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The theory of the hyperbolic retarding potential analyzer in the electrostatic
mode is developed in detail and verified in the laboratory. A monoenergetic
electron beam is used for the laboratory investigation. The analyzer (acronym
HARP) has advantages over other conventional electrostatic analyzers; among
them are less contact potential influence and high throughput because of the
symmetry shape of the analyzer. The most useful application of the HARP is in
detecting low-energy charged particles. A sample of low-energy particle data

obtained in the earth’s ionosphere is given.

I. INTRODUCTION

Low-energy electrons play a fundamental role in the
energetics of planetary atmospheres. These electrons
are produced as a result of ionizing processes in the
atmospheric gases. After creation, the electrons lose
their energy, principally in inelastic collisions (leading
to excited molecules and atoms) and elastic collisions
(leading to enhanced thermal electron temperatures),
and eventually become a part of the thermal electron
population. Knowledge of the energy distribution of
these electrons is desirable in order to determine the
energy budget of the atmosphere.

Many types of instruments have been utilized on
space probes to find this distribution. Various types of
Langmuir probes' and retarding potential analyzers?
measure the integral distributions, and cylindrical® and
spherical® electrostatic analyzers are used to measure
the differential distribution. The ratio of the deflecting
potential to the deflected particle energy is of funda-
mental importance for measuring low-energy electrons.
Surface contact potentials become a problem below 1 V,
and consequently, with small ratios, the particles may
have their trajectories considerably distorted. Conven-
tional analyzers used on spacecraft (spherical and
cylindrical) have a ratio that is generally less than unity
(order of 0.5-0.1). To obtain a unity ratio requires that
the plate separations be approximately equal to their
radii. This introduces serious field distortions from the
edges as well as a reduction in particle focusing prop-
erties.

This paper describes in detail an instrument, a gridless
analyzer, which, although not a new kind, has certain
unique properties when used on spacecraft to measure
low-energy charged particles. The first property is that
the deflecting potential to particle energy ratio is never
less than unity and can be made much larger than unity.
A second property is that it minimizes contact potential
problems common to most energy analyzers. The instru-
ment is a gridless retarding potential analyzer with a
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hyperbolic field. It is given the acronym HARP. A brief
discussion of this instrument has been given elsewhere.?

The basic theory of the instrument has been developed
previously by several authors®® in terms of an electron
lens and an energy filter for paraxial rays (perpendicular
to the lens). Also, the instrument has been discussed by
other authors®!® in the context of an rf-driven mass
spectrometer. General reviews on the retarding potential
analyzers can also be found elsewhere.!'''> This paper
discusses an essentially identical instrument in terms of
an electrostatic energy analyzer. Here, however, the
case of meridional rays and nonparaxial incidence with
no rf field is treated. The HARP is considered a lens-
like device for selectively passing charged particles of
various energies.

Section I of the paper discusses the theoretical
formulation of particle trajectories in the applied field.
In Sec. III, laboratory studies are considered in light
of the theory, and in Sec. IV the use of the instrument as
a plasma detector in the earth’s ionosphere is discussed.
It is shown that the HARP is an excellent instrument
for measuring low-energy plasma distributions from a
few tenths to hundreds of electron volts.

Il. THEORY
A. Description of the HARP

The geometry of the HARP consists, essentially, of
three solid electrodes in the form of a body of revolu-
tion as shown in Fig. 1. The three electrodes consist of a
center hyperbolic electrode and two hyperbolic end-cap
electrodes (the name *‘end-cap electrode™ comes from
the fact that the upper and lower electrodes close the
system).

The HARP has a rotationally symmetric quadrupole
field, ¢(p, Z), produced by the three electrodes and
performs the energy selection of the charged particle as
follows: For a fixed potential field, particles with the
appropriate initial values of energy, position, and direc-
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FiG. 1. Geometry of the hyperbolic analyzer. The geometry has a
rotational symmetry about the Z axis. ¢, is a potential applied on the
center hyperbolic electrode a distance p, from origin, ¢ the potential
applied on the two (upper and lower) hyperbolic end-caps a distance
Z, from the origin, and p, and € are the initial position and angle of the
injected electron. Z, is the Z value on the end-caps.

tion are transmitted; the rest are not. The potential
field in the cylindrical coordinate system is given by

p(‘2 + 2Z2 — p2

,Z = e T
Hp.Z) = (4 = bn) | Pm s

+ ¢y (1)
¢ is a static potential applied to the center hyperbolic
electrode, whose geometry is defined by the relation

p = (2Z% + p2)=. (2)

¢, is the potential on the two end-cap electrodes whose
geometry satisfies the relation

Z. = * (Z2 + p2/2). (3)

Now p.in Eqgs. (1) and (2) is the distance from the center
of the cavity to the hyperbolic electrode, and Z, in Eqgs.
(1) and (3) is the axial distance to the end-cap electrode
from the center of the cavity.

