
W has a critical point at

. M R4 3/5 - R4
BN, — & [ 4 (5NIOf _— %
e >m 6,u2) , € f, 6u2’ (3.9
corresponding to that of as well. Expansion ofV then gives
5/3
o R, 1 1~ ~
W=—3\Qm<%) (6_,LL2 1—§(¢—(p*)2+§(f—f*)2+"' . (35)

A comparison with(2.17) then demonstrates explicitly that the breathing mgdeasE,= 8 while

the squashing modehasE,= 6. Curiously, the two modes enter with opposite signg/inwWhile

this N=8 symmetric critical point is indeed a minimum of the potential, it is only a saddle point
of W.

The consequences for the resulting supersymmetric flow were investigated in the previous
section. For supersymmetric flows, this critical point is IR stable for the breathing mode, while it
is unstable for the squashing mode. This indicates explicitly that simply having a domain wall
supported by a scalar witi;>4 may be insufficient to ensure the stability of a supersymmetric
Randall-Sundrum configuration. Nevertheless, we have now seen why use of the massive breath-
ing mode of sphere reductions has been successful in constructing brane-world domatr3?alls,
avoiding the limitations on supersymmetric flows presented in Refs. 22, 23.

To proceed, we now truncate out the squashing mode by sefting and R,=6u
=(6/5)Rg. After dropping tildes, the resulting potential for the breathing mode is simply

V(g)=8mPe 1015 ¢ _ R (45 ¢, (3.6
and has an AdS minimum at

Rs
2m]2- (3.7)

e( G/VTS) Px —

HereRs is the curvature scalar of the roud, arising from the type 1IB Kaluza—Klein ansaltz,
dsfo=e?*? dsi+e?¢dsX(S°), Hs)=4meP*eps; +4mes)(S°), (3.9

where

a=13 p=-ia (3.9

This also indicates thanh is essentially the 5-form flux of the Freund—Rubin compactification.
Thus the two parameters andR; of the five-dimensional potential3.6), have their origin in the
Kaluza—Klein compactification from ten dimensions. Note that the Kaluza—Klein a(&8tZor
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the Hg field strength implies that the Freund—Rubin paramatemust be odd under transfor-
mationsy— —y. In order for this to be realized as a symmetry of the type IIB theory, this
“lower” D=5 transformation must be accompanied by an orientation-reversing transformation of
S°, so that the self-dual structure Hiff5; is preserved, but witm— —m. By the “skew-whiffing
theorem,”*® both orientations have the sarfreaxima) supersymmetry in the case 8f. For any
other compactifying 5-manifold the supersymmetries would not match.

For a complete truncation of the sphere compactification dovin=td, in which all Kaluza—
Klein modes except for the breathing mode are discarded, the two parammeterd Ry satisfy
trivial Bianchi identities, and hence must be constant. In this case only a single combination of the
two is actually physical. The constant paramd®ermay then be viewed as a necessary dimen-
sionful parameter for measuring coordinate distances on the five sfghech as one would have
to introduce a length scale for toroidal compactification, where periodic coordinates are identi-
fied asy=y+2xL). The actual invariantphysica) size of the five sphere is then set by the
expectation of the breathing mogeTo see formally hoviRs may be scaled away, consider a shift
of ¢ along with a scaling ofn,

o— @+ \/%og)\, m—mx~ %4 (3.10

This transformation has the effect of multiplyirfgs by \ in the potential(3.6), so that an
appropriate choice of may be used to scak; to any desired value. A particularly natural choice
would be to setRs=20m?, so that the AdS critical point is reached @f =0. From a ten-
dimensional point of view, the transformatig¢®.10 results in

ds? =1\ e?e¢ dsi+e?fen1dsA(SY)],

5/ - 5/2 5 (313
H[5]:)\ 2[4me8“"’e[5]+4m)\ 6[5](8 )],

which is thus a rescaling & combined with @D =5 “trombone” symmetry.

However, as we will discuss in the following section, if one no longer truncates out the
additional Kaluza—Klein modes, then batih and Rs no longer need to be taken as constant. In
this case, attempts to scale awRy(x) would result in a dynamical scaling by(x). In this sense
one simply trades one parameter for another, and cannot fully elimrfaate/ith this in mind, we
maintain both parametera andRs in the solution below.

