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An analysis is given of the collapse of a spherical cavity in a large body of an incompressible visco-
elastic liquid. Proceeding from a linear rheological model for the liquid, one obtains a nonlinear integro-
differential equation for the motion of the cavity. Analytical solutions are derived for certain limiting
values of the parameters governing collapse, and some numerical solutions are presented for various
other values. As one of the more interesting results of this work, it is found that elasticity in the liquid
can significantly retard the collapse of a void and produce prolonged, oscillatory motion whenever the
relaxation time of the fluid is moderately large in comparison to the Rayleigh collapse time. This is in
sharp contrast to the catastrophic collapse which will aways occur for voids in purely viscous liquids.
Both numerical and approximate analytical solutions are presented to demonstrate the damping effect

of liquid viscosity on the cavity motion.

I. INTRODUCTION

The term cavitation usually refers to the phe-
nomenon of growth and collapse of flow-induced
voids or vapor bubbles in liquids. The effects re-
sulting from cavitation are known to produce metal
erosion, luminescence, and increases in various chem-
ical reaction rates.

In the previous works on this subject, attention
has mainly been restricted to classical liquids. The
earliest theoretical treatment is apparently that of
Lord Rayleigh,' who considered the collapse of a
spherical void in an inviseid liquid. In later the-
oretical works, attempts have been made to account
for viscous effects in both the bubble phase and in
the surrounding liquid and most of the analyses have
dealt with Newtonian®™* or purely viscous fluids.®
An interesting question arises as to the effects that
elasticity might have on cavitation in viscoelastic
liquids. In other contexts, it has been observed
that the presence of elasticity such as that produced
by the addition of small amounts of high polymers,
can drastically change the flow behavior of liquids.
Hence, one might well inquire as to the possible
and perhaps beneficial effects of viscoelasticity on
bubble collapse, such as suppression or reduction
in the intensity of cavitation.

An analysis of bubble growth in viscoelastic fluids
has already been given by Street,’ but because of
the applications contemplated in his analysis, iner-
tial effects were neglected. It is precisely these
effects, however, that tend to predominate in the
collapse phenomena usually associated with cavita-
tion. This provides part of the motivation for the
present work, in which we shall focus our attention
primarily on the collapse of spherical voids (i.e.,
regions containing no gas) in an idealized visco-
elastic fluid.

We recall that previous studies have shown that
collapsing cavities which contain permanent gases
will generally always rebound short of actual col-
lapse, such that the cavity radius never actually
decreases to zero. On the other hand, a void will
generally always collapse to zero radius, at least
in purely viscous fluids. It is, therefore, interesting
to reconsider this question of rebound versus com-
plete collapse for the case of a void in a visco-
elastic fluid.

II. EQUATIONS OF MOTION

Here we wish to treat the motion of a spherical
bubble contained in a large body of an incompres-
sible liquid. Initially at time ¢ = O the system is
at rest, with a bubble radius R, and a uniform
pressure P,. It has previously been shown®?® that
the equation for the spherically symmetric motion
for a bubble, in which there is no condensation or
evaporation of fluid, can be reduced to

poapr _Li— P 1 (7 o
RR + 3R’ = . pr(Ve),dr, )

where (V +%), denotes the radial component of V %,
the divergence of the deviatoric or “extra’” stress
for the liquid phase, and r = R(f) is the radial
position of the bubble-liquid interface with P; and
P, denoting the pressure in the liquid at » = R(t)
andr = o, respectively. The dots denote derivatives
with respeet to ¢, and p is the liquid density.
Irrespective of the fluid rheology, the radial
velocity at any radial position r in the liquid is
required by continuity, incompressibility, and the
assumed symmetry to be
SD2
u =" @
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By the usual force balance at the bubble-liquid
interface in the cavity, the term P, in Eq. (1) can
be expressed in terms of surface tension and the
radial stresses as

2
Trr.g+Pg=Pl+Trr,l+an (3)

where ¢ refers to any gas which may be present in
the cavity and [ refers to the liquid phase. As in
Fogler,* here we adopt the sign convention of Bird,
Stewart, and Lightfoot for the stress tensor: The
symbol = (or 7;;) denotes the deviatoric stress tensor
reckoned as a compressive stress.” Since neither
surface elasticity nor viscosity are considered in
this analysis, the surface tension force is given by
the static surface tension .