A major convenience of this geometry is that the equa-
tions of motion are two-dimensional, separable, and can
be solved in analytic form.

B. Trajectories of a charged particle

The classical Lagrangian L of a charged particle
(mass m and charge g) in the potential field ¢(p,Z) in
the cylindrical coordinate system is given by

L=(m/2)(p* + p*& +2%) = qd(p,2).  (4)

where the dot indicates the time derivative.

As shown in Eq. (4), @is cylic and mp?8, which is the
angular momentum along the Z axis, is a constant of
motion. If the initial angular velocity is chosen to be
zero (meridional case) as an initial condition of the
problem, the problem is reduced to a two-dimensional
one as shown below (a more general solution can be
found elsewhere?8):

_— = = wnzp (5)
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dz
—_ =+ 2(])/)22, (())
dt

where

wyt = 2q(dy — d’(')/(P«Z + 2Z)m. (7

The negative 2:1 ratio between the variation with
distance of the field in the two directions of Egs. (5) and
{6) shows that, when the electric field is accelerating a
charged particle toward the origin along the Z axis
(+ or —), it must be decelerating toward the origin along
the p axis and vice versa.

It is convenient to refer to the mode when the electric
field accelerates the particle toward the origin along the /
axis as ''the accelerating mode’™ and to use the term
“retarding mode’’ when the particle decelerates toward
the origin. As was noted in the previous section, the
charged particle entering from the top-cap electrode
will be considered. This will not cause any loss of
generality. The retarding mode will be considered first.
followed by the accelerating mode.

I. Retarding mode

This is the mode in which the energy selection is per-
formed. The coefficient w,? in Eqgs. (5) and (6) is positive,
which implies that ¢y < ¢ for ¢ < 0 (electrons and
negative ions) or ¢, > ¢ for ¢ > 0 (positive ions). The
solutions of Eqgs. (5) and (6) are given by, respectively.

p(t) = (P<>/w/;) sin(wp!) + Py COs(wpt), (8)
Z(t) = (Z./\V2wp) sinh(\V2w)t)
+ Z. cosh(V2awpt), (9)

where py, py. and Z., Z. are the initial conditions at
= 0 on the top-cap electrode. p, and Z, are given by

0o = [2¢g(dr — )/ m])' 2 sine, (1M

Z, = [2q(¢pr — b¢)/m]"* cose. (1)
where g¢; is the kinetic energy of the charged particle
before entering the analyzer and € is the angle between
the initial particle direction and the Z axis of the
analyzer.

The following expression can be derived from Eqs. (8)
and (9) after eliminating ¢:

p(Z) = V2aZ, tane sinf + p, cosé, (12)

where @ and « are functions of the ratios of physical
quantities and are given by

I Z/Z( - [(Z/Z()2 — (l . az)]l/z R
6 = \/5 lOg ( — /) (13)
and
- Q¢ 2 7.2 12
o = ( :ZT z( Pe 2; 5[0 ) cose. (14)
B — P ¢ /

Thus a choice of a particular 6 or a does not dictate
a particular physical dimension to be used.
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Fig. 2. (a) First-order trajectories for various o (a >1) of a
charged particle in the retarding mode when p,=0, e+ 0. (b)
Second-order trajectories of a charged particle in the retarding mode
when p, = 0 and € # 0 for various a (a> 1). (¢) Charged particle
tragectories in the retarding mode when p, = 0 and € # 0 and various
ala< ).

Equation (12) can be written

._p_(Z_)_ = ._L o Sino +
27, tane V2

Po

——— cosé.
27, tane

(15)
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There are four possible cases for combinations of p,
and e.

Case a: po = € = 0. The trajectory is a straight
line along the Z axis. This case corresponds to the
conventional retarding potential method. The cutoff po-
tential is the potential at Z = 0 when the potential is
equal to the kinetic energy of the particle.