Breathing-mode domain wall solutions follow by making the standard arigafz and by
solving the resulting equatior{2.8). As mentioned above, keeping two independent factors in the
ansatzA(y) andB(y), is redundant. FoB =0, the solution was presented in Ref. 17, while it was
originally presented in Ref. 1 with a different choice of coordinates. The advantage of the original
choice is its highlighting of a linear harmonic function as a natural feature of codimension-one
p-brane solutions. This solution has the basic form

e~ "WDe=H =g B=hHY"+D,HY", H=e "N eoiky, (3.12

where
g 28m % 14\/5Rg 31
1= ﬂlm, 2= sz- (3.13

Heren, ,= *1 are in general independent choices of signs for the solution. For our purposes they
are fixed by requiring an appropriate AdS limit fer— ¢, . This gives»n,= — », and 5, chosen
so thate* >0 in order for the metric to be real at a given initial valueyof

The linear harmonic functioi is restricted to be nonnegative. Examination of the solution
indicates that the AdS horizon is locatedHit H, =e~ "¢+ /"T5 wheree*” vanishes. For initial
H>H, the five-dimensional space asymptotically flattens ouHasco, with a corresponding
limit for the scalar fieldp— — o, yielding an asymptotically vanishing scalar potential. This case
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is the second branch of Ref. 17, where it was referred to as a hybrid type Il and dilatonic domain
wall. On the other hand, for initidH<H, , the solution soon runs into a singularity ldt=0.

Note, however, that if one starts with a solution wib>H,, initially and signsz, , chosen so as

to makee* >0 initially, but then follows the evolution ofl within the spacetime through the
H=H, horizon, the metric in the region with<H, becomes complex, so one should really treat
the region below the horizon using different, appropriately chosen coordinates. Bdththi,
andH<H, cases have a natural interpretation in the lifting21f.2 to ten dimensions. In the IIB
theory, (3.12 lifts directly to the geometry ofN coincident D3-branes with total charde
=m(20Rs)%2.! The two regionsH=H, then correspond to the regions either “outside” or
“inside” the D3-brane horizon. This furthermore demonstrates that the fitstH, , case is
nothing but the conventional near-horizon limit occurring prominently in the Maldacena conjec-
ture. The secondji<H, , case is unphysical as it stands, however, as it sees a different region of
the D3-brane geometry containing a singularity.

Neither case by itself provides a suitable framework for a Randall-Sundrum configuration.
While in one direction one may reach an AdS horizon, in the other direction one will either run
into a singularity or on out into unbounded flat space. One obvious possibility for obtaining an
asymptotically AdS space on both sides of a domain wall is to reflect the solutigr-@f
imposing thus ay— —y Z, symmetry. The resulting two-sided domain wall, supported by an
absolute value kink in the linear harmonic function,

H=e (TN15 ¢o Kly|, (3.19

was in fact how the solution was originally presented in Ref. 1. The presence of such a kink is
rather natural for a codimension-one object. Supergrguityrane solutions are generally sup-
ported byéfunction sources at the locations of the branes themselves, and this remains true for
domain walls. Passing through a domain wall, one jumps through a sheet of charge, and this jump
in charge manifests itself in a change in the slope of the linear harmonic funétipriori, the
slope could take any values on the two sides of the domain wall, but clear¥,tisgmmetric
jump fromk to —k is a natural configuration. We shall see that this configuration is distinguished
also by preserving unbroken supersymmetry.

For either the plain unkinke@.12 or the kinked(3.14) solution, the slopé may be scaled
away by takingy—y/|k| andx*— x*|k|*4. This explains why the apparent domain wall chakge

is not directly related to lifted quantities such as the D3-brane cHardgowever, note that this
scaling does not eliminate the sign kf thus leaving a distinction between the slope-up and
slope-down possibilities. For discussions of multiple domain wall configurations or brane fluctua-
tions, it is more convenient to retain

If one chooses to restrict the coordinatén (3.14) to range only over the intervatyy<y
<Yy, identifying the points/y and —y,, then one obtains Z, symmetric solution that can serve
as the background for &, orbifold construction. This orbifold construction is analogous to the
treatment of M-theory 3-branes given in Refs. 12, 13 as a brane realization of thea<aWitten
S'/z, orbifold, and has also been proposed in the Randall-Sundrum context in Ref. 20. The
identification ofy, and —y, essentially reproduces the original Randall-Sundrum miasli¢h
both an attractive and a repulsive brdifeone choose&< 0, then the attractive brane is the one
located aty=0). From the five-dimensional point of view, tlye-~ —y Z, map is a parity flip. As
we have mentioned above, however, this alone is not a good symmetry of the underlying type 11B
theory. In order for this transformation to be compatible with the round-sphere compactification of
the 1I1B theory, thisZ, transformation must combine the flip inwith an orientation-reversing
transformatiof’ of the S°. For example, an allowable transformation flips all six of the coordi-
nates transverse to the underlyidg= 10 D3-brane. The net effect is to semd—- —m as well as
y——YV.