For bubbles containing an ideal gas in a uniform
state the gas-phase stress at the bubble surface is
equal to the pressure alone; hence ,,,, = 0,* and
the liquid-phase interfacial pressure is given by

%{ - T, . 4)

r=R

Plng“‘

Furthermore, the term (V -¢), which occurs in Eq.
(1) can be written in terms of three normal stresses as

(V-9 = P B L L)

and, since the sum of these deviatoric stresses is by
definition zero, one can express the ¢ and 6 stresses
in terms of the radial stress as

Too  Tos = —Trrs (6)
which with Eq. (5) yields
0Ty Tor
(Vem)e =75+ 37 @

Then, upon substituting Eqs. (4) and (7) into Eq.
(1), one obtains the equation

P,—Py, 2 3 (“r.dr
P PR pJp 7

for the bubble radius E(f). In order to complete
the description of motion, we must now relate the
liquid-phase radial stress r,, to the bubble motion.

In the case of a general viscoelastic fluid exhibit-
ing long-range memory effects, the stresses will
depend on the past history of strain or rate of strain.
For the simple, radially symmetric flow field con-
sidered in Eq. (2), the strain consists merely of an
unsteady simple extension. Hence, we expect that
for an isotropic material the instantaneous radial
stress 7,.(f) can be expressed as a functional on the

RR + 3R* = (8)
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past history of the radial strain ratee,,(t'),0 < ¢’ < t.
Here, as in the following analysis, { = 0 corresponds
to the beginning of the collapse process, where we
assume the liquid to be in a completely ‘“‘relaxed”
state of purely hydrostatic stress.

As with other analyses involving viscoelastic fluids,
we must now postulate a relation between the strain
and the kinematic history of the motion to be
considered, and for this purpose, we adopt the usual
material coordinates. Thus, we let 7' denote the
position at past time ¢/, 0 < ¢ < ¢, of a particle
which is at position r at the present time {, so that,
with the velocity field given by Eq. (2), we have

)’ =" + R(t) — B*(®). C)

Now, at any position (r, {) the radial deformation
rate is given by
u 2RR?
erelr, ) = or
and, therefore, by Egs. (9) and (10), the history of
the deformation rate is determined by

2R(R*(t")
R - BYY)
For the present work, we shall employ a rather
simple, linear viscoelastic fluid model, in which the
normal radial stress is related to the corresponding
strain rate by

10)

e, (1, 1)

(11)

.l = —2 fol Nt — e, (t) dt’, (12)

where N(f) is a ‘“‘memory”’ function or relaxation
modulus. On combining Eqgs. (11) and (12) we have

*N(t — )RR () av’
0 7'3 + Rs(tl) _ Rs(t) ’
and the integral in Eq. (8) becomes

® Tre g N(t — V)RR Y) dt’ dr
f ‘4ff 7+ B(l) — B()]
4 f N(t — t’)R(t’)Rz(t’) In [R(t")/R(t)] dt’
) R} — R*(®) ’

T = 4

(13)

(14)

Under these restrictions the complete equation
governing the collapse of a cavity is the nonlinear
integrodifferential equation

RE 4 3p =Le= Do _ %‘;
12 f N(t — )RRt In [RE)/RO] dt’
R(t") — R

(15)
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For the purpose of the analysis to follow we shall
adopt an elementary form of the relaxation modulus
N, consisting of a linearly viscous Newtonian con-
tribution and a Maxwellian contribution, as follows:

N(t) = p 8(t) + Go exp (—¢/N), (16)

where & denotes the delta function, x a constant
viscosity, A a relaxation time, and G, an elastic
modulus.

In terms of dimensionless variables, Eq. (15)
becomes

P, - P, 2

‘//‘//'*‘%\02: pP 4y

o Nwed Ne¥
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with ¢(0) = 1 and ¢(0) = 0, where

_ 12NE]
NRe

Np. = 7;— (a Deborah number®*®),

c

Ng = Gote (an elastic number),
n

2
Nze = ifto_ (a Reynolds number),
ul.

3
Ny, = Bt% (a Weber number),
and ¢y = R/R,, t* = t/t, ¥, = Y(t). Also, t. =
Ro(p/Po)"* is a characteristic (Rayleigh) collapse
time, with P, being the initial pressure. In this
manner one can readily identify the relevant physical
parameters characterizing the collapse process.