Case b: p, = 0, € # 0. Particle trajectories of several
a values are shown in Figs. 2(a) and 2(b). It is noted that
the figure is a universal one because the figure has been
plotted in terms of « and the ratios of p, and Z. tane,
all of which are internal quantities as noted above.

As shown in the figure, the trajectories diverge from
the origin in the upper half of the cavity and converge
toward the bottom cap in the lower half, The trajectories
are rapidly oscillating as « approaches unity and have
nodal points depending upon the rapidity of the oscilla-
tion, which is a characteristic of wave motion. There-
fore, there is an optical analog for a retarding mode.
The trajectories are called first order when there is no
other nodal point in the region Z = Z, and —Z,, second
order when there is one nodal point in this region, and
so on for higher orders.
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FiG. 3. (a) Trajectories for various « of a charged particle incident
away from p =0 (p, # 0. € # 0, phase advance). (b) Trajectories for
various « of a charged particle incident toward p =0 (p, # 0. € # 0,
phase lag).
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Figure 2(a) shows the first-order trajectories, which
are relatively less sensitive to the variation of «. Figure
2(b) shows the second-order trajectories, which have a
strong dependence on «. Note here that the end point
at Z = —Z, moves rapidly across the end-cap. Higher
order trajectories will have an even stronger dependence
on «. resulting in a more rapid movement of the end
point of the trajectory across the end-cap. Figure 2(c¢)
shows the particle trajectory when the energy is insuffi-
cient to overcome the potential barrier at Z = 0 (a < 1).
The trajectory turns back toward Z = +Z,. resultingina
complete cutoff of the lower half of the cavity from the
upper half.

Case ¢ py# 0, € # 0. This case has generally the
same trajectories as the previous case except that there
are two different inittal conditions. One is a diverging
trajectory (away from p = 0) as shown in Fig. 3(a), and
the other is a converging trajectory (toward p =0) in
the upper half of the cavity as shown in Fig. 3(b).

When the trajectories are described in terms of the
wave motion, the diverging trajectory has a phase
advance initially and the other (converging) a phase lag.

Cuase d: €=0, p, # 0. Here the trajectories are
shown in terms of p/p, since tane = 0. This case has a
phase shift lag of one-quarter of a wavelength initially
in the trajectory. A few trajectories are shown in Fig. 4
that are similar to those in well known electrostatic
lenses. ™13

2. Accelerating mode

In the accelerating mode, the coefficient w,? in Eqs.

(5) and (6) is negative, which implies that ¢y > ¢ for

g < 0 or ¢, < ¢ for ¢ > 0. The solution of this mode
with the same initial condition as in the previous mode
is given by

plZ) = V2(Z. tane)a’ sinh@’ + p, coshd',  (16)
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where
,
)
W(Z)Z) — [V + (L)L)
X t{ln71 ( a'( / ) [ a. .- / )-v ) ' (17)
(Z)Z.) + &'[1 + o = (Z)7.)*}'*
by — b pE AR
o :( br = b p —— ] cose. (18)
b — Py 222

Similar to the retarding mode. there are four cases.
but there is no optical analogy as in the retarding mode.

Case a: € =0, p, =0. This case is a straight line
trajectory along the Z axis similar to the retarding cuse
except that there is no cutoff potential.

Cuase b: € # 0. p, = 0. Trajectories of several « are
shown in Fig. 5. The trajectories converge to the origin
in the upper half of the Z axis and diverge at —Z, in the
lower half. Also. note that as «' becomes zero the
trajectory is approaching the Z axis monotonically,
regardless of the incidence angle €. i.e.. ¢, i1s very large
compared to the kinetic energy of the charged particle.

Case ¢:e # 0. p, = 0. Equation (16) can be written as

p(Z)/po = (V2Z. tandpy)a’ sinh® + coshé’. (19)

The trajectories for a few «' values are shown in
Fig. 6. As shown in the figure. one trajectory (increasing
p) always diverges monotonically from the / axis in the
—Z plane. The other trajectory (decreasing p) crosses
the Z axis (in the —Z plane) before diverging from the
Z axis.

Cave d:e = 0, p, # 0. Inthis case. the trajectories are
similar to the previous case (increasing p), in which the
trajectory is diverging from the Z axis monotonically.