This orientation reversal has important consequences for the supersymmetry transformations
(2.6), since the superpotentisV also flips,W— —W, under these transformations. Actually, this
is what one wants, because if the superpotential were to not to flip in this way, then all supersym-
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metries would be broken by the domain wall, and it would then no longer be BPS. To see this,
consider for example thé\ transformation for the solutioni3.12) with the linear harmonic
function (3.14). By truncating out the squashing mode fr@B13), one arrives at the breathing-

mode superpotential:
2e(5N15) ¢ _ 5 /2 52 e(2NT5) ¢

Written as above, this clearly changes sigmmas —m. On the other hand, If one were to assume
instead thawV remains invariant, one would find

W=v2m . (3.19

2 — R
== (5NT5) ¢ _ S L2NTH) ¢
W= 2 3o e e }
J3o -
=7 |KIH (b H7=[b,[H®)
1
=—‘5|¢>’Ie‘8, (3.16

where the signs; , have been chosen to obtain the outdide, H>H, ) AdS solution. Inserting
this into (2.6) we would find

SN=1e"B(ye' —|¢'|)e, (3.17

wherey denotes a local Lorentz index. Because of the absolute value in the linear harmonic
function (3.14), ¢’ changes sign on opposite sides y£0. Therefore the assumption of an
invariantW would leave no possibility of obtaining a Killing spinor that is consistently defined on
both sides ofy=0. If one were to attempt to patch together separate Killing spinors on both sides
of y=0, in the case of an invariaw, the y=0 projections on the supersymmetry parameter
would be into mutually orthogonal components;{3¥)e, =0 vs (1— y¥) e_=0. However, since

the superpotentiatioeschange sign under thg,, the absolute value i63.17) is in fact not
present, and we accordingly find global Killing spinors of the forme™?(1+9Y)e,. Similar
considerations apply at the location of the second kink inZhenvariant background. If one
expands the theory in modes about thisinvariant background, keeping only tix® invariant
modes, the resulting theory is equivalent to one defined o&'4f, orbifold.

As we have just demonstrated, the domain wall solution is always one half supersymmetric,
with or without the absolute value kink. In particular, tAg orbifolding has not destroyed any
further supersymmetry beyond the original half-BPS solution. On the other hand, there is no
restoration of supersymmetry either in the presence of a kink. Consider taking a simultaneous limit
k—0 andgy— ¢, . Without the kink, this limit would yield pure AdS, i.e., the D3-brane near-
horizon limit in which full supersymmetry is restored. But with the kink, one obtains instead a
symmetric patching of AdS, with a Randall-Sundrum brane located, sgy; @t The presence of
the orbifold fixed point prevents the full supersymmetry from being restored. However, this is
fully expected when a domain wall is present. Although Hyesymmetrization introduces an
absolute value into functions, the Killing spinor equations are of first order, and so do not see any
S-function singularities. As long as the conditiof%&s15 are satisfied, the solution remains super-
symmetric.

Of course the second order equations of motion will seesthenction brane source. For the
solution (3.14), we find that the extra source termsyat 0 are
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3k o ~ - ~
Thrane_ 1 4(2b§e<3/~*15> ¢0+5b3e” (319 20— 7[b,by,|) 8(y) 8 5K G0
(3.18

53k . - ~ - -~
Qbran% —4 \/;ﬁ(bie(%ls) e+ bgef (3W15) @g _ 2|b1b2|)5(y),

assumingp;b,<0 as indicated above. These “brane sources” enter in the equations of motion as
Run— 39unR=THn+ Tun ' VZp=4,V(p)+QPrane (3.19

where

Tun=2(Imedne— 39unde?) — 2gunV(@). (3.20

Depending on the sign df, the branes have either positive or negative energy density. However,
in both cases the relation between charge and tension is the same, so the branes may be stacked up
in BPS configurations.

We have thus seen that the kinks at the brane locations have different consequences for
supersymmetry and for the equations of motion. Since the supersymmetry variations and Killing
spinor conditions are of first order, the kinks give rise to possibly discontinuous quantities, but no
Ssfunction singularities. On the other hand, the equations of motion will be sensitive to the
additionals-function sources. Although one may view the equations of motion as a composition of
two supersymmetries, there is no contradiction in the presence and absencé-airthgon terms
since the Killing spinor equations only give rise to a subset of the full equations of motion. To see
this consider again for simplicity thé\ transformation(2.6),

ON=3[y-9,+V2d W]e=1e B¢’y +v2eB a,W]e. (3.21)

Partial breaking of supersymmetry then demands the BPS conditien—v2e® d,W, relating

the scalar to its potential. One may of course choose the other sign if so desired. However this is
a global choice, and must be consistent in all patches of space. Similarly, vanishing of the
gravitino relates the metric to the scalar poten#dl=e®W/3v2, as given in2.15. Now consider
deriving the second ordeX” equation of motion by taking a derivative ef BA’,

1
e BA"—A'B')= —W'. 3.2
( ) - (3.22

For a continuousV, one simply uses the chain rulé&y’ =3 ,W ¢', and substitutes in the’
equation to arrive at thé” equation of motion given if2.8). However, the assumption of a
continuousW is actually too strong. For th&, invariant case, wherd/ changes sign at the brane
(say aty=0), one would also pick up a source term upon differentiating, resulting in