In view of the number of parameters, even in this
relatively simple model, one is practically forced
to consider some special limiting cases where certain
effects may be assumed to predominate. Thus, we
focus our attention first and foremost on fluids with
long relaxation times, corresponding to Np, — .
Here, as in the remainder of the analysis, we shall
only consider voids, such that P, = 0 in Eq. (17).

III. COLLAPSE CRITERIA AT LARGE DEBORAH
NUMBERS

A. Large Reynolds Number

To begin with, we treat the case where both the
Deborah and Reynolds numbers are large. In this
limit, Np, — <, Nz, — «, the fluid behaves es-
sentially as a purely elastic material, and one obtains
in effect a conservative dynamical process char-
acterized by an energy integral. First considering
the case where surface tension is negligible,
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N,. — o, and reverting to dimensional variables,
one has for the equation of motion,
_ Po G

RR+ 3R = —=2—- =,

p p (18)

where

R 2
B RZIn (R,/R) dR,
G =126, | R

_ 4 f‘ In s
B 3G0 (Ro/R)* S — 1d8.

On multiplying Eq. (18) by 2R’p dR and integrat-
ing, we obtain

R
pR’R® = 3P,(R) — R®) — 2 f GR’ dR. (19)
Ro

One will immediately recognize that this equation
is an energy integral, with the left-hand side rep-
resenting the total kinetic energy of the liquid
which is expressed as the difference between the
stored elastic energy and the work done by the
ambient pressure. Rebound short of collapse is,
therefore, possible and will oceur at a rebound
radius R, which is the root of the equation

R
2P(R: — R — 2 | GR’dR =0,

Ro

(20)

corresponding to zero kinetic energy in Eq. (19).
With the substitution into Eq. (18)

y_S’ - 0:

the integral in Eq. (20) can be written as

R
H=2 GR® dR

Ro
8R3Gof'f’ Iny
= — dy d
9 v h A=)y y o,

which, after changing the order of integration, can
be expressed as the infinite series

Thus, Eq. (20) becomes

S (-2 [InQAAP
,; n? o — 2)

(1)

Py, _4
G0—3 ) (23)

which provides the criterion for rebound, giving
the rebound radius R = R* = R,z as a function
of P,/G,.
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F1c. 1. The initial rebound radius and equilibrium radius
as'a function of Po/(Fy. The middle curve was computed
from Eq. (17).

In the marginal case, that is, rebound at B = 0,
we have

0

|oo

(24)

[SCRE

201 2r?
;nz— o= 21082 .-

0

D

from Eq. (23), and, therefore, the condition for
collapse without rebound is

P, 2

Go” 9
whereas, for rebound short of collapse, R* > 0,
we must have

(25)

P, _ 2

G, 5 (26)

In the latter case, Eq. (23) provides us with a
plot of rebound radius R*/R, versus the ratio of
initial pressure to elastic modulus P,/G, which is
displayed as the lower curve in Fig. 1.

If we consider the case of a finite Weber number,
where surface tension is included in the equation
of motion, the criterion for collapse is no longer
independent of the initial bubble radius. By an
analysis similar to that above, one can show that
the condition now becomes

P, + (QU/RO) > 271'_2

G 5 @)
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instead of Eq. (25). From this relation one sees
that surface tension effects will tend to be important
only in small bubbles.

Next we should like to determine the importance
of viscous retardation on the collapse process, cor-
responding to a finite Reynolds number in Eq.
(17). Whenever Ny, and Np, are finite, the system
is no longer conservative and, hence, does not, in
general, admit an energy integral like Eq. (19).
We are thus forced to treat Eq. (17) with numerical
techniques, as will be discussed below. First, how-
ever, it is worthwhile to note that for infinite
Deborah numbers a cavity is characterized by a
certain “equilibrium” radius R.,, as determined by
the static balance between pressure, surface tension,
and elastic forees. One can easily derive an expres-
sion for this radius, and, considering the case of
negligible surface tension Ny, = «, one finds from
Eq. (20) that the condition of static equilibrium is

Py, 4 (0=2", 2 2
- E n? +3(lnz))

GO 3 n=1 (28)

with R., = R,/z"°. The upper curve in Fig. 1
gives the corresponding plot of B,/ R, versus P,/G,.
This curve is, of course, independent of the Reynolds
number, since it refers to a static situation.