The divergence of the trajectories appears to violate a
general rule of electron optics." That general rule has
been derived from an approximate solution (i.e.. particle
trajectories are assumed to have a small radial distance
from the axis). but the present result is an exact solution
of the quadrupole field.
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F1G. 5. Trajectories for various « of a charged particle in the ac-

celerating mode when € # 0. p, = 0.
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C. Energy resolution

If & small (circular) aperture is located anywhere on
the lower-cap electrode. the particles within a small
energy range about a certain energy can be transmitted
and collected selectively.

The energy resolution for the retarding mode is de-
rived from Eq. (14), where the incident energy, E, of the
charged particle can be expressed as a function of two
independent variables, « and e,

AE  Aq(¢r — $) _ 24a

+ 2 tane(Ae).
E C[((f)'/' - d)() (43

(20)

For the accelerating mode, the same equation applies
with the replacement of « by «’. The first term in Eq.
(20) is determined by the radii of the collecting aperture
and the entrance aperture. The second term is deter-
mined by the field of view of the energy analyzer. A«
(or Aa') is the difference between the two a values which
determine the energy window through the collecting
aperture. and Ae is the angle of the field of view at the
entrance slit. It should be noted that AE in Eq. (20) 1s the
baseline energy difference. not the half-energy width.
In order to calculate the first termin the energy resolu-
tion [Eq. (20)], for an infinitesimal entrance aperture
[the calculation for a finite size aperture (a beam) will
be discussed later], the impact radius of the particle
trajectory, p,. is defined at Z = —Z,. for both modes.

@) = V2aZ. tane sin

i a1y
,ﬁ"’g(,z,l )]
Fa+ |

1
+ S ]
Py COS [ el og (

for the retarding mode and

a— 1

1 20
gy = \/foz'Z(, tane sinh [—— tan™’ (——— }
P L V2 EE )
o 2a¢'
5 an~!' | —— b))
+ py cosh v tan ( T ” (22)

for the accelerating mode. A plot of the ratios p;/2Z.
tane (or p;/p,) Vs a (or ') is termed an “‘impact radius
plot™ for convenience.

When the boundaries of the collecting aperture are
o and p., Aa is given by

Aa = ,a,—agl. (23)
where «, and «, satisfy the following relationship:
pr = pilay),
p: = pilae). (24)

It i1s convenient to find the o and o, value from
the impact radius plot. As the radius of the collecting
aperture and the angle of the field of view are increased,
the energy resolution becomes poorer.
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FiG. 6. Two kinds of trajectories for various « in the accelerating
mode when p, # 0. € # 0. Trajectories in left of figure (converging)
sweep across the center axis of the end-cap. while the trajectories
on the right side (diverging) do not.

1. Retarding mode

Case a: € =0, p,=0. This case has zero impact
radius regardless of the kinetic energy and 1s of no
interest to the present work.

Cuase b:e# 0, py = 0. The impact radius plot is shown
i Fig. 7 (p,/27,. tane vs « — 1. where 27, tane is the
impact radius at infinite energy). As shown in the figure
the rapid oscillation in the impact radius occurs very
close to the cutoff energy, which corresponds to the
case « = [. at which the energy is given by

— b)) = 2q(dy — o) Zy* 1

.25
pt + 27,2 cos’e

E = q(¢r

The higher order oscillation is so rapid that the most
important energy selection takes place at the rather broad
energy window. A, where the particle is first focused at
the collecting aperture (first order).

Cuase ¢: €+ 0. p, # 0. Figure 8 shows the impact
radius plot (p,/27Z, tane vs «a — 1) for p,/Z,. tane = 0.6.
As noticed in the figure, there are two energy windows
for each order compared to one window for case b. The
energy resolution for phase lagis improved relative to the
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FiGg. 7. Impact radius plot in the retarding mode. A indicates the

first-order energy window and B the second-order energy window
when the collecting aperture is located at the center of the lower
end-cap.
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Frg. 8. Impact radius plot (p; /27, tane vs « — 1) for the retarding
mode when e # 0. p, = 0. Here py/7Z, tane = 0.6. See text for dis-
cussion of phase lag and phase advance.

case b, while for phase advance the resolution becomes
worse.

Case d: € = 0, p, # 0. This is the limiting case for
case ¢ above. The impact radius plot is shown in Fig. 9.
[t should be mentioned that there is another energy
window, A,. prior to the first-order energy window,
A. However, the energy resolution is poorer when
compared to case b. There is a minimum effect to
the energy resolution by the field of view because
tane = 0 in Eq. (20).

2. Accelerating mode

Case a:e =0, p, = 0. The impact radius is zero and no
energy analysis can be done in this case.