1 %)
A”—A’B’=—€<p’2+?eBW5(y). (3.23

Thus, while supersymmetry implies most of the equations of motion, it does not in fact determine
all of them. In fact, for higher codimension branes, there is even more slack between the BPS
conditions and the equations of motion. The harmonic function condition, of primary importance
in brane constructions, is generally a consequence of the equations of motionnoand
supersymmetr§f®4°
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IV. D3-BRANES AND THE WORLD IN TEN DIMENSIONS

Until now we have focused almost exclusively on the five-dimensional viewpoint of the
Randall-Sundrum scenario. Since the breathing-mode domain wall has its originsShdbmm-
pactification of 1IB theory, it has a natural interpretation in terms of 1B D3-brarfesllowing
this connection from the brane-world geometry to breathing-mode branes and then to D3-branes,
one is led to a realization of the Randall-Sundrum scenario in terms of 1IB theory in an appro-
priate D3-brane background.

While the lifting of the breathing mode brane to patches of the D3 geometry is straightfor-
ward, the resulting configuration has unusual features. Following Ref. 1, lifting of the solution
given in(3.12 proceeds by identifying a ten-dimensional Schwarzschild coordinate,

20
_ 3/28
p=1/ RSH . (4.1)

Using the charge relatioh=m(20/Rs)>% and the Kaluza—Klein ansat.8), one finds the
resulting ten-dimensional metric,

12
- k
dsiy= b%’z( 1- ?) dxe+

-2
k
1- ?> dp?+p2dQ2, (4.2)

which is that ofN D3-branes of total charge®° A further change of coordinates®= p*—k, may
be performed to transform this into standard isotropic form,

dso= VB Hp 2 dsC + HY3(dr?+12dQ2), 4.3

with a harmonic functiomd p3=1+k/r*. Note that the constaiit, may easily be scaled out of the
longitudinal coordinates.

For theZ, symmetric configuration, obtained by kinking the linear harmonic functi®mi.4),
we see thaH is a double valued function of. This has the consequence that the lifting relation
(4.1) is similarly double valued; opposite sides of the breathing-mode brane lift to ideptical
values. While the orbifold picture corresponds to a single slice of the D3-brane geometry,
el[p_,p.], the full circle compactification instead corresponds to two copies of the D3-brane
geometry patched together @t andp, . Note that the AdS horizon, located Hdt, , lifts to the

D3-brane horizon, located ai*=~k1’4. Thus taking the Randall-Sundrum configuratigmk-
down withH>H, ) and pushing the second brane off to the Cauchy horizon corresponds in ten
dimensions to taking two copies of the near-horizon geometiy &f3-branes, and gluing them
together at a valug, of the Schwarzschild coordinate corresponding to the initial velgef the
linear harmonic function.

For this Randall-Sundrum configuration, it is instructive to “unfold” the doubled mé#i®

by defining a new radial coordinates[ —r,rq] such that =r,—|¢|. After scaling outb, from
(4.3), the lifted Randall-Sundrum metric has the form

R

112
dsfo=| 1 1 ) d&+(ro—[€)?dQd). (4.9

—-1/2
2
) dxwL

R

The positive tension brane is locatedéat 0, while the negative tension brane is pushed off to the
AdS horizon a€= *r (the two values are identified under thg orbifolding). As seen explicitly

here, this act of patching together two stacks of D3-branes essentially compactifies the six-
dimensional space transverse to the branes, and also introduces a curvature discontifuity at
=0, the location of the patching. Furthermore, this compactification introduces a charge conser-
vation condition, implying that the net D3 charge must vanish. Thus the resulting kié&k @t
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must include a stack ofi2 negative tension D3-branes, with2N units of charge soaking up the
N+ N units of charge from the two stacks of positive tension D3-branes.

The question arises, however, whether placing this stackofi@gative tension D3-branes at
£=0 is sufficient for generating the kinked Randall-Sundrum geometry. Furthermore, the reduc-
tion of D3-brane tension fror® =10 toD =5 yields the simple resuliy_5=Tp-19. In addition
to giving rise to the tension discrepancy pointed out in Ref. 27, it also leaves unexplained how
positiveD =5 tension arises from negatii&= 10 tension. As it turns out, the resolution to both
issues is the realization that tg orbifolding, or the doubling of spacetime, itself gives rise to a
positive tension contribution &= 0, the location of the kink. Of course, it is easy to see that the
net tension has to be positive, as that is what is required to “fold up” or compactify the space
transverse to the branes. The resulting picture is one of negative tension D3-branes trapped on a
positive tensiorzZ, orbifold plane giving rise to a composite description of the Randall-Sundrum
configuratior?®

By starting with a brane-world scenario on a circle, one obviously obtains a compact Kaluza—
Klein geometry, corresponding to expanding I1B theory abad&®x S; X S°. TheS,; coordinate
y lifts to the radial coordinate, living in a restricted annular range between the two D3 source
shells in a double D3-brane background. Of course there is no surprise in starting with a compact
geometry and lifting it to another compact scenario. However, by taking the limit of placing the
second brane at the Cauchy horizon of AdS, one effectively decompactifies the original Randall—
Sundrum geometry of Ref. 2 into the picture of Ref. 3. Nevertheless, from a ten-dimensional point
of view, this corresponds to simply extending the range af finite distance so as to reach the
doubled D3-brane horizon: the internal space remains confgilegtast if the inside-horizon brane
cores are disregardedy smoothing out the patching of the double D3-brane configuration, one
presumably obtains a warped compactification with an internal six-manifold in the spirit of Ref.
28.