For the purposes of obtaining the numerical
solutions, a finite-difference technique was employed
to treat Eq. (17). In particular, a modified Milne
“four-point predictor” formula was used, and the
numerical solutions thus obtained were compared
for accuracy with existing numerical solutions for
bubble collapse in ordinary liquids.>* In all cases,
the solutions were the same.

B. Finite Reynolds Number—Viscous Damping

Figure 2 gives a plot of cavity radius versus time
for infinite Np, and Ny, The cavity is seen to

R/Go =10/7
Np, =@
Nye =@

F1c. 2. Theinfluence of the Reynolds number on the damping
of stably oscillating cavities.
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oscillate about an equilibrium radius subject to
viseous damping which increases with Ng,. Under
these circumstances, one would expect to observe
critical damping below some threshold value Ng,,
say, which we shall refer to here as the critical
Reynolds number.

To obtain an estimate of this number, we shall
make use of the techniques of linear stability the-
ory. Thus, letting ¢, represent the dimensionless
equilibrium radius and ¢/ a small perturbation about
this radius, we have

=9+ ¥, ¥V <A (29)

Then, substituting Eq. (29) into the equation of
motion (17) and neglecting terms of the second
order in ¢/, we obtain the corresponding linearized
equation for a collapsing void, which in the case
of infinite Weber numbers becomes

/-0
) (30)

44’
NRe‘l/e

Since 12 G(¥,) = 1 by Eq. (18), the preceding

equation becomes

3G
+ IZ[G(%) + oy

\be‘;, - 1+

L_ﬁ[ﬁmﬂ] . _
V' Nu@r T P Lgyia—enlY =% @Y
or, simply,

VoAb oy =0,

where b and ¢ are constants. In the usual way, it
can be seen that the oscillation of the cavity will
be critically damped whenever b* = 4c. With the
appropriate values of these constants from Eq. (31),
this criterion becomes

(32)

2 2 — Bg 1 - ‘pi
T e TG T /)

which on rearrangement and making use of the
definition in Eq. (17) becomes

1=l
¥ lIn (1/¢7)

Since the equilibrium radius corresponding to ¢,
is determined by P,/G,, we may express the critical
Reynolds number as given by Eq. (34) in terms of
P,/G, or, alternatively, in terms of y¢.. In the
latter case one obtains a plot of the critical Reynolds
number as a function of the equilibrium radius as
shown in Fig. 3.

A physical interpretation can be given to the
shape of the curve in the following way. Near
¥. = 1, where the elastic force is, relatively speaking,

(33)

NReuNEl = (34)

1139
12,
i i NDa= ©
‘o Nye= @
8 —
o 6
x
= —
4 L.
2 -
{ 1 1 1
o] 0.2 04 06 0.8 1.0
"'e =Req/Ro

Fic. 3. The “critical” Reynolds number as a function of
the equilibrium radius.

not very large, a greater viscous force is required
to damp oscillations as the cavity approaches its
equilibrium radius. However, when ¢, is only slightly
less than unity (e.g., ¢, = 0.7 as in Fig. 2), the
elastic force, which increases rapidly in a nonlinear
way, exerts a greater degree of retardation on the
motion, and consequently, a smaller viscous force
is necessary for critical damping.

Owing to the method of derivation, the present
expression for the critical Reynolds number, at
which cavities '‘move from their initial radius to
their equilibrium radius on a critically damped path,
can be regarded as strictly valid only for cavities
in which ¢, is close to unity. For cavities with
equilibrium radii close to zero, the departure from
equilibrium ¢/ at the initial state ¢ =1 is effectively
much greater than the equilibrium ratio ¢,, and
hence the above linearization technique ecannot
provide an adequate description of the cavity motion
from ¢y = 1 and ¢ = ¢,. One notes, however, that
for an equilibrium radius ratio of 0.74, the critical
Reynolds number obtained from Fig. 3 is 1.25, and
from Fig. 2 it is observed that for this value of the
Reynolds number the cavity does indeed approach
equilibrium in a critically damped way. Thus, the
linearization is evidently valid in this range.