Case b: €# 0, p, = 0. The impact radius plot is
shown in Fig. 10 and the impact radius contains the
integrated transmission unless the collecting aperture is
located off-axis because of the monotonic decrease of
the impact radius as o' decreases.

Casec:e+ 0, p, # 0. Again as for the retarding mode
(e £ 0, po # 0). there are two impact radii depending
upon the convergence or divergence of the trajectory.
Figure 10 shows the converging trajectory only when
o/ Z, tane = 0.6. This case could be an interesting one
because of u wider range of the impact radius.

Cuase d: € =0. p, # 0. This impact radius increases
monotonically from p, = p, as ' decreases.

Finally, the energy resolution [first term of Eq. (20)] is
considered for an entrance aperture of a finite size
(radius = Ap,).

Using Eq. (21). two impact radius plots are calculated
for the retarding mode when the initial position of the
particle injection. p,. is replaced by p, £ Ap,. The two
impact radius plots are shifted away from the case
Ap, = 0 (a point aperture) on both sides. The difference
between two extreme « values gives A« for the energy
resolution. For example. when the ratio of the radius
of the entrance aperture at the center of the upper end-
cap to Z, tane is 0.6, then the two impact radius plots
are as shown in Fig. 8. The two extreme values of € are
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FiG. 9. Impact radius plot when e = 0and p, # 00 A, s the window

for a phase lag of 7/2. A iy the first-order window.

at points ¢ and f for the collecting aperture located at
the center of the lower-end-cap. Likewise. Aa’ for the
accelerating mode can be found by using Eq. (22).

ill. EXPERIMENT

The theory of the HARP with an clectrostatic field
has been developed in the previous section, and the
experimental verification of the theory will be given in
this section. A monoenergetic and directional electron
beam was used to inject electrons into the HARP. Both
angular and energy analysis were done.

The experimental work has been accomplished with an
existing apparatus that had previously been used for
studying electron impact cross sections of gases. The
HARP used in the present work was one which had been
used in studying the energetic plasma surrounding the
earth.

A. Description of the apparatus

A schematic diagram of the apparatus is shown in
Fig. 11. The vacuum chamber is a cylindrical shape and
a Vac-lon pump (pumping speed— 3500 liters/sec) pro-
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Fic. 10. Impact radius plot for the accelerating mode when € = 0.
po =0 (case by and € # 0, p, # 0 (case ¢).
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ELECTRON BEAM SOURCE

FiG. 11.  Schematic diagram of apparatus. EG—Electron gun; ES—
127° electron energy selector; A,—rotational axis of electron beam
source; B—baffle; EA-—127° energy analyzer; EM—electron
muitiplier; F—Faraday cup: S,.S,—entrance slits; A,—rotational
axis of HARP: H—hyperbolic electrode: C—exit aperture; G—grid;
CM—Channeltron multiplier.

vides an oil-free vacuum of 10™® Torr. The apparatus
consists of three subsystems: a rotatable electron-beam
source and two energy analyzers (a fixed electron detec-
tor and a rotatable and horizontally movable HARP).
Two sets of Helmholtz coils are used to compensate the
residual magnetic field from the vacuum pump magnets
and the earth’s magnetic field down to 0.05 G in all
directions.

1. Electron-beam source

The electron-beam source is comprised of an electron
gun and a 127° electrostatic cylindrical energy selector.
The resultant half-width of the energy-selected electron
beam is 0.06 eV independent of the energy. There are
two electron-beam deflectors (horizontal and vertical)
which are used to direct the electron beam in the pre-
cise direction desired. The highly directional electron
beam has an angular half-width of about 2° and produces
abeam current of 107'°~107® A. A more detailed descrip-
tion can be found elsewhere.!”

2. Fixed electron detector

This electron detector is a 127° electron analyzer,
which is the same device as was used in the electron-
beam source. This energy analyzer along with a Faraday
cup on the chamber wall is used to check the electron
beam (energy spread and directionality) in the experi-
ment.
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3. HARP

The actual geometry of the HARP used in this experi-
ment is shown in Fig. 12, and the dimensions of the
HARP are given in Table I. The HARP central electrode
is made of gold-plated aluminum and is surrounded on
the outside by Co-Netic for magnetic shielding. The
end-caps are formed from Co-Netic. This reduces the
internal magnetic field to less than 0.01 G. Behind the
exit aperture, the selected electrons are accelerated by
150 V into a Channeltron multiplier which serves as the
detector. The present experimental setup is a special
case of the various combinations between the entrance
and exit aperture geometries, i.e., the entrance aperture
with € = 15°(Ae = *4°) and p, = 0 and the exit aperture
on axis (the radius of the exit aperture = 0.35 cm.) The
field of view (Ae = *4°) of the analyzer is determined
by the width of the two slits, S§; and S,, shown in
Fig. 11.