To complete this D3-brane picture of the brane-world, we present the limit in whicHthe
symmetric supergravity solution literally reproduces the Randall-Sundrum configuration of a
single positive-tension “kink-down” brane between two patches of anti de Sitter SpBizeting
from the D=5 3-brane metriaq3.12 with b,>0, b;<0, k<0, we want to take a limit ak
—0_ . However, the inverse power &fin b, andb, (3.13 makes this appear singular. The cure
for this is to take a coordinated limit d&s—~0_ and ¢o— ¢, . We implement this explicitly by
taking

2\ 7/6

+Blk|, B>0. (4.5

e7 (7/\/“@ 0= (

Note that for3>0, one hase™ ""B®)¢o>e~ (WB)ex je Hy>H, . Accordingly, for finitek
<0, the harmonic functiofl decreases from its valué,, reaching the Cauchy horizon valtk,
at y=y,. This is the natural point at which to make an identificatigp— —y,, putting the
second(negative tension3-brane at the horizon. For finite one thus has a “semi-interpolating
soliton” in the sense that one of the asymptotic limits of the solution, but not both, corresponds to
a vacuum solution of the theory, in this case the AdS space with asymptotic ggalaht the
Randall-Sundrum brane, however, there is no horizon.

Taking the joint limit defined by4.5 ask—0_, the difference between the two harmonic
functions ine®* partially cancels, giving an expression proportionaktovhich cancels thé in

the denominators db; andb,. The resulting metric function is then given by

RS 5/6 4
e*A=4m mz) (ﬂ—|Y|)=E(,3—|Y|), (4.6)

where L=m~%(20m?/R5)%® and they coordinate remains restricted to a compact range,
< B. This corresponds to the line element
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2 2

dy

2
_ _ 12 v
ds?=—(B—|yD"?5,,, dx*dx +_16—(3—|y|)2' 4.7

JL

The apparent infinite range of the fifth dimensibis obtained by making a change of variables,

B L 1/4
,3_|y|:Be*4|y\/L, Xﬂ:(@) XM, (4.8
resulting in the five-dimensional metric,
d?=e 2ty d%* d%’+dy?, (4.9

which is literally the Randall-Sundrum soluti®éfi This sign of the kink k< 0) thus corresponds
to a binding of gravity to the 3-brane at= 0, with a metric corresponding to segments of pure anti
de Sitter space everywhere off this brane surface.

In taking the above Randall-Sundrum lirki-0_ , ¢o— ¢, , the ten-dimensional coordinate

pis restricted to a progressively limited range nleaor, equivalentlyy is progressively restricted
to a range near=0. Thus, from aD =10 perspective, the “infinite” Randall-Sundrum scen?rio
corresponds to shrinking the outé@RS) brane source tightly around the inner horizon brane.
Clearly, what is infinite and what is infinitesimal in this subject is frame-dependent.

It is instructive to see in addition the scaling of the “brane sourcés’18 in the Randall-
Sundrum limit. Takingk—0_, we find

24
TN == 72 0¥/ B) 84168 ,0= 2V, (Y B) 1 6K (4.10

while Q"= 0. This vanishing of the scalar charge is in fact forced on us singecouples from

the solution in this limit. This brings up a key observation that it is not so much the breathing
mode¢ that supports the brane, but rattég; flux corresponding to D3 charge. In addition, it is
also the behavior oHs; flux that saves the BPS condition witQ®@"e=0: the variationd\
becomes trivialas it must for a decoupling scalawhile the gravitino transformation becomes
that of pure AdS but with a sign fliw, — —W, aty=0 (corresponding to a Freund—Rubin
compactification with opposit&® orientationg. This preservation of supersymmetry further sup-
ports the D3-brane origin of the Randall-Sundrum brane-weikdthe double 3-brane configu-
ration that we have presented.