For large but finite Deborah numbers, Fig. 4
shows the numerically computed motion of the
cavity. One observes complete collapse for P,/G,
= 100, with a collapse time very nearly equal to
the Rayleigh collapse time for an inviseid, nonelastic
liquid. Furthermore, it is evident that for the case
Np. = 1000 shown there, the motion on the first
few cycles is effectively the same as for Np, = =,
Also, it can be observed that the Reynolds number
has a significant effect on the initial motion only
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Fig. 4. The effect of the Reynolds number and the P,/G,
ratio on the collapse of a cavity.

when it is numerically on the order of magnitude
of ten or less. Because of the greater energy dis-
sipation at the lower Reynolds numbers, it appears
that the rebound radius decreases with the increasing
Reynolds numbers.

IV. COLLAPSE AT SMALL DEBORAH NUMBERS

While it is evident that for any finite Deborah
number a void must eventually collapse to zero
radius, it is nonetheless of interest to investigate
how collapse is delayed by the elasticity of the fluid.
In particular, we may consider the first cycle of
motion, as in Fig. 5. For a given Py/G,, the rebound
radius on the first cycle decreases with decreasing
Deborah number as shown there. If the fluid is
“inviscid” (Ng, = =) the eritical Deborah number
at which the cavity collapses completely on the first
cycle is 0.51 for a Po/@G, ratio of 1.43, whereas for

/6o =10/7
Nwe =@
Npe =@

Npe =@

Npe=1.0

Nye=5!
2+ Npe = -51 8 Ngq = 100
——Npe .55
| | | | | | |
0 2 4 € £ 1] 2 14

Fiac. 5. The effect of the Deborah number on the initial
motion of a cavity.
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Fic. 6. The effect of the Deborah number on the cavity
motion,

a finite Reynolds number the cavity no longer
collapses on the first cycle at Ny, = 0.51, but
instead rebounds as shown in the figure.

For various cases, the numerical solutions were
carried out for several cycles of the motion, and
some of the results are shown in Fig, 6. In this figure
one observes that for a Deborah number of %, the
cavity collapses in approximately three major cycles.
One also notes that the maximum radius reached
after each rebound decreases in an almost linear
fashion for the first few oscillations when Np, = 1.
The modulation within the later cycles and the
exact radius values in final stages of collapse are
uncertain at this time, since numerical integration
difficulties were encountered at long times. (The
longest time shown represents some 30-40 min of
IBM 360 computation time for a single run.)

V. CONCLUSIONS

The results of the preceding analysis indicate that
elastic effects may well have a strong influence on
cavitation in viscoelastic liquids. We should certainly
expect such effects to occur at high Deborah num-
bers )\/t., where the relaxation time A of the fluid
is long compared with the classical Rayleigh collapse
time ¢..

In particular, for the Maxwellian liquid considered
here, the present analysis shows that in the limit
of large Deborah numbers \/{, — «, a spherical
void may either collapse or undergo oscillations
about an equilibrium radius, depending on whether
the ratio of ambient pressure to the elastic modulus
of the fluid exceeds a definite, critical value. The
presence of viscosity in the fluid tends to damp
the oscillations, and a critical-damping phenomenon
oceurs for Reynolds numbers below a certain value.

Even for finite and moderate Deborah numbers,
Nt = 0(1), the ultimate collapse of a void is
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delayed for several eycles of expansion and contrac-
tion.

Although we have not considered the possible
effects of gases or vapors in the collapsing cavity
in detail, we should not expect such effects to greatly
alter the role of liquid elasticity in the collapse
process. In fact, one might reasonably anticipate
that the combined effects of volume elasticity in
the gas and shape elasticity in the liquid would
reinforce one another in such a way as to retard or
completely suppress the collapse of bubbles. From
the results of previous studies of gas-filled bubbles
in Newtonian fluids, we might also expect that, in
many instances, the effects of liquid elasticity would
be important at a much earlier stage in the collapse
process. In such cases, the buildup of the liquid-
phase momentum, which gives rise to catastrophic
collapse, would be greatly suppressed.

In addition to any experimental work which may
be suggested by the present study, it would also
be of some interest to theoretically investigate the
hydrodynamic stability of the spherically symmetric

1141

motion of cavities collapsing in viscoelastic liquids.
While one might be tempted to employ a somewhat
more refined rheological model for the liquid, this
would probably lead to rather difficult analytical
and computational problems, without necessarily
providing much additional insight on the physiecs
of the collapse phenomenon,
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