The HARP can be rotated and translated (horizontally
and vertically) relative to the direction of the electron
beam. The rotational axis of the analyzer is located at
the intersection of the two extreme rays between the two
slits of the entrance aperture.

There is an electron trap electrode in concentric
rings about the detector behind the exit end-cap.
The trap electrode is biased +50 V relative to the exit
end-cap electrode. The trap is effective for electrons
with energy above the selected energy in the detector
and secondary electrons produced by the energetic in-
cident electrons.

| S T—
(] ‘ 2em

FiG. 12. Schematic of the HARP. ¢ is the selection potential on
the hyperbolic electrode. E, is an infinite energy with a straight line
trajectory. E, is a first-order and E; is second-order energy for a
given ¢p when the beam is focused at the exit. Here E; < E,. ET is
an electron trap which is biased +50 V relative to the end-cap elec-
trode.

Retarding potential analyzer 1011



TasLe . Dimensions of HARP

pe = 1.27 cm S; = 0.191 ¢m (width)
Z, = 1.91 cm S; = 0.046 cm (radius)
€ = 15° C = 0.35 cm (radius)
Ae = =4° ¢/E = 1.076 at the center of energy window

B. Procedure

The electron-beam source is stabilized over a 2-h
warmup period. The potential ¢, on the hyperbolic elec-
trode is swept by a function generator for a given elec-
tron beam energy from the electron beam source (setting
¢(' - O)-

The electron current of the selected energy is collected
on the Channeltron electron multiplier. The output
pulses from the multiplier are fed through a pulse ampli-
fier to a counter. The output counts are recorded on an
X-Y recorder through a D/A converter.

C. Results
{. Retarding mode

The energy response of the analyzer has been meas-
ured for a fixed incident angle (e = 15° for various
incident energies (1.3, 3, 4, 5, 10, 20, 50, 100, 200, 300,
400, and 500 eV) by sweeping the potential on the hyper-
bolic electrode. Figure 13 shows the typical response
at three incident energies. First-order and sharp second-
order windows are clearly evident at A and B. respec-
tively, in Fig. 13. The high-order passbands do not ap-
pear in the experimental data because the count rate is
below detectability owing to the extremely narrow
energy windows. ,

The theoretical energy resolution given by Eq. (20) ata
fixed angle [(AE/E) ye—o = 2 Ac/a] is 7.8% when the finite
width of the entrance slit is considered. The mean ex-
perimental energy resolution is (7.5 = 0.5)% for the
various incident energies. The agreement between the
theoretical and experimental values is relatively good.

A typical angular response of the analyzer at an inci-
dentenergy of 20 eV is shownin Fig. 14. [tis noted that at
smaller incident angles the energy window is broader.
Also, the center of the energy window is shifted toward
lower ¢y as the incident angle is increased. The reason
for this is that for a fixed «; and «, (also Aa), which are
determined by the geometry of the exit aperture, there is
a functional relationship between ¢, and e [viz., Eq.
(14)]. The fractional energy width broadening due to the
field of view of the analyzer, given by 2 tane(Ae) in
Eq. (20), should be added to 2Aa/a to obtain the total
energy resolution. A theoretical value for 2 tane(Ae) is
7.5% when € = 15°and Ae = 8°. Thus the total theoretical
value of AE/E is 15.3%.

A typical response of the analyzer to an isotropic
electron source of 20 eV energy can be obtained simply
by adding the response at all angles in the field of view
as shown in Fig. 15. The result is roughly triangular
shaped. Here AE/E 'baselme = 15.5% and AE/E ‘ha,f_wmm
= 9.0%. Consideration of the response at other energies
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FiG. 13. Typical response of the HARP at three incident energies
(5. 20. and 30 eV). A is the broad first-order encrgy window. and B
is the sharp secondzorder. The sawtooth nature of the data is due to
the fact that the focused beam is dispersed in energy much less than
the grid spacing in front of the multiplier.

gives AE/E |puserine = 15.5 = 0.5%, which compares well
with the theoretical resolution above.