The above successful reproduction of the Randall-Sundrum scenario with a “kink-down”
(i.e., positive tensiondomain wall embedded intB=5 anti de Sitter space depends crucially
upon use of the breathing mode which we have shown to transform in a necesdggy 4 anti
de Sitter representation. Noted as a possibility for a Randall-Sundrum scenario in Refs. 17, 20,
this mode escapes the analysis of Refs. 22, 23 because it belongs to a massive spin-two multiplet,
and thus does not belong to an intrinsically=5 supergravity theory. This is because the full
multiplet of the breathing mode’s superpartners cannot be retained in a “consistent” Kaluza—
Klein reduction, since it involves a massive spin two mode, which never can be kept in a consis-
tent reduction on spher@&With respect to thé® =5, N=8 supersymmetry, the breathing mode
belongs to a multiplet containing 20 copies of the following sets of fields: 1 spin 2, 4 spin 3/2, 26
spin 1, 20 spin 1/2, 15 spin 0. With respect td& 5, N=2 decomposition, it belongs to a long
massive vector supermultiptéwhich is another way of explaining why it escaped the analysis of
Refs. 22, 23. Since the breathing mode isSH0(6) singlet, only the inclusion of the breathing
mode’s nonsinglet superpartners leads to difficulties with Kaluza—Klein consistency; truncation to
the purely bosonic theory involving jut=5 gravity and the breathing mode is fully consistent.
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V. MODE LOCKING AND SPONTANEOUS REDUCTION TO AN ORBIFOLD

The Z, symmetric scenario presented above, with two branes of opposite tension and opposite
magnetic charge, corresponding(814), is clearly similar to the brane constructions of bea—
Witten orbifolds in M-theory given in Refs. 12, 13. The analogous type IIB situation has the great
advantage that one can work out explicitly many features of the dynamics, whereas the analogous
discussions in M-theory reduced on Calabi—Yau 3-folds must necessarily remain rather implicit.
Here, we wish to explore further the properties of thissymmetric solution, and see to which
extent it naturally corresponds to an orbifold compactification.

The orbifold compactification may be viewed as a compactification on a circle with an addi-
tional projection of all the fluctuations int, even states only. In a Kaluza—Klein spirit, however,
one can investigate the possibility of removing the enfoiégg@rojection, in order to see what the
theory does purely of its own accord when compactified about the double 3-brane background.
Thus, we start without making args, projections, but still shall take thedirection to be a circle.
As explained above, from a ten-dimensional point of view, the D3-branes now have no honcom-
pact transverse directions. Thus there is an added cohomology constraint, which demands that
there cannot be any nonzero net magnetic charge in the compact transverse space. Unlike general
warped compactifications, which allow for additional fields and nontrivial topology, we shall
maintain our focus on the roun® and the breathing mode of the compactification. Then, the
simplest allowed configuration on the circle is to have a simple pair of 3-branes with opposite
magnetic charges. Placing the branes at opposite points on the circle gives ridg $grametric
configuration. However, without imposing tfs, orbifold symmetry, it would appear that the
branes are free to move independently. But we shall now demonstrate that this is not the case;
instead, there is a mode-locking phenomenon that links the fluctuations of the two 3-branes into a
Z, invariant combination.

Consider they coordinate to be periodic with lengthl 2making the identification ay
=p,< —p,. For bosonic fields on this circle, one must impose continuity conditions at both the
locations of the 3-branes. Demanding continuity of the scalar fiekthd the metric component
e’ aty=0 and also ay=p,«<y=—p,, one has four continuity conditions to satisfy. In this
discussion we shall take the overall periodicity lengtht8 be fixed, sop;+p,=21. From
continuity of the scalar field, one simply obtains ag=0 that the valuepy, must be a common
limit of ¢ as one approaches tge=0 RS brane either from the left or from the right. Continuity
aty=p, < — p, implies continuity of the harmonic functidnd, so one obtaingk,|p,=|k,|p,, or,
using p1+p,=2l, that|k,/k,|= 2l/p; —1. Imposing as well the periodicity conditions on the
metric functione®® aty=0 andy=p;< —p,, one obtains the continuity conditions

Rso) . m= Rs2) o
o MmN @R Imal g (R lkale:)
2

% - . (5

R5(1) = R5(1) =
ma| — _e(73/\’15) o ms | — _ e(*3/v15) ?0+ |k
| 1| \/ 20 | 1| 20 ( | 1|P1)

These conditions are solved by matching relationsnficaind R5 between the two regions:

2l |\t !
m2=(——1) my, VR5(2):(Z_1) VRs(1)- (52

Accordingly, if one now makes a standard soliton-physics ansatz by letting,tbed modu-
lus p; become dependent upon the=4 coordinatex”, then upon substitution back into the field
equations, one obtains the effective equationggix”). Because the oscillations of this coordi-
nate are linked by5.2) to the Kaluza—Klein ansatz parametensandRg, however, this specific
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modulus has special restrictions on its oscillations. BotandRs are curvature components, and
are thus subject to Bianchi identities. To see thisrfprconsider the Kaluza—Klein ansaiz.9),
together with the Bianchi identity

dHjs;+ 3 €;F5)Flg=0. (5.3

Letting m— m(x) and substituting the original ansdz.8), one obtains directly a suppression of

m fluctuations,d, m(x) =0. For this reason, parameters entering into generalized Kaluza—Klein
ansaze like (3.8) have been sometimes been called “nonzero mod€slii order to see the
dynamics of such modes in more detail, one should restore the massive Kaluza—Klein modes that
are normally set to zero in a compactification. In the casmothis means replacing the ansatz

(3.8 by

Hisp=4m(x)e8eps)+4m(X) €5 (S°) + hysy (5.4

whereh(s; represents the fluctuating massive Kaluza—Klein modes. Re-performing the analysis of
the Bianchi identity(5.3) for this generalized ansatz, one now shows that a nonvanishimg

must be proportional t@&“1%2%3%% g, hy ;5.2 , Whereh,, ., , is a Kaluza—Klein massive
mode, with mass determined as usual by the inverse radius @theernal sphere, i.e., corre-
sponding to the length scale of tBe=5 anti de Sitter space. Thus(x), and hence,(x) are in

fact Kaluza—Klein massive modes, and become “frozen out” at energies lower than the AdS
scale. Similar considerations apply to the nonzero mBge which is the Ricci scalar of the
internal S° sphere, upon use of the gravitational curvature Bianchi identity. Specifically, in the
simple case with Kaluza—Klein massive modes set to zero, if one sets to zebo-theBianchi
identity VM(Ryn— 1/2gunR) =0 and uses the dimensionally reduced field equations, one finds,
for Rg— Rg(x*), the constraing,Rs exp(1/2/5/3¢) —m d,m=0, thus locking out the low energy
Rs(x*) fluctuations as well.

Given that theZ, odd modes are linkedia Bianchi identities to massive Kaluza—Klein
modes, one expects the theory to settle down into a low energy effective theory tHat is
symmetric. Strictly speaking, all that has been demonstrated above so far is tBat theleriva-
tivesd,m, d,Rs are locked out at low energies. In order to show that the theory settles down into
aZ, symmetric lowest energy configuration, one would need either to analyze in detail the energy
functional for the compactified theory, or to study in more detail the equations of motion of the
massive modes. It is likely that the analysisZof odd modes can only be done fully consistently
if one keeps the entire Kaluza—Klein towers of massive states.

However, one can get an idea of the situation that is obtained withZpeymmetric con-
figurations if one considers in a little more detail the question of supersymmetry preservation in a
patched background with the matching conditigbsl), (5.2). Locally, in a patch, there is no
difficulty in finding a Killing spinor. However, once one declares that the overall compact part of
the spacetime i§°x S*, one is required to impose continuity and periodicity conditions both for
bosons and for fermions.

In the Z, symmetric configuration of the two 3-branes, we have already demonstrated while
discussing the unbroken supersymmetry transformation of Sec. I,

SN=1e"B(yo' —¢')e, (5.5

that there is a consistently defined and continuous unbroken supersymmetry transformation with a
Z, even global Killing spinoe=e*?(1+ 1Y) e,. Now consider the form of therokensupersym-

metry transformations in the double 3-brane background. As one can see from the supersymmetry
algebra the anticommutatgQpoken Qpreservesi INVOIVES a translation in the fifth coordinate

which is clearlyZ, odd. Indeed, the broken supersymmetry parameters will Eavedd projec-

tion conditions. ThisZ, odd character is canceled, however, in expressions for Goldstone spinor
zero modes likg5.5), by theZ, odd character ofp’. Combining the Goldstino expression for
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y>0 with theZ, map fory<0 amounts to inserting an absolute value sign aroghdn (5.5),

taking a broken supersymmetry parameter éoirhus, overall, the Goldstino zero mode4s

even, as it must be in a consistent truncation. Note that the “kink” in the Goldstino expression
resulting from(5.5) with the replacemeny’ —|¢’| corresponds to the sign flip of the superpo-
tential W. That W flips without necessarily passing through zero is what allows the Goldstino
mode to be normalizable in the present case, thus circumventing the normalizability problems for
Goldstinos described in Ref. 54. Overall, the zero modes of the double 3-brane geometry form a
singleD =4, N=4 super Maxwell multiplet.

Now consider what happens if one tries to expand around aZgesymmetric configuration
of 3-branes. For the Killing spinor itself, one may observe #ae”?(1+1")¢, is in fact still
continuous and well-behaved in the nonsymmetric case, since the metric fueéfiois by
construction matched at the branes. However the situation is different for the candidate Goldsti-
nos. For a nor&,-symmetric configuration the derivative’ differs by more than a sign as one
crosses a 3-brane: in this case one ha# |k,|, so there is a nonunimodular factor present as
well. This prevents one from having continuity both of the unbroken supersymmetry parameter
and of the Goldstinos. Thus, although things look locally like one has a BPS configuration with
unbroken supersymmetry for a n@j-symmetric configuration, analysis of the putative zero-
mode supermultiplets finds them to be inconsistent with the available matching conditions. So, one
is led to conclude that only th&, symmetric configuration has a proper unbroken supersymmetry
and zero-mode multiplets transforming correctly with respect to it.