2. Accelerating mode

The present geometry of the HARP (slit arrangement
and exit aperture) is inappropriate 1o test the behavior
of the electron beam in the analyzer in this mode. How-
ever, that the electron beam is focused and collected
at the detector as ¢y increases is demonstrated by using
positive voltages on the hyperbolic electrode and de-
flecting electrons. The result is shown in Fig. 16.

As shown in Fig. 10 (case b), the impact radius de-
creases monotonically as the applied potential ¢, in-
creases. A lower limit of the impact radius is zero when
the potential ¢, is infinite. Thus, at large ¢, values the
integrated signal of all of the particles is collected and
the count is approximately constant. The present
geometry of the collecting aperture (radius 0.35 ¢m at
the center of the lower end-cap electrode) implies that
p; must be 0.35 ¢cm or less to collect the electrons at &
given energy. At p, = 0.35 cm. the detector starts

o ek NS
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F1G. 14, Angular response of the HARP at an incident energy of

20 eV. At smaller incident angles. the energy window is broader. The
center of the energy window shifts toward lower ¢ as the incident
angle is increased.
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FiGg. 15. Response of the HARP to an isotropic electron beam of
20 ¢V energy.

collecting electrons. This corresponds to an « of approxi-
mately 0.15, which gives the ratio of ¢, to this incident
energy of the electron beam of approximately 30. Since
there is a large ratio of ¢, to the incident energy of the
electron beam, the HARP may be useful to calibrate
the absolute energy scale of an incident electron beam
because the effect of the contact potential on the absolute
energy scale is reduced by a factor of 30.

V. APPLICATIONS

The principal application of the HARP to date has
been as a rocket-borne detector of low-energy electrons
in the ionosphere of the earth. Measurement of the
energy distribution of ionospheric electrons for energies
generally less than 100 V requires that several detec-
tion problems be considered which may not necessarily
be present in laboratory uses of the instrument. The
choice of the appropriate sensor is the primary problem.
When the choice of the sensor is made, the operational
mode must be maximized for detecting low-energy elec-
trons. Then the problem of the charge state of the space-
craft must be considered, since that charge may forbid
entry of low-energy electrons to the sensor. Finally, all
electrons not of ionospheric origin must be determined
and minimized.

A. Sensor

The use of the HARP for measuring low-energy elec-
trons is based on three important considerations. (1) As
noted in Sec. II, the HARP uses a selection potential
on the central electrode that is near the energy of the
collected electrons, whereas, in a conventional spherical
or cylindrical analyzer normally used for space flight,
only a small fraction of the electron energy is used for
deflection. Thus. at low energies the HARP is signifi-
cantly less sensitive to small potential irregularities on
the electrodes. Also. for the same particle energy resolu-
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tions, the HARP requires a less precise selection poten-
tial than other analyzers. (2) All electrons being selected
spend about 107 of their trajectory near an electrode
wall in the HARP. This will result in a less significant
influence on the trajectories from contact potential prob-
lems, whereas, in the spherical and cylindrical analyzers,
electrons follow a wall throughout the time spent in the
analyzer. At low energies, surface potential fluctuations
can cause serious trajectory deformation near walls un-
less great care is taken. The nonproximity of walls to
the trajectories in the HARP results in a distinct advan-
tage in the measurement of the energy spectrum below
a few volts. (3) For any group of analyzers, all having
the same energy resolution, AE,./E. the important
quantity to consider is the product of the acceptance
solid angle, (), and the source area, A. For the HARP,
as generally used, this is 8 x 107 cm? sr at AE,,/E
= 9%. This results in statistically significant counts and
sufficient resolution to resolve any structure in the
energy distribution. A disadvantage of the HARP is that
a practical upper limit to the sampled electron energy
exists because of the near-unity ratio of sampled to
applied voltage. Kilovolt and higher energies are not
sampled.

B. Operational mode

The retarding mode of operation is used since higher
electron energies may be sampled than in the accelerating
mode. Electrons enter the instrument at an angle of €
= 15° £ 4° and on axis p, = 0. This is case b discussed
in Sec. II. The case ¢ mode (p, # 0. €+ 0) has also
been used. principally in an effort to study the effects of
baffling scattered sunlight.

It should be recalled that both the accelerating and
retarding modes operate simultaneously. If electrons are
being deflected in the retarding mode, then positive ions
are being deflected in the accelerating mode. Thus, steps
must be taken to eliminate the undesired particles (ions
in this application). When this is not done, the count
rates at high body potentials will reflect the accelerating
mode particles (ions) rather than the retarded particles
(electrons) since the accelerated particles are >10° times
more abundant than the retarded particles. The ions can
be reflected from the lower end-cap to the central elec-
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F1G. 16. Response of the HARP to an incident beam energy of 3 eV

in the accelerating mode. The signal begins to be collected at approxi-
mately ¢, = 90 V.
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trode and produce secondary electrons which accelerate
to the end-cap and contribute significantly to the count
rate.

C. Spacecraft charging

In most circumstances spacecraft have a potential of
—1 to —3 V. On some occasions, particularly with
satellites, the potential can be considerable, forexample,
20 V on OGO-F* and kilovolts on ATS-5.2 The absolute
energy basis of the sampled electrons depends upon the
knowledge of the spacecraft charge state. A method has
been designed and tested to measure this charge state.?®
This method is based upon an intrinsic feature of the
sensor in which the instrument reference potential is
servoed to compensate the spacecraft potential. Upon
finding the spacecraft potential the reference potential
is held fixed for the energy sweep.

D. Local electrons

Electrons entering the sensor are called “‘local’’ if
their origin, by production or reflection, is the instru-
ment slits or spacecraft. The field of view of the sensor
will see these local electrons in certain conditions of
sensor— spacecraft—sun geometries, and spacecraft—mag-
netic field geometries. Any geometry is undesirable
which results in a photoelectron from the spacecraft
surface spiraling about the magnetic field into the sensor.
Photoelectrons from the instrument slit are undesirable
as well. The instrument is blinded to ambient electrons
if any part of the spacecraft occupies space that the
electron would occupy in its trajectory about the mag-
netic field into the sensor.

To overcome these problems the instrument is
mounted on the forward end of the rocket payload with
the entrance cone forward. Local electrons created at
surfaces will not have the necessary trajectories to enter
the HARP, nor will the HARP be blinded to ambient
electrons. Furthermore, the rocket is launched when it
is well assured that the sun—sensor angle will be about
90° (dusk or dawn), which minimizes electrons created
on the entrance slit. As noted in the previous section,
electrons scattered inside the instrument are trapped
in a Faraday cup arrangement after the bottom end-cap
electrode.

V. SOME EXPERIMENTAL RESULTS

The HARP has been flown on several occasions and
has successfully measured the electron distribution from
0.5 to 500 eV in the earth’s ionosphere, both during the
day and in the aurora at night. The conversion from
detector count rate, C, to flux is achieved by evaluating
the integral®!

Tt T o
C =l [ dt [ r-da J dQ J e(E)F(E,t) dE,
T A Q

To 0

where E = particle energy, 7= sampling period,
r = unit vectorindirection 2, da = surface area element
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Fi16. 17. Low-energy electron flux distribution in the aurora. The
open data points were obtained in a low-voltage sweep; the crosses
were obtained in a high-voltage sweep.

of instrument entrance aperture, {0 = solid angle, € = in-
strument detection efficiency, and F = particle flux
(cm? sec sreV)™ .

The following assumptions are used to simplify this
expression: (a) Particle flux is constant over the sample
period; (b) particle flux is isotropic over the instrument
field of view; (¢) particle flux changes slowly over the
energy resolution window; and (d) Channeltron effi-
ciency is constant and near unity from 150 to 650 V (re-
member that electrons are accelerated by 150 V into the
Channeltron after leaving the analyzer).

There results, then, the expression

C = AEG(E)F(Ey),

where
G(E,) = [ da-r [ dQT(Ey, a,€}) cm? sr,
A 4]

with T the transmission of the instrument. G(E,) = 8
x 107 cm? sr for the particular geometries of the HARP
used on rockets.

Figure 17 illustrates the low-energy auroral electron
distribution. It is, in general, typical of low-energy
spectral distributions. Features to be noted are the rapid
flux increase of the thermal Maxwellian tail below 2 V,
the structure in the 1- 10 V region, and the lack of struc-
ture above 10 V. The physical processes leading to the
shape of the various energy regimes have been discussed
in the literature’?*?? in the context of the data. That the
magnitude of the flux and its spectral shape are quantita-
tively correct is given by the fact that energetic electron
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degradation calculations for the atmosphere reproduce
the measurements remarkably well.*
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