The configuration with globally unbroken supersymmetry should be the proper “vacuum” in
this double 3-brane sector of type 1IB theory compactifiedSdnA fuller analysis of this spon-
taneous reduction to &, invariant effective theory on the basis of energy functionals and the
equations of motion for the Kaluza—Klein massive modes would be desirable. But it is already
clear that this double 3-brane model displays a remarkable spontaneous appearance of an orbifold
structure. This happens not by insistent projection intd,anvariant sector of the theory, but
naturally by virtue of the Kaluza—Klein dynamics of the theory.

Our discussion has indicated that the original Randall-Sundrum fadsés naturally when
the fifth dimensiony direction is taken to be compact, and one may view the model as a system
of two D3-branes transverse to the interBak S°. From theD =5 point of view, there are two
branes: one with positive and one with negative tension, constrained by Kaluza—Klein dynamics
to live at diametrically opposed points on the circle. While the presence of a negative tension
brane might appear troublesome, we have shown that it does not contribute tovibly natici-
pated negative energy modes; these are nonzero modes and mix with higher Kaluza—Klein mas-
sive modes. The negative tension 3-brane has the effect of protecting the spacetime from curvature
singularities in the geometry that might reside behind the Cauchy horizon. Gf gr®ri two
independent types of motion of the 3-branes along Shalirection, only theZ, even modes,
corresponding to an overall “rotation” of both branes along the circle, localized inDthet
coordinatex*, correspond to genuine zero modes.

VI. CONCLUSIONS

We have found that an appropriately constructed D3-brane configuration provides a super-
symmetric and dynamically stable Randall-Sundrum scenario. This is achieved in a solution to
the D=10 type IIB supergravity equations which can be giveD a5 interpretation, but is not
fully a D=5 solution, for it employs an intrinsically massive Kaluza—Klein mode Shereath-
ing mode. This mode has AdS energy= 8, satisfying the boun&,>4 that is required for an
asymptotic approach to AdS space from a downwards-facing warp-factor kink in a Randall—
Sundrum scenario. There is als&aflip in the sign of the Freund—Rubin parameter This is
natural enough in ® =10 context wheren is a field-strength value, but it is less natural from a
D=5 viewpoint, wheram normally would appear as a parameter. We have found, moreover, that
although one can decide to exclude the odd modes when expanding the theory around the
presentedZ, invariant background, and thus reproduce $tZ, orbifold reduction, it is not
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actually necessary to make this projection by hand. Bianchi identities for the curvature values
entering in the solution relate ti#® odd modes to Kaluza—Klein massive states of the theory, and

so they decouple naturally at low energy. Although charge conservation on the circle requires
branes to come in oppositely charged pairs, we have seen that one can recover a single brane
Randall-Sundrum model by pushing the second brane off to the Cauchy h@reomy taking

¢1=¢, for the second braneFrom theD =10 point of view, however, this corresponds to
shrinking an outer RS shell of D3 brane tightly around an inner “horizon” D3 brane of opposite
charge and tension. Clearly, an important problem is whether this geometry can be realized in a
string theory context.

Note added in proofAs this paper was in the final stages of preparation, a very interesting
paper appearétithat sheds light on the relationship between constructions such as those of Refs.
12, 13 or the present paper and the supersymmetry scheme of Ref. 56, which was otherwise
puzzling. In Ref. 55 supersymmetry in orbifolds, and in particular@he5 case of interest here
is discussed. In order to obtain a continuous Killing spinor at orbifold singulafitiesessary for
the Killing equation to be realized everywhere, including at the singular ppiRef. 55 intro-
duces a 5-form “theory of nothing” field strength, which has just a constant as a solution, but
allows for this variable to be only piecewise constant. This allows faf,asign flip in the
prepotential that is critical for having a preserved supersymmetry allowing coupling to supermat-
ter. This sign flip was not made in the discussion of Ref. 56, leading to problems with matter
coupling. This difficulty of Ref. 56, and the resolution of Ref. 55 was also investigated in Refs. 57,
58 and independently worked out by Ref. 59. We anticipate that a fuller Kaluza—Klein treatment
of the type IIB theory, including all fermions and making a careful reduction of the type 1B
supersymmetry transformations, will show that be=5 supersymmetry realization adopted in
Ref. 55 can also be viewed as the natural dimensional reduction of the type 1IB theory u&&ing a
symmetrized ansatz of the type employed in Refs. 12, 13 and the present paper. In particular, we
expect that the 5-form “theory of nothing” field introduced in Refs. 58, 55 can be identified with
the D=5 residue of the type 1B self-dual 5-form field strength.